平方根习题精选含答案
平方根练习题及答案
平方根练习题及答案平方根练习题及答案数学作为一门基础学科,对于培养学生的逻辑思维和解决问题的能力起着至关重要的作用。
而在数学中,平方根是一个重要的概念,掌握平方根的计算方法和应用能力对于解决各种实际问题至关重要。
下面我们来看一些关于平方根的练习题及其答案。
1. 计算下列各数的平方根:a) 4b) 9c) 16d) 25答案:a) √4 = 2b) √9 = 3c) √16 = 4d) √25 = 52. 计算下列各数的平方根:a) 36b) 49c) 64d) 81答案:a) √36 = 6b) √49 = 7c) √64 = 8d) √81 = 93. 计算下列各数的平方根:a) 100b) 121c) 144d) 169答案:a) √100 = 10b) √121 = 11c) √144 = 12d) √169 = 13通过以上练习题,我们可以看到计算平方根的方法其实非常简单。
对于一个正数n,它的平方根就是使得x² = n成立的正数x。
我们可以通过试探法或者使用计算器来计算平方根。
当然,在实际问题中,我们通常会使用计算器或者数学软件来计算平方根,但是对于基础的练习题,我们还是应该掌握手算的方法。
除了计算平方根,我们还可以通过平方根的性质来解决一些实际问题。
比如,在几何学中,我们可以利用平方根来计算直角三角形的斜边长。
根据勾股定理,直角三角形的两条直角边的平方和等于斜边的平方。
如果我们已知两条直角边的长度,我们就可以通过平方根来计算斜边的长度。
另外,在物理学中,平方根也经常被用来计算速度、加速度等物理量。
例如,当我们已知一个物体匀加速运动的加速度和时间时,我们可以通过平方根来计算物体的位移。
这些实际问题的解决离不开对平方根的理解和应用。
总之,平方根作为数学中的一个重要概念,不仅仅是一种计算方法,更是一种解决实际问题的工具。
通过练习题的训练,我们可以提高对平方根的计算能力和应用能力,为解决更加复杂的问题打下坚实的基础。
人教版初中数学七年级下册第六章《6.1平方根》同步练习题(含答案)
《平方根》同步练习1 课堂作业1.9的算术平方根是()A.-3B.±3C.3D2.一个数的算术平方根不可能是()A.正数B.负数C.分数D.非负数3的值在()A.1和2之间B.2和3之间C.3和4之间D.4和5之间4.144的算术平方根是________;(-5)2的算术平方根是________;181的算术平方根是________.5.求下列各数的算术平方根:(1)0.64;(2)9116;(3)2.56;(4)0.6.求下列各式的值:(2).课后作业7() A.-3B.3C.-9D.98() A.-2B.±2CD.29.下列说法正确的是() A.7是49的算术平方根B.±4是16的算术平方根C.-6是(-6)2的算术平方根D.0.01是0.1的算术平方根10.下列运算正确的是()A.(5)5=--=B1 12 =C33 2244 =+=D0.5=±11.一个自然数的算术平方根为a,则和这个自然数相邻的下一个自然数是() A.a+1B.a2+1CD112.用“>”或“<”连接下列各式:(2)(3)4-.13.若172.≈,22.84≈,则217________≈,________≈0.02284≈,则x =________.14.邻居张大爷家有一块正方形的花圃,面积为289m 2,张大爷要在花圃的四周围上栅栏,则至少需要栅栏的长度为________.15.求下列各式的值:16.小玉想用一张面积为900cm 2的正方形纸片,沿着边的方向裁出一张面积为560cm 2的长方形纸片,使它的长、宽之比为2︰1,但不知是否能裁出来.小芳看见了说:“很明显,一定能用一张面积大的纸片裁出一张面积小的纸片.”你同意小芳的观点吗?小玉能用这张正方形纸片裁出符合要求的长方形纸片吗?答案[课堂作业]1.C2.B 3.C4.12 5 195.(1)0.8 (2)54 (3)1.6 (4)0 6.(1)147 (2)-3(3)9(4)45[课后作业]7.B8.C9.A10.B11.B12.(1)>(2)>(3)>13.0.2284228.40.000521714.68m15.(1)17(2)0.8(3)216.设长方形纸片的长为2xcm,宽为xcm.由题意,得2x·x=560,解得x=280>256,16>.∴2x>32,即裁出的长方形纸片的长大于32cm.而已知正方形纸片的面积为900cm2,则边长只有30cm,因此,我不同意小芳的观点小玉不能用这张正方形纸片裁出符合要求的长方形纸片《平方根》同步练习2课堂作业1.下列各数中,没有平方根的是()A.(-3)2B.0C.1 8D.-632.求449的平方根,下列运算过程正确的是()A4 49 =B.27 =±C2 7 =D.2 7 =3.若x的一个平方根,则另一个平方根是________,x是________.4.2.25的平方根是________;19的平方根是________;1625的平方根是________.5.求下列各数的平方根:(1)196;(2)0.16;(3)25 169;(4)729.6.有一个边长为11cm的正方形和一个长15cm、宽5cm的长方形,要做一个面积为这两个图形的面积之和的正方形,则该正方形的边长应为多少?课后作业7.下列各式正确的是()A3=-B.3=-C3=±D3=±8.下列说法正确的是()A.14是0.5的一个平方根B.正数有两个平方根,且这两个平方根之和等于0C.72的平方根是7D.负数有一个平方根9()A.±3B.3C.±9D.910.若a是(-3)2的平方根,b的一个平方根是2,则a+b的值为________.11.若一个正数的两个平方根分别是2a-2和a-4,则a的值是________.12.求下列各式的值:(1);(2);(4)13.求下列各式中x的值:(1)3x2=75;(2)292(1)8x-=;(3)2(x2+1)=5.38.14.已知2a-1的平方根是±3,3a+b-1的算术平方根是4,求a+2b的值.15.为了促进全民健身活动的开展,改善居民的生活质量,某居民小区决定在一块面积为905m2的正方形空地上建一个篮球场.已知篮球场的面积是420m2,长是宽的2815倍,篮球场的四周必须留出1m宽的空地.请你计算一下,能否按规定在这块空地上建一个篮球场.答案[课堂作业]1.D2.B3 54.±1.513±45±5.(1)±14(2)±0.4(3)513±(4)53±6.设该正方形的边长为xcm.由题意,得x2=11×11+15×5=196.∵x>0,∴14x==.∴该正方形的边长应为14cm[课后作业]7.B8.B9.A10.1或711.212.(1)±30(2)-1.7(3)7 4(4)±1113.(1)x =±5 (2)14x =或74x = (3)x =±1.314.由题意,得2a -1=(±3)2,3a +b -1=42,解得a =5,b =2.∴a +2b =5+2×2=915.设篮球场的宽为xm ,那么长为28m 15x .由题意,得2842015x x = .∴x 2=225.∵x >0,∴15x ==.又∵228(2)90090515x +=<,∴能按规定在这块空地上建一个篮球场 《平方根》同步练习3同步练习:一、基础训练1.若一个偶数的立方根比2大,算术平方根比4小,则这个数是_______.2.下列计算不正确的是( )A ±2B 9C =0.4D 63.下列说法中不正确的是( )A .9的算术平方根是3B 2C .27的立方根是±3D .立方根等于-1的实数是-14 )A .±8B .±4C .±2 D5.-18的平方的立方根是( ) A .4 B .18 C .-14 D .146_______;9的立方根是_______.7______________(保留4个有效数字)8.求下列各数的平方根.(1)100;(2)0;(3)925;(4)1;(5)11549;(6)0.09.9.计算:(1)(2(3(4二、能力训练10.一个自然数的算术平方根是x,则它后面一个数的算术平方根是()A.x+1B.x2+1C1D11.若2m-4与3m-1是同一个数的平方根,则m的值是()A.-3B.1C.-3或1D.-112.已知x,y(y-3)2=0,则xy的值是()A.4B.-4C.94D.-94参考答案1.13.10,12,14 点拨:23<这个数<42,即8<这个数<16.2.A 2.3.C4.C =4,故4的平方根为±2.5.D 点拨:(-18)2=164,故164的立方根为14.6.±237.6.403,12.61 8.(1)±10 (2)0 (3)±35 (4)±1 (5)±87 (6)±0.3 9.(1)-3 (2)-2 (3)14(4)±0.510.D 点拨:这个自然数是x 2,所以它后面的一个数是x 2+1,则x 2+1.12.B 点拨:3x +4=0且y -3=0.。
平方根3套练习题(有答案)
平方根3套练习题(有答案)篇一:八年级数学平方根练习题包含答案第11章平方根练习题班级:________ 姓名________ 分数________ ◆随堂检测1、9的算术平方根是___ __ 252、一个数的算术平方根是9,则这个数的平方根是3x的取值范围是,若a≥04、下列叙述错误的是()A、-4是16的平方根B、17是(?17)2的算术平方根C、11的算术平方根是D、0.4的算术平方根是0.02 864◆典例分析例:已知△ABC的三边分别为a、b、c且a、b|b?4|?0,求c的取值范围分析:根据非负数的性质求a、b的值,再由三角形三边关系确定c的范围|b?4|?00 |b?4|≥0|b?4|=0所以a=3 b=4 又因为b-a c a+b 所以 1 c 7●拓展提高一、选择1?2,则(m?2)2的平方根为()A、16B、?16C、?4D、?22)A、4B、?4C、2D、?2二、填空 3、如果一个数的算术平方根等于它的平方根,那么这个数是4(y?4)2=0,则yx三、解答题5、若a是(?2)2的平方根,ba+2b的值6、已知ab-1是400●体验中考1.(2009年山东潍坊)一个自然数的算术平方根为a,则和这个自然数相邻的下一个自然数是()A.a?1B.a?1 22 CD12、(08;若b,(a、b为连续整数),则a= , b=3、(08年广州)如图,实数a、b在数轴上的位置,化简4、(08年随州)小明家用了大小相同的正方形瓷砖共66块铺成10.56米的房间,小明想知道每块瓷砖的规格,请你帮助算一算.2参考答案:随堂检测:1、3,352、?93、x≥2,≥4、D拓展提高:1、C2、C3、04、165、由题意知:a=(?2)2= 4 ,b=2 所以a+2b= 4+4=86、解:因为a,所以a=13,又因为b-1是400的算术平方根,所以b-1=20b=21?●体验中考:1、B2、9;7,83、-2b4为0.4米.22??0.4,所以每块瓷砖的边长篇二:七年级下册第6章-平方根习题题精选(含答案)6.1平方根习题题精选______班别______姓名______考号______一.选择题(共30小题)2.(2021?鞍山)4的平方根是()3.(2021?陕西)4的算术平方根是() 5.(2021?张家界)若+(y+2)2=0,则(x+y)2021等于()6.(2021?泸州)已知实数x、y满足+|y+3|=0,则x+y的值为()8.(2021?新泰市一模)的平方根是()9.(2021?德州一模)|﹣4|的平方根是() 10.(2021?资阳一模)下列说法正确的是()13.(2021?邻水县模拟)16的算术平方根的平方根是()14.(2021?南充)0.49的算术平方根的相反数是() 15.(2021?黄石模拟)算术平方根等于2的数是()的平方根是() 18.下列说法正确的是() 19.下列说法正确的是()20.一个数如果有两个平方根,那么这两个平方根之和是()21.下列说法正确的()(1)9的平方根是±3(2)平方根等于它本身的数是0和1 (3)﹣2是4的平方根(4)的算术平方根是4.22.81的平方根是±9的数学表达式是()23.已知3m﹣1和m﹣7是数p的平方根,则p的值为() 24.如果一个数的平方根是这个数本身,那么这个数是()27.一个正数的平方根是2m+3和m+1,则这个数为() 28.下列说法正确的是() 30.下列说法正确的是()一.填空题(共8小题)1.(2021?本溪)一个数的算术平方根是2,则这个数是.2.(2021?营口一模)若2x﹣4与1﹣3x是同一个数的平方根,则x的值为 3.(2021?江西模拟)已知一个正数的两个不同的平方根是3x﹣2和4﹣x,则x=4.(2021?普陀区二模)5.(2021?道里区一模)6.(2021?高港区二模)7.(2021?高淳县二模)如果a、b分别是9的两个平方根,则ab的值为的平方根是的算术平方根是.的平方根是8.(2021?潮安县模拟)如果二.解答题(共12小题) 9.解方程:(1)x﹣与(2x﹣4)互为相反数,那么2x﹣y= _________ .2=0;(2)(x﹣1)=36. 10.解方程:0.25(3x+1)﹣15=0.2211.解方程:196x﹣1=0. 12.解方程:(1)13.解方程:(2x+1)﹣6=0.14.观察下列表格,并完成下列问题(1)求a和b的值;(2)用一句话概括你发现的规律.22=0;(2)(x﹣1)=36.2(1)268.96的平方根是多少?(2)(3)(4)表中与≈ _________ .在哪两个数之间?为什么?最接近的是哪个数?16.已知2a﹣1的算术平方根是3,3a+b﹣1的算术平方根是4,求a,b的值. 17.计算:(1)(2)(3)= _________ ,= _________ ;= _________ ,= _________ .= _________ ;仔细观察上面几道题的计算结果,猜想一个数的平方的算术平方根与这个数之间的关系.(可以用代数式表示或用语言叙述)18.已知2a+b的算术平方根是9,3a﹣b+1是144的算术平方根,求a﹣b的值. 19.若 20.己知+(x﹣2)=0,求x﹣y的平方根.,求(x+2)的平方根.26.1平方根习题题精选(参考答案与解析)一.选择题(共30小题)2.(2021?鞍山)4的平方根是()3.(2021?陕西)4的算术平方根是()5.(2021?张家界)若+(y+2)=0,则(x+y)22021等于()篇三:八年级数学平方根练习题包含平方根检测题◆随堂检测1、9的算术平方根是___ __ 252、一个数的算术平方根是9,则这个数的平方根是3x的取值范围是,若a≥04、下列叙述错误的是()A、-4是16的平方根B、17是(?17)的算术平方根C、211的算术平方根是D、0.4的算术平方根是0.02 864◆典例分析例:已知△ABC的三边分别为a、b、c且a、b|b?4|?0,求c的取值范围分析:根据非负数的性质求a、b的值,再由三角形三边关系确定c的范围|b?4|?00 |b?4|≥0|b?4|=0所以a=3 b=4 又因为b-a c a+b 所以 1 c 7◆课下作业●拓展提高一、选择1?2,则(m?2)的平方根为()A、16B、?16C、?4D、?22)A、4B、?4C、2D、?2二、填空 3、如果一个数的算术平方根等于它的平方根,那么这个数是4(y?4)=0,则y三、解答题25、若a是(?2)的平方根,ba+2b的值 22x26、已知ab-1是400的值●体验1.(2009年山东潍坊)一个自然数的算术平方根为a,则和这个自然数相邻的下一个自然数是()A.a?1B.a2?1CD12、(08;若,(a、b为连续整数),则a= , b=3、(08年广州)如图,实数a、b在数轴上的位置,化简4、(08年随州)小明家装修用了大小相同的正方形瓷砖共66块铺成10.56米的房间,小明想知道每块瓷砖的规格,请你帮助算一算.2参考答案:随堂检测:1、3,352、?93、x≥-2,≥4、D拓展提高:1、C2、D3、04、165、由题意知:a=(?2)= 4 ,b=2 所以a+2b= 4+4=86、解:因为a,所以a=13,又因为b-1是400的算术平方根,所以b-1=20b=21?●体验中考:1、B2、9;7,83、-2b4为0.4米.222??0.4,所以每块瓷砖的边长。
平方根习题精选含答案
13.1平方根习题精选班级:姓名:学号1.正数a的平方根是( )A. B.± C.−D.±a2.下列五个命题:①只有正数才有平方根;②−2是4的平方根;③5的平方根是;④±都是3的平方根;⑤(−2)2的平方根是−2;其中正确的命题是( )A.①②③ B.③④⑤ C.③④ D.②④3.若= 2.291,= 7.246,那么= ( )A.22.91 B. 72.46 C.229.1 D.724.64.一个自然数的算术平方根是a,则下一个自然数的算术平方根是( )A.a+1 B.a2+1 C.+1 D.5.下列命题中,正确的个数有( )①1的平方根是1 ;②1是1的算术平方根;③(−1)2的平方根是−1;④0的算术平方根是它本身A.1个 B.2个 C.3个 D.4个6.若= 2.449,= 7.746,= 244.9,= 0.7746,则x、y的值分别为( )A.x = 60000,y = 0.6 B.x = 600,y = 0.6C.x = 6000,y = 0.06 D.x = 60000,y = 0.06二、填空题1.①若m的平方根是±3,则m =______;②若5x+4的平方根是±1,则x =______2.要做一个面积为π米2的圆形桌面,那么它的半径应该是______3.在下列各数中,−2,(−3)2,−32,,−(−1),有平方根的数的个数为:______4.在−和之间的整数是____________5.若的算术平方根是3,则a =________三、求解题1.求下列各式中x 的值①x 2= 361; ②81x 2−49 = 0; ③49(x 2+1) = 50; ④(3x −1)2= (−5)22.小刚同学的房间地板面积为16米2,恰好由64块正方形的地板砖铺成,求每块地板砖的边长是多少?第十二章:数 的 开 方 (一)1、如果一个数的 等于a ,那么这个数叫做a 的平方根,正数的平方根有 个,它们的关系是 ,0的平方根是 ,负数 。
八年级数学《平方根》练习题(含答案)
八年级数学《平方根》练习题(含答案)一、选择题1. 若 $a = 4$,则 $\sqrt{a}$ 的值是多少?A. 2B. 4C. 8D. 16答案:A2. 若 $b = 16$,则 $\sqrt{b}$ 的值是多少?A. 2B. 4C. 8D. 16答案:B二、填空题1. $3\sqrt{3} \approx $ ____________。
答案:5.192. 若 $\sqrt{x} = 5$,则 $x = $ ____________。
答案:25三、解答题1. 请将以下根式化简:$\sqrt{48}$解:$\sqrt{48}=\sqrt{16\times3}=4\sqrt{3}$2. 小明想用木板围一块矩形花坛,长为 $6\sqrt{2}$ 米,宽为$3\sqrt{2}$ 米,需要多长的木板?解:周长为 $2(6\sqrt{2}+3\sqrt{2})=18\sqrt{2}$,所以需要$18\sqrt{2}$ 米的木板。
四、挑战题1. 若 $x>0$,$y>0$,$x\neq y$,且 $\sqrt{x} + \sqrt{y} =\sqrt{xy}$,则 $x$ 与 $y$ 的值至少为多少?解:将等式两边平方得到 $x+y+2\sqrt{xy}=xy$,移项可以得到$\sqrt{xy}=x+y-xy$。
因为 $x+y-xy>0$,所以 $\sqrt{xy}>0$,即$xy>0$,因此 $x$ 和 $y$ 同号。
不妨设 $x>y$,则$\sqrt{x}+\sqrt{y}<2\sqrt{x}$,又因为$\sqrt{x}+\sqrt{y}=\sqrt{xy}$,所以 $\sqrt{xy}<2\sqrt{x}$,即 $y<4x$。
又因为 $y>x$,所以$x<2y$。
结合 $y<4x$ 可以得到 $x>4y$,代入 $x<2y$ 中得到$y<\dfrac{1}{6}x$。
平方根专项练习题答案
平方根专项练习题答案一、选择题1. 以下哪个数的平方根是无理数?A. 4B. 9C. 16答案:A2. 计算√64的结果是多少?A. 8B. -8C. 4D. 2答案:A3. √25的值等于以下哪个选项?A. 5B. ±5C. 25D. 5/2答案:B4. 以下哪个数的平方根是正数?A. -3B. 0C. 3D. 5答案:C5. √144的值是多少?A. 12B. 12/2C. 36D. 18答案:A二、填空题6. √0.36的值是______。
答案:0.67. 一个数的平方根是7,这个数是______。
答案:498. √0.16的值是______。
答案:0.49. 如果√x = 5,那么x等于______。
答案:2510. √225的值是______。
答案:15三、计算题11. 计算下列各数的平方根:- √289- √0.09- √1答案:17, 0.3, 112. 计算下列各数的平方根,并简化结果:- √576- √0.25- √1/9答案:24, 0.5, 1/313. 计算下列各数的平方根,并写出其整数部分和小数部分:- √324- √0.64答案:18.0, 0.814. 计算下列各数的平方根,并判断其是否有整数解:- √289- √289 + √289答案:有整数解,无整数解15. 计算下列各数的平方根,并判断其正负:- √144- √-9答案:正数,无实数解四、解答题16. 一个正方形的面积是25平方厘米,求这个正方形的边长。
答案:边长为√25=5厘米。
17. 一个长方形的长是10厘米,宽是√49厘米,求这个长方形的面积。
答案:面积为10×√49=10×7=70平方厘米。
18. 如果一个数的平方根是8,求这个数。
答案:这个数为8²=64。
19. 一个数的平方根是√2,求这个数。
答案:这个数为(√2)²=2。
20. 一个数的平方根是√3,求这个数的平方。
平方根算术平方根精选习题训练及详细解析
平方根和算术平方根精选习题训练及详细解析一.解答题(共8小题)1.若实数a、b满足|a+2|+=0,求的值.2.王老师给同学们布置了这样一道习题:一个数的算术平方根为2m﹣6,它的平方根为±(m﹣2),求这个数.小张的解法如下:依题意可知,2m﹣6是m﹣2或者是﹣(m﹣2)两数中的一个 (1)当2m﹣6=m﹣2,解得m=4 (2)(2m﹣6)=(2×4﹣6)=2 (3)这个数为4当2m﹣6=﹣(m﹣2)时,解得m= (4)(2m﹣6)=(2×﹣6)=﹣ (5)这个数为综上可得,这个数为4或 (6)王老师看后说,小张的解法是错误的.你知道小张错在哪里吗?为什么?请予改正.3.已知+|2x﹣3|=0.(1)求x,y的值;(2)求x+y的平方根.4.若|x﹣1|+(y+3)2+=0,求4x﹣2y+3z的平方根.5.已知a,b为实数,且﹣(b﹣1)=0,求a2015﹣b2016的值.6.(1)若5a+1和a﹣19是数m的两个不同的平方根,求m的值.(2)如果y=+3,试求2x+y的值.7.已知:=0,求:代数式的值.8.已知a,b为实数,且﹣(b﹣1)=0,求a2005﹣b2006的值.2017年10月05日hrui88的初中数学组卷参考答案与试题解析一.解答题(共8小题)1.若实数a、b满足|a+2|+=0,求的值.【分析】由非负数的性质得到a+2=0,b﹣4=0,解得a=﹣2,b=4,代入求得=1.【解答】解:∵实数a、b满足|a+2|+=0,∴a+2=0,b﹣4=0,∴a=﹣2,b=4,∴=1.【点评】本题考查了非负数的性质,算术平方根,绝对值,熟记非负数的性质是解题的关键.2.王老师给同学们布置了这样一道习题:一个数的算术平方根为2m﹣6,它的平方根为±(m﹣2),求这个数.小张的解法如下:依题意可知,2m﹣6是m﹣2或者是﹣(m﹣2)两数中的一个 (1)当2m﹣6=m﹣2,解得m=4 (2)(2m﹣6)=(2×4﹣6)=2 (3)这个数为4当2m﹣6=﹣(m﹣2)时,解得m= (4)(2m﹣6)=(2×﹣6)=﹣ (5)这个数为综上可得,这个数为4或 (6)王老师看后说,小张的解法是错误的.你知道小张错在哪里吗?为什么?请予改正.【分析】由算术平方根的非负性质可知2m﹣6≥0,从而可对求得的m的值作出取舍.【解答】解:∵2m﹣6是某数的算术平方根,∴2m﹣6≥0.解得:m≥3.∴当m=不符合题意应舍去.故答案为:这个数为4.【点评】本题主要考查的是算术平方根、平方根的定义,掌握算术平方根的非负性是解题的关键.3.已知+|2x﹣3|=0.(1)求x,y的值;(2)求x+y的平方根.【分析】(1)根据非负数的性质求出x、y的值;(2)根据(1)求出x+y,开方即可.【解答】解:(1)∵≥0,|2x﹣3|≥0,+|2x﹣3|=0,∴2x+4y﹣5=0,2x﹣3=0,则x=,y=.(2)x+y=+=2,则x+y的平方根为±.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.4.若|x﹣1|+(y+3)2+=0,求4x﹣2y+3z的平方根.【分析】根据非负数的性质列式求出x、y、z的值,然后代入代数式进行计算,再根据平方根的定义解答.【解答】解:由题意得,x﹣1=0,y+3=0,x+y+z=0,解得x=1,y=﹣3,z=2,所以,4x﹣2y+3z=4×1﹣2×(﹣3)+3×2=4+6+6=16,∵(±4)2=16,∴4x﹣2y+3z的平方根是±4.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.5.已知a,b为实数,且﹣(b﹣1)=0,求a2015﹣b2016的值.【分析】由已知条件得到+(1﹣b)=0,利用二次根式有意义的条件得到1﹣b≥0,再根据几个非负数和的性质得到1+a=0,1﹣b=0,解得a=﹣1,b=1,然后根据乘方的意义计算a2015﹣b2016的值.【解答】解:∵﹣(b﹣1)=0,∴+(1﹣b)=0,∵1﹣b≥0,∴1+a=0,1﹣b=0,解得a=﹣1,b=1,∴a2015﹣b2016=(﹣1)2015﹣12016=﹣1﹣1=﹣2.【点评】本题考查了非负数的性质:算术平方根具有非负性.非负数之和等于0时,各项都等于0利用此性质列方程解决求值问题.6.(1)若5a+1和a﹣19是数m的两个不同的平方根,求m的值.(2)如果y=+3,试求2x+y的值.【分析】(1)根据正数的两个平方根互为相反数列方程求出a的值,再求出一个平方根,然后平方即可得到m的值;(2)根据被开方数大于等于,分母不等于0列式求出x,再求出y,然后代入代数式进行计算即可得解.【解答】解:(1)∵5a+1和a﹣19是数m的两个不同的平方根,∴5a+1+a﹣19=0,解得a=3,所以,5a+1=3×5+1=16,m=162=256;(2)由题意得,x2﹣4≥0且4﹣x2≥0,所以,x2≥4且x2≤4,所以,x2=4,解得x=±2,又∵x+2≠0,∴x≠﹣2,所以,x=2,y=3,所以,2x+y=2×2+3=7.【点评】本题考查了平方根的定义,注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.7.已知:=0,求:代数式的值.【分析】根据非负数的性质列式求出a、b的值,然后代入代数式进行计算即可得解.【解答】解:∵=0,∴=0,≠0,∴3a﹣b=0,a2﹣49=0,∴a=7,b=21,∴=2.【点评】本题考查了绝对值非负数,算术平方根非负数的性质,根据几个非负数的和等于0,则每一个算式都等于0列式是解题的关键.8.已知a,b为实数,且﹣(b﹣1)=0,求a2005﹣b2006的值.【分析】根据被开方数大于等于求出b的取值范围,再根据非负数的性质列式求出a、b的值,然后代入代数式进行计算即可得解.【解答】解:由题意得,1﹣b≥0,∴b≤1,∴原式可化为+(1﹣b)=0,由非负数的性质得,1+a=0,1﹣b=0,解得a=﹣1,b=1,所以,a2005﹣b2006=(﹣1)2005﹣12006=﹣1﹣1=﹣2.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0,求出b的取值范围是解题的关键.。
平方根练习题及答案
平方根练习题及答案1. 求下列数的平方根,并保留四位小数:a) 25b) 64c) 144d) 1000e) 0.01答案:a) 5.0000b) 8.0000c) 12.0000d) 31.6228e) 0.10002. 求下列数的平方根,结果保留整数部分:a) 36b) 81c) 49d) 121答案:a) 6b) 9c) 7d) 11e) 133. 根据下面给出的平方根结果,求出原数的范围:a) 平方根结果为6,原数范围是?b) 平方根结果为10,原数范围是?c) 平方根结果为15,原数范围是?答案:a) 原数范围是36至49之间的所有数字。
b) 原数范围是100至121之间的所有数字。
c) 原数范围是225至256之间的所有数字。
4. 求下列数的近似平方根,结果保留两位小数:a) 2b) 3d) 6e) 7答案:a) 1.41b) 1.73c) 2.24d) 2.45e) 2.655. 完成下列平方根的计算,并将结果化简为最简形式:a) √18b) √32c) √50d) √72e) √98答案:a) √18 = 3√2b) √32 = 4√2c) √50 = 5√2d) √72 = 6√2e) √98 = 7√26. 求下列数的平方根,结果保留精度到百分之一:a) 7b) 15c) 27d) 39e) 54答案:a) 2.6458b) 3.8729c) 5.1962d) 6.2449e) 7.34857. 判断下列数是否为完全平方数:a) 16b) 27c) 64d) 100e) 121答案:a) 是b) 否c) 是d) 是e) 是8. 检验下列数是否为某个整数的平方根:a) 5.2b) 6.8c) 8.2d) 9.6e) 10.9答案:a) 否b) 否c) 否d) 否9. 解决下列方程,令x为正数:a) x^2 = 16b) x^2 = 81c) x^2 = 49d) x^2 = 121e) x^2 = 169答案:a) x = 4b) x = 9c) x = 7d) x = 11e) x = 1310. 求下列数的立方根,结果保留两位小数:a) 8b) 27c) 64d) 125e) 216a) 2.00b) 3.00c) 4.00d) 5.00e) 6.00以上是关于平方根的练习题及答案。
初中数学算术平方根练习题及参考答案
初中数学算术平方根练习题及参考答案以下是初中数学算术平方根练习题及参考答案的整洁美观的文章:算术平方根是一个非常常见的数学问题,它综合了数学的许多不同方面,包括基本算术、代数和几何。
在这篇文章中,我们将介绍一些适合初中生的算术平方根练习题,并提供参考答案以帮助你检查自己的答案。
练习题1:计算下列算术平方根a) √16b) √25c) √36d) √49e) √64f) √81g) √100参考答案:a) 4b) 5c) 6d) 7e) 8f) 9g) 10练习题2:计算下列算术平方根(答案包含小数)a) √2b) √5c) √8d) √10e) √13f) √15参考答案:a) 1.414b) 2.236c) 2.828d) 3.162e) 3.606f) 3.872练习题3:求解下列方程(答案需用算术平方根表示)a) x² = 25b) x² = 36c) x² = 49d) x² + 10 = 34参考答案:a) x = ±5b) x = ±6c) x = ±7d) x = ±2√6练习题4:计算正方形的对角线长度(边长为整数)a) 边长为3的正方形b) 边长为5的正方形c) 边长为7的正方形参考答案:a) 对角线长度为3√2b) 对角线长度为5√2c) 对角线长度为7√2练习题5:已知等腰直角三角形的直角边长为4,求它的斜边长参考答案:斜边长为4√2以上是初中数学算术平方根练习题及参考答案,希望这些问题能够帮助您巩固您的数学知识,并为您在未来的数学学习和生活中提供帮助。
平方根练习题答案
平方根练习题答案一、填空题1. √9 = 32. √16 = 43. √25 = 54. √36 = 65. √49 = 76. √64 = 87. √81 = 98. √100 = 109. √121 = 1110. √144 = 12二、选择题1. 答案:D解析:√121 = 11,选项D中与这个结果相符。
2. 答案:A解析:√64 = 8,选项A中与这个结果相符。
3. 答案:C解析:√169 = 13,选项C中与这个结果相符。
4. 答案:B解析:√256 = 16,选项B中与这个结果相符。
5. 答案:D解析:√400 = 20,选项D中与这个结果相符。
6. 答案:C解析:√625 = 25,选项C中与这个结果相符。
7. 答案:A解析:√900 = 30,选项A中与这个结果相符。
8. 答案:B解析:√1089 = 33,选项B中与这个结果相符。
9. 答案:C解析:√1369 = 37,选项C中与这个结果相符。
10. 答案:D解析:√1600 = 40,选项D中与这个结果相符。
三、解答题1. 答案:√196 = 14解析:通过对196的因数进行分解,可以得到14的平方,因此√196 = 14。
2. 答案:√62500 = 250解析:62500可以分解为250的平方,因此√62500 = 250。
3. 答案:√3249 = 57解析:通过对3249的因数进行分解,可以得到57的平方,因此√3249 = 57。
4. 答案:√60025 = 245解析:60025可以分解为245的平方,因此√60025 = 245。
5. 答案:√1000000 = 1000解析:1000000可以分解为1000的平方,因此√1000000 = 1000。
6. 答案:√1444 = 38解析:通过对1444的因数进行分解,可以得到38的平方,因此√1444 = 38。
7. 答案:√8649 = 93解析:通过对8649的因数进行分解,可以得到93的平方,因此√8649 = 93。
平方根立方根练习题及答案
平方根立方根练习题及答案1. 求 \( \sqrt{16} \) 的值。
2. 求 \( \sqrt{81} \) 的值。
3. 求 \( \sqrt[3]{27} \) 的值。
4. 求 \( \sqrt[3]{64} \) 的值。
5. 求 \( \sqrt{0.36} \) 的值。
6. 求 \( \sqrt[3]{-27} \) 的值。
7. 判断 \( \sqrt{64} \) 是否等于 \( \sqrt{16} \times \sqrt{4} \)。
8. 求 \( \sqrt[3]{8} \) 并将其与 \( \sqrt[3]{2} \) 进行比较。
答案1. \( \sqrt{16} = 4 \),因为 \( 4^2 = 16 \)。
2. \( \sqrt{81} = 9 \),因为 \( 9^2 = 81 \)。
3. \( \sqrt[3]{27} = 3 \),因为 \( 3^3 = 27 \)。
4. \( \sqrt[3]{64} = 4 \),因为 \( 4^3 = 64 \)。
5. \( \sqrt{0.36} = 0.6 \),因为 \( 0.6^2 = 0.36 \)。
6. \( \sqrt[3]{-27} = -3 \),因为 \( (-3)^3 = -27 \)。
7. \( \sqrt{64} \) 等于 \( 8 \),而 \( \sqrt{16} \times\sqrt{4} \) 也等于 \( 4 \times 2 = 8 \),所以判断正确。
8. \( \sqrt[3]{8} \) 等于 \( 2 \)(因为 \( 2^3 = 8 \)),而\( \sqrt[3]{2} \) 约等于 \( 1.26 \),所以 \( \sqrt[3]{8} \) 大于 \( \sqrt[3]{2} \)。
这些练习题和答案可以帮助学生更好地理解和掌握平方根和立方根的概念。
通过这些练习,学生可以提高他们的计算能力和对数学概念的理解。
平方根习题精选含答案
平方根习题精选含答案(总36页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--13.1平方根习题精选班级:姓名:学号1.正数a的平方根是( )A. B.± C.− D.±a2.下列五个命题:①只有正数才有平方根;②−2是4的平方根;③5的平方根是;④±都是3的平方根;⑤(−2)2的平方根是−2;其中正确的命题是( )A.①②③ B.③④⑤ C.③④ D.②④3.若= ,= ,那么= ( )A. B. C. D.4.一个自然数的算术平方根是a,则下一个自然数的算术平方根是( )A.a+1 B.a2+1 C.+1 D.5.下列命题中,正确的个数有( )①1的平方根是1 ;②1是1的算术平方根;③(−1)2的平方根是−1;④0的算术平方根是它本身A.1个 B.2个 C.3个 D.4个6.若= ,= ,= ,= ,则x、y的值分别为( )A.x = 60000,y = B.x = 600,y =C.x = 6000,y = D.x = 60000,y =二、填空题1.①若m的平方根是±3,则m =______;②若5x+4的平方根是±1,则x =______2.要做一个面积为π米2的圆形桌面,那么它的半径应该是______3.在下列各数中,−2,(−3)2,−32,,−(−1),有平方根的数的个数为:______4.在−和之间的整数是____________5.若的算术平方根是3,则a =________三、求解题1.求下列各式中x的值①x2 = 361;②81x2−49 = 0;③49(x2+1) = 50;④(3x−1)2 = (−5)22.小刚同学的房间地板面积为16米2,恰好由64块正方形的地板砖铺成,求每块地板砖的边长是多少第十二章:数 的 开 方 (一)1、如果一个数的 等于a ,那么这个数叫做a 的平方根,正数的平方根有 个,它们的关系是 ,0的平方根是 ,负数 。
七年级下册平方根练习题及答案
B.0是正数;C.0是无理数;
[ ]
D.0是整数.
53.和数轴上的点对应的数为
A.整数;B.有理数;C.无理数;
54.和数轴上的点对应的数是
A.有理数;B.无理数;C.实数;
55.全体小数所在的集合是
A.分数集合;B.有理数集合;C.无理数集合;
56.下列三个命题:(1)两个无理数的和一定是无理数;(2)
-(x-1 + 7w)(k-1-VW).
1.判断正误:
⑴x
(2)X
(3)X
(4)X
(5)V
(6)X
⑺V
(8)X
(9)V
(10)V
(11)X
(12)V
2.填空:
;m=3(6)a》2且a工3
(7)立方根;-64(8)x为任意实数(9)±
3.选择题:(1)B (2)D (3)D (4)C (5)A (6)A
不存在;
C.与本身的平方根相等的实数不存在;D•最大的负数不存在.
-/U-..::「.・「;;.1:I.」口二[
A.0.0140;B.0.1410;C.4.459;
71.己知7232.5625= 15.25,则^2325625=
A.1.525;B.15.25;C.152.5;D.1525.
72.=0 4358,那么二[]
2
41.042.243.屈也无理
45.gx-Ua+75)(3;-厲)
9・2,±4110.没有.一伞实数的平方不可能为负数
13.±3.提示:因为=痢=久夕=(土好,所以血的平方根是±3
14.血.提示:因为洞=以所以启的算木平方a是耀・
15.-1.提示:
由非负数和为零的性质可知
初二数学上册平方根练习题(带答案)
25 , ±5
(2)0.3 (2) x
10. ±19,8 (3) ±13 (3) ±
1 2005
14.(1)-4
3 2
(5)15
(6)-9
15.(1) ±7
7 3 或x 2 2
1 (4)9 3
16.(1) ±1,1 (3)9
(2) ±17,17 18. ±3
(3) ±70,70
(4) ±a,a
1 x 2005 2005 x ,则 y= x
D.-4 D.无法确定 ).
). D.大于或等于 0 D.∣2a∣ D.±2 。 , ⑴ 16 = ⑷ 2
1 = 4
⑵ 0.09 = ⑸ 17 8 =
2 2
. . . .
初二数学上册平方根练习题(带答案)
练习反馈 1.下列语句正确的是( ) A.一个数的平方根一定是两个数 B.一个非负数的非负平方根一定是它的算术平方根 C.一个正数的平方根一定是它的算术平方根 D.一个非零的正的平方根是它的算术平方根 2.若 4a 1 有意义,则 a 能取的最小整数为( ). A.0 B.1 C.-1 2 3.若 x 1 ( x y ) 0 ,则 x+y 的值是( ). A.-2 B.-3 C.-4 4.一个数的算术平方根只要存在,那么这个算术平方根( A.只有一个,并且是正数 B.不可能等于零 C.一定小于这个数 D.必定是非负数 5.若 a 是有理数,下列说法正确的是( ). 2 2 A. a 的算术平方根是 a B. a 的平方根是 a C. a2 的算术平方根是∣a∣ D. a2 的平方根是∣a∣ 6.一个数如果有两个平方根,那么这两个平方根的和是( A.大于 0 B..等于 0 C.小于 0 2 7.若 a≥0,则 4a 的算术平方根是( ). A.2a B.±2a C. 2a 8. 16 的算术平方根是( ). A.4 B.±4 C.2 9.25 的平方根记作 ,结果是 . 10.361 的平方根是 ,64 的算术平方根是 2 11.(-4) 的算术平方根是 。 12.-9 是数 a 的一个平方根,那么数 a 的另一个平方根是 13.若 y
初中数学平方根算术平方根实数运算练习题(附答案)
初中数学平方根算术平方根实数运算练习题一、单选题1. )A.5和6之间B.6和7之间C.7和8之间D.8和9之间2.点A ,B 在数轴上的位置如图所示,其对应的实数分别是a ,b ,下列结论错误的是( )A.2b a <<B.1212a b ->-C.2a b -<<D.2a b <-<-3.有下列说法:①任何无理数都是无限小数;②有理数与数轴上的点一一对应;③在数轴上,原点两旁的两个点所表示的数都是互为相反数; ④π3是分数,它是有理数;9.其中正确的个数是( ).A.lB.2C.3D.4 4.下列说法中正确的是( ).A.27的立方根是3±B.8-没有立方根C.立方根是它本身的数只有1±D.平方根是它本身的数只有05.4a =-成立,那么a 的取值范围是( )A.4a ≤B.4a ≤-C.4a ≥D.—切实数6.有下列说法:①任何数的平方根都有两个;②如果—个数有立方根,那么它一定有平方根;③算术平方根一定是正数;④非负数的立方根不一定是非负数.其中,错误的个数是( ).A.1B.2C.3D.47.已知5a =7=,且a b a b +=+,则a b -的值为( )A. 2或12B. 2 或12-C. 2-或12D. 2- 或12-8.下列各组数中互为相反数的是( )A. 2-B. 2-C. 2-与12-D. 2-与29.用四舍五入法按要求对0.05049分别取近似值,其中错误的是( )A.0.1(精确到0.1)B.0.05(精确到百分位)C.0.05(精确到千分位)D.0.050(精确到0.001)10.11日凌晨,阿里巴巴公布了2015双十一购物狂欢节的相关数据: 33分53秒时,成交额破200亿。
200亿用科学记数法表示为( ) A.0.2×1010 B.2×1010 C.2×109 D.20×10911.某班要在一面墙上同时展示数张形状、大小均相同的矩形绘画作品,将这些作品排成一个矩形(作品不完全重合),现需要在每张作品的四个角落都钉上图钉,如果作品有角落相邻,那么相邻的角落共享一枚图钉(例如,用9枚图钉将4张作品钉在墙上,如图),若有34枚图钉可供选用,则最多可以展示绘画作品( )A. 16张B. 18张C. 20张D. 21张12.实数,a b 在数轴上对应点的位置如图所示,化简2()a a b +-的结果是( )A.2a b -+B.2a b -C.b -D.b13.对于实数a,b,下列判断正确的是( )A.若|a|=|b|,则a=bB.若a 2>b 2,则a>bC.若2a b =,则a=bD.若33a b =,则a=b14.如图,已知数轴上的点A 、B 、C 、D 分别表示数2-、1、2、3,则表示35-的点P 应落在线段( )A. AO 上B. OB 上C. BC 上D. CD 上15.在3.1?41?5,17,83,0,2-,0.89-,13π-,2011-,0.303?003?000?3,57+中,无理数有( )A.2个B.3个C.4个D.5个16、下列无理数中,在 与 之间的是( )A.B.C.D.二、解答题17.计算:1(2)321(2)()2--3 1.--18.已知52a +的立方根是3,31a b +-的算术平方根是4,c .(1)求,,a b c 的值;(2)求3a b c -+的平方根.19.已知: ()225434170x y x y +++--=,.20.一个正数x 的两个不同的平方很分别是2a 和2a --1.求a 和x 的值;2.求22a x -的立方根.21.已知a ,b 是有理数,且满足()220ab -=1.求a ,b 的 值;2.求()()()()()()1111112220182018ab a b a b a b ++++++++++的 值三、计算题22.计算: 20(2)1)--;四、填空题__________.24.已知一个正数的平方根是32x -和56x +,则这个数是__________.25.若一个正数的两个平方根分别是3a -和31a -,则这个正数是 .26.观察下表,按规律填空.参考答案1.答案:D解析:2.答案:C解析:3.答案:A解析:4.答案:D解析:5.答案:D解析:6.答案:D解析:7.答案:D解析:∵5a =7=,∴5a =±,7b =±,∵a b a b +=+,∴0a b +≥,∴5a =,7b =或5a =-,7b =,∴2a b -=-或12-.8.答案:A解析:对于A,2=,易知2-与2互为相反数,故选A.9.答案:C解析:用四舍五入法对0.05049取近似值时,四舍五入,所以C.精确到千分位应该是0.050. 考点:近似值,精确值10.答案:B解析:11.答案:D解析:A.161162844=⨯=⨯=⨯最少需要图钉(41)(41)25++=枚.B.181182936=⨯=⨯=⨯最少需要图钉(31)(61)28++=枚.C.2012021045=⨯=⨯=⨯最少需要图钉(41)(51)30++=枚.D.2112137=⨯=⨯最少需要图钉(31)(71)32++=枚.还剩余2枚图钉.故选D.12.答案:A解析:题图知,0,00a b a b <>-<,所以,则()2,a a a b a a b a b =-+-=---=-+故选A13.答案:D解析:14.答案:B解析:∵23<<,∴031<<,则表示3-P 应落在线段OB 上,故选B.15.答案:C解析:,13π-,0.3030030003-,5+,共4 个,其余则为有理数.答案: 16、解析: ∵, ∴A,D 不在与 之间. ∵, ∴ 在 与 之间.17.答案:解:(1)原式2413=-+=-(2) 原式184********.4=-⨯-⨯-=---=- (3) 原式1151371.282324=-+--= 解析:18.答案:解:(1) 52a +的立方根是3,31a b +-的算术平方根是4,5227,3116,5, 2.91316,34,a a b a b ∴+=+-=∴==<<∴<的整数部分 3.c =(2)将5,2,3a b c ===代入得316a b c -+=,3a b c ∴-+的平方根是4±. 解析:19.答案:±2解析:20.答案:1.由题意,得()220,2a a a +--==解得()222416x a ∴===2.222=2216=82a x -⨯--==-,,即22a x -的立方根是-2 解析:21.答案:1.()()2220,20ab ab -=-≥≥ 20,10,2,1ab b a b ∴-=-=∴==2.当2,1a b ==时,()()()()()()1111=12211122122201812018++++⨯+⨯++⨯++⨯+原式 111112233420192020=+++⨯⨯⨯⨯ 1111111112233420192020=-+-+-+++ 12019120202020=-=解析:22.答案:5-解析:23.答案:2在求其算术平方根,4=,4的算术平方根是2.24.答案:494解析:由题意得32560x x -++=,解得12x =-, ∴7732,5622x x -=-+= ∴2749()24±=. 25.答案:4解析:因为一个正数的两个平方根分别是3a -和31a -,()()3310a a ∴-++=,()21,314a a ∴=∴-=26.答案:387.3解析:15 3.873,387.3≈≈。
平方根练习题答案
平方根练习题答案一、选择题1. 下列哪个数的平方根是正负5?A. 25B. -25C. 5D. 1252. 计算√16的结果是多少?A. 4B. -4C. 2D. -23. 如果√x = 7,那么x的值是多少?A. 49B. 7C. 14D. 94. 哪个数的平方根是√49?A. 49B. 7C. -49D. 05. 一个数的平方根是3,这个数是多少?A. 9B. 6C. 3D. 1二、填空题6. √______ = 87. √144 = ______8. √0.36 = ______9. √0.25 = ______10. √1 = ______三、计算题11. 计算下列各数的平方根:- √64- √225- √0.1612. 解下列方程:- √x = 12- √y = 0.513. 计算下列表达式的值:- √(9 × 16)- √(25 ÷ 4)四、应用题14. 一个正方形的面积是64平方厘米,求这个正方形的边长。
15. 一个长方形的长是20厘米,宽是√121厘米,求这个长方形的面积。
16. 一个圆的面积是πr²,如果圆的面积是25π平方厘米,求半径r。
17. 一个数的平方根是√48,求这个数。
五、探索题18. 假设一个数的平方根是√a,另一个数的平方根是√b,如果a和b 的和是100,求这两个数的和。
19. 如果一个数的平方根是√3,那么这个数的立方根是多少?20. 一个数的平方根是√2,求这个数的四次方根。
答案:1. A2. A3. A4. A5. A6. 647. 128. 0.69. 0.510. 111. 8, 15, 0.412. x = 144, y = 0.2513. 24, 2.514. 边长为8厘米15. 面积为242平方厘米16. 半径r为5厘米17. 这个数是4818. 两个数的和为100√a + 100√b19. 立方根是∛ 320. 四次方根是√[√2]。
平方根专项练习题答案
平方根专项练习题一、填空题1. √16 = _______2. √25 = _______3. √36 = _______4. √49 = _______5. √64 = _______二、选择题A. 15B. 16C. 18D. 20A. √9B. √16C. √21D. √25A. 0B. 1C. 2D. 3三、计算题1. 计算:√1442. 计算:√2253. 计算:√4004. 计算:√6255. 计算:√800四、应用题1. 一个正方形的面积是81平方厘米,求这个正方形的边长。
2. 一个数的平方根加上5等于10,求这个数。
3. 一个数的平方根减去3等于2,求这个数。
五、拓展题1. 已知一个数的平方根是5,求这个数的平方。
2. 已知一个数的平方根是8,求这个数的立方。
3. 已知一个数的平方根是10,求这个数的四次方。
六、判断题1. √81 的值是 9。
()2. √100 的值是 10。
()3. √121 的值是 11.5。
()4. √144 和√12 的和是 16。
()5. √169 的值是无理数。
()七、简答题1. 请问√4 的值是多少?2. 请问√9 和√16 的乘积是多少?3. 请问一个数的平方根是它本身,这个数可能是多少?4. 请问√1 和√0 的值分别是什么?5. 请问如何计算一个负数的平方根?八、匹配题将下列数的平方根与它们的值进行匹配:A. √121B. √64C. √25D. √81E. √161. 112. 83. 54. 95. 4九、比较题1. 比较√36 和√49,哪个更大?2. 比较√60 和√75,哪个更小?3. 比较√100 和√121,哪个数的平方根更接近10?4. 比较√16 和√25,哪个数的平方根更接近20?5. 比较√9 和√16,哪个数的平方根更接近5?十、综合题1. 已知一个数的平方根是12,求这个数的平方根的平方。
2. 已知一个数的平方是196,求这个数的平方根的立方。
平方根的习题和答案
一、选择题
1、已知:是整数,则满足条件的最小正整数为( )
A .2
B .3
C .4
D .5
2、若,,且,则的值为( )
A .-1或11
B .-1或-11
C . 1
D .11
3、的平方根是
A .9
B .
C .
D .3
4.下列计算正确的是( )
A .4=±2
B .2(9)81-==9 C.636=± D.992-=-
5.下列说法中正确的是( )
A .9的平方根是3
B .16的算术平方根是±2
C. 16的算术平方根是4
D. 16的平方根是±2
二、填空题
6.16的平方根是 ,64的平方根是
1681
的平方根是_______ 三、简答题
7、 已知
的平方根是±3,的算术平方根是4,求的平方根
8.如果一个正数m 的两个平方根分别是2a -3和a -9,求2m -2的值. 9.已知与的整数部分分别是a 、b ,求ab 的值.
10、(1)(2x-1)2
-169=0; (2)12142=x 参考答案
DDCBD
6.±2 ±8 ±3分之2
7.
8、∵一个正数的两个平方根分别是2a-3和a-9,
∴(2a-3)+(a-9)=0,解得a= 4,
∴这个正数为(2a-3) 2=52=25,∴2m-2=2×25-2= 48;
9、解:因为,所以的整数部分是12,的整数部分是5 ab=60
10、(1)x1=-6 x2=7
(2)±2分之11。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
13.1平方根习题精选班级:姓名:学号1.正数a的平方根是( )A. B.±C.−D.±a 2.下列五个命题:①只有正数才有平方根;②−2是4的平方根;③5的平方根是;④±都是3的平方根;⑤(−2)2的平方根是−2;其中正确的命题是( )A.①②③ B.③④⑤ C.③④ D.②④3.若= 2.291,= 7.246,那么= ( )A.22.91 B. 72.46 C.229.1D.724.64.一个自然数的算术平方根是a,则下一个自然数的算术平方根是( )A.a+1 B.a2+1 C.+1 D.5.下列命题中,正确的个数有( )①1的平方根是1 ;②1是1的算术平方根;③(−1)2的平方根是−1;④0的算术平方根是它本身A.1个 B.2个 C.3个 D.4个6.若= 2.449,= 7.746,= 244.9,= 0.7746,则x、y的值分别为( )A.x = 60000,y = 0.6 B.x = 600,y = 0.6C .x = 6000,y = 0.06D .x = 60000,y = 0.06二、填空题1.①若m 的平方根是±3,则m =______;②若5x+4的平方根是±1,则x =______2.要做一个面积为π米2的圆形桌面,那么它的半径应该是______ 3.在下列各数中,−2,(−3)2,−32,,−(−1),有平方根的数的个数为:______ 4.在−和之间的整数是____________5.若的算术平方根是3,则a =________三、求解题1.求下列各式中x 的值①x 2 = 361; ②81x 2−49 = 0; ③49(x 2+1) = 50; ④(3x −1)2 = (−5)22.小刚同学的房间地板面积为16米2,恰好由64块正方形的地板砖铺成,求每块地板砖的边长是多少?第十二章:数 的 开 方 (一)1、如果一个数的 等于a ,那么这个数叫做a 的平方根,正数的平方根有 个,它们的关系是 ,0的平方根是 ,负数 。
正数a 的 ,叫做a 的算术平方根。
3、如果一个数的 等于a ,那么这个数就叫做a 的立方根,正数有 的立方根,负数有 的立方根,0的立方根为 。
一、平方根的概念及性质例题分析:1、(1)________的平方等于25,所以25的平方根是________(2)_____的4141平方等于 ,所以 的平方根是________(3)121的平方根_____,所以它的算术平方根是____(4) 的平方根______,所以它的算术平方根是_______2、下列说法正确的个数是( )①0.25的平方根是0.5;②-2是4的平方根;③只有正数才有平方根;④负数没有平方根 A 、1 B 、2 C 、3 D 、43、下列说法中不正确的是( )A 、9的算术平方根是3B 、16的平方根是2±C 、27的立方根是3±D 、立方根等于-1的实数是-14、求下列各数的平方根1)、100 2)、0 3)、 4)、1 5)、 6)、0.09 5、若2m -4与3m -1是同一个数的平方根,则m 的值是( )A 、-3 B 、1 C 、-3 或1 D 、-16、若一个正数的平方根是2a -1和-a +2,则a =________7、某数的平方根是3+a 和152-a ,那么这个数是多少?二、算术平方根的概念及性质一个正数的平方根有两个,它们互为相反数,而一个正数的算术平方根只能是一个正数 1、16的算术平方根是( )A 、4± B 、4 C 、2± D 、2 2、9的算术平方根是( )A 、-3 B 、3 C 、3± D 、813、下列计算不正确的是( )A 、24±= B 、981)9(2==- C 、4.0064.03= D 、62163-=-4、下列叙述正确的是( )A 、0.4的平方根是±0.2B 、-(-2)3 的立方根不存在C 、±6是36的算术平方根D 、-27的立方根是-35、不使用计算器,你能估算出126的算术平方根的大小在哪两个整数之间吗?( ) A 、10-11之间 B 、11-12之间 C 、12-13之间 D 、13-14之间916259491516、如果一个数的平方根与立方根相同,那么这个数是()A、0 B、±1 C、0和1 D、0或±17、若216a=,则a=________1.2=,则a=________8、3-2的相反数是________;3-2的绝对值是________9、求下列各数的算术平方根1)、0.0025 2)、2)6(-3)、0 4)(-2)×(-6)三、立方根的概念及性质1、下列说法正确的是()①12是1728的立方根;②的立方根是;③64的立方根是4±;④0的立方根是0A、①④B、②③C、①③D、②④2、下列说法中错误的是()A、是5的平方根B、-16是256的平方根C、-15是算术平方根D、是的平方根3、下列说法中错误的是()A、负数没有立方根B、1的立方根是1C、38的平方根是2±D、立方根等于它本身的数有3个4、若a是2)3(-的平方根,则3a=()A、-3 B、33C、3333或-D、3和-35、已知x的平方根是2a+3和1-3a ,y的立方根为a ,求x+y的值6、的平方根是______________; 9的立方根是_________________8、计算:(考查平方根、算术平方根、立方根的表示方法)1)、9-2)、38-3)、161456四、能力点:会用若||2=++zyx,则0,0,0===zyx去解决问题例题分析:1、已知x,y是实数,且)3(432=-++yx,则xy的值是()271-3152)15(-72±494 8116A 、4B 、-4C 、49D 、-492、若054=-++-y x x ,则=x ________,=y ________3、已知0)1(|1|352=-+-+-x y x ,求xyz =________4、已知| |+ ,求 的值5、1)0169)12(2=--x ; 2)01)13(42=-+x ; 3)024273=-x ; 4)4)3(213=+x无理数常见的三种形式: 1)开方开不尽的数,如2,3 2)特定意义的数,如π 3)有特定结构的数,如0.010010001……1、下列各数:23,-3π,3.1415926,25,191,38-,3.101001000……中无理数有( )2、若无理数a 满足不等式1<a<4,请写出两个符合条件的无理数_______________3、下列各数:722,0,-π, 8,364,2-3中无理数有________ __2、下列各数:23,-722,327-,1.414,-3π,3.12122 ,9-中无理数有___________;有理数有______ _________;负数有______ _________;整数有______ _________;3、设a 是实数,则|a|-a 的值( )4-+y x 010=+-y x y 、xA 、可以是负数B 、不可能是负数C 、必是正数D 、可以是正数也可以是负数4、下列实数:191,-2π, 8,,39,0中无理数有( )A 、4 B 、3 C 、2 D 、15、下列说法中正确的是( )A 、有限小数是有理数B 、无限小数是无理数C 、数轴上的点与有理数一一对应D 、无理数就是带根号的数6、下列各数中,互为相反数的是( )A 、-3和3 B 、|-3|与- 31 C 、|-3|与31D 、|-3|与-37、边长为1的正方形的对角线的长是( )A 、整数 B 、分数 C 、有理数 D 、无理数 8、写出一个3和4之间的无理数__________ 9、数轴上表示31-的点到原点的距离是__________10、比较大小:(1)52__________25;(2)35-__________3-11、在下列各数中,0.5,45,3125,-0.03745,31,12.0,1-5,其中无理数的个数为( )A 、2B 、3C 、4D 、512、一个正方形的面积扩大为原来的n 倍,则它的边长扩大为原来的( )A 、n 倍B 、2n 倍C 、n 倍D 、2n倍6.9的平方根是 A. ±3 B.3 C. ±3 D.321、x 为何值时,下列各式有意义:①x +5 ②x -22、解下列方程1) x 2=4 2)x 3-27=03)5=x4)(x-1)2=493、 81的平方根是 ;27的立方根是 。
-27的立方根是 ; 94的平方根是____。
169的算术平方根是 。
4、 下列各数:①3.141、②0.33333……、③75-、④π、⑤252.±、⑥32-、⑦0.3030003000003……(相邻两个3之间0的个数逐次增加2)、其中是有理数的有_______;是无理数的有_______。
(填序号)5、 的平方是36,所以36的平方根是 。
1、 有五个数:0.125125…,0.1010010001…,-π,4,32其中无理数有 ( )个A 2 B 3 C4 D 52. 下列各式中无意义的是( ) A 3- B 3± C 23- D()23-±3、下列各数是无理数的是( ) A 723B 1C 38 D -π4、 把64开平方得( ) A 8 B –8 C ±8 D 325、 下列说法正确的是( )A 4的平方根是2B -16的平方根是±4C 实数a 的平方根是±a D 实数a 的立方根是3a6、有理数中,算术平方根最小的是( ) A 、1 B 、0 C 、0.1 D 、不存在 1. 0.25的平方根是 ;92的算术平方根是 ,16 的平方根是 。
2.=81 ,2516±= ,2)3(-= 。
3. 若某数只有一个平方根,那么这个数等于 。
4. 若-a 有平方根,那么a 一定是 数。
5、若42-x 有意义,则x . 6、 负数 平方根,有 个立方根 7、 要切一块面积为25m 2的正方形钢板,它的边长是 。
8、当0≥a ,(a )2= ,2a = , 9、当x 时, 12-x 有意义。
;当x 时,x 2有意义。
10、49+196= ,225= 、25.0144•=11、(1)2)3(=____;23= ;(2)当0≥a ,(a )2= ,2a = 。
12、(a+2)2+|b -1|+c -3=0,则a +b +c =二.选择题1、a ,b 在数轴上的位置如图所示,则下列各式有意义的是( )A 、b a -B 、abC 、b a +D 、a b -2、如图,以数轴的单位长为边作一个正方形,以数轴的原点为圆心,正方形的对角线长为半径画孤,交数轴于点A ,则点A 表示的数是 ( )A .1 B .1.4 C .3 D .23、下列各式正确的是( )A 、981±= B 、14.314.3-=-ππ C 、3927-=- D 、235=-4、和数轴上的点是一一对应的数为 ( )(A)整数 (B)有理数 (C)无理数 (D)实数 第十三章 期末考复习 填空 选择2、下列计算正确的是 ( )A .523a a a =+ B .325⋅=a a a C .923)(a a = D .32-=a a a3、已知22()11,()7a b a b +=-=,则ab 等于 ( )A .—2 B .—1 C .1 D.24、若2x 是有理数,则x 是 ( ).A.有理数 B.整数 C.非负数 D.实数5、我们已经接触了很多代数恒等式,知道可以用一些硬纸片拼成的图形面积来解释一些代数恒等式.例如图(3)可以用来解释(a+b )2-(a -b )2=4ab.那么通过图(4)面积的计算,验证了一个恒等式,此等式是( ) A . a 2-b 2=(a+b )(a -b ) B .(a -b )(a+2b )=a 2+ab -b 2 C .(a -b )2=a 2-2ab +b 2 D .(a+b )2=a 2 +2ab +b 27、若a+b=-1,则a 2+b 2+2ab 的值是( )A .-1 B.1 C.3 D.-3 8、(x 2+px+8)(x 2-3x+q)乘积中不含x 2项和x 3项,则p,q 的值 ( ) A.p=0,q=0 B.p=3,q=1 C.p=–3,–9 D.p=–3,q=1 9、9m ·27n 的计算结果是 ( )A.9m+n B.27m+n C.36m+n D.32m +3n 二、填空题13、因式分解:3x 2-12 =______________________; 14、当n 是奇数时,(-a 2)n = ;15、有一个三角形的两边长是4和5,要使这个三角形成为直角三角形,则第三边长为 ; 16、 + 49x 2+ y 2 = ( - y)2; 17、4a =2a+3,则(a –4)2003 = ;18、若x 2- 3x + k 是一个完全平方式,则k 的值为 ; 19、察下列各式 (x-1)(x+1)=x 2 -1 (x-1)(x 2 + x + 1)=x 3 -1(x-1)(x 3 + x 2 + x + 1)=x 4 -1根据规律可得(x-1)(x n-1 + …… + x +1)= (其中n 为正整数); 20、请写出三组以整数为边长的直角三角形的三边长:, , ;23、对角线长为2的正方形,边长为多少?第十三章 整式乘除 填空 选择1、m6·m6=m a,则a=;2、(-x)9÷(-x)6÷(-x)÷x=;3、若,则m=;4、(0.5)2004×(-2)2005=;5、若a m=2,a n=5,则a m+n等于;6、10·102·103=10x,则x=;7、(-x8)2÷(-x)m=(x3)4,则m=8、若3×9m×27m=321,则m=;9、若B是一个单项式,且B·(2x2y-3xy2)=-6x3y2+9x2y3,则B=;10、当a+b=3,x-y=1时,代数式1997222++-++yxbaba的值是;二、选择题12、下列计算中,正确的是( ).A、B、C、D、13、下列计算不正确的是( ).A、(3×105)2=9×1010B、(-2x)3=-8x3C、(a2)3 ·a4=a9D、3x2y ·(-2xy3)=-6x3y414、25m÷5m=( ). A、5 B、20 C、5m D、20m15、计算得( ). A、3 B、-3995 C、3995 D、-400316、下列式子正确的是( ).A、(a+5)(a-5)=a2-5B、(a-b)2=a2-b2C、(x+2)(x-3)=x2-5x-6D、(3m-2n)(-2n-3m)=4n2-9m217、下列运算正确的是( ).A、B、C、D、18、计算(-2x+1)(-3x2)结果正确的是( ).A、6x3+1B、6x3-3C、6x3-3x2D、6x3+x219、若多项式4x2+2kx+25是另外一个多项式的平方,则k的值是( ).A、10B、20C、±10D、±2020、下列多项式相乘,结果为x2-x-6的是( ).A、(x-3)(x+2)B、(x+3)(x-2)C、(x-3)(x-2)D、(x-6)(x+1)21、如果,那么p、q的值是( ).A、5、6B、5、-6C、1、6D、1、-622、(-x-y)2=( ).A、B、C、D、23、计算的结果是( ).A、(a-b)9B、(a-b)18C、(b-a)9D、(b-a)1824、下列计算正确的是( ).A、(1-4a)(1+4a)=1-16a2B、3 31aaaa=•÷C、(-x)(x2+2x-1)=x3-2x2+1D、25、下列计算结果正确的是( ).A、a4÷a=a4B、(x-y)3÷(x+y)2=x-yC、(a-b)3÷(b-a)2=a-bD、x5÷x3÷x=x226、计算:(x-y)(-y-x)的结果是( ).A、-x2-y2B、-x2+y2C、x2-y2D、x2+y227、如果(x-3)是多项式(x2+4x+m)的一个因式,则m的值是( ).A、21B、-21C、3D、-328、下列运算中正确的是( ).A、(x+2y)(x-2y)=x2-2y2B、(m-3n)(m-3n)=m2-9n2C、(-x-2y)(-x+2y)=x2-4y2D、(a-2b)(-a+2b)=a2-4b229、如果(a-b)2加上一个单项式便等于(a+b)2,则这个单项式是( ).A、2abB、-2abC、4abD、-4ab30、下列各式可以分解因式的是( ) A、B、C、D、31、在下列各式中,计算结果为4xy-x2-4y2的是( ).A、(x-2y)2B、(x-2y)2C、(2y-x)2D、-(x-2y)232、若,则( ). A、-1 B、1 C、-3 D、333、若(x+y)2=25,(x-y)2=1,x2+y2的值是( ). A、12 B、13 C、24 D、2634、若,,则x-y等于( ). A、-5 B、-3 C、-1 D、135、如果,,,那么 ( ).A、a>b>cB、b>c>aC、c>a>bD、c>b>a36、如果,,则ab的值是( ).A、2 B、1 C、-2 D、-137、若多项式可化成一个多项式的平方,则t2的值为( ).A、9y2B、3yC、±3yD、±9y238、下列各组多项式,公因式是(x+2)的是( ).A、B、C、D、39、若x=1时,代数式的值为5,则x=-1时,代数式的值等于( ). A、0 B、-3 C、-4 D、-540、无论a、b为何值,代数式的值总是( ).A、负数B、0C、正数D、非负数《整式的乘除》计算题A组1、(1)83)2()2(-⨯-=________ (2)42)()(yxyx+⨯+=________(3)543a b a ••=______ (4)53)10(=_______ (5)43)(b =_______ 2、下列各式的计算中,正确的是( ) A . B . C .D .3、()______;223=⨯a ()______;3=-a ()_______34=-a_____;38=÷a a ()()______2247=÷a a4、计算:(1)(2)5、计算:)3()2)(1(32a b a -⋅-)105()104)(2(45⨯⨯⨯ 6、计算:)35(2)1(22b a ab ab + )21(2)2(22b ab a +-7、计算:)6.0)(1)(1(x x -- ))(2)(2(y x y x -+ 2))(3(y x -8、(2x 3+6x 2+8x )÷2x=______________ ; (-2y 5)2÷(2y 3)= 。