2009年中考数学压轴题典型题型解析2

合集下载

2009年江西省数学中考压轴题赏析

2009年江西省数学中考压轴题赏析

2009年江西省数学中考压轴题赏析题目:如图1,在等腰梯形ABCD 中,AD BC ∥,E 是AB 的中点,过点E 作EF BC ∥交CD 于点F .46AB BC ==,,60B =︒∠. (1)求点E 到BC 的距离; (2)点P 为线段EF 上的一个动点,过P 作PM EF ⊥交BC 于点M ,过M 作MN AB ∥交折线ADC 于点N ,连结PN ,设EP x =.①当点N 在线段AD 上时(如图2),P M N △的形状是否发生改变?若不变,求出PMN△的周长;若改变,请说明理由; ②当点N 在线段DC 上时(如图3),是否存在点P ,使PMN △为等腰三角形?若存在,请求出所有满足要求的x 的值;若不存在,请说明理由.解:(1)如图1,过点E 作EG BC ⊥于点G .·························· 1分∵E 为AB 的中点,∴122BE AB ==.在Rt EBG △中,60B =︒∠,∴30BEG =︒∠. ·············· 2分∴22112132BG BE EG ===-=,.即点E 到BC 的距离为3.··············································· 3分(2)①当点N 在线段AD 上运动时,PMN △的形状不发生改变. ∵PM EF EG EF ⊥⊥,,∴PM EG ∥. ∵EF BC ∥,∴EP GM =,3PM EG ==.同理4MN AB ==. ······································································································· 4分 如图2,过点P 作PH MN ⊥于H ,∵MN AB ∥, ∴6030NMC B PMH ==︒=︒∠∠,∠. A D E BF C图4(备用)ADE BF C图5(备用)A D E BF C图1 图2A D EBF C PNM 图3A D EBFCPNM (第25题) 图1A D E BF CGA DE BFC PNMG H∴1322PH PM ==.∴3cos302MH PM =︒=. 则35422NH MN MH =-=-=.在Rt PNH △中,222253722PN NH PH ⎛⎫⎛⎫=+=+= ⎪ ⎪ ⎪⎝⎭⎝⎭. ∴PMN △的周长=374PM PN MN ++=++. ················································· 6分 ②当点N 在线段DC 上运动时,PMN △的形状发生改变,但MNC △恒为等边三角形.当PM PN =时,如图3,作PR MN ⊥于R ,则MR NR =.类似①,32MR =. ∴23MN MR ==. ········································································································· 7分 ∵MNC △是等边三角形,∴3MC MN ==.此时,6132x EP GM BC BG MC ===--=--=. ············································· 8分当MP MN =时,如图4,这时3MC MN MP ===.此时,61353x EP GM ===--=-.当NP NM =时,如图5,30NPM PMN ==︒∠∠.则120PMN =︒∠,又60MNC =︒∠, ∴180PNM MNC +=︒∠∠.因此点P 与F 重合,PMC △为直角三角形.∴tan 301MC PM =︒= .此时,6114x EP GM ===--=.综上所述,当2x =或4或()53-时,PMN △为等腰三角形. ·························· 10分 评析:本题以等腰梯形为背景,将解直角三角形、三角形全等的判定、等腰三角形的计算、等边三角形的判定等数学知识与图形运动中“变与不变”的函数对应思想、分类讨论、转化等数学思想、方法展示的淋漓尽致。

2009年全国九年级数学中考压轴题精选精析(二)全国通用

2009年全国九年级数学中考压轴题精选精析(二)全国通用

2009年全国中考数学压轴题精选精析(二)13.(09年某某某某)25.(本题满分10分)已知:如图,直线l :13y x b =+,经过点104M ⎛⎫⎪⎝⎭,,一组抛物线的顶点112233(1)(2)(3)()n n B y B y B y B n y ,,,,,,,,(n 为正整数)依次是直线l 上的点,这组抛物线与x轴正半轴的交点依次是:11223311(0)(0)(0)(0)n n A x A x A x A x ++,,,,,,,,(n 为正整数),设101x d d =<<().(1)求b 的值;(2分) (2)求经过点112A B A 、、的抛物线的解析式(用含d 的代数式表示)(4分)(3)定义:若抛物线的顶点与x 轴的两个交点构成的三角形是直角三角形,则这种抛物线就称为:“美丽抛物线”.探究:当01d d <<()的大小变化时,这组抛物线中是否存在美丽抛物线?若存在,请你求出相应的d 的值.(4分)(09年某某某某25题解析)解:(1)∵104M ⎛⎫ ⎪⎝⎭,在13y x b =+上,∴11043b =⨯+,∴14b =.2分 (2)由(1)得:1134y x =+,∵11(1)B y ,在l 上, (第25题图)∴当1x =时,111713412y =⨯+=,∴17112B ⎛⎫⎪⎝⎭,. ·············································· 3 分 解法一:∴设抛物线表达式为:27(1)(0)12y a x a =-+≠,4分 又∵1x d =, ∴1(0)A d ,,∴270(1)12a d =-+,∴2712(1)a d =--,5 分 ∴经过点112A B A 、、的抛物线的解析式为:2277(1)12(1)12y x d =--+-.6 分解法二:∵1x d =,∴1(0)A d ,,2(20)A d -,, ∴设()(2)(0)y a x d x d a =--+≠,4 分把17112B ⎛⎫⎪⎝⎭,代入:7(1)(12)12a d d =--+,得2712(1)a d =--,5 分 ∴抛物线的解析式为27()(2)12(1)y x d x d d =---+-.6 分(3)存在美丽抛物线.7 分由抛物线的对称性可知,所构成的直角三角形必是以抛物线顶点为直角顶点的等腰直角三角形,∴此等腰直角三角形斜边上的高等于斜边的一半,又∵01d <<,∴等腰直角三角形斜边的长小于2,∴等腰直角三角形斜边上的高必小于1,即抛物线的顶点的纵坐标必小于 1.∵当1x =时,1117113412y =⨯+=<, 当2x =时,21111213412y =⨯+=<,当3x =时,3111311344y =⨯+=>,∴美丽抛物线的顶点只有12B B 、. ···································································· 8分 ①若1B 为顶点,由17112B ⎛⎫⎪⎝⎭,,则7511212d =-=; ·············································· 9分 ②若2B 为顶点,由211212B ⎛⎫ ⎪⎝⎭,,则11111211212d ⎡⎤⎛⎫=---= ⎪⎢⎥⎝⎭⎣⎦, 综上所述,d 的值为512或1112时,存在美丽抛物线. ··········································· 10分 14.(09年某某某某)23.本题满分 11 分.(提示:为了方便答题和评卷,建议在答题卡上画出你认为必须的图形)如图 12,已知直线L 过点(01)A ,和(10)B ,,P 是x 轴正半轴上的动点,OP 的垂直平分线交L 于点Q ,交x 轴于点M . (1)直接写出直线L 的解析式;(2)设OP t =,OPQ △的面积为S ,求S 关于t 的函数关系式;并求出当02t <<时,S 的最大值;(3)直线1L 过点A 且与x 轴平行,问在1L 上是否存在点C , 使得CPQ △是以Q 为直角顶点的等腰直角三角形?若存在,求出点C 的坐标,并证明;若不存在,请说明理由.(09年某某某某23题解析)(1)1y x =- ·························································· 2分 (2)∵OP t =,∴Q 点的横坐标为12t , ①当1012t <<,即02t <<时,112QM t =-, ∴11122OPQ S t t ⎛⎫=- ⎪⎝⎭△. ················································································ 3分L 1图12②当2t ≥时,111122QM t t =-=-, ∴11122OPQ S t t ⎛⎫=- ⎪⎝⎭△. ∴1110222111 2.22t t t S t t t ⎧⎛⎫-<< ⎪⎪⎪⎝⎭=⎨⎛⎫⎪- ⎪⎪⎝⎭⎩,,,≥ ··········································································· 4分当1012t <<,即02t <<时,211111(1)2244S t t t ⎛⎫=-=--+ ⎪⎝⎭,∴当1t =时,S 有最大值14. ·········································································· 6分 (3)由1OA OB ==,所以OAB △是等腰直角三角形,若在1L 上存在点C ,使得CPQ △是以Q 为直角顶点的等腰直角三角形,则PQ QC =,所以OQ QC =,又1L x ∥轴,则C ,O 两点关于直线L 对称,所以1AC OA ==,得(11)C ,. ····································· 7 分 下证90PQC ∠=°.连CB ,则四边形OACB 是正方形. 法一:(i )当点P 在线段OB 上,Q 在线段AB 上 (Q 与B C 、不重合)时,如图–1.由对称性,得BCQ QOP QPO QOP ∠=∠∠=∠,, ∴180QPB QCB QPB QPO ∠+∠=∠+∠=°,∴360()90PQC QPB QCB PBC ∠=-∠+∠+∠=°°. ········································ 8分 (ii )当点P 在线段OB 的延长线上,Q 在线段AB 上时,如图–2,如图–3 ∵12QPB QCB ∠=∠∠=∠,, ∴90PQC PBC ∠=∠=°.9分 (iii )当点Q 与点B 重合时,显然90PQC ∠=°. 综合(i )(ii )(iii ),90PQC ∠=°.∴在1L 上存在点(11)C ,,使得CPQ △是以Q 为直角顶点的等腰直角三角形. ·········· 11 分 L 123题图-1法二:由1OA OB ==,所以OAB △是等腰直角三角形,若在1L 上存在点C ,使得CPQ △是以Q 为直角顶点的等腰直角三角形,则PQ QC =,所以OQ QC =,又1L x ∥轴, 则C ,O 两点关于直线L 对称,所以1AC OA ==,得(11)C ,.7 分 延长MQ 与1L 交于点N .(i )如图–4,当点Q 在线段AB 上(Q 与A B 、不重合)时, ∵四边形OACB 是正方形,∴四边形OMNA 和四边形MNCB 都是矩形,AQN △和QBM △都是等腰直角三角形. ∴90NC MB MQ NQ AN OM QNC QMB ====∠=∠=,,°. 又∵OM MP =,∴MP QN =,∴QNC QMP △≌△, ∴MPQ NQC ∠=∠, 又∵90MQP MPQ ∠+∠=°, ∴90MQP NQC ∠+∠=°.∴90CQP ∠=°. ·························································································· 8分 (ii )当点Q 与点B 重合时,显然90PQC ∠=°. ················································ 9分 (iii )Q 在线段AB 的延长线上时,如图–5, ∵BCQ MPQ ∠=∠,∠1=∠2 ∴90CQP CBM ∠=∠=°23题图-2L 123题图-1综合(i )(ii )(iii ),90PQC ∠=°.∴在1L 上存在点(11)C ,,使得CPQ △是以Q 为直角顶点的等腰直角三角形.11分法三:由1OA OB ==,所以OAB △是等腰直角三角形,若在1L 上存在点C ,使得CPQ △是以Q 为直角顶点的等腰直角三角形,则PQ QC =,所以OQ QC =,又1L x ∥轴, 则C ,O 两点关于直线L 对称,所以1AC OA ==,得(11)C ,.9分连PC ,∵|1|PB t =-,12OM t =,12t MQ =-,∴22222(1)122PC PB BC t t t =+=-+=-+,2222222211222t t t OQ OP CQ OM MQ t ⎛⎫⎛⎫===+=+-=-+ ⎪ ⎪⎝⎭⎝⎭.∴222PC OP QC =+,∴90CQP ∠=°. ························································ 10分 ∴在1L 上存在点(11)C ,,使得CPQ △是以Q 为直角顶点的等腰直角三角形. ·········· 11分 15.(09年某某某某)28.如图9,已知一个三角形纸片ABC ,BC 边的长为8,BC 边上的高为6,B ∠和C ∠都为锐角,M 为AB 一动点(点M 与点A B 、不重合),过点M 作MN BC ∥,交AC 于点N ,在AMN △中,设MN 的长为x ,MN 上的高为h .(1)请你用含x 的代数式表示h .(2)将AMN △沿MN 折叠,使AMN △落在四边形BCNM 所在平面,设点A 落在平面的点为1A ,1A MN △与四边形BCNM 重叠部分的面积为y ,当x 为何值时,y 最大,最大值为多少?23题图-4L 123题图-5BCN MA图9(09年某某某某28题解析)解:(1)MN BC ∥AMN ABC ∴△∽△ 68h x ∴= 34x h ∴= ······················································ 3分 (2)1AMN A MN △≌△1A MN ∴△的边MN 上的高为h ,①当点1A 落在四边形BCNM 内或BC 边上时,1A MN y S =△=211332248MN h x x x ==··(04x <≤) ············································ 4分②当1A 落在四边形BCNM 外时,如下图(48)x <<,设1A EF △的边EF 上的高为1h , 则132662h h x =-=- 11EF MNA EF A MN ∴∥△∽△11A MN ABC A EF ABC ∴△∽△△∽△1216A EF S h S ⎛⎫= ⎪⎝⎭△△ABC168242ABC S =⨯⨯=△22363224122462EFx S x x ⎛⎫- ⎪∴==⨯=-+ ⎪ ⎪⎝⎭1△A1122233912241224828A MN A EF y S S x x x x x ⎛⎫=-=--+=-+- ⎪⎝⎭△△所以 291224(48)8y x x x =-+-<< ···························································· 6分MNCBEFAA 1综上所述:当04x <≤时,238y x =,取4x =,6y =最大 当48x <<时,2912248y x x =-+-, 取163x =,8y =最大 86>∴当163x =时,y 最大,8y =最大 ···································································· 8分16.(09年某某某某)24.(本题满分12分)正方形ABCD 边长为4,M 、N 分别是BC 、CD 上的两个动点,当M 点在BC 上运动时,保持AM 和MN 垂直,(1)证明:Rt Rt ABM MCN △∽△;(2)设BM x =,梯形ABCN 的面积为y ,求y 与x 之间的函数关系式;当M 点运动到什么位置时,四边形ABCN 面积最大,并求出最大面积; (3)当M 点运动到什么位置时Rt Rt ABM AMN △∽△,求x 的值. (09年某某某某24题解析)解:(1)在正方形ABCD 中,490AB BC CD B C ===∠=∠=,°, AM MN ⊥,90AMN ∴∠=°,90CMN AMB ∴∠+∠=°.在Rt ABM △中,90MAB AMB ∠+∠=°,CMN MAB ∴∠=∠,Rt Rt ABM MCN ∴△∽△. ··········································· 3分 (2)Rt Rt ABM MCN △∽△,44AB BM xMC CN x CN∴=∴=-,, 244x x CN -+∴=, ···························································································· 5分N DACBM第24题图NDACBM答案24题图22214114428(2)102422ABCNx x y S x x x ⎛⎫-+∴==+=-++=--+ ⎪⎝⎭梯形, 当2x =时,y 取最大值,最大值为10. ································································· 7分 (3)90B AMN ∠=∠=°,∴要使ABM AMN △∽△,必须有AM ABMN BM=, ··················································· 9分 由(1)知AM ABMN MC=, BM MC ∴=,∴当点M 运动到BC 的中点时,ABM AMN △∽△,此时2x =.····························· 12分(其它正确的解法,参照评分建议按步给分)17.(09年某某某某)23.(本题10分)已知:Rt △ABC 的斜边长为5,斜边上的高为2,将这个直角三角形放置在平面直角坐标系中,使其斜边AB 与x 轴重合(其中OA<OB ),直角顶点C 落在y 轴正半轴上(如图11)。

[中考]2009年部分省市中考数学精品:数学压轴题汇编(含解题过程)

[中考]2009年部分省市中考数学精品:数学压轴题汇编(含解题过程)

冲刺2010 ——2009年中考数学压轴题汇编(含解题过程) (2009年北京)25.如图,在平面直角坐标系xOy中,ABC三个机战的坐标分别为()6,0A-,()6,0B,(0,C,延长AC到点D,使CD=12AC,过点D作DE∥AB交BC的延长线于点E.(1)求D点的坐标;(2)作C点关于直线DE的对称点F,分别连结DF、EF,若过B点的直线y kx b=+将四边形CDFE分成周长相等的两个四边形,确定此直线的解析式;(3)设G为y轴上一点,点P从直线y kx b=+与y轴的交点出发,先沿y轴到达G点,再沿GA到达A点,若P点在y轴上运动的速度是它在直线GA上运动速度的2倍,试确定G点的位置,使P点按照上述要求到达A点所用的时间最短。

(要求:简述确定G点位置的方法,但不要求证明)(2009年重庆市)26.已知:如图,在平面直角坐标系xOy 中,矩形OABC 的边OA 在y 轴的正半轴上,OC 在x 轴的正半轴上,OA =2,OC =3.过原点O 作∠AOC 的平分线交AB 于点D ,连接DC ,过点D 作DE ⊥DC ,交OA 于点E . (1)求过点E 、D 、C 的抛物线的解析式;(2)将∠EDC 绕点D 按顺时针方向旋转后,角的一边与y 轴的正半轴交于点F ,另一边与线段OC 交于点G .如果DF 与(1)中的抛物线交于另一点M ,点M 的横坐标为65,那么EF =2GO 是否成立?若成立,请给予证明;若不成立,请说明理由;(3)对于(2)中的点G ,在位于第一象限内的该抛物线上是否存在点Q ,使得直线GQ 与AB 的交点P 与点C 、G 构成的△PCG 是等腰三角形?若存在,请求出点Q 的坐标;若不存在,请说明理由.26.解:(1)由已知,得(30)C ,,(22)D ,, 90ADE CDB BCD ∠=-∠=∠ °,1tan 2tan 212AE AD ADE BCD ∴=∠=⨯∠=⨯= . ∴(01)E ,. ····························································································· (1分) 设过点E D C 、、的抛物线的解析式为2(0)y ax bx c a =++≠. 将点E 的坐标代入,得1c =.将1c =和点D C 、的坐标分别代入,得42129310.a b a b ++=⎧⎨++=⎩,······················································································ (2分) 解这个方程组,得56136a b ⎧=-⎪⎪⎨⎪=⎪⎩故抛物线的解析式为2513166y x x =-++. ··················································· (3分) (2)2EF GO =成立. ············································································ (4分)26题图x点M 在该抛物线上,且它的横坐标为65,∴点M 的纵坐标为125. ··········································································· (5分) 设DM 的解析式为1(0)y kx b k =+≠, 将点D M 、的坐标分别代入,得1122612.55k b k b +=⎧⎪⎨+=⎪⎩, 解得1123k b ⎧=-⎪⎨⎪=⎩,. ∴DM 的解析式为132y x =-+. ······························································ (6分) ∴(03)F ,,2EF =. ·············································································· (7分) 过点D 作DK OC ⊥于点K ,则DA DK =.90ADK FDG ∠=∠= °, FDA GDK ∴∠=∠.又90FAD GKD ∠=∠= °, DAF DKG ∴△≌△. 1KG AF ∴==. 1GO ∴=. ···························································································· (8分) 2EF GO ∴=.(3) 点P 在AB 上,(10)G ,,(30)C ,,则设(12)P ,. ∴222(1)2PG t =-+,222(3)2PC t =-+,2GC =.①若PG PC =,则2222(1)2(3)2t t -+=-+,解得2t =.∴(22)P ,,此时点Q 与点P 重合. ∴(22)Q ,. ···························································································· (9分) ②若PG GC =,则22(1)22t 2-+=,解得 1t =,(12)P ∴,,此时GP x ⊥轴. GP 与该抛物线在第一象限内的交点Q 的横坐标为1,∴点Q 的纵坐标为73.∴713Q ⎛⎫⎪⎝⎭,. ························································································ (10分)x③若PC GC =,则222(3)22t -+=,解得3t =,(32)P ∴,,此时2PC GC ==,PCG △是等腰直角三角形. 过点Q 作QH x ⊥轴于点H ,则QH GH =,设QH h =,(1)Q h h ∴+,.2513(1)(1)166h h h ∴-++++=.解得12725h h ==-,(舍去).12755Q ⎛⎫∴ ⎪⎝⎭,. ····································· (12分) 综上所述,存在三个满足条件的点Q ,即(22)Q ,或713Q ⎛⎫⎪⎝⎭,或12755Q ⎛⎫⎪⎝⎭,.(2009年重庆綦江县)26.(11分)如图,已知抛物线(1)20)y a x a =-+≠经过点(2)A -,0,抛物线的顶点为D ,过O 作射线OM AD ∥.过顶点D 平行于x 轴的直线交射线OM 于点C ,B 在x 轴正半轴上,连结BC .(1)求该抛物线的解析式;(2)若动点P 从点O 出发,以每秒1个长度单位的速度沿射线OM 运动,设点P 运动的时间为()t s .问当t 为何值时,四边形DAOP 分别为平行四边形?直角梯形?等腰梯形? (3)若OC OB =,动点P 和动点Q 分别从点O 和点B 同时出发,分别以每秒1个长度单位和2个长度单位的速度沿OC 和BO 运动,当其中一个点停止运动时另一个点也随之停止运动.设它们的运动的时间为t ()s ,连接PQ ,当t 为何值时,并求出最小值及此时PQ 的长.*26.解:(1) 抛物线2(1)0)y a x a =-+≠经过点(20)A -,, x093a a∴=+=-··············································································1分∴二次函数的解析式为:2333y x x=-++ ···········································3分(2)D为抛物线的顶点D∴过D作DN OB⊥于N,则DN=3660AN AD DAO=∴==∴∠=,° ············································4分OM AD∥①当AD OP=时,四边形DAOP是平行四边形66(s)OP t∴=∴=··········································5分②当DP OM⊥时,四边形DAOP是直角梯形过O作OH AD⊥于H,2AO=,则1AH=(如果没求出60DAO∠=°可由Rt RtOHA DNA△∽△求AH55(s)OP DH t∴===················································································6分③当PD OA=时,四边形DAOP是等腰梯形26244(s)OP AD AH t∴=-=-=∴=综上所述:当6t=、5、4时,对应四边形分别是平行四边形、直角梯形、等腰梯形. ·7分(3)由(2)及已知,60COB OC OB OCB∠==°,,△是等边三角形则6262(03)OB OC AD OP t BQ t OQ t t=====∴=-<<,,,过P作PE OQ⊥于E,则PE= ·······························································8分116(62)22BCPQS t∴=⨯⨯⨯-232t⎫-⎪⎝⎭···················································································9分当32t=时,BCPQS························································· 10分∴此时33393324444OQ OP OE QE PE==∴=-==,=,PQ∴===············································· 11分(2009年河北省)26.(本小题满分12分)如图16,在Rt△ABC中,∠C=90°,AC = 3,AB = 5.点P从点C出发沿CA以每秒1个单位长的速度向点A匀速运动,到达点A后立刻以原来的速度沿AC返回;点Q从点A 出发沿AB以每秒1个单位长的速度向点B匀速运动.伴随着P、Q的运动,DE保持垂直平分PQ,且交PQ于点D,交折线QB-BC-CP于点E.点P、Q同时出发,当点Q到达点B时停止运动,点P也随之停止.设点P、Q运动的时间是t秒(t(1)当t = 2时,AP =,点Q到AC的距离是;(2)在点P从C向A运动的过程中,求△APQ的面积S与t的函数关系式;(不必写出t的取值范围)(3)在点E从B向C运动的过程中,四边形QBED能否成为直角梯形?若能,求t的值.若不能,请说明理由;(4)当DE经过点C 时,请直接..写出t的值.26.解:(1)1,85;(2)作QF⊥AC于点F,如图3,AQ = CP= t,∴3AP t=-.由△AQF∽△ABC,4BC==,得45QF t=.∴45QF t=.∴14(3)25S t t=-⋅,即22655S t t=-+.(3)能.①当DE∥QB时,如图4.∵DE⊥PQ,∴PQ⊥QB,四边形QBED是直角梯形.此时∠AQP=90°.由△APQ ∽△ABC,得AQ APAC AB=,即335t t-=.解得98t=.②如图5,当PQ∥BC时,DE⊥BC,四边形QBED是直角梯形.此时∠APQ =90°.由△AQP ∽△ABC,得AQ APAB AC=,即353t t-=.解得158t=.P图4图3图5(4)52t =或4514t =. 【注:①点P 由C 向A 运动,DE 经过点C .方法一、连接QC ,作QG ⊥BC 于点G ,如图6. PC t =,222QC QG CG =+2234[(5)][4(5)]55t t =-+--.由22PC QC =,得22234[(5)][4(5)]55t t t =-+--,解得52t =.方法二、由CQ CP AQ ==,得QAC QCA ∠=∠,进而可得B BCQ ∠=∠,得CQ BQ =,∴52AQ BQ ==.∴52t =. ②点P 由A 向C 运动,DE 经过点C ,如图7.22234(6)[(5)][4(5)]55t t t -=-+--,4514t =】(2009年河南省)23.(11分)如图,在平面直角坐标系中,已知矩形ABCD 的三个顶点B (4,0)、C (8,0)、D (8,8).抛物线y=ax 2+bx 过A 、C 两点. (1)直接写出点A 的坐标,并求出抛物线的解析式;(2)动点P 从点A 出发.沿线段AB 向终点B 运动,同时点Q 从点C 出发,沿线段CD 向终点D 运动.速度均为每秒1个单位长度,运动时间为t 秒.过点P 作PE ⊥AB 交AC 于点E①过点E 作EF ⊥AD 于点F ,交抛物线于点G.当t 为何值时,线段EG 最长?②连接EQ .在点P 、Q 运动的过程中,判断有几个时刻使得△CEQ 是等腰三角形? 请直接写出相应的t 值.解.(1)点A 的坐标为(4,8) …………………1分 将A (4,8)、C (8,0)两点坐标分别代入y=ax 2+bx8=16a +4b得0=64a +8b解 得a =-12,b =4∴抛物线的解析式为:y =-12x 2+4x …………………3分 (2)①在Rt △APE 和Rt △ABC 中,tan ∠PAE =PE AP =BC AB ,即PE AP =48∴PE =12AP =12t .PB=8-t .∴点E的坐标为(4+12t ,8-t ).∴点G 的纵坐标为:-12(4+12t )2+4(4+12t )=-18t 2+8. …………………5分∴EG=-18t 2+8-(8-t )=-18t 2+t .∵-18<0,∴当t =4时,线段EG 最长为2. …………………7分②共有三个时刻. …………………8分t 1=163, t 2=4013,t 3. …………………11分(2009年山西省)26.(本题14分)如图,已知直线128:33l y x =+与直线2:216l y x =-+相交于点C l l 12,、分别交x 轴于A B 、两点.矩形DEFG 的顶点D E 、分别在直线12l l 、上,顶点F G 、都在x 轴上,且点G 与点B 重合.(1)求ABC △的面积;(2)求矩形DEFG 的边DE 与EF 的长;(3)若矩形DEFG 从原点出发,沿x 轴的反方向以每秒1个单位长度的速度平移,设移动时间为(012)t t ≤≤秒,矩形DEFG 与ABC △重叠部分的面积为S ,求S 关t 的函数关系式,并写出相应的t 的取值范围.26.(1)解:由28033x +=,得4x A =-∴.点坐标为()40-,.(第26题)由2160x -+=,得8x B =∴.点坐标为()80,.∴()8412AB =--=.········································································ (2分)由2833216y x y x ⎧=+⎪⎨⎪=-+⎩,.解得56x y =⎧⎨=⎩,.∴C 点的坐标为()56,. ······························· (3分) ∴111263622ABC C S AB y ==⨯⨯=△·. ·················································· (4分) (2)解:∵点D 在1l 上且2888833D B D x x y ==∴=⨯+=,.∴D 点坐标为()88,. ·········································································· (5分) 又∵点E 在2l 上且821684E D E E y y x x ==∴-+=∴=,..∴E 点坐标为()48,. ·········································································· (6分) ∴8448OE EF =-==,. ································································ (7分)(3)解法一:①当03t <≤时,如图1,矩形DEFG 与ABC △重叠部分为五边形CHFGR (0t =时,为四边形CHFG ).过C 作CM AB ⊥于M ,则Rt Rt RGB CMB △∽△.∴BG RG BM CM =,即36t RG=,∴2RG t =. Rt Rt AFH AMC △∽△,∴()()11236288223ABC BRG AFH S S S S t t t t =--=-⨯⨯--⨯-△△△.即241644333S t t =-++. ·························································· (10分)(2009年山西省太原市)29.(本小题满分12分)问题解决如图(1),将正方形纸片ABCD 折叠,使点B 落在CD 边上一点E(不与点C ,D 重合),压平后得到折痕MN .当12CE CD =时,(图3)(图1)(图2)图(1)A BCDEFMN求AMBN的值.类比归纳在图(1)中,若13CE CD =,则AM BN 的值等于 ;若14CE CD =,则AMBN 的值等于 ;若1CE CD n =(n 为整数),则AMBN的值等于 .(用含n 的式子表示) 联系拓广如图(2),将矩形纸片ABCD 折叠,使点B 落在CD 边上一点E (不与点C D ,重合),压平后得到折痕MN ,设()111AB CE m BC m CD n =>=,,则AMBN的值等于 .(用含m n ,的式子表示)29.问题解决解:方法一:如图(1-1),连接BM EM BE ,,.由题设,得四边形ABNM 和四边形FENM 关于直线MN 对称.∴MN 垂直平分BE .∴BM EM BN EN ==,. ···································· 1分 ∵四边形ABCD 是正方形,∴902A D C AB BC CD DA ∠=∠=∠=====°,. ∵112CE CE DE CD =∴==,.设BN x =,则NE x =,2NC x =-.方法指导:为了求得AM BN 的值,可先求BN 、AM 的长,不妨设:AB =2图(2)ABCD EFMN 图(1-1)A BC EF M在Rt CNE △中,222NE CN CE =+.∴()22221x x =-+.解得54x =,即54BN =. ········································· 3分在Rt ABM △和在Rt DEM △中,222AM AB BM +=,222DM DE EM +=,∴2222AM AB DM DE +=+.····························································· 5分 设AM y =,则2DM y =-,∴()2222221y y +=-+.解得14y =,即14AM =. ····································································· 6分∴15AM BN =. ····················································································· 7分 方法二:同方法一,54BN =. ································································ 3分如图(1-2),过点N 做NG CD ∥,交AD 于点G ,连接BE .∵AD BC ∥,∴四边形GDCN 是平行四边形. ∴NG CD BC ==. 同理,四边形ABNG 也是平行四边形.∴54AG BN ==. ∵90MN BE EBC BNM ⊥∴∠+∠=,°. 90NG BC MNG BNM EBC MNG ⊥∴∠+∠=∴∠=∠ ,°,.在BCE △与NGM △中90EBC MNG BC NG C NGM ∠=∠⎧⎪=⎨⎪∠=∠=⎩,,°.∴BCE NGM EC MG =△≌△,. ························· 5分N 图(1-2)A B C DE FM G第23题图(1) ∵114AM AG MG AM =--=5,=4 ····················································· 6分 ∴15AM BN = ··················································································· 7分 类比归纳25(或410);917; ()2211n n -+ ································································· 10分 联系拓广2222211n m n n m -++ ······················································································ 12分 评分说明:1.如你的正确解法与上述提供的参考答案不同时,可参照评分说明进行估分. 2.如解答题由多个问题组成,前一问题解答有误或未答,对后面问题的解答没有影响,可依据参考答案及评分说明进行估分.(2009年安徽省)23.已知某种水果的批发单价与批发量的函数关系如图(1)所示. (1)请说明图中①、②两段函数图象的实际意义.【解】(2)写出批发该种水果的资金金额w (元)与批发量m (kg )之间的函数关系式;在下图的坐标系中画出该函数图象;指出金额在什 么范围内,以同样的资金可以批发到较多数量的该种水果.【解】(3)经调查,某经销商销售该种水果的日最高销量与零售价之间的函数关系如图(2)所示,该经销商拟每日售出60kg 以上该种水果, 且当日零售价不变,请你帮助该经销商设计进货和销售的方案, 使得当日获得的利润最大. 【解】)第23题图(2)23.(1)解:图①表示批发量不少于20kg 且不多于60kg 的该种水果,可按5元/kg 批发;……3分图②表示批发量高于60kg 的该种水果,可按4元/kg 批发. ………………………………………………………………3分(2)解:由题意得: 2060 6054m m w m m ⎧=⎨⎩≤≤())>(,函数图象如图所示.………………………………………………………………7分由图可知资金金额满足240<w ≤300时,以同样的资金可 批发到较多数量的该种水果.……………………………8分(3)解法一:设当日零售价为x 元,由图可得日最高销量32040w m =- 当m >60时,x <6.5 由题意,销售利润为2(4)(32040)40[(6)4]y x m x =--=--+………………………………12分当x =6时,160y =最大值,此时m =80即经销商应批发80kg 该种水果,日零售价定为6元/kg ,当日可获得最大利润160元.……………………………………………14分 解法二:设日最高销售量为x kg (x >60)则由图②日零售价p 满足:32040x p =-,于是32040xp -= 销售利润23201(4)(80)1604040x y x x -=-=--+………………………12分 当x =80时,160y =最大值,此时p =6即经销商应批发80kg 该种水果,日零售价定为6元/kg ,当日可获得最大利润160元.……………………………………………14分(2009年江西省)25.如图1,在等腰梯形ABCD 中,AD BC ∥,E 是AB 的中点,过点E 作EF BC ∥交CD 于点F .46AB BC ==,,60B =︒∠. (1)求点E 到BC 的距离; (2)点P 为线段EF 上的一个动点,过P 作PM EF ⊥交BC 于点M ,过M 作MN AB ∥交折线ADC 于点N ,连结PN ,设EP x =.①当点N 在线段AD 上时(如图2),P M N △的形状是否发生改变?若不变,求出PMN△的周长;若改变,请说明理由;②当点N 在线段DC 上时(如图3),是否存在点P ,使PMN △为等腰三角形?若存在,请求出所有满足要求的x 的值;若不存在,请说明理由.25.(1)如图1,过点E 作EG BC ⊥于点G . ···················· 1分 ∵E 为AB 的中点,∴122BE AB ==.在Rt EBG △中,60B =︒∠,∴30BEG =︒∠. ············ 2分∴112BG BE EG ====,即点E 到BC ····································· 3分(2)①当点N 在线段AD 上运动时,PMN △的形状不发生改变. ∵PM EF EG EF ⊥⊥,,∴PM EG ∥. ∵EF BC ∥,∴EP GM =,PM EG ==同理4MN AB ==. ·················································································· 4分 如图2,过点P 作PH MN ⊥于H ,∵MN AB ∥, ∴6030NMC B PMH ==︒=︒∠∠,∠. ∴12PH PM == A D E BF C图4(备用)AD EBF C图5(备用)A D E BF C图1 图2 A D EBF C PNM 图3 A D EBFCPNM (第25题) 图1A D E BF CG图2A D EBF CPNMG H∴3cos302MH PM =︒=. 则35422NH MN MH =-=-=.在Rt PNH △中,PN == ∴PMN △的周长=4PM PN MN ++=. ······································· 6分 ②当点N 在线段DC 上运动时,PMN △的形状发生改变,但MNC △恒为等边三角形.当PM PN =时,如图3,作PR MN ⊥于R ,则MR NR =.类似①,32MR =. ∴23MN MR ==. ··················································································· 7分 ∵MNC △是等边三角形,∴3MC MN ==.此时,6132x EP GM BC BG MC ===--=--=. ··································· 8分当MP MN =时,如图4,这时MC MN MP ===此时,615x EP GM ===-=当NP NM =时,如图5,30NPM PMN ==︒∠∠.则120PMN =︒∠,又60MNC =︒∠, ∴180PNM MNC +=︒∠∠.因此点P 与F 重合,PMC △为直角三角形.∴tan 301MC PM =︒= .此时,6114x EP GM ===--=.综上所述,当2x =或4或(5-时,PMN △为等腰三角形. ···················· 10分 (2009年广东广州)25.(本小题满分14分)如图13,二次函数)0(2<++=p q px x y 的图象与x 轴交于A 、B 两点,与y 轴交于点C (0,-1),ΔABC 的面积为45。

2009年全国中考数学压轴题2(修订版)

2009年全国中考数学压轴题2(修订版)

2009年全国中考数学分类试题---综合题压轴题汇编2教师答案版1(09广东广州)25.(本小题满分14分)如图13,二次函数)0(2<++=p q px x y 的图象与x 轴交于A 、B 两点,与y 轴交于点C (0,-1),ΔABC 的面积为45。

(1)求该二次函数的关系式;(2)过y 轴上的一点M (0,m )作y 轴上午垂线,若该垂线与ΔABC 的外接圆有公共点,求m 的取值范围;(3)在该二次函数的图象上是否存在点D ,使四边形ABCD 为直角梯形?若存在,求出点D 的坐标;若不存在,请说明理由。

解:(1)OC=1,所以,q=-1,又由面积知0.5OC ×AB=45,得AB=52设A (a,0),B(b,0)AB=b-a=52,解得p=32±,但p<0,所以p=32-。

所以解析式为:2312y x x =-- (2)令y=0,解方程得23102x x --=,得121,22x x =-=,所以A(12-,0),B(2,0),在直角三角形AOC 中可求得同样可求得,显然AC 2+BC 2=AB 2,得三角形ABC 是直角三角形。

AB 为斜边,所以外接圆的直径为AB=52,所以5544m -≤≤. (3)存在,AC ⊥BC,①若以AC 为底边,则BD//AC,易求AC 的解析式为y=-2x-1,可设BD 的解析式为y=-2x+b ,把B(2,0)代入得BD 解析式为y=-2x+4,解方程组231224y x x y x ⎧=--⎪⎨⎪=-+⎩得D (52-,9) ②若以BC 为底边,则BC//AD,易求BC 的解析式为y=0.5x-1,可设AD 的解析式为y=0.5x+b ,把 A(12-,0)代入得AD 解析式为y=0.5x+0.25,解方程组23120.50.25y x x y x ⎧=--⎪⎨⎪=+⎩得D(53,22) 综上,所以存在两点:(52-,9)或(53,22)。

09年数学中考压轴题

09年数学中考压轴题

09年数学中考压轴题1.(09年.嘉兴中考)如图,已知A、B是线段MN上的两点,4MN,1=MB.以>MA,1= A为中心顺时针旋转点M,以B为中心逆时针旋转点N,使M、N两点重合成一点C,构成△ABC,设xAB=.Array(1)求x的取值范围;(2)若△ABC为直角三角形,求x的值;(3)探究:△ABC的最大面积?(第24题)2.(09年.兰州中考)如图①,正方形ABCD中,点A、B的坐标分别为(0,10),(8,4),点C在第一象限.动点P在正方形ABCD的边上,从点A出发沿A→B→C→D匀速运动,同时动点Q以相同速度在x轴正半轴上运动,当P点到达D点时,两点同时停止运动,设运动的时间为t秒.(1)当P点在边AB上运动时,点Q的横坐标x(长度单位)关于运动时间t(秒)的函数图象如图②所示,请写出点Q开始运动时的坐标及点P运动速度;(2)求正方形边长及顶点C的坐标;(3)在(1)中当t为何值时,△OPQ的面积最大,并求此时P点的坐标;(4)如果点P、Q保持原速度不变,当点P沿A→B→C→D匀速运动时,OP与PQ能否相等,若能,写出所有符合条件的t的值;若不能,请说明理由.3.(09年.杭州中考)已知平行于x 轴的直线)0(≠=a a y 与函数x y =和函数xy 1=的图象分别交于点A 和点B ,又有定点P (2,0) . (1)若0>a ,且tan ∠POB=91,求线段AB 的长; (2)在过A ,B 两点且顶点在直线x y =上的抛物线中,已知线段AB=38,且在它的对称轴左边时,y 随着x 的增大而增大,试求出满足条件的抛物线的解析式; (3)已知经过A ,B ,P 三点的抛物线,平移后能得到259x y =的图象,求点P 到直线AB 的距离 .4.(09年.青岛中考)如图,在梯形ABCD 中,AD BC ∥,6cm AD =,4cm CD =,10cm BC BD ==,点P 由B 出发沿BD 方向匀速运动,速度为1cm/s ;同时,线段EF 由DC 出发沿DA 方向匀速运动,速度为1cm/s ,交BD 于Q ,连接PE .若设运动时间为t (s )(05t <<).解答下列问题: (1)当t 为何值时,PE AB ∥?(2)设PEQ △的面积为y (cm 2),求y 与t 之间的函数关系式; (3)是否存在某一时刻t ,使225PEQ BCD S S =△△?若存在,求出此时t 的值;若不存在,说明理由.(4)连接PF ,在上述运动过程中,五边形PFCDE 的面积是否发生变化?说明理由.第24题图5.(09年.台州中考)如图,已知直线 交坐标轴于B A ,两点,以线段AB 为边向上作正方形ABCD ,过点C D ,A ,的抛物线与直线另一个交点为E . (1)请直接写出点D C ,的坐标; (2)求抛物线的解析式;(3)若正方形以每秒5个单位长度的速度沿射线AB 下滑,直至顶点D 落在x 轴上时停止.设正方形落在x 轴下方部分的面积为S ,求S 关于滑行时间t 的函数关系式,并写出相应自变量t 的取值范围;(4)在(3)的条件下,抛物线与正方形一起平移,同时D 停止,求抛物线上E C , 两点间的抛物线弧所扫过的面积.(第24题)y x121+-=x y6.(09年.金华中考)如图,在平面直角坐标系中,点A (0,6),点B 是x 轴上的一个动点,连结AB ,取AB 的中点M ,将线段MB 绕着点B 按顺时针方向旋转90o ,得到线段BC .过点B 作x 轴的垂线交直线AC 于点D .设点B 坐标是(t ,0). (1)当t =4时,求直线AB 的解析式;(2)当t >0时,用含t 的代数式表示点C 的坐标及△ABC 的面积; (3)是否存在点B ,使△ABD 为等腰三角形?若存在,请求出所有符合条件的点B 的坐标;若不存在,请说明理由.· yO A x 备用图7.(09年义乌.中考).已知点A 、B 分别是x 轴、y 轴上的动点,点C 、D 是某个函数图像上的点,当四边形ABCD (A 、B 、C 、D 各点依次排列)为正方形时,称这个正方形为此函数图像的伴侣正方形。

2009年中考精品:数学压轴题汇编(含解题过程)第一部分

2009年中考精品:数学压轴题汇编(含解题过程)第一部分

冲刺2010 ——2009年中考数学压轴题汇编(含解题过程) 第一部分(2009年北京)25.如图,在平面直角坐标系xOy中,ABC三个机战的坐标分别为()6,0A-,()6,0B,()0,43C,延长AC到点D,使CD=12AC,过点D作DE∥AB交BC的延长线于点E.(1)求D点的坐标;(2)作C点关于直线DE的对称点F,分别连结DF、EF,若过B点的直线y kx b=+将四边形CDFE分成周长相等的两个四边形,确定此直线的解析式;(3)设G为y轴上一点,点P从直线y kx b=+与y轴的交点出发,先沿y轴到达G点,再沿GA到达A点,若P点在y 轴上运动的速度是它在直线GA上运动速度的2倍,试确定G 点的位置,使P点按照上述要求到达A点所用的时间最短。

(要求:简述确定G点位置的方法,但不要求证明)(2009年重庆市)26.已知:如图,在平面直角坐标系xOy 中,矩形OABC 的边OA 在y 轴的正半轴上,OC 在x 轴的正半轴上,OA =2,OC =3.过原点O 作∠AOC 的平分线交AB 于点D ,连接DC ,过点D 作DE ⊥DC ,交OA 于点E . (1)求过点E 、D 、C 的抛物线的解析式;(2)将∠EDC 绕点D 按顺时针方向旋转后,角的一边与y 轴的正半轴交于点F ,另一边与线段OC 交于点G .如果DF 与(1)中的抛物线交于另一点M ,点M 的横坐标为65,那么EF =2GO 是否成立?若成立,请给予证明;若不成立,请说明理由;(3)对于(2)中的点G ,在位于第一象限内的该抛物线上是否存在点Q ,使得直线GQ 与AB 的交点P 与点C 、G 构成的△PCG 是等腰三角形?若存在,请求出点Q 的坐标;若不存在,请说明理由.26.解:(1)由已知,得(30)C ,,(22)D ,, 90ADE CDB BCD ∠=-∠=∠°,1tan 2tan 212AE AD ADE BCD ∴=∠=⨯∠=⨯=.∴(01)E ,. ····························································································· (1分)设过点E D C 、、的抛物线的解析式为2(0)y ax bx c a =++≠.26题图y xDBCA EO将点E 的坐标代入,得1c =.将1c =和点D C 、的坐标分别代入,得42129310.a b a b ++=⎧⎨++=⎩,······················································································ (2分) 解这个方程组,得56136a b ⎧=-⎪⎪⎨⎪=⎪⎩故抛物线的解析式为2513166y x x =-++. ··················································· (3分) (2)2EF GO =成立. ············································································ (4分) 点M 在该抛物线上,且它的横坐标为65, ∴点M 的纵坐标为125. ··········································································· (5分) 设DM 的解析式为1(0)y kx b k =+≠, 将点D M 、的坐标分别代入,得1122612.55k b k b +=⎧⎪⎨+=⎪⎩, 解得1123k b ⎧=-⎪⎨⎪=⎩,. ∴DM 的解析式为132y x =-+. ······························································ (6分)∴(03)F ,,2EF =. ·············································································· (7分) 过点D 作DK OC ⊥于点K , 则DA DK =.90ADK FDG ∠=∠=°, FDA GDK ∴∠=∠.又90FAD GKD ∠=∠=°, DAF DKG ∴△≌△. 1KG AF ∴==.1GO ∴=. ···························································································· (8分) 2EF GO ∴=. (3)点P 在AB 上,(10)G ,,(30)C ,,则设(12)P ,. ∴222(1)2PG t =-+,222(3)2PC t =-+,2GC =.①若PG PC =,则2222(1)2(3)2t t -+=-+, 解得2t =.∴(22)P ,,此时点Q 与点P 重合.x∴(22)Q ,. ···························································································· (9分) ②若PG GC =,则22(1)22t 2-+=, 解得 1t =,(12)P ∴,,此时GP x ⊥轴.GP 与该抛物线在第一象限内的交点Q 的横坐标为1,∴点Q 的纵坐标为73. ∴713Q ⎛⎫⎪⎝⎭,. ························································································ (10分)③若PC GC =,则222(3)22t -+=,解得3t =,(32)P ∴,,此时2PC GC ==,PCG △是等腰直角三角形. 过点Q 作QH x ⊥轴于点H ,则QH GH =,设QH h =,(1)Q h h ∴+,.2513(1)(1)166h h h ∴-++++=.解得12725h h ==-,(舍去).12755Q ⎛⎫∴ ⎪⎝⎭,. ····································· (12分)综上所述,存在三个满足条件的点Q ,即(22)Q ,或713Q ⎛⎫⎪⎝⎭,或12755Q ⎛⎫⎪⎝⎭,.(2009年重庆綦江县)26.(11分)如图,已知抛物线(1)20)y a x a =-+≠经过点(2)A -,0,抛物线的顶点为D ,过O 作射线OM AD ∥.过顶点D 平行于x 轴的直线交射线OM 于点C ,B 在x 轴正半轴上,连结BC .(1)求该抛物线的解析式;(2)若动点P 从点O 出发,以每秒1个长度单位的速度沿射线OM 运动,设点P 运动的时间为()t s .问当t 为何值时,四边形DAOP 分别为平行四边形?直角梯形?等腰梯形?x(3)若OC OB =,动点P 和动点Q 分别从点O 和点B 同时出发,分别以每秒1个长度单位和2个长度单位的速度沿OC 和BO 运动,当其中一个点停止运动时另一个点也随之停止运动.设它们的运动的时间为t ()s ,连接PQ ,当t 为何值时,并求出最小值及此时PQ 的长.*26.解:(1)抛物线2(1)0)y a x a=-+≠经过点(20)A -,,093a a ∴=+=-·············································································· 1分 ∴二次函数的解析式为:2333y x x =-++ ··········································· 3分 (2)D 为抛物线的顶点(1D ∴过D 作DN OB ⊥于N ,则DN = 3660AN AD DAO =∴==∴∠=,° ············································ 4分 OM AD ∥①当AD OP =时,四边形DAOP 是平行四边形66(s)OP t ∴=∴= ·········································· 5分 ②当DP OM ⊥时,四边形DAOP 是直角梯形过O 作OH AD ⊥于H ,2AO =,则1AH = (如果没求出60DAO ∠=°可由Rt Rt OHA DNA △∽△求AH 55(s)OP DH t ∴=== ················································································ 6分 ③当PD OA =时,四边形DAOP 是等腰梯形 26244(s)OP AD AH t ∴=-=-=∴=综上所述:当6t =、5、4时,对应四边形分别是平行四边形、直角梯形、等腰梯形. · 7分(3)由(2)及已知,60COB OC OB OCB ∠==°,,△是等边三角形则6262(03)OB OC AD OP t BQ t OQ t t =====∴=-<<,,,过P 作PE OQ ⊥于E ,则PE =······························································· 8分116(62)222BCPQS t∴=⨯⨯⨯-⨯=2322t⎫-+⎪⎝⎭···················································································9分当32t=时,BCPQS························································· 10分∴此时33393324444OQ OP OE QE PE==∴=-==,=,PQ∴=== ·············································· 11分(2009年河北省)26.(本小题满分12分)如图16,在Rt△ABC中,∠C=90°,AC = 3,AB = 5.点P从点C出发沿CA以每秒1个单位长的速度向点A匀速运动,到达点A后立刻以原来的速度沿AC返回;点Q从点A出发沿AB以每秒1个单位长的速度向点B匀速运动.伴随着P、Q的运动,DE保持垂直平分PQ,且交PQ于点D,交折线QB-BC-CP于点E.点P、Q同时出发,当点Q到达点B时停止运动,点P也随之停止.设点P、Q运动的时间是t秒(t(1)当t = 2时,AP =,点Q到AC的距离是;(2)在点P从C向A运动的过程中,求△APQ的面积S与t的函数关系式;(不必写出t的取值范围)(3)在点E从B向C运动的过程中,四边形QBED能否成为直角梯形?若能,求t的值.若不能,请说明理由;(4)当DE经过点C 时,请直接..写出t的值.26.解:(1)1,85;(2)作QF⊥AC于点F,如图3,AQ = CP= t,∴3AP t=-.由△AQF∽△ABC,4BC=,得45QF t=.∴45QF t=.∴14(3)25S t t=-⋅,即22655S t t=-+.(3)能.①当DE∥QB时,如图4.∵DE⊥PQ,∴PQ⊥QB,四边形QBED是直角梯形.此时∠AQP=90°.PP图4P图3F图5由△APQ ∽△ABC ,得AQ APAC AB=, 即335t t -=. 解得98t =. ②如图5,当PQ ∥BC 时,DE ⊥BC ,四边形QBED 是直角梯形. 此时∠APQ =90°. 由△AQP ∽△ABC ,得AQ APAB AC=, 即353t t -=. 解得158t =.(4)52t =或4514t =. 【注:①点P 由C 向A 运动,DE 经过点C .方法一、连接QC ,作QG ⊥BC 于点G ,如图6. PC t =,222QC QG CG =+2234[(5)][4(5)]55t t =-+--.由22PC QC =,得22234[(5)][4(5)]55t t t =-+--,解得52t =.方法二、由CQ CP AQ ==,得QAC QCA ∠=∠,进而可得 B BCQ ∠=∠,得CQ BQ =,∴52AQ BQ ==.∴52t =. ②点P 由A 向C 运动,DE 经过点C ,如图7.22234(6)[(5)][4(5)]55t t t -=-+--,4514t =】(2009年河南省)23.(11分)如图,在平面直角坐标系中,已知矩形ABCD 的三个顶点B (4,0)、C (8,0)、D (8,8).抛物线y=ax 2+bx 过A 、C 两点. (1)直接写出点A 的坐标,并求出抛物线的解析式;(2)动点P 从点A 出发.沿线段AB 向终点B 运动,同时点Q 从点C 出发,沿线段CD 向终点D 运动.速度均为每秒1个单位长度,运动时间为t 秒.过点P 作PE ⊥AB 交AC 于点E①过点E 作EF ⊥AD 于点F ,交抛物线于点G.当t 为何值时,线段EG 最长?②连接EQ .在点P 、Q 运动的过程中,判断有几个时刻使得△CEQ 是等腰三角形? 请直接写出相应的t 值.解.(1)点A 的坐标为(4,8) …………………1分 将A (4,8)、C (8,0)两点坐标分别代入y=ax 2+bx8=16a +4b得0=64a +8b解 得a =-12,b =4 ∴抛物线的解析式为:y =-12x 2+4x …………………3分(2)①在Rt △APE 和Rt △ABC 中,tan ∠PAE =PE AP =BC AB ,即PE AP =48∴PE =12AP =12t .PB=8-t .∴点E的坐标为(4+12t ,8-t ).∴点G 的纵坐标为:-12(4+12t )2+4(4+12t )=-18t 2+8. …………………5分∴EG=-18t 2+8-(8-t )=-18t 2+t .∵-18<0,∴当t =4时,线段EG 最长为2. …………………7分②共有三个时刻. …………………8分t 1=163, t 2=4013,t 3. …………………11分(2009年山西省)26.(本题14分)如图,已知直线128:33l y x =+与直线2:216l y x =-+相交于点C l l 12,、分别交x 轴于A B 、两点.矩形DEFG 的顶点D E 、分别在直线12l l 、上,顶点F G 、都在x 轴上,且点G 与点B 重合.(1)求ABC △的面积;(2)求矩形DEFG 的边DE 与EF 的长;(3)若矩形DEFG 从原点出发,沿x 轴的反方向以每秒1个单位长度的速度平移,设移动时间为(012)t t ≤≤秒,矩形DEFG 与ABC △重叠部分的面积为S ,求S 关t 的函数关系式,并写出相应的t 的取值范围.26.(1)解:由28033x +=,得4x A =-∴.点坐标为()40-,.由2160x -+=,得8x B =∴.点坐标为()80,.∴()8412AB =--=.········································································ (2分)由2833216y x y x ⎧=+⎪⎨⎪=-+⎩,.解得56x y =⎧⎨=⎩,.∴C 点的坐标为()56,. ······························· (3分) ∴111263622ABC C S AB y ==⨯⨯=△·.·················································· (4分) (2)解:∵点D 在1l 上且2888833D B D x x y ==∴=⨯+=,.∴D 点坐标为()88,. ·········································································· (5分) 又∵点E 在2l 上且821684E D E E y y x x ==∴-+=∴=,..∴E 点坐标为()48,. ·········································································· (6分) ∴8448OE EF =-==,. ································································ (7分)(3)解法一:①当03t <≤时,如图1,矩形DEFG 与ABC △重叠部分为五边形CHFGR (0t =时,为四边形CHFG ).过C 作CM AB ⊥于M ,则Rt Rt RGB CMB △∽△.∴BG RG BM CM =,即36t RG=,∴2RG t =. Rt Rt AFH AMC △∽△,∴()()11236288223ABC BRG AFH S S S S t t t t =--=-⨯⨯--⨯-△△△.(图3)(图1)(图2)即241644333S t t =-++.·························································· (10分) (2009年山西省太原市)29.(本小题满分12分)问题解决如图(1),将正方形纸片ABCD 折叠,使点B 落在CD 边上一点E(不与点C ,D 重合),压平后得到折痕MN .当12CE CD =时,求AMBN的值.类比归纳在图(1)中,若13CE CD =,则AM BN 的值等于 ;若14CE CD =,则AMBN 的值等于 ;若1CE CD n =(n 为整数),则AMBN的值等于 .(用含n 的式子表示) 联系拓广如图(2),将矩形纸片ABCD 折叠,使点B 落在CD 边上一点E (不与点C D ,重合),压平后得到折痕MN ,设()111AB CE m BC m CD n =>=,,则AMBN的值等于 .(用含m n ,的式子表示)29.问题解决解:方法一:如图(1-1),连接BM EM BE ,,.方法指导:为了求得AM BN 的值,可先求BN 、AM 的长,不妨设:AB =2图(2)N ABCD EFM图(1)A BCDEFMN N 图(1-1)A BC EF M由题设,得四边形ABNM 和四边形FENM 关于直线MN 对称.∴MN 垂直平分BE .∴BM EM BN EN ==,. ···································· 1分 ∵四边形ABCD 是正方形,∴902A D C AB BC CD DA ∠=∠=∠=====°,. ∵112CE CE DE CD =∴==,.设BN x =,则NE x =,2NC x =-.在Rt CNE △中,222NE CN CE =+.∴()22221x x =-+.解得54x =,即54BN =. ········································· 3分 在Rt ABM △和在Rt DEM △中,222AM AB BM +=, 222DM DE EM +=,∴2222AM AB DM DE +=+. ····························································· 5分设AM y =,则2DM y =-,∴()2222221y y +=-+.解得14y =,即14AM =. ····································································· 6分∴15AM BN =.····················································································· 7分 方法二:同方法一,54BN =. ································································ 3分如图(1-2),过点N 做NG CD ∥,交AD 于点G ,连接BE .∵AD BC ∥,∴四边形GDCN 是平行四边形. ∴NG CD BC ==. 同理,四边形ABNG 也是平行四边形.∴54AG BN ==.N 图(1-2)A B C DE FM G第23题图(1) ∵90MN BE EBC BNM ⊥∴∠+∠=,°. 90NG BC MNG BNM EBC MNG ⊥∴∠+∠=∴∠=∠,°,. 在BCE △与NGM △中90EBC MNG BC NG C NGM ∠=∠⎧⎪=⎨⎪∠=∠=⎩,,°.∴BCE NGM EC MG =△≌△,. ························· 5分∵114AM AG MG AM =--=5,=.4 ····················································· 6分 ∴15AM BN = ··················································································· 7分 类比归纳25(或410);917; ()2211n n -+ ································································· 10分 联系拓广2222211n m n n m -++ ······················································································ 12分 评分说明:1.如你的正确解法与上述提供的参考答案不同时,可参照评分说明进行估分. 2.如解答题由多个问题组成,前一问题解答有误或未答,对后面问题的解答没有影响,可依据参考答案及评分说明进行估分.(2009年安徽省)23.已知某种水果的批发单价与批发量的函数关系如图(1)所示. (1)请说明图中①、②两段函数图象的实际意义.【解】(2)写出批发该种水果的资金金额w (元)与批发量m (kg )之间的函数关系式;在下图的坐标系中画出该函数图象;指出金额在什 么范围内,以同样的资金可以批发到较多数量的该种水果.)第23题图(2)【解】(3)经调查,某经销商销售该种水果的日最高销量与零售价之间的函数关系如图(2)所示,该经销商拟每日售出60kg 以上该种水果, 且当日零售价不变,请你帮助该经销商设计进货和销售的方案, 使得当日获得的利润最大. 【解】23.(1)解:图①表示批发量不少于20kg 且不多于60kg 的该种水果,可按5元/kg 批发;……3分图②表示批发量高于60kg 的该种水果,可按4元/kg 批发. ………………………………………………………………3分(2)解:由题意得: 2060 6054m m w m m ⎧=⎨⎩≤≤())>(,函数图象如图所示.………………………………………………………………7分由图可知资金金额满足240<w ≤300时,以同样的资金可 批发到较多数量的该种水果.……………………………8分(3)解法一:设当日零售价为x 元,由图可得日最高销量32040w m =- 当m >60时,x <6.5 由题意,销售利润为2(4)(32040)40[(6)4]y x m x =--=--+………………………………12分当x =6时,160y =最大值,此时m =80即经销商应批发80kg 该种水果,日零售价定为6元/kg ,当日可获得最大利润160元.……………………………………………14分 解法二:设日最高销售量为x kg (x >60)则由图②日零售价p 满足:32040x p =-,于是32040xp -= 销售利润23201(4)(80)1604040x y x x -=-=--+………………………12分 当x =80时,160y =最大值,此时p =6即经销商应批发80kg 该种水果,日零售价定为6元/kg ,当日可获得最大利润160元.……………………………………………14分(2009年江西省)25.如图1,在等腰梯形ABCD 中,AD BC ∥,E 是AB 的中点,过点E 作EF BC ∥交CD 于点F .46AB BC ==,,60B =︒∠. (1)求点E 到BC 的距离; (2)点P 为线段EF 上的一个动点,过P 作PM EF ⊥交BC 于点M ,过M 作MN AB ∥交折线ADC 于点N ,连结PN ,设EP x =. ①当点N 在线段AD 上时(如图2),PMN △的形状是否发生改变?若不变,求出PMN △的周长;若改变,请说明理由;②当点N 在线段DC 上时(如图3),是否存在点P ,使PMN △为等腰三角形?若存在,请求出所有满足要求的x 的值;若不存在,请说明理由.25.(1)如图1,过点E 作EG BC ⊥于点G . ···················· 1分∵E 为AB 的中点,∴122BE AB ==.在Rt EBG △中,60B =︒∠,∴30BEG =︒∠. ············ 2分∴112BG BE EG ====,即点E 到BC ····································· 3分(2)①当点N 在线段AD 上运动时,PMN △的形状不发生改变.A D E BF C图4(备用)AD EBF C图5(备用)A D E BF C图1 图2 A D EBF C PNM 图3 A D EBFCPNM (第25题) 图1A D E BF CG∵PM EF EG EF ⊥⊥,,∴PM EG ∥. ∵EF BC ∥,∴EP GM =,PM EG ==同理4MN AB ==. ·················································································· 4分 如图2,过点P 作PH MN ⊥于H ,∵MN AB ∥, ∴6030NMC B PMH ==︒=︒∠∠,∠.∴122PH PM == ∴3cos302MH PM =︒=.则35422NH MN MH =-=-=.在Rt PNH △中,PN === ∴PMN △的周长=4PM PN MN ++=. ······································· 6分 ②当点N 在线段DC 上运动时,PMN △的形状发生改变,但MNC △恒为等边三角形.当PM PN =时,如图3,作PR MN ⊥于R ,则MR NR =.类似①,32MR =. ∴23MN MR ==.··················································································· 7分 ∵MNC △是等边三角形,∴3MC MN ==.此时,6132x EP GM BC BG MC ===--=--=. ··································· 8分当MP MN =时,如图4,这时MC MN MP ===此时,615x EP GM ===-=-当NP NM =时,如图5,30NPM PMN ==︒∠∠.则120PMN =︒∠,又60MNC =︒∠, ∴180PNM MNC +=︒∠∠.因此点P 与F 重合,PMC △为直角三角形. ∴tan301MC PM =︒=.此时,6114x EP GM ===--=.图3A D E BFCPN M图4A D EBF CP MN 图5A D EBF (P ) CMN GGRG图2A D EBF CPNMG H综上所述,当2x =或4或()53-时,PMN △为等腰三角形. ···················· 10分 (2009年广东广州)25.(本小题满分14分)如图13,二次函数)0(2<++=p q px x y 的图象与x 轴交于A 、B 两点,与y 轴交于点C (0,-1),ΔABC 的面积为45。

2009中考数学压轴题精选12题及答案

2009中考数学压轴题精选12题及答案

2009中考数学压轴题精选12题2009年9月11日星期五1、(四川省达州市)如图11,抛物线)1)(3(-+=x x a y 与x 轴相交于A 、B 两点(点A 在点B 右侧),过点A 的直线交抛物线于另一点C ,点C 的坐标为(-2,6).(1)求a 的值及直线AC 的函数关系式;(2)P 是线段AC 上一动点,过点P 作y 轴的平行线,交抛物线于点M ,交x 轴于点N.①求线段PM 长度的最大值;②在抛物线上是否存在这样的点M ,使得△CMP 与△APN 相似?如果存在,请直接写出所有满足条件的点M 的坐标(不必写解答过程);如果不存在,请说明理由.2、(四川省资阳市)如图9,已知抛物线y =12x 2–2x +1的顶点为P ,A 为抛物线与y 轴的交点,过A 与y 轴垂直的直线与抛物线的另一交点为B ,与抛物线对称轴交于点O ′,过点B 和P 的直线l 交y 轴于点C ,连结O ′C ,将△ACO ′沿O ′C 翻折后,点A 落在点D 的位置.(1) (3分) 求直线l 的函数解析式; (2) (3分) 求点D 的坐标;(3) (3分) 抛物线上是否存在点Q ,使得S △DQC = S △DPB ? 若存在,求出所有符合条件的点Q 的坐标;若不存在,请说明理由.3、(四川省绵阳市)如图,在平面直角坐标系中,矩形AOBC 在第一象限内,E 是边OB 上的动点(不包括端点),作∠AEF = 90︒,使EF 交矩形的外角平分线BF 于点F ,设C (m ,n ).(1)若m = n 时,如图,求证:EF = AE ;(2)若m ≠n 时,如图,试问边OB 上是否还存在点E ,使得EF = AE ?若存在,请求出点E 的坐标;若不存在,请说明理由.(3)若m = tn (t >1)时,试探究点E 在边OB 的何处时,使得EF =(t + 1)AE 成立?并求出点E 的坐标.图9A y CFAy CFAyCFO11xy4、(四川省眉山市)已知:直线112y x =+与y 轴交于A ,与x 轴交于D ,抛物线212y x bx c =++与直线交于A 、E 两点,与x 轴交于B 、C 两点,且B 点坐标为 (1,0). (1)求抛物线的解析式;(2)动点P 在x 轴上移动,当△PAE 是直角三角形时,求点P 的坐标.(3)在抛物线的对称轴上找一点M ,使||AM MC -的值最大,求出点M 的坐标. 5、(四川省成都市)在平面直角坐标系xOy 中,已知抛物线y=2(1)(0)a x c a ++>与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C ,其顶点为M,若直线MC的函数表达式为3y kx =-,与x 轴的交点为N ,且COS∠BCO=31010。

2009年全国中考数学压轴题精选精析(青海)

2009年全国中考数学压轴题精选精析(青海)

2009年全国中考数学压轴题精选精析(青海)1.(2009年青海)28.矩形OABC 在平面直角坐标系中位置如图13所示,A C 、两点的坐标分别为(60)A ,,(03)C -,,直线34y x =-与BC 边相交于D 点. (1)求点D 的坐标;(2)若抛物线294y ax x =-经过点A ,试确定此抛物线的表达式; (3)设(2)中的抛物线的对称轴与直线OD 交于点M ,点P 为对称轴上一动点,以P O M 、、为顶点的三角形与OCD △相似,求符合条件的点P 的坐标.(2009年青海26题解析)解:(1)点D 的坐标为(43)-,. ···························· (2分)(2)抛物线的表达式为23984y x x =-. ······················································ (4分) (3)抛物线的对称轴与x 轴的交点1P 符合条件. ∵OA CB ∥, ∴1POM CDO ∠=∠. ∵190OPM DCO ∠=∠=°, ∴1Rt Rt POM CDO △∽△. ······················· (6∵抛物线的对称轴3x =,∴点1P 的坐标为1(30)P ,. ········································································· (7分) 过点O 作OD 的垂线交抛物线的对称轴于点2P . ∵对称轴平行于y 轴, ∴2P MO DOC ∠=∠.∵290POM DCO ∠=∠=°, ∴21Rt Rt P M O DOC △∽△. ·································································· (8分) ∴点2P 也符合条件,2OP M ODC ∠=∠. ∴121390PO CO P PO DCO ==∠=∠=,°, ∴21Rt Rt P PO DCO △≌△. ···································································· (9分) ∴124PP CD ==. ∵点2P 在第一象限,∴点2P 的坐标为2P (34),, ∴符合条件的点P 有两个,分别是1(30)P ,,2P (34),. (11分)。

09年中考数学压轴题分析及解题策略.ppt

09年中考数学压轴题分析及解题策略.ppt

(2)探究问题时遇到“拦路虎”,或走进了“死胡 同”你通常怎么办?
A:重新阅读原题,看看有没有漏用或用错的条件。 (28%)
B:解题路子或使用的方法可能“误入歧途” 尝试 换一种思路进行下去。(25%)
C:这可能是本题的难点,正常的思路一般难以奏 效,要“往外想”、“反着想”。 (17%)
D:实在想不出来,就先放下来,换个时间再看它。 (17%)
中考压轴题分析 及解题策略
xxx
一、关于中考压轴题
1、形式:往往由两到三小题组成,第一小题为 基础题,第二小题为中上难度问题,第三小题 为试卷中最难的问题;
本质特征:在初中主干知识的交汇处命题,涉及 的知识点多,覆盖面广;条件隐蔽,关系复杂, 思路难觅,方法灵活,渗透了重要的思想方法, 体现了较高的思维能力。[1]
(3)在教学中教师应多引导学生用式来表示 中间量,强化公式变形的训练,特别应加 强利用相似三角形来求出中间量,并建立 函数的相关习题的训练。
3、数学思想方法分析:
(1)方程的思想仍倍受青睐。(丽水、宁波、 义乌、台州、湖州)
(2)分类讨论已成为08中考压轴题的“压点” 所
在。 (衢州、温州、义乌、台州)
教学启示:
(1)压轴题中好多中间量的计算还是通过建 立方程来解决。在教学中应给学生建立起 这样一个观念:将题目中的所有条件集中 在一个图形中,通过勾股定理、相似三角 形、等积变形来建立方程,平时应加强这 方面的训练。
(2)分类讨论已成为新教材中中考压轴题的 压点所在。在教学中应向学生强调:必须 确定分类标准,要正确进行分类,要不重 复、不遗漏、分类之后还要注意能否继续 分类,同时要注意层次分明,不要越级讨 论。
(1)将直线l向右平移,设平移距离CD为t(t≥0),直角梯形OABC被 直线l扫过的面积(图中阴影部份)为s,s关于x的函数图象如图2所 示, OM为线段,MN为抛物线的一部分,NQ为射线,N点横坐标为 4. ①求梯形上底AB的长及直角梯形OABC的面积; ②当2〈t〈4时,求S关于t的函数解析式;

2009年部分省市中考压轴题精选(含详细解答过程)

2009年部分省市中考压轴题精选(含详细解答过程)

全国各省市中考专题压轴题及分析1.(2009江苏盐城)如图甲,在△ABC 中,∠ACB 为锐角,点D 为射线BC 上一点,连接AD ,以AD 为一边且在AD 的右侧作正方形ADEF . 解答下列问题:(1)如果AB=AC ,∠BAC = 90º,① 当点D 在线段BC 上时(与点B 不重合),如图乙,线段CF 、BD 之间的位置关系为 ,数量关系为 .② 当点D 在线段BC 的延长线时,如图丙,①中的结论是否仍然成立,为什么?(2)如果AB ≠AC ,∠BAC ≠90º,点D 在线段BC 上运动.试探究:当△ABC 满足一个什么条件时,CF ⊥BC (点C 、F 重合除外)?画出相应图形,并说明理由.(画图不写作法)(3)若AC =24,BC = 3,在(2)的条件下,设正方形ADEF 的边DE 与线段CF 相交于点P ,求线段CP 长的最大值.解:(1)① CF 与BD 位置关系是 垂 直 、数量关系是 相 等 ; ② 当点D 在BC 的延长线上时①的结论仍成立.由正方形ADEF 得AD=AF ,∠DAF=90º. ∵ ∠BAC=90º, ∴ ∠DAF=∠BAC , ∴ ∠DAB=∠FAC , 又AB=AC ,∴ △DAB ≌△FAC , ∴ CF=BD ∠ACF=∠ABD . ∵ ∠BAC=90º, AB=AC , ∴ ∠ABC=45º,图甲图乙 C 第1题图 图丙D E∴ ∠ACF=45º,∴ ∠BCF=∠ACB+∠ACF= 90º. 即 CF ⊥BD .(2)画图正确当∠BCA = 45º时,CF ⊥BD (如图丁). 理由是:过点A 作AG ⊥AC 交BC 于点G , ∴ AC=AG可证:△GAD ≌△CAF ∴ ∠ACF=∠AGD=45º ∠BCF=∠ACB+∠ACF= 90º. 即 CF ⊥BD .(3)当具备∠BCA = 45º时,过点A 作AQ ⊥BC 交BC 的延长线于点Q ,(如图戊) ∵ DE 与CF 交于点P 时, ∴ 此时点D 位于线段CQ 上, ∵∠BCA=45º,可求出AQ= CQ=4. 设CD = x ,∴ DQ = 4-x ,容易说明△AQD ∽△DCP ,∴CP CD DQ AQ = , ∴44CP x x =-,221(2)144x CP x x ∴=-+=--+.∵0<x ≤3 ∴当x =2时,CP 有最大值1.GABCDE FPQ AB CD EF2.(2009浙江湖州) 已知:在矩形AOBC 中,OB =4,OA =3,分别以OB 、OA 所在直线为x 轴和y 轴,建立如图所示的平面直角坐标系,F 是边BC 上的一个动点(不与B 、C 重合),过F 点的反比例函数xky =(k >0)的图象与AC 边交于点E 。

2009年上海中考数学压轴题精选精析

2009年上海中考数学压轴题精选精析

2009年上海中考数学压轴题精选精析(2009年上海)25.(本题满分14分,第(1)小题满分4分,第(2)小题满分5分,第(3)小题满分5分)已知9023ABC AB BC AD BC P ∠===°,,,∥,为线段BD 上的动点,点Q 在射线AB 上,且满足PQ AD PC AB=(如图8所示). (1)当2AD =,且点Q 与点B 重合时(如图9所示),求线段PC 的长;(2)在图8中,联结AP .当32AD =,且点Q 在线段AB 上时,设点B Q 、之间的距离为x ,APQPBC S y S =△△,其中APQ S △表示APQ △的面积,PBC S △表示PBC △的面积,求y 关于x 的函数解析式,并写出函数定义域;(3)当AD AB <,且点Q 在线段AB 的延长线上时(如图10所示),求QPC ∠的大小.(2009年上海25题解析)解:(1)AD=2,且Q 点与B 点重合,根据题意,∠PBC=∠PDA ,因为∠A=90。

PQ/PC=AD/AB=1,所以:△PQC 为等腰直角三角形,BC=3,所以:PC=3 /2,(2)如图:添加辅助线,根据题意,两个三角形的面积可以分别表示成S1,S2, 高分别是H ,h ,则:S1=(2-x )H/2=(2*3/2)S2=3*h/2 因为两S1/S2=y ,消去H,h,得:Y=-(1/4)*x+(1/2),定义域:当点P 运动到与D 点重合时,X 的取值就是最大值,当PC 垂直BD 时,这时X=0,连接DC,作QD 垂直DC ,由已知条件得:B 、Q 、D 、C 四点共圆,则由圆周角定理可以推知:三角形QDC 相似于三角形ABDQD/DC=AD/AB=3/4,令QD=3t,DC=4t,则:QC=5t ,由勾股定理得:直角三角形AQD 中:(3/2)^2+(2-x)^2=(3t)^2直角三角形QBC 中:3^2+x^2=(5t)^2整理得:64x^2-400x+301=0 (8x-7)(8x-43)=0得 x1=7/8 x2=(43/8)>2(舍去) 所以函数:Y=-(1/4)*x+1/2的定义域为[0,7/8] A D P C B Q 图8 D APC B (Q ) 图9 图10 C AD PB Q(3)因为:PQ/PC=AD/AB,假设PQ 不垂直PC ,则可以作一条直线PQ ′垂直于PC ,与AB 交于Q ′点,则:B ,Q ′,P ,C 四点共圆,由圆周角定理,以及相似三角形的性质得:PQ ′/PC=AD/AB,又由于PQ/PC=AD/AB 所以,点Q ′与点Q 重合,所以角∠QPC=90。

[江西]2009年中考数学压轴题精选精析

[江西]2009年中考数学压轴题精选精析

12009年全国中考数学压轴题精选精析(十六)64.(2009年江西)25.如图1,在等腰梯形A B C D 中,AD BC ∥,E 是AB 的中点,过点E 作E F B C ∥交C D 于点F .46A B B C ==,,60B =︒∠. (1)求点E 到B C 的距离;(2)点P 为线段E F 上的一个动点,过P 作PM EF ⊥交B C 于点M ,过M 作M N A B ∥交折线A D C 于点N ,连结P N ,设E P x =.①当点N 在线段A D 上时(如图2),PM N △的形状是否发生改变?若不变,求出P M N△的周长;若改变,请说明理由;②当点N 在线段D C 上时(如图3),是否存在点P ,使P M N △为等腰三角形?若存在,请求出所有满足要求的x 的值;若不存在,请说明理由.(2009年江西25题解析)(1)如图1,过点E 作EG BC ⊥于点G . 1分∵E 为A B 的中点,∴122B E A B ==.在R t E B G △中,60B =︒∠,∴30BEG =︒∠.··············2分∴112B G B E E G ====,即点E 到B C···········································3分 (2)①当点N 在线段A D 上运动时,P M N △的形状不发生改变.∵P M E F E G E F ⊥⊥,,∴P M E G ∥. ∵E F B C ∥,∴E P G M =,PM EG ==同理4M N A B ==. ······························································································ 4分 如图2,过点P 作P H M N ⊥于H ,∵M N A B ∥, ∴6030N M C B PM H ==︒=︒∠∠,∠. 图1A D EBF CGA DE BFCPNMG HA D E BF C图4(备用)AD EBF C图5(备用)A D EB F C图1图2A D EBF C PNM图3A D EBFCPNM (第25题)2∴122PH PM ==∴3cos 302M H P M =︒= .则35422N H M N M H =-=-=.在R t P N H △中,PN === ∴P M N △的周长=4PM PN M N ++=. ············································ 6分②当点N 在线段D C 上运动时,P M N △的形状发生改变,但M N C △恒为等边三角形.当PM PN =时,如图3,作P R M N ⊥于R ,则M R N R =. 类似①,32M R =.∴23M N M R ==. ································································································ 7分 ∵M N C △是等边三角形,∴3M C M N ==. 此时,6132x E P G M B C B G M C ===--=--=. ········································· 8分当M P M N =时,如图4,这时M C M N M P ===此时,615x EP G M ===--=-当N P N M =时,如图5,30N P M P M N ==︒∠∠.则120P M N =︒∠,又60M N C =︒∠, ∴180PN M M N C +=︒∠∠.因此点P 与F 重合,P M C △为直角三角形. ∴tan 301M C P M =︒= .此时,6114x E P G M ===--=. 综上所述,当2x =或4或(5-时,P M N △为等腰三角形. ························10分图3A D E BFCPN M图4A D EBF CPMN 图5A D EB F (P ) CMNGGRG。

2009年中考数学压轴题精选精析

2009年中考数学压轴题精选精析

2009年中考数学压轴题精选精析2022年全国中考数学压轴题精选精析(四)11.(09年广东佛山)25.一般地,学习几何要从作图开始,再观察图形,根据图形的某一类共同特征对图形进行分类(即给一类图形下定义――定义概念便于归类、交流与表达),然后继续研究图形的其它特征、判定方法以及图形的组合、图形之间的关系、图形的计算等问题. 课本里对四边形的研究即遵循着上面的思路.当然,在学习几何的不同阶段,可能研究的是几何的部分问题.比如有下面的问题,请你研究.已知:四边形ABCD中,AB DC,且ACB DBC.(1)借助网格画出四边形ABCD所有可能的形状;(2)简要说明在什么情况下四边形ABCD具有所画的形状.(09年广东佛山25题解析)(1)四边形可能的形状有三类:图①“矩形”、图②“等腰梯形”、图③的“四边形ABCD1”.注1:画出“矩形”或“等腰梯形”,各给1分;画出另一类图形(后两种可以看作一类),给2分;等腰梯形不单独画而在后两种图中反映的,不扣分;画图顺序不同但答案正确不扣分.注2:如果在类似图③或图④的图中画出凹四边形,同样给分(两种都画,只给一种的分).(2) (i)若BAC是直角(图②),则四边形为等腰梯形;6分(ii)若BAC是锐角(图③),存在两个点D和D1,得到等腰梯形ABCD和符合条件但不是梯形的四边形ABCD1;8分其中,若BAC是直角(图①),则四边形为矩形.9分(iii)若BAC是钝角(图④),存在两个点D和D1,得到等腰梯形ABCD和符合条件但不是梯形的四边形ABCD1;11分注:可用AC与BD或者BAC与CDB是否相等分类;只画矩形和等腰梯形并进行说明可给4分.12.(09年广东广州)25.(本小题满分14分)如图13,二次函数y x px q(p 0)的图象与x轴交于A、B两点,与y轴交于点25C(0,1),△ABC的面积为.4(1)求该二次函数的关系式;(2)过y轴上的一点M(0,m)作y轴的垂线,若该垂线与△ABC的外接圆有公共点,求m的取值范围;(3)在该二次函数的图象上是否存在点D,使四边形ACBD 为直角梯形?若存在,求出点D的坐标;若不存在,请说明理由.0),B(x2,0),其中x1 x2.(09年广东广州25题解析)解:(1)设点A(x1,∵抛物线y x px q过点C(0,1),∴ 1 0 P 0 q.∴q 1.∴y x px 1.∵抛物线y x px q与x轴交于A、B两点,2222∴x1,x2是方程x px 1 0的两个实根.求p的值给出以下两种方法:方法1:由韦达定理得:x1 x2 p,x1x2 1.25,41515∴OC AB ,即1 (x2 x1) .24245∴x2 x1 .225∴(x2 x1)2 .4∵△ABC的面积为∵(x2 x1) (x2 x1) 4x1x2,∴(x2 x1) 4x1x2 ∴( p) 4 解得p22225.425.43.2∵p 0,∴p3.22∴所求二次函数的关系式为y x 3x 1.2方法2:由求根公式得x1,x2 .AB x2 x15,41515∴OC AB ,即1 (x2 x1) .__∴ 1 .24252∴p 4 .43解得p .∵△ABC的面积为∵p 0,∴p3.23x 1.231(2)令x2 x 1 0,解得x1 ,x2 2.22∴所求二次函数的关系式为y x2 ∴A ,0 ,B(2,0).125 1 2222在Rt△AOC中,AC AO OC 1 ,4 2在Rt△BOC中,BC BO OC 2 1 5,∵AB 222222221 5,2 2∴AC BC525 5 AB2.44∴ ACB 90°.∴△ABC是直角三角形.∴Rt△ABC的外接圆的圆心是斜边AB的中点.∴Rt△ABC 的外接圆的半径rAB5.24∵垂线与△ABC的外接圆有公共点,∴55≤m≤.442(3)假设在二次函数y x3x 1的图象上存在点D,使得四边形ACBD是直角梯形.22①若AD∥BC,设点D的坐标为x0,x03x0 1 ,x0 0,2过D作DE⊥x轴,垂足为E,如图1所示.求点D的坐标给出以下两种方法:方法1:在Rt△AED中,32x0 x0 1DE,tan DAE AE 1x02OC1在Rt△BOC中,tan CBO ,OB2∵ DAE CBO,∴tan DAE tan CBO.32x0 x0 11∴ .1 2x0224x0 8x0 5 0.解得x0或x0 .22∵x0 0,∴x025 53 ,此时点D的坐标为.2 2222而AD AE ED453BC2,因此当AD∥BC时在抛物线y x2 x 1上存在42 点D ,使得四边形DACB是直角梯形.方法2:在Rt△AED与Rt△BOC中,DAE CBO,∴Rt△AED∽Rt△BOC.∴53 22DEOC.AEOB32x0 x0 11∴ .1 2x0以下同方法1.②若AC∥BD,设点D的坐标为x0,x023x0 1 ,x0 0,2过D作DF⊥x轴,垂足为F,如图2所示.32x0 x0 1DE 在Rt△DFB中,tan DBF ,FB2 x0 在Rt△COA中,tan CAO ∵ DBF CAO,∴tan DBF tan CAO.OC12,OA1232x0 x0 1∴ 2.2 x022x0 x0 10 0.解得x05或x0 2.2∵x0 0,∴x05 5 ,此时D点的坐标为,9 .222此时BD AC,因此当AC∥BD时,在抛物线y x 得四边形DACB是直角梯形.综上所述,在抛物线y x23 59 ,使x 1上存在点D ,2 23x 1上存在点D,使得四边形DACB是直角梯形,并且点253 59 .D的坐标为或,22213.(09年广东茂名)25.(本题满分10分)已知:如图,直线l:y1 1经过点M 0 ,一组抛物线的顶点x b,43B1(1,y1),B2(2,y2),B3(3,y3),,Bn(n,yn)(n为正整数)依次是直线l上的点,这组抛物线与x轴正半轴的交点依次是:A1(x1,,0)A2(x2,,0)A3(x3,,0) ,An 1(xn 1,0)(n为正整数)(0 d 1).,设x1 d(1)求b的值;(2)求经过点A1、B1、A2的抛物线的解析式(用含d的代数式表示)(2分)(4分)(3)定义:若抛物线的顶点与x轴的两个交点构成的三角形是直角三角形,则这种抛物线就称为:“美丽抛物线”.探究:当d的大小变化时,这组抛物线中是否存在美丽抛物线?若存在,(0 d 1)请你求出相应的d的值.(4分)(09年广东茂名25题解析)解:(1)∵M 0 在y1 4111x b上,∴ 0 b,∴3431.2分411,y1)在l上,(2)由(1)得:y x ,∵B1(1 34b∴当x 1时,y1117 73 分1 ,∴B1 1 .3412 122解法一:∴设抛物线表达式为:y a(x 1)74分(a 0),1277,∴a , 5 分212(d 1)12772. 6 分(x 1) 212(d 1)120),∴0 a(d 1)2 又∵x1 d,∴A1(d,∴经过点A1、B1、A2的抛物线的解析式为:y0),A2(2 d,0),解法二:∵x1 d,∴A1(d,∴设y a(x d) 4 分(x 2 d)(a 0),把B1 1 代入:71277, 5 分a(1 d) (1 2 d),得a 212(d 1)1276 分(x d) (x 2 d).12(d 1)2∴抛物线的解析式为y(3)存在美丽抛物线.7 分由抛物线的对称性可知,所构成的直角三角形必是以抛物线顶点为直角顶点的等腰直角三角形,∴此等腰直角三角形斜边上的高等于斜边的一半,又∵0 d 1,∴等腰直角三角形斜边的长小于2,∴等腰直角三角形斜边上的高必小于1,即抛物线的顶点的纵坐标必小于1.1171 1,__-__当x 2时,y2 2 1,3412∵当x 1时,y1当x 3时,y31113 1 1,344∴美丽抛物线的顶点只有B1、B2.8分①若B1为顶点,由B1 1 ,则d 1712759分;121211 11 1 ,12 12②若B2为顶点,由B2 2 ,则d 1 2 综上所述,d的值为1112511或时,存在美丽抛物线.10分121214.(09年广东梅州)23.本题满分11 分.(提示:为了方便答题和评卷,建议在答题卡上画出你认为必须的图形)如图12,已知直线L过点A(01),和B(1,0),P是x轴正半轴上的动点,OP的垂直平分线交L于点Q,交x轴于点M.(1)直接写出直线L的解析式;(2)设OP t,△OPQ的面积为S,求S关于t的函数关系式;并求出当0 t 2时,S的最大值;(3)直线L1过点A且与x轴平行,问在L1上是否存在点C,使得△CPQ是以Q为直角顶点的等腰直角三角形?若存在,求出点C的坐标,并证明;若不存在,请说明理由.L1(09年广东梅州23题解析)(1)y 1 x 2分(2)∵OP t,∴Q点的横坐标为①当01t,211t 1,即0 t 2时,QM 1 t,221 13分t 1 t .2 2∴S△OPQ②当t≥2时,QM 111t t 1,22∴S△OPQ1 1t t 1 .2 21 10 t 2,2t 1 2t ,∴S 4分1t 1t 1 ,t≥2.2 2当01 1 111t 1,即0 t 2时,S t 1 t (t 1)2 ,2 2 442∴当t 1时,S有最大值1.6分4(3)由OA OB 1,所以△OAB是等腰直角三角形,若在L1上存在点C,使得△CPQ是以Q为直角顶点的等腰直角三角形,则PQ QC,所以OQ QC,又L1∥x轴,则C,7 分,.O两点关于直线L对称,所以AC OA 1,得C(11)下证PQC 90°.连CB,则四边形OACB是正方形.法一:(i)当点P在线段OB上,Q在线段AB上(Q与B、C不重合)时,如图C1.由对称性,得BCQ QOP,QPO QOP,∴ QPB QCB QPB QPO 180°,∴ PQC 360° ( QPB QCB PBC) 90°.8分(ii)当点P在线段OB的延长线上,Q在线段AB上时,如图C2,如图C3 ∵ QPB QCB,1 2,∴ PQC PBC 90°.9分L1(iii)当点Q与点B重合时,显然PQC 90°.综合(i)(ii)(iii),PQC 90°.∴在L1上存在点C(11) 11 分,,使得△CPQ是以Q为直角顶点的等腰直角三角形.23题图-3法二:由OA OB 1,所以△OAB是等腰直角三角形,若在L1上存在点C,使得△CPQ是以Q为直角顶点的等腰直角三角形,则PQ QC,所以OQ QC,又L1∥x轴,则C,7 分,.O两点关于直线L对称,所以AC OA 1,得C(11)延长MQ与L1交于点N.(i)如图C4,当点Q在线段AB上(Q与A、B不重合)时,∵四边形OACB是正方形,∴四边形OMNA和四边形MNCB都是矩形,△AQN和△QBM都是等腰直角三角形.∴NC MB MQ,NQ AN OM,QNC QMB 90°.又∵OM MP,∴MP QN,∴△QNC≌△QMP,∴ MPQ NQC,又∵ MQP MPQ 90°,∴ MQP NQC 90°.∴ CQP 90°.8分(ii)当点Q与点B重合时,显然PQC 90°.9分(iii)Q在线段AB的延长线上时,如图C5,L1∵ BCQ MPQ,∠1=∠2 ∴ CQP CBM 90°综合(i)(ii)(iii),PQC 90°.∴在L1上存在点C(11) 11分,,使得△CPQ是以Q为直角顶点的等腰直角三角形.L123题图-5法三:由OA OB 1,所以△OAB是等腰直角三角形,若在L1上存在点C,使得△CPQ是以Q为直角顶点的等腰直角三角形,则PQ QC,所以OQ QC,又L1∥x轴,则C,O两点关于直线L对称,所以AC OA 1,得C(11) 9分,.连PC,∵PB |1 t|,OM2222t1t,MQ ,222∴PC PB BC (1 t) 1 t 2t 2,2t t t__OQ OP CQ OM MQ 1 t 1.2 2 222∴PC OP QC,∴ CQP 90°.10分∴在L1上存在点C(11) 11分,,使得△CPQ是以Q为直角顶点的等腰直角三角形.15.(09年广东清远)28.如图9,已知一个三角形纸片ABC,BC 边的长为8,BC边上的高为6,B和C都为锐角,M为AB一动点(点M与点A、B不重合),过点M作MN∥BC,交AC于点N,在△AMN 中,设MN的长为x,MN上的高为h.A (1)请你用含x的代数式表示h.(2)将△AMN沿MN折叠,使△AMN落在四边形BCNM所在平面,设点A落在平面的点为A1,△A1MN与四边形BCNM 重叠部分的面积为y,当x为何值时,y最大,最大值为多少?222NC(09年广东清远28题解析)解:(1)MN∥BC △AMN∽△ABChx 683x 3分h 4(2)△AMN≌△A1MN△A1MN的边MN上的高为h,①当点A1落在四边形BCNM内或BC边上时,1133y S△A1MN=MN 4分h __ x2(0 x≤4)2248②当A1落在四边形BCNM外时,如下图(4 x 8),设△A1EF的边EF上的高为h1,则h1 2h 6A3x 6 2△A1EF∽△A1MNBNEF∥MN△A1MN∽△ABC △A1EF∽△ABC A1FCS△A1EFS△ABCh 1 621S△ABC 6 8 24 S△A1EF23 x 6 3224 x 1x26222 4y S△A1MN S△A1EF所以y32 329x x 12x 24 x2 12x 24 88 26分(4 x 8)92x 12x 248综上所述:当0 x≤4时,y 当4 x 8时,y 取x32x,取x 4,y最大6 892x 12x 24,816,y最大8 3 8 6168分当x 时,y最大,y最大8316.(09年广东汕头)24.(本题满分12分)正方形ABCD 边长为4,M、NA 分别是BC、CD上的两个动点,当M点在BC 上运动时,保持AM和MN垂直,(1)证明:Rt△ABM∽Rt△MCN;(2)设BM x,梯形ABCN的面积为y,求y与x之间的函数关系式;当M点运动到什么位置时,四边形ABCN面积最大,并求出最大面积;B(3)当M点运动到什么位置时Rt△ABM∽Rt△AMN,求x 的值.M第24题图(09年广东汕头24题解析)解:(1)在正方形ABCD中,,AB B CC4 ,D B 9°0CAM MN,A D AMN 90°,CMN AMB 90°.在Rt△ABM中,MAB AMB 90°,CMN MAB,3分R t△ABM∽Rt△MCN.N (2)Rt△ABM∽Rt△MCN,DN CABBM4x,,MCCN4 xCNBx2 4x,5分CN4 y S梯形ABCN1 x2 4x114 4 x2 2x 8 (x 2)2 10,2 422M答案24题图C当x 2时,y取最大值,最大值为10.7分(3)B AMN 90°,要使△ABM∽△AMN,必须有AMAB,9分MNBMAMAB,MNMCBM MC,12分当点M运动到BC的中点时,△ABM∽△AMN,此时x 2.由(1)知(其它正确的解法,参照评分建议按步给分)17.(09年广东深圳)23.(本题10分)已知:Rt△ABC的斜边长为5,斜边上的高为2,将这个直角三角形放置在平面直角坐标系中,使其斜边AB与x轴重合(其中OAOB),直角顶点C落在y轴正半轴上(如图11)。

2009年中考数学试题汇编之压轴题【汇总】

2009年中考数学试题汇编之压轴题【汇总】

(2009年山东省济宁市)26. (12分)在平面直角坐标中,边长为2的正方形OABC 的两顶点A 、C 分别在y 轴、x 轴的正半轴上,点O 在原点.现将正方形OABC 绕O 点顺时针旋转,当A 点第一次落在直线y x =上时停止旋转,旋转过程中,AB 边交直线y x =于点M ,BC 边交x 轴于点N (如图).(1)求边OA 在旋转过程中所扫过的面积;(2)旋转过程中,当MN 和AC 平行时,求正方形OABC 旋转的度数;(3)设M B N ∆的周长为p ,在旋转正方形OABC的过程中,p 值是否有变化?请证明你的结论.(第26题)x26.(1)解:∵A 点第一次落在直线y x =上时停止旋转,∴OA 旋转了045. ∴OA 在旋转过程中所扫过的面积为24523602ππ⨯=.……………4分 (2)解:∵MN ∥AC ,∴45BMN BAC ∠=∠=︒,45BNM BCA ∠=∠=︒.∴BMN BNM ∠=∠.∴BM BN =.又∵BA BC =,∴AM CN =.又∵OA OC =,OAM OCN ∠=∠,∴OAM OCN ∆≅∆.∴AOM CON ∠=∠.∴1(90452AOM ∠=︒-︒)=22.5︒. ∴旋转过程中,当MN 和AC 平行时,正方形OABC 旋转的度数为45︒-22.5︒=22.5︒.……………………………………………8分(3)答:p 值无变化.证明:延长BA 交y 轴于E 点,则045AOE AOM ∠=-∠, 000904545CON AOM AOM ∠=--∠=-∠,∴AOE CON ∠=∠.又∵OA OC =,0001809090OAE∠=-==∠∴OAE OCN ∆≅∆.∴,OE ON AE CN ==.又∵045MOE MON ∠=∠=,OM OM =,∴OME OMN ∆≅∆.∴MN ME AM AE ==+.∴MN AM CN =+, ∴4p MN BN BM AM CN BN BM AB BC =++=+++=+=.∴在旋转正方形OABC 的过程中,p 值无变化. ……………12分(第26题) x(2009年北京)25.如图,在平面直角坐标系xOy中,ABC三个机战的坐标分别为()6,0A-,()6,0B,(0,C,延长AC到点D,使CD=12AC,过点D作DE∥AB交BC的延长线于点E.(1)求D点的坐标;(2)作C点关于直线DE的对称点F,分别连结DF、EF,若过B点的直线y kx b=+将四边形CDFE分成周长相等的两个四边形,确定此直线的解析式;(3)设G为y轴上一点,点P从直线y kx b=+与y轴的交点出发,先沿y轴到达G点,再沿GA到达A点,若P点在y轴上运动的速度是它在直线GA上运动速度的2倍,试确定G点的位置,使P点按照上述要求到达A点所用的时间最短。

2009年全国中考数学压轴题精选精析

2009年全国中考数学压轴题精选精析

2009年全国中考数学压轴题精选精析1.(2009年四川达州)23、(9分)如图11,抛物线)1)(3(-+=x x a y 与x 轴相交于A 、B 两点(点A 在点B右侧),过点A 的直线交抛物线于另一点C ,点C 的坐标为(-2,6).(1)求a 的值及直线AC 的函数关系式;(2)P 是线段AC 上一动点,过点P 作y 轴的平行线,交抛物线于点M ,交x 轴于点N.①求线段PM 长度的最大值;②在抛物线上是否存在这样的点M ,使得△CMP 与△APN 相似?如果存在,请直接写出所有满足条件的点M 的坐标(不必写解答过程);如果不存在,请说明理由.(2009年四川达州23题解析)解:(1)由题意得 6=a(-2+3)(-2-1)∴a=-2 ……………………………………………………1分∴抛物线的函数解析式为y=-2(x+3)(x-1)与x 轴交于B (-3,0)、A (1,0) 设直线AC 为y=kx+b ,则有0=k+b 6=-2k+b 解得 k=-2 b=2∴直线AC 为y=-2x+2 ……………………………………………………3分(2)①设P 的横坐标为a(-2≤a ≤1),则P (a,-2a+2),M (a,-2a2-4a+6)………………4分 ∴PM=-2a2-4a+6-(-2a+2)=-2a2-2a+4=-2a2+a+14+92 =-2a+122+92∴当a=-12时,PM 的最大值为92 ……………………………………6分 ②M1(0,6)…………………………………………………………7分 M2-14,678 ……………………………………………………………9分2.(2009年四川成都)28.在平面直角坐标系xOy 中,已知抛物线y=2(1)(0)a x c a ++>与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C ,其顶点为M,若直线MC 的函数表达式为3y kx =-,与x 轴的交点为N ,且COS∠BCO =10。

2009年中考精品:数学压轴题汇编(含解题过程)第四部分

2009年中考精品:数学压轴题汇编(含解题过程)第四部分

冲刺2010 ——2009年中考数学压轴题汇编(含解题过程) 第四部分(2009年湖南省益阳市)20.阅读材料:如图12-1,过△ABC 的三个顶点分别作出与水平线垂直的三条直线,外侧两条直线之间的距离叫△ABC 的“水平宽”(a ),中间的这条直线在△ABC 内部线段的长度叫△ABC 的“铅垂高(h )”.我们可得出一种计算三角形面积的新方法:ah S ABC21=∆,即三角形面积等于水平宽与铅垂高乘积的一半. 解答下列问题:如图12-2,抛物线顶点坐标为点C (1,4),交x 轴于点A (3,0),交y 轴于点B .(1)求抛物线和直线AB 的解析式;(2)点P 是抛物线(在第一象限内)上的一个动点,连结P A ,PB ,当P 点运动到顶点C 时,求△CAB 的铅垂高CD 及CAB S ∆; (3)是否存在一点P ,使S △P AB =89S △CAB ,若存在,求出P 点的坐标;若不存在,请说明理由.20.解:(1)设抛物线的解析式为:4)1(21+-=x a y ······················································ 1分把A (3,0)代入解析式求得1-=a所以324)1(221++-=+--=x x x y ························································· 3分设直线AB 的解析式为:b kx y +=2由3221++-=x x y 求得B 点的坐标为)3,0( ············································ 4分 把)0,3(A ,)3,0(B 代入b kx y +=2中 解得:3,1=-=b k所以32+-=x y ···························································································· 6分 (2)因为C 点坐标为(1,4)所以当x =1时,y 1=4,y 2= 2图12-2xC OyABD 11图12-1所以CD =4-2=2 ···························································································· 8分32321=⨯⨯=∆CAB S (平方单位) ································································· 10分 (3)假设存在符合条件的点P ,设P 点的横坐标为x ,△P AB 的铅垂高为h ,则x x x x x y y h 3)3()32(2221+-=+--++-=-= ···························· 12分 由S △P AB =89S △CAB 得:389)3(3212⨯=+-⨯⨯x x 化简得:091242=+-x x 解得,23=x 将23=x 代入3221++-=x x y 中, 解得P 点坐标为)415,23( ··············································································· 14分(2009年陕西省)25.(本题满分12分) 问题探究(1)请在图①的正方形ABCD 内,画出使90APB ∠=°的一个..点P ,并说明理由. (2)请在图②的正方形ABCD 内(含边),画出使60APB ∠=°的所有..的点P ,并说明理由. 问题解决(3)如图③,现在一块矩形钢板43ABCD AB BC ==,,.工人师傅想用它裁出两块全等的、面积最大的APB △和CP D '△钢板,且60APB CP D '∠=∠=°.请你在图③中画出符合要求的点P 和P ',并求出APB △的面积(结果保留根号).25.(本题满分12分) 解:(1)如图①,连接AC BD 、交于点P ,则90APB ∠=°.∴点P 为所求.······················································· (3分) (2)如图②,画法如下:1)以AB 为边在正方形内作等边ABP △;D C B A ① D C BA ③ D CB A ② (第25题图)2)作ABP △的外接圆O ⊙,分别与AD BC 、交于点E F 、.在O ⊙中,弦AB 所对的APB 上的圆周角均为60°, EF∴上的所有点均为所求的点P . ··················· (7分) (3)如图③,画法如下:1)连接AC ;2)以AB 为边作等边ABE △;3)作等边ABE △的外接圆O ⊙,交AC 于点P ; 4)在AC 上截取AP CP '=. 则点P P '、为所求. ············································· (9分) (评卷时,作图准确,无画法的不扣分) 过点B 作BG AC ⊥,交AC 于点G . 在Rt ABC △中,43AB BC ==,.5AC ∴==.125AB BC BG AC ∴== . ····························································································· (10分) 在Rt ABG △中,4AB =,165AG ∴==.在Rt BPG △中,60BPA ∠=°,12tan 605BG PG ∴===°.∴1655AP AG PG =+=+.111612962255525APB S AP BG ⎛+∴==⨯+⨯= ⎝⎭ △. ································· (12分)(福建2009年宁德市)26.(本题满分13分)如图,已知抛物线C 1:()522-+=x a y 的顶点为P ,与x 轴相交于A 、B 两点(点A 在点B 的左边),点B 的横坐标是1.(1)求P 点坐标及a 的值;(4分)(2)如图(1),抛物线C 2与抛物线C 1关于x 轴对称,将抛物线C 2向右平移,平移后的抛物线记为C 3,C 3的顶点为M ,当点P 、M 关于点B 成中心对称时,求C 3的解析式;(4分)(3)如图(2),点Q 是x 轴正半轴上一点,将抛物线C 1绕点Q 旋转180°后得到抛物线C 4.抛物线C 4的顶点为N ,与x 轴相交于E 、F 两点(点E 在点F 的左边),当以点P 、N 、F 为顶点的三角形是直角三角形时,求点Q 的坐标.(5分)解:(1)由抛物线C 1:()522-+=x a y 得顶点P 的为(-2,-5) ………2分 ∵点B (1,0)在抛物线C 1上 ∴()52102-+=a解得,a =59………4分(2)连接PM ,作PH ⊥x 轴于H ,作MG ⊥x 轴于G∵点P 、M 关于点B 成中心对称 ∴PM 过点B ,且PB =MB ∴△PBH ≌△MBG∴MG =PH =5,BG =BH =3∴顶点M 的坐标为(4,5) ………6分抛物线C 2由C 1关于x 轴对称得到,抛物线C 3由C 2平移得到∴抛物线C 3的表达式为()54952+--=x y ………8分 (3)∵抛物线C 4由C 1绕点x 轴上的点Q 旋转180°得到∴顶点N 、P 关于点Q 成中心对称 由(2)得点N 的纵坐标为5设点N 坐标为(m ,5) 作PH ⊥x 轴于H ,作NG ⊥x 轴于G 作PK ⊥NG 于K ∵旋转中心Q 在x 轴上∴EF =AB =2BH =6 ∴FG =3,点F 坐标为(m +3,0) H 坐标为(2,0),K 坐标为(m ,-5),根据勾股定理得 PN 2=NK 2+PK 2=m 2+4m +104PF 2=PH 2+HF 2=m 2+10m +50 NF 2=52+32=34 ………10分①当∠PNF =90º时,PN 2+ NF 2=PF 2,解得m =443,∴Q 点坐标为(193,0)②当∠PFN =90º时,PF 2+ NF 2=PN 2,解得m =103,∴Q 点坐标为(23,0)③∵PN >NK =10>NF ,∴∠NPF ≠90º综上所得,当Q 点坐标为(193,0)或(23,0)时,以点P 、N 、F 为顶点的三角形是直角三角形. ………13分(2009年贵州安顺市)27、(本题满分12分)如图,已知抛物线与x 交于A(-1,0)、E(3,0)两点,与y 轴交于点B(0,3)。

2009年全国各地中考数学压轴题精选

2009年全国各地中考数学压轴题精选

2009年全国各地中考数学压轴题精选【湖北·武汉】25.(本题满分12分)如图,抛物线24y ax bx a =+-经过(10)A -,、(04)C ,两点,与x 轴交于另一点B . (1)求抛物线的解析式;(2)已知点(1)D m m +,在第一象限的抛物线上,求点D 关于直线BC 对称的点的坐标; (3)在(2)的条件下,连接BD ,点P 为抛物线上一点,且45DBP ∠=°,求点P 的坐标.【答案】25.解:(1) 抛物线24y ax bx a =+-经过(10)A -,,(04)C ,两点,404 4.a b a a --=⎧∴⎨-=⎩, 解得13.a b =-⎧⎨=⎩,∴抛物线的解析式为234y x x =-++.(2) 点(1)D m m +,在抛物线上,2134m m m ∴+=-++,即2230m m --=,1m ∴=-或3m =.点D 在第一象限,∴点D 的坐标为(34),. 由(1)知45OA OB CBA =∴∠=,°. 设点D 关于直线BC 的对称点为点E .(04)C ,,CD AB ∴∥,且3CD =,45ECB DCB ∴∠=∠=°,E ∴点在y 轴上,且3CE CD ==.1OE ∴=,(01)E ∴,.即点D 关于直线BC 对称的点的坐标为(0,1).(3)方法一:作PF AB ⊥于F ,DE BC ⊥于E . 由(1)有:445OB OC OBC ==∴∠=,°, 45DBP CBD PBA ∠=∴∠=∠ °,.(04)(34)C D ,,,,CD OB ∴∥且3CD =.45DCE CBO ∴∠=∠=°,DE CE ∴==. 4OB OC ==,BC ∴=2BE BC CE ∴=-= 3tan tan 5DE PBF CBD BE ∴∠=∠==. 设3PF t =,则5BF t =,54OF t ∴=-,(543)P t t ∴-+,.P 点在抛物线上,∴23(54)3(54)4t t t =--++-++, 0t ∴=(舍去)或2225t =,266525P ⎛⎫∴- ⎪⎝⎭,. 方法二:过点D 作BD 的垂线交直线PB 于点Q ,过点D 作DH x ⊥轴于H .过Q 点作QG DH ⊥于G .45PBD QD DB ∠=∴= °,. QDG BDH ∴∠+∠90=°,又90DQG QDG ∠+∠=°,DQG BDH ∴∠=∠.QDG DBH ∴△≌△,4QG DH ∴==,1DG BH ==.由(2)知(34)D ,,(13)Q ∴-,.(40)B ,,∴直线BP 的解析式为31255y x =-+.解方程组23431255y x x y x ⎧=-++⎪⎨=-+⎪⎩,,得1140x y =⎧⎨=⎩,;222566.25x y ⎧=-⎪⎪⎨⎪=⎪⎩,∴点P 的坐标为266525⎛⎫- ⎪⎝⎭,.【重庆·綦江】*26.(11分)如图,已知抛物线(1)20)y a x a =-+≠经过点(2)A -,0,抛物线的顶点为D ,过O 作射线OM AD ∥.过顶点D 平行于x 轴的直线交射线OM 于点C ,B 在x 轴正半轴上,连结BC . (1)求该抛物线的解析式;(2)若动点P 从点O 出发,以每秒1个长度单位的速度沿射线OM 运动,设点P 运动的时间为()t s .问当t 为何值时,四边形DAOP 分别为平行四边形?直角梯形?等腰梯形? (3)若OC OB =,动点P 和动点Q 分别从点O 和点B 同时出发,分别以每秒1个长度单位和2个长度单位的速度沿OC 和BO 运动,当其中一个点停止运动时另一个点也随之停止运动.设它们的运动的时间为t ()s ,连接PQ ,当t 为何值时,四边形BCPQ 的面积最小?并求出最小值及此时PQ 的长.【答案】*26.解:(1)抛物线2(1)0)y a x a =-+≠经过点(20)A -,,093a a ∴=+=-························· 1分 ∴二次函数的解析式为:2333y x x =-++ ············· 3分 (2)D为抛物线的顶点(1D ∴过D 作DN OB ⊥于N,则DN =3660AN AD DAO =∴==∴∠=,° ·············· 4分OM AD ∥①当AD OP =时,四边形DAOP 是平行四边形 66(s)OP t ∴=∴= ············· 5分②当DP OM ⊥时,四边形DAOP 是直角梯形过O 作OH AD ⊥于H ,2AO =,则1AH =(如果没求出60DAO ∠=°可由Rt Rt OHA DNA △∽△求1AH =)55(s)OP DH t ∴===·························· 6分 ③当PD OA =时,四边形DAOP 是等腰梯形 26244(s)OP AD AH t ∴=-=-=∴=综上所述:当6t =、5、4时,对应四边形分别是平行四边形、直角梯形、等腰梯形. 7分(3)由(2)及已知,60COB OC OB OCB ∠==°,,△是等边三角形 则6262(03)OB OC AD OP t BQ t OQ t t =====∴=-<<,,,过P 作PE OQ ⊥于E,则PE =···················· 8分116(62)22BCPQ S t ∴=⨯⨯⨯-=2322t ⎫-+⎪⎝⎭··························· 9分 当32t =时,BCPQ S··················· 10分 ∴此时33393324444OQ OP OE QE PE ==∴=-==,=,2PQ ∴=== ··············· 11分【浙江·丽水】24. 已知直角坐标系中菱形ABCD 的位置如图,C ,D 两点的坐标分别为(4,0),(0,3).现有两动点P ,Q 分别从A ,C同时出发,点P 沿线段AD 向终点D 运动,点Q 沿折线CBA 向终点A 运动,设运动时间为t 秒.(1)填空:菱形ABCD 的边长是 ▲ 、面积是 ▲ 、Oxy ABC DE(第24题)高BE 的长是 ▲ ; (2)探究下列问题:①若点P 的速度为每秒1个单位,点Q 的速度为每秒2个单位.当点Q 在线段BA 上时,求△APQ 的面积S 关于t 的函数关系式,以及S 的最大值; ②若点P 的速度为每秒1个单位,点Q 的速度变为每秒k 个单位,在运动过程中,任何时刻都有相应的k 值,使得 △APQ 沿它的一边翻折,翻折前后两个三角形组成的四边 形为菱形.请探究当t =4秒时的情形,并求出k 的值.【答案】24.(本题12分)解:(1)5 , 24,524.......................................3分 (2)①由题意,得AP =t ,AQ =10-2t. (1)分如图1,过点Q 作QG ⊥AD ,垂足为G ,由QG ∥BE 得△AQG ∽△ABE ,∴BAQABE QG =, ∴QG =2548548t-, …………………………1分 ∴t t QG AP S 5242524212+-=⋅=(25≤t ≤5).……1分∵6)25(25242+--=t S (25≤t ≤5).∴当t =25时,S 最大值为6.…………………1分② 要使△APQ 沿它的一边翻折,翻折前后的两个三角形组成的四边形为菱形,根据轴对称的性质,只需△APQ 为等腰三角形即可. 当t =4秒时,∵点P 的速度为每秒1个单位,∴AP =4.………………1分 以下分两种情况讨论:第一种情况:当点Q 在CB 上时, ∵PQ ≥BE >PA ,∴只存在点Q 1,使Q 1A =Q 1P .如图2,过点Q 1作Q 1M ⊥AP ,垂足为点M ,Q 1M 交AC 于点F ,则AM =122AP =.由△AMF ∽△AOD ∽△CQ 1F ,得4311===AO OD CQ F Q AM FM , ∴23=FM , ∴103311=-=FM MQ F Q . ………………1分∴CQ 1=QF 34=225.则11CQ AP t k t =⋅⨯,∴11110CQ k AP == .……………………………1分 第二种情况:当点Q 在BA 上时,存在两点Q 2,Q 3,分别使A P = A Q 2,PA =PQ 3.①若AP =A Q 2,如图3,CB +BQ 2=10-4=6.则21BQ CB AP t k t +=⋅⨯,∴232CB BQ k AP +==.……1分②若PA =PQ 3,如图4,过点P 作PN ⊥AB ,垂足为N ,由△ANP ∽△AEB ,得ABAPAE AN =. ∵AE =5722=-BE AB , ∴AN =2825. ∴AQ 3=2AN=5625, ∴BC+BQ 3=10-251942556=则31BQ CB APt k t +=⋅⨯.∴50973=+=AP BQ CB k . ………………………1分综上所述,当t = 4秒,以所得的等腰三角形APQ沿底边翻折,翻折后得到菱形的k 值为1011或23或5097.【湖南·益阳】六、解答题:本题满分14分. 20.阅读材料:如图12-1,过△ABC 的三个顶点分别作出与水平线垂直的三条直线,外侧两条直线之间的距离叫△ABC 的“水平宽”(a ),中间的这条直线在△ABC 内部线段的长度叫△ABC 的“铅垂高(h )”.我们可得出一种计算三角形面积的新方法:ah S ABC21=∆,即三角形面积等于水平宽与铅垂高乘积的一半. 解答下列问题:如图12-2,抛物线顶点坐标为点C (1,4),交x 轴于点A (3,0),交y 轴于点B .(1)求抛物线和直线AB 的解析式;(2)点P 是抛物线(在第一象限内)上的一个动点,连结PA ,PB ,当P 点运动到顶点C 时,求△CAB 的铅垂高CD 及CAB S ∆;(3)是否存在一点P ,使S △PAB =89S △CAB ,若存在,求出P 点的坐标;若不存在,请说明理由.图12-2xC O yABD11图12-1【答案】六、解答题:本题满分14分.20.解:(1)设抛物线的解析式为:4)1(21+-=x a y ············· 1分把A (3,0)代入解析式求得1-=a所以324)1(221++-=+--=x x x y ·············· 3分设直线AB 的解析式为:b kx y +=2由3221++-=x x y 求得B 点的坐标为)3,0( ··········· 4分 把)0,3(A ,)3,0(B 代入b kx y +=2中 解得:3,1=-=b k所以32+-=x y ······················· 6分 (2)因为C 点坐标为(1,4)所以当x =1时,y 1=4,y 2=2所以CD =4-2=2 ························ 8分32321=⨯⨯=∆CAB S (平方单位) ················10分 (3)假设存在符合条件的点P ,设P 点的横坐标为x ,△PAB 的铅垂高为h ,则x x x x x y y h 3)3()32(2221+-=+--++-=-= ······· 12分 由S △PAB =89S △CAB 得:389)3(3212⨯=+-⨯⨯x x 化简得:091242=+-x x 解得,23=x 将23=x 代入3221++-=x x y 中, 解得P 点坐标为)415,23( ···················· 14分【遂宁市】25.如图,二次函数的图象经过点D(0,397),且顶点C 的横坐标为4,该图象在x 轴上截得的线段AB 的长为6.⑴求二次函数的解析式;⑵在该抛物线的对称轴上找一点P ,使PA+PD 最小,求出点P 的坐标;⑶在抛物线上是否存在点Q ,使△QAB 与△ABC 相似?如果存在,求出点Q 的坐标;如果不存在,请说明理由.【答案】25.⑴设二次函数的解析式为:y=a(x-h)2+k∵顶点C 的横坐标为4,且过点(0,397)∴y=a(x-4)2+k k a +=16397 ………………①又∵对称轴为直线x=4,图象在x 轴上截得的线段长为6 ∴A(1,0),B(7,0) ∴0=9a+k ………………② 由①②解得a=93,k=3-∴二次函数的解析式为:y=93(x-4)2-3⑵∵点A 、B 关于直线x=4对称 ∴PA=PB∴PA+PD=PB+PD ≥DB∴当点P 在线段DB 上时PA+PD 取得最小值 ∴DB 与对称轴的交点即为所求点P 设直线x=4与x 轴交于点M∵PM ∥OD ,∴∠BPM=∠BDO ,又∠PBM=∠DBO ∴△BPM ∽△BDO∴BO BM DO PM = ∴3373397=⨯=PM ∴点P 的坐标为(4,33)⑶由⑴知点C(4,3-),又∵AM=3,∴在Rt △AMC 中,cot ∠ACM=33,∴∠ACM=60o,∵AC=BC ,∴∠ACB=120o①当点Q 在x 轴上方时,过Q 作QN ⊥x 轴于N 如果AB=BQ ,由△ABC ∽△ABQ 有 BQ=6,∠ABQ=120o,则∠QBN=60o∴QN=33,BN=3,ON=10, 此时点Q(10,33),如果AB=AQ ,由对称性知Q(-2,33) ②当点Q 在x 轴下方时,△QAB 就是△ACB , 此时点Q 的坐标是(4,3-),经检验,点(10,33)与(-2,33)都在抛物线上 综上所述,存在这样的点Q ,使△QAB ∽△ABC 点Q 的坐标为(10,33)或(-2,33)或(4,3-).【江西】24.如图,抛物线223y x x =-++与x 轴相交于A 、B 两点(点A 在点B 的左侧),与y 轴相交于点C ,顶点为D .(1)直接写出A 、B 、C 三点的坐标和抛物线的对称轴;(2)连接BC ,与抛物线的对称轴交于点E ,点P 为线段BC 上的一个动点,过点P 作PF DE ∥交抛物线于点F ,设点P 的横坐标为m ;①用含m 的代数式表示线段PF 的长,并求出当m 为何值时,四边形PEDF 为平行四边形? ②设BCF △的面积为S ,求S 与m 的函数关系式.【答案】24.解:(1)A (-1,0),B (3,0),C (0,3). ············ 2分(第24题)抛物线的对称轴是:x =1. ······················ 3分(2)①设直线BC 的函数关系式为:y=kx+b .把B (3,0),C (0,3)分别代入得:303k b b +=⎧⎨=⎩,解得:k = -1,b =3. 所以直线BC 的函数关系式为:3y x =-+. 当x =1时,y = -1+3=2,∴E (1,2). 当x m =时,3y m =-+,∴P (m ,-m +3). ························· 4分 在223y x x =-++中,当1x =时,4y =.∴()14D ,.当x m =时,223y m m =-++,∴()223F m m m -++,. ········ 5分∴线段DE =4-2=2,线段()222333PF m m m m m =-++--+=-+. ··· 6分∵PF DE ∥,∴当PF ED =时,四边形PEDF 为平行四边形.由232m m -+=,解得:1221m m ==,(不合题意,舍去).因此,当2m =时,四边形PEDF 为平行四边形. ··········· 7分②设直线PF 与x 轴交于点M ,由()()3000B O ,,,,可得:3OB OM MB =+=. ∵BPF CPF S S S =+△△. ······················· 8分即1111()2222S PF BM PF OM PF BM OM PF OB =+=+= . ∴()()221393303222S m m m m m =⨯-+=-+≤≤.········· 9分 说明:1.第(1)问,写对1个或2个点的坐标均给1分,写对3个点的坐标得2分;2.第(2)问,S 与m 的函数关系式未写出m 的取值范围不扣分.【江西】25.如图1,在等腰梯形ABCD 中,AD BC ∥,E 是AB 的中点,过点E 作EF BC ∥交CD 于点F .46AB BC ==,,60B =︒∠. (1)求点E 到BC 的距离; (2)点P 为线段EF 上的一个动点,过P 作PM EF ⊥交BC 于点M ,过M 作MN AB ∥交折线ADC 于点N ,连结PN ,设EP x =. ①当点N 在线段AD 上时(如图2),P M N △的形状是否发生改变?若不变,求出PMN △的周长;若改变,请说明理由;②当点N 在线段DC 上时(如图3),是否存在点P ,使PMN △为等腰三角形?若存在,请求出所有满足要求的x 的值;若不存在,请说明理由.【答案】25.(1)如图1,过点E 作EG BC ⊥于点G .1分∵E 为AB 的中点,∴122BE AB ==.在Rt EBG △中,60B =︒∠,∴30BEG =︒∠. ··· 2分∴112BG BE EG ====, 即点E 到BC ··········· 3分(2)①当点N 在线段AD 上运动时,PMN △的形状不发生改变. ∵PM EF EG EF ⊥⊥,,∴PM EG ∥. ∵EF BC ∥,∴EP GM =,PM EG ==同理4MN AB ==. ·························· 4分 如图2,过点P 作PH MN ⊥于H ,∵MN AB ∥, ∴6030NMC B PMH ==︒=︒∠∠,∠. ∴122PH PM == ∴3cos302MH PM =︒= .则35422NH MN MH =-=-=.A D E BFC图4(备用)AD EBF C图5(备用)A D E BF C 图1图2 A D E BF C PNM图3A D EBFCPN M(第25题) 图1A D E BF CG图2A DEBF CPNMG H在Rt PNH △中,PN === ∴PMN △的周长=4PM PN MN ++=. ············ 6分 ②当点N 在线段DC 上运动时,PMN △的形状发生改变,但MNC △恒为等边三角形.当PM PN =时,如图3,作PR MN ⊥于R ,则MR NR =.类似①,32MR =. ∴23MN MR ==.··························· 7分 ∵MNC △是等边三角形,∴3MC MN ==.此时,6132x EP GM BC BG MC ===--=--=. ··········· 8分当MP MN =时,如图4,这时MC MN MP ===此时,615x EP GM ===-=当NP NM =时,如图5,30NPM PMN ==︒∠∠.则120PMN =︒∠,又60MNC =︒∠, ∴180PNM MNC +=︒∠∠.因此点P 与F 重合,PMC △为直角三角形. ∴tan301MC PM =︒= .此时,6114x EP GM ===--=.综上所述,当2x =或4或(5-时,PMN △为等腰三角形. ······ 10分【济南】24.(本小题满分9分)已知:抛物线()20y ax bx c a =++≠的对称轴为1x =-,与x 轴交于A B ,两点,与y 轴交于点C ,其中()30A -,、()02C -,.(1)求这条抛物线的函数表达式.(2)已知在对称轴上存在一点P ,使得PBC △的周长最小.请求出点P 的坐标.图3A D E BFCPNM图4A D EBFCP MN 图5A D E BF (P ) CMN GGRG(3)若点D 是线段OC 上的一个动点(不与点O 、点C 重合).过点D 作DE PC ∥交x 轴于点E .连接PD 、PE .设CD 的长为m ,PDE △的面积为S .求S 与m 之间的函数关系式.试说明S 是否存在最大值,若存在,请求出最大值;若不存在,请说明理由.【答案】24.(本小题满分9分)解:(1)由题意得129302ba abc c ⎧=⎪⎪⎪-+=⎨⎪⎪=-⎪⎩ ···················· 2分解得23432a b c ⎧=⎪⎪⎪=⎨⎪=-⎪⎪⎩∴此抛物线的解析式为224233y x x =+- ··············· 3分 (2)连结AC 、BC .因为BC 的长度一定,所以PBC △周长最小,就是使PC PB +最小.B 点关于对称轴的对称点是A 点,AC 与对称轴1x =-的交点即为所求的点P .设直线AC 的表达式为y kx b =+则302k b b -+=⎧⎨=-⎩,···························································· 4分解得232k b ⎧=-⎪⎨⎪=-⎩∴此直线的表达式为223y x =--. ·················· 5分(第24题图)(第24题图)把1x =-代入得43y =- ∴P 点的坐标为413⎛⎫--⎪⎝⎭, ····················· 6分 (3)S 存在最大值························· 7分 理由:∵DE PC ∥,即DE AC ∥. ∴OED OAC △∽△.∴OD OE OC OA =,即223m OE-=.∴333322OE m AE OE m =-==,,方法一:连结OPOED POE POD OED PDOE S S S S S S =-=+-△△△△四边形=()()13411332132223222m m m m ⎛⎫⎛⎫⨯-⨯+⨯-⨯-⨯-⨯- ⎪ ⎪⎝⎭⎝⎭=23342m m -+ ························· 8分 ∵304-<∴当1m =时,333424S =-+=最大 ················· 9分方法二:OAC OED AEP PCD S S S S S =---△△△△=()1131341323212222232m m m m ⎛⎫⨯⨯-⨯-⨯--⨯⨯-⨯⨯ ⎪⎝⎭ =()22333314244m m m -+=--+ ················· 8分 ∵304-<∴当1m =时,34S =最大 ····················· 9分【衡阳】26、(本小题满分9分)如图12,直线4+-=x y 与两坐标轴分别相交于A 、B 点,点M 是线段AB 上任意一点(A 、B 两点除外),过M 分别作MC ⊥OA 于点C ,MD ⊥OB 于D .(1)当点M 在AB 上运动时,你认为四边形OCMD 的周长是否发生变化?并说明理由;(2)当点M 运动到什么位置时,四边形OCMD 的面积有最大值?最大值是多少?(3)当四边形OCMD 为正方形时,将四边形OCMD 沿着x 轴的正方向移动,设平移的距离为)40<<a a (,正方形OCMD 与△AOB 重叠部分的面积为S .试求S 与a 的函数关系式并画出该函数的图象.【答案】解:(1)设点M 的横坐标为x ,则点M 的纵坐标为-x+4(0<x<4,x>0,-x+4>0); 则:MC =∣-x+4∣=-x+4,MD =∣x ∣=x ;∴C 四边形OCMD =2(MC+MD )=2(-x+4+x )=8∴当点M 在AB 上运动时,四边形OCMD 的周长不发生变化,总是等于8;(2)根据题意得:S 四边形OCMD =MC ·MD =(-x+4)· x =-x 2+4x =-(x-2)2+4∴四边形OCMD 的面积是关于点M 的横坐标x (0<x<4)的二次函数,并且当x =2,即当点M 运动到线段AB 的中点时,四边形OCMD 的面积最大且最大面积为4; (3)如图10(2),当20≤<a 时,42121422+-=-=a a S ; 如图10(3),当42<≤a 时,22)4(21)4(21-=-=a a S ;∴S 与a 的函数的图象如下图所示:【鄂州】27.如图所示,将矩形OABC 沿AE 折叠,使点O 恰好落在BC 上F 处,以CF 为边作正方形CFGH ,延长BC 至M ,使CM =|CF —EO |,再以CM 、CO 为边作矩形CMNO (1)试比较EO 、EC 的大小,并说明理由 (2)令;四边形四边形CNMN CFGHS S m =,请问m 是否为定值?若是,请求出m 的值;若不是,请说明理由(3)在(2)的条件下,若CO =1,CE =31,Q 为AE 上一点且QF =32,抛物线y =mx 2+bx+c经图12(1)图12(2)图12(3)))4<≤a过C 、Q 两点,请求出此抛物线的解析式.(4)在(3)的条件下,若抛物线y =mx 2+bx+c 与线段AB 交于点P ,试问在直线BC 上是否存在点K ,使得以P 、B 、K 为顶点的三角形与△AEF 相似?若存在,请求直线KP 与y 轴的交点T 的坐标?若不存在,请说明理由。

2009年中考压轴题

2009年中考压轴题

2009中考压轴题精选(二)1. (重庆市)已知:如图,在平面直角坐标系xOy中,矩形OABC的边OA在y轴的正半轴上,OC在x轴的正半轴上,OA=2, OC=3 .过原点O作/ AOC的平分线交AB于点D,连接DC,过点D作DE丄DC,交OA于点E .(1)求过点E、D、C的抛物线的解析式;(2)将/ EDC绕点D按顺时针方向旋转后,角的一边与y轴的正半轴交于点F,另一边与线段OC交于点G .如果DF与(1 )中的抛物线交于另一点M,点M的横坐标为-,那么5EF=2GO是否成立?若成立,请给予证明;若不成立,请说明理由;(3)对于(2)中的点G,在位于第一象限内的该抛物线上是否存在点Q,使得直线GQ与AB的交点P与点C、G构成的△ PCG是等腰三角形?若存在,请求出点Q的坐标;若不存在,请说明理由.解:(1)由已知,得C(3,0) , D(2,2),: ADE =90°- CDB "BCD ,1 AE =AD L tan ADE =2 tan BCD =2 1.2E(0,1).设过点E、D、C的抛物线的解析式为y = ax2 bx c(a = 0).将点E的坐标代入,得c =1 .将c =1和点D、C的坐标分别代入,得4a 2b 1 二2,9a 3b 1 = 0.5…6 b』解这个方程组,得6GP 与该抛物线在第一象限内的交点 Q 的横坐标为1,5 13 故抛物线的解析式为 y x 2 x 1 .6 6(2) EF =2G0成立.:点M 在该抛物线上,且它的横坐标为 -, 5将点D 、M 的坐标分别代入,得2k 巾=2, ,1 k =6 u 12 解得 2k b| . 5 50=3. 1DM 的解析式为y x 3.2-F(0,3) , EF =2 .过点D 作DK 丄OC 于点K , 则 DA 二 DK . :ADK "FDG =90° FDA =/GDK . 又「FAD GKD =90° △ DAF DKG . KG 二 AF = 1 . .GO =1. EF =2GO .(3);点 P 在 AB 上, G(1,0) , C(3,0),则设 P(1,2). PG 2=(t -1)2 22, PC 2=(3-t)2 22, GC =2 .①若 PG = PC ,则(t -1)2 22 二(3 —t)2 22, 解得t=2 . ■ P(2,2),此时点Q 与点P 重合.Q(2,2).②若 PG 二 GC ,则(t -1)22 = 22 ,解得t =1 , ■ P(1,2),此时GP 丄x 轴..点M 的纵坐标为12~5设DM 的解析式为y = kx b|(^"0), x.点Q的纵坐标为--3.Q 1,7•I 3丿③若PC 二GC,则(3 -t)2 2^22,解得t=3, P(3,2),此时PC二GC=2 , △ PCG是等腰直角三角形.过点Q作QH丄x轴于点H ,则QH =GH,设QH 二h ,.Q(h 1, h).5 2 13(h 1)2(h 1) 1 二h .6 6x 解得h , h2_ -2 (舍去).5Q12.综上所述,存在三个满足条件的点Q ,即Q(2,2)或Q1,3 或Q 12,5 .2. (长沙市)2如图,二次函数y二ax bx c ( a = 0 )的图象与x轴交于A、B两点,与y轴相交于点C •连结AC、BC , A C两点的坐标分别为A(-3,0)、C(0八3),且当x = —4和x=2时二次函数的函数值y相等.(1) 求实数a, b , c的值;(2) 若点M、N同时从B点出发,均以每秒1个单位长度的速度分别沿BA、BC边运动,其中一个点到达终点时,另一点也随之停止运动.当运动时间为t秒时,连结MN,将厶BMN沿MN翻折,B点恰好落在AC边上的P处,求t的值及点P的坐标;(3) 在(2)的条件下,二次函数图象的对称轴上是否存在点Q,使得以B, N , Q为项点的三角形与△ ABC相似?如果存在,请求出点Q的坐标;如果不存在,请说明理由.3.(北京市)如图,在平面直角坐标系 xOy 中,L ABC 三个机战的坐标分别为 A :;:-6,0 ,— 1B 6,0,C 0,4.3,延长 AC 到点 D,使 CD=-线于点E.(1) 求D 点的坐标;(2) 作C 点关于直线DE 的对称点F,分别连结DF 、EF ,若过B 点的直线y =kx ・b 将四边形CDFE 分成周长相等的两个四 边形,确定此直线的解析式; (3) 设G 为y 轴上一点,点P 从直线 kx b 与y 轴的交点出发,先沿y 轴到达G 点,再沿GA 到达A 点,若P 点在y 轴 上运动的速度是它在直线 GA 上运动速度的2倍,试确定G 点的位置,使P 点按照上述要求到达 A 点所用的时间最短。

09年压轴题及答案改A

09年压轴题及答案改A

冲刺2010 ——2009年中考数学压轴题汇编(含解题过程)(2009年北京)25.如图,在平面直角坐标系xOy 中,ABC 三个机战的坐标分别为()6,0A -,()6,0B ,(0,C ,延长AC 到点D,使CD=12AC ,过点D 作DE ∥AB 交BC 的延长线于点E. (1)求D 点的坐标;(2)作C 点关于直线DE 的对称点F,分别连结DF 、EF ,若过B 点的直线y kx b =+将四边形CDFE 分成周长相等的两个四边形,确定此直线的解析式;(3)设G 为y 轴上一点,点P 从直线y kx b =+与y 轴的交点出发,先沿y 轴到达G 点,再沿GA 到达A 点,若P 点在y 轴上运动的速度是它在直线GA 上运动速度的2倍,试确定G 点的位置,使P 点按照上述要求到达A 点所用的时间最短。

(要求:简述确定G 点位置的方法,但不要求证明)(2009年重庆市)26.已知:如图,在平面直角坐标系xOy 中,矩形OABC 的边OA 在y 轴的正半轴上,OC 在x 轴的正半轴上,OA =2,OC =3.过原点O 作∠AOC 的平分线交AB 于点D ,连接DC ,过点D 作DE ⊥DC ,交OA 于点E . (1)求过点E 、D 、C 的抛物线的解析式;(2)将∠EDC 绕点D 按顺时针方向旋转后,角的一边与y 轴的正半轴交于点F ,另一边与线段OC 交于点G .如果DF 与(1)中的抛物线交于另一点M ,点M 的横坐标为65,那么EF =2GO 是否成立?若成立,请给予证明;若不成立,请说明理由; (3)对于(2)中的点G ,在位于第一象限内的该抛物线上是否存在点Q ,使得直线GQ 与AB 的交点P 与点C 、G 构成的△PCG 是等腰三角形?若存在,请求出点Q 的坐标;若不存在,请说明理由.26.解:(1)由已知,得(30)C ,,(22)D ,, 90ADE CDB BCD ∠=-∠=∠ °,1tan 2tan 212AE AD ADE BCD ∴=∠=⨯∠=⨯= . ∴(01)E ,. ···································· (1分) 设过点E D C 、、的抛物线的解析式为2(0)y ax bx c a =++≠.将点E 的坐标代入,得1c =.将1c=和点D C 、的坐标分别代入,得42129310.a b a b ++=⎧⎨++=⎩,································· (2分)解这个方程组,得56136a b ⎧=-⎪⎪⎨⎪=⎪⎩故抛物线的解析式为2513166y x x =-++. ·····················(3分) (2)2EFGO =成立. ······························(4分)点M 在该抛物线上,且它的横坐标为65,∴点M 的纵坐标为125. ······························(5分)设DM 的解析式为1(0)y kx b k =+≠,将点D M 、的坐标分别代入,得1122612.55k b k b +=⎧⎪⎨+=⎪⎩, 解得1123k b ⎧=-⎪⎨⎪=⎩,.26题图xx∴DM的解析式为132y x =-+. ·························(6分)∴(03)F ,,2EF =. ······························ (7分) 过点D 作DK OC ⊥于点K ,则DA DK =.90ADK FDG ∠=∠= °, FDA GDK ∴∠=∠.又90FAD GKD ∠=∠= °, DAF DKG ∴△≌△. 1KG AF ∴==.1GO ∴=. ··································· (8分)2EF GO ∴=.(3) 点P 在AB 上,(10)G ,,(30)C ,,则设(12)P ,.∴222(1)2PG t =-+,222(3)2PC t =-+,2GC =.①若PG PC =,则2222(1)2(3)2t t -+=-+,解得2t=.∴(22)P ,,此时点Q 与点P 重合.∴(22)Q ,. ··································· (9分) ②若PG GC =,则22(1)22t 2-+=,解得 1t=,(12)P ∴,,此时GP x ⊥轴.GP 与该抛物线在第一象限内的交点Q 的横坐标为1,∴点Q 的纵坐标为73.∴713Q ⎛⎫⎪⎝⎭,. ··································· (10分) ③若PC GC =,则222(3)22t -+=,解得3t=,(32)P ∴,,此时2PC GC ==,PCG △是等腰直角三角形.过点Q 作QH x ⊥轴于点H ,则QHGH =,设QH h =,(1)Q h h ∴+,.2513(1)(1)166h h h ∴-++++=.x解得12725h h ==-,(舍去). 12755Q ⎛⎫∴ ⎪⎝⎭,. ··············· (12分)综上所述,存在三个满足条件的点Q ,即(22)Q ,或713Q ⎛⎫⎪⎝⎭,或12755Q ⎛⎫⎪⎝⎭,.(2009年重庆綦江县)26.(11分)如图,已知抛物线(1)20)y a x a =-+≠经过点(2)A -,0,抛物线的顶点为D ,过O 作射线OM AD ∥.过顶点D 平行于x 轴的直线交射线OM 于点C ,B 在x 轴正半轴上,连结BC . (1)求该抛物线的解析式;(2)若动点P 从点O 出发,以每秒1个长度单位的速度沿射线OM 运动,设点P 运动的时间为()t s .问当t 为何值时,四边形DAOP 分别为平行四边形?直角梯形?等腰梯形?(3)若O C O B =,动点P 和动点Q 分别从点O 和点B 同时出发,分别以每秒1个长度单位和2个长度单位的速度沿OC和BO 运动,当其中一个点停止运动时另一个点也随之停止运动.设它们的运动的时间为,连接,当t 为何值时,四边形BCPQ 的面积最小?并求出最小值及此时PQ 的长.*26.解:(1) 抛物线2(1)0)y a x a =-+≠经过点(20)A -,09a a ∴=+= ····························· 1分∴二次函数的解析式为:2y x x = ·················· 3分(2)D 为抛物线的顶点D ∴过D 作DN OB ⊥于N ,则DN =3660AN AD DAO =∴=∴∠=,° ················ 4分OM AD ∥①当AD OP =时,四边形DAOP 是平行四边形66(s)OP t ∴=∴= ················ 5分②当DP OM⊥时,四边形DAOP 是直角梯形过O 作OHAD ⊥于H ,2AO =,则1AH =(如果没求出60DAO ∠=°可由Rt Rt OHA DNA △∽△求1AH =)55(s)OP DH t ∴=== ······························6分③当PD OA =时,四边形DAOP 是等腰梯形 26244(s)OP AD AH t ∴=-=-=∴=综上所述:当6t=、5、4时,对应四边形分别是平行四边形、直角梯形、等腰梯形.····· 7分(3)由(2)及已知,60COB OC OB OCB ∠==°,,△是等边三角形 则6262(03)OB OCAD OP t BQ t OQ t t =====∴=-<<,,,过P 作PE OQ ⊥于E,则PE =························ 8分116(62)22BCPQ S t ∴=⨯⨯⨯-232t ⎫-⎪⎝⎭································ 9分当32t=时,BCPQ S························ 10分∴此时3339332444OQ OP OE QE PE ==∴=-==,=,2PQ ∴===·················· 11分(2009年河北省)26.(本小题满分12分)如图16,在Rt △ABC 中,∠C =90°,AC = 3,AB = 5.点P 从点C 出发沿CA 以每秒1个单位长的速度向点A 匀速运动,到达点A 后立刻以原来的速度沿AC 返回;点Q 从点A 出发沿AB 以每秒1个单位长的速度向点B 匀速运动.伴随着P 、Q 的运动,DE 保持垂直平分PQ ,且交PQ 于点D ,交折线QB -BC -CP 于点E .点P 、Q 同时出发,当点Q 到达点B 时停止运动,点P 也随之停止.设点P 、Q 运动的时间是t 秒(t >0).(1)当t = 2时,AP = ,点Q 到AC 的距离是 ; (2)在点P 从C 向A 运动的过程中,求△APQ 的面积S 与t 的函数关系式;(不必写出t 的取值范围)(3)在点E 从B 向C 运动的过程中,四边形QBED 能否成 为直角梯形?若能,求t 的值.若不能,请说明理由;(4)当DE 经过点C 时,请直接..写出t 的值.26.解:(1)1,85; (2)作QF ⊥AC 于点F ,如图3, AQ = CP = t ,∴3AP t =-.由△AQF ∽△ABC,4BC ,图3F得45QF t =.∴45QF t =. ∴14(3)25S t t =-⋅, 即22655S t t =-+. (3)能.①当DE ∥QB 时,如图4.∵DE ⊥PQ ,∴PQ ⊥QB ,四边形QBED 是直角梯形. 此时∠AQP =90°.由△APQ ∽△ABC ,得AQ APAC AB=, 即335t t -=. 解得98t =. ②如图5,当PQ ∥BC 时,DE ⊥BC ,四边形QBED 是直角梯形. 此时∠APQ =90°.由△AQP ∽△ABC ,得 AQ AP AB AC=, 即353t t -=. 解得158t =.(4)52t =或4514t =. 【注:①点P 由C 向A 运动,DE 经过点C . 方法一、连接QC ,作QG ⊥BC 于点G ,如图6.PC t =,222QC QG CG =+2234[(5)][4(5)]55t t =-+--.由22PC QC =,得22234[(5)][4(5)]55t t t =-+--,解得52t =.方法二、由CQ CP AQ ==,得QAC QCA ∠=∠,进而可得B BCQ ∠=∠,得CQ BQ =,∴52AQ BQ ==.∴52t =. ②点P 由A 向C 运动,DE 经过点C ,如图7.22234(6)[(5)][4(5)]55t t t -=-+--,4514t =】(2009年河南省)23.(11分)如图,在平面直角坐标系中,已知矩形ABCD 的三个顶点B (4,0)、C (8,0)、D (8,8).抛物线y=ax 2+bx 过A 、C 两点.(1)直接写出点A 的坐标,并求出抛物线的解析式;(2)动点P 从点A 出发.沿线段AB 向终点B 运动,同时点Q 从点C 出发,沿线段CD 向终点D 运动.速度均为每秒1个单位长度,运动时间为t 秒.过点P 作PE ⊥AB 交AC 于点E ①过点E 作EF ⊥AD 于点F ,交抛物线于点G.当t 为何值时,线段EG 最长?②连接EQ .在点P 、Q 运动的过程中,判断有几个时刻使得△CEQ 是等腰三角形? 请直接写出相应的t 值.图4P图5解.(1)点A 的坐标为(4,8) …………………1分 将A (4,8)、C (8,0)两点坐标分别代入y=ax 2+bx 8=16a +4b 得0=64a +8b 得a =-12,b =4 解∴抛物线的解析式为:y =-12x 2+4x …………………3分(2)①在Rt △APE 和Rt △ABC 中,tan ∠PAE =PE AP =BC AB ,即PE AP =48∴PE =12AP =12t .PB=8-t .∴点E的坐标为(4+12t ,8-t ).∴点G 的纵坐标为:-12(4+12t )2+4(4+12t )=-18t 2+8. …………………5分∴EG=-18t 2+8-(8-t )=-18t 2+t .∵-18<0,∴当t =4时,线段EG 最长为2. …………………7分②共有三个时刻. …………………8分t 1=163, t 2=4013,t 3. …………………11分(2009年山西省)26.(本题14分)如图,已知直线128:33l y x =+与直线2:216l y x =-+相交于点C l l 12,、分别交x 轴于A B 、两点.矩形DEFG 的顶点D E 、分别在直线12l l 、上,顶点F G 、都在x 轴上,且点G 与点B 重合.(1)求ABC △的面积;(2)求矩形DEFG 的边DE 与EF 的长;(3)若矩形DEFG 从原点出发,沿x 轴的反方向以每秒1个单位长度的速度平移,设移动时间为(012)t t ≤≤秒,矩形DEFG 与ABC △重叠部分的面积为S ,求S 关t 的函数关系式,并写出相应的t 的取值范围.(第26题)26.(1)解:由28033x +=,得4x A =-∴.点坐标为()40-,.由2160x -+=,得8x B =∴.点坐标为()80,.∴()8412AB =--=.···························· (2分) 由2833216y x y x ⎧=+⎪⎨⎪=-+⎩,.解得56x y =⎧⎨=⎩,.∴C 点的坐标为()56,. ············· (3分) ∴111263622ABCC S AB y ==⨯⨯=△·. ···················· (4分) (2)解:∵点D 在1l 上且2888833D B D x x y ==∴=⨯+=,.∴D 点坐标为()88,.······························ (5分) 又∵点E 在2l 上且821684E D E E y y x x ==∴-+=∴=,..∴E 点坐标为()48,.····························· (6分) ∴8448OEEF =-==,. ························ (7分)(3)解法一:①当03t<≤时,如图1,矩形DEFG 与ABC △重叠部分为五边形CHFGR (0t =时,为四边形CHFG ).过C 作CMAB ⊥于M,则Rt Rt RGB CMB △∽△.∴BG RG BM CM =,即36t RG=,∴2RG t =. Rt Rt AFH AMC △∽△,∴()()11236288223ABC BRG AFH S S S S t t t t =--=-⨯⨯--⨯-△△△.即241644333S t t =-++. ······················ (10分)(2009年山西省太原市)29.(本小题满分12分) 问题解决如图(1),将正方形纸片ABCD 折叠,使点B 落在CD 边上一点E (不与点C ,D 重合),压平后得到折痕MN .当12CE CD =时,求AMBN的值.(图3)(图1)(图2)图(1)A BCDEFMN类比归纳在图(1)中,若13CE CD =,则AMBN的值等于 ;若14CE CD =,则AMBN的值等于 ;若1CE CD n=(n 为整数),则AM BN的值等于 .(用含n 的式子表示)联系拓广如图(2),将矩形纸片ABCD 折叠,使点B 落在CD 边上一点E (不与点C D ,重合),压平后得到折痕MN ,设()111AB CE m BC m CD n =>=,,则AMBN的值等于 .(用含m n ,的式子表示)29.问题解决解:方法一:如图(1-1),连接BM EM BE ,,.由题设,得四边形ABNM 和四边形FENM 关于直线MN 对称. ∴MN 垂直平分BE .∴BMEM BN EN ==,. ················ 1分∵四边形ABCD 是正方形,∴902A D C AB BC CD DA ∠=∠=∠=====°,.∵112CE CE DE CD =∴==,.设BN x =,则NE x =,2NC x =-.在Rt CNE △中,222NE CN CE =+.∴()22221xx =-+.解得54x =,即54BN =. ················· 3分 在Rt ABM △和在Rt DEM △中,222AM AB BM +=,方法指导: 为了求得AMBN的值,可先求BN 、AM 的长,不妨设:AB =2 图(2)ABCD EFMN图(1-1)A BC DEFM222DM DE EM +=,∴2222AM AB DM DE +=+.························ 5分 设AM y =,则2DM y =-,∴()2222221y y +=-+. 解得14y =,即14AM =. ···························· 6分∴15AM BN =. ·································· 7分 方法二:同方法一,54BN =. ··························· 3分如图(1-2),过点N 做NG CD ∥,交AD 于点G ,连接BE .∵AD BC ∥,∴四边形GDCN是平行四边形.∴NG CD BC ==.同理,四边形ABNG 也是平行四边形.∴54AG BN ==.∵90MN BE EBC BNM ⊥∴∠+∠=,°.90NG BC MNG BNM EBC MNG ⊥∴∠+∠=∴∠=∠ ,°,.在BCE △与NGM △中90EBC MNG BC NG C NGM ∠=∠⎧⎪=⎨⎪∠=∠=⎩,,°.∴BCE NGM EC MG =△≌△,. ·········· 5分∵114AM AG MG AM =--=5,=.4 ····················· 6分∴15AM BN =. ································· 7分 类比归纳图(1-2)A BC DEFMG第23题图(1)第23题图(2)25(或410);917; ()2211n n -+ ·························· 10分联系拓广2222211n m n n m -++ ································· 12分评分说明:1.如你的正确解法与上述提供的参考答案不同时,可参照评分说明进行估分.2.如解答题由多个问题组成,前一问题解答有误或未答,对后面问题的解答没有影响,可依据参考答案及评分说明进行估分.(2009年安徽省)23.已知某种水果的批发单价与批发量的函数关系如图(1)所示.(1)请说明图中①、②两段函数图象的实际意义. 【解】(2)写出批发该种水果的资金金额w (元)与批发量m (kg )之间的函数关系式;在下图的坐标系中画出该函数图象;指出金额在什 么范围内,以同样的资金可以批发到较多数量的该种水果.【解】(3)经调查,某经销商销售该种水果的日最高销量与零售价之间的函数关系如图(2)所示,该经销商拟每日售出60kg 以上该种水果, 且当日零售价不变,请你帮助该经销商设计进货和销售的方案, 使得当日获得的利润最大. 【解】)23.(1)解:图①表示批发量不少于20kg 且不多于60kg 的该种水果,可按5元/kg 批发;……3分图②表示批发量高于60kg 的该种水果,可按4元/kg 批发. ………………………………………………………………3分(2)解:由题意得: 2060 6054m m w m m ⎧=⎨⎩≤≤())>(,函数图象如图所示.………………………………………………………………7分 由图可知资金金额满足240<w ≤300时,以同样的资金可 批发到较多数量的该种水果.……………………………8分(3)解法一:设当日零售价为x 元,由图可得日最高销量32040w m =- 当m >60时,x <6.5 由题意,销售利润为2(4)(32040)40[(6)4]y x m x =--=--+………………………………12分当x =6时,160y =最大值,此时m =80即经销商应批发80kg 该种水果,日零售价定为6元/kg ,当日可获得最大利润160元.……………………………………………14分 解法二:设日最高销售量为x kg (x >60)则由图②日零售价p 满足:32040x p =-,于是32040xp -=销售利润23201(4)(80)1604040x y x x -=-=--+………………………12分 当x =80时,160y =最大值,此时p =6即经销商应批发80kg 该种水果,日零售价定为6元/kg ,当日可获得最大利润160元.……………………………………………14分(2009年江西省)25.如图1,在等腰梯形ABCD 中,AD BC ∥,E 是AB 的中点,过点E 作EF BC ∥交CD 于点F .46AB BC ==,,60B =︒∠.(1)求点E 到BC 的距离;(2)点P 为线段EF 上的一个动点,过P 作PM EF ⊥交BC 于点M ,过M 作MN AB ∥交折线ADC 于点N ,连结PN ,设EP x =.①当点N 在线段AD 上时(如图2),PM N △的形状是否发生改变?若不变,求出PMN △的周长;若改变,请说明理由;②当点N 在线段DC 上时(如图3),是否存在点P ,使PMN △为等腰三角形?若存在,请求出所有满足要求的x 的值;若不存在,请说明理由.)A D EFA D EFPNA D EFPN25.(1)如图1,过点E 作EGBC ⊥于点G . ········· 1分∵E 为AB 的中点,∴122BE AB ==.在Rt EBG △中,60B =︒∠,∴30BEG =︒∠. ····· 2分∴112BG BE EG ====,即点E 到BC的距离为 ··············· 3分 (2)①当点N 在线段AD 上运动时,PMN △的形状不发生改变.∵PM EF EG EF ⊥⊥,,∴PM EG ∥.∵EF BC ∥,∴EP GM =,PM EG == 同理4MNAB ==. ······························· 4分如图2,过点P 作PH MN ⊥于H ,∵MN AB ∥, ∴6030NMC B PMH ==︒=︒∠∠,∠.∴12PHPM == ∴3cos302MH PM =︒= .则35422NH MN MH =-=-=.在Rt PNH △中,PN = ∴PMN △的周长=4PMPN MN ++=.··············· 6分②当点N 在线段DC 上运动时,PMN △的形状发生改变,但MNC △恒为等边三角形. 当PMPN =时,如图3,作PR MN ⊥于R ,则MR NR =.类似①,32MR =.∴23MN MR ==. ································ 7分 ∵MNC △是等边三角形,∴3MC MN ==.此时,6132x EP GM BC BG MC ===--=--=. ··············8分图1A D E BF CG图2ADEBF CPNG H当MP MN =时,如图4,这时MC MN MP ===此时,615x EP GM ===-= 当NPNM =时,如图5,30NPM PMN ==︒∠∠.则120PMN =︒∠,又60MNC =︒∠, ∴180PNM MNC +=︒∠∠.因此点P 与F 重合,PMC △为直角三角形.∴tan 301MC PM =︒= .此时,6114x EP GM ===--=.综上所述,当2x=或4或(5时,PMN △为等腰三角形. ··········· 10分(2009年广东广州)25.(本小题满分14分)如图13,二次函数)0(2<++=p q px x y 的图象与x 轴交于A 、B 两点,与y 轴交于点C (0,-1),ΔABC 的面积为45。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2009年全国中考数学压轴题精选精析(二)13.(09年广东茂名)25.(本题满分10分)已知:如图,直线l :13y x b =+,经过点104M ⎛⎫⎪⎝⎭,,一组抛物线的顶点112233(1)(2)(3)()n n B y B y B y B n y ,,,,,,,,(n 为正整数)依次是直线l 上的点,这组抛物线与x轴正半轴的交点依次是:11223311(0)(0)(0)(0)n n A x A x A x A x ++ ,,,,,,,,(n 为正整数),设101x d d =<<(). (1)求b 的值;(2分) (2)求经过点112A B A 、、的抛物线的解析式(用含d 的代数式表示)(4分)(3)定义:若抛物线的顶点与x 轴的两个交点构成的三角形是直角三角形,则这种抛物线就称为:“美丽抛物线”. 探究:当01d d <<()的大小变化时,这组抛物线中是否存在美丽抛物线?若存在,请你求出相应的d 的值. (4分)(09年广东茂名25题解析)解:(1)∵104M ⎛⎫⎪⎝⎭,在13y x b =+上,∴11043b =⨯+,∴14b =. ··································································································································· 2分(2)由(1)得:1134y x =+, ∵11(1)B y ,在l 上,∴当1x =时,111713412y =⨯+=,∴17112B ⎛⎫⎪⎝⎭,. ············································· 3 分解法一:∴设抛物线表达式为:27(1)(0)12y a x a =-+≠, ············································· 4分(第25题图)又∵1x d =, ∴1(0)A d ,,∴270(1)12a d =-+,∴2712(1)a d =--, ················· 5 分∴经过点112A B A 、、的抛物线的解析式为:2277(1)12(1)12y x d =--+-. ············· 6 分解法二:∵1x d =,∴1(0)A d ,,2(20)A d -,,∴设()(2)(0)y a x d x d a =--+≠ , ················································································ 4 分把17112B ⎛⎫⎪⎝⎭,代入:7(1)(12)12a d d =--+ ,得2712(1)a d =--, ······························ 5 分∴抛物线的解析式为27()(2)12(1)y x d x d d =---+- . ·············································· 6 分 (3)存在美丽抛物线. ········································································································ 7 分 由抛物线的对称性可知,所构成的直角三角形必是以抛物线顶点为直角顶点的等腰直角三角形,∴此等腰直角三角形斜边上的高等于斜边的一半,又∵01d <<,∴等腰直角三角形斜边的长小于2,∴等腰直角三角形斜边上的高必小于1,即抛物线的顶点的纵坐标必小于 1.∵当1x =时,1117113412y =⨯+=<, 当2x =时,21111213412y =⨯+=<, 当3x =时,3111311344y =⨯+=>,∴美丽抛物线的顶点只有12B B 、.······················································································· 8分 ①若1B 为顶点,由17112B ⎛⎫⎪⎝⎭,,则7511212d =-=; ·························································· 9分②若2B 为顶点,由211212B ⎛⎫ ⎪⎝⎭,,则11111211212d ⎡⎤⎛⎫=---=⎪⎢⎥⎝⎭⎣⎦,综上所述,d 的值为512或1112时,存在美丽抛物线. ······················································· 10分14.(09年广东梅州)23.本题满分 11 分.(提示:为了方便答题和评卷,建议在答题卡上画出你认为必须的图形)如图 12,已知直线L 过点(01)A ,和(10)B ,,P 是x 轴正半轴上的动点,OP 的垂直平分线交L 于点Q ,交x 轴于点M . (1)直接写出直线L 的解析式;(2)设OP t =,O PQ △的面积为S ,求S 关于t 的函数关系式;并求出当02t <<时,S 的最大值;(3)直线1L 过点A 且与x 轴平行,问在1L 上是否存在点C , 使得C PQ △是以Q 为直角顶点的等腰直角三角形?若存在,求出点C 的坐标,并证明;若不存在,请说明理由.(09年广东梅州23题解析)(1)1y x =- ········································································· 2分 (2)∵OP t =,∴Q 点的横坐标为12t ,①当1012t <<,即02t <<时,112Q M t =-,∴11122O P Q S t t ⎛⎫=- ⎪⎝⎭△. ······································································································ 3分 ②当2t ≥时,111122Q M t t =-=-,∴11122O P Q S t t ⎛⎫=- ⎪⎝⎭△. ∴1110222111 2.22t t t S t t t ⎧⎛⎫-<< ⎪⎪⎪⎝⎭=⎨⎛⎫⎪- ⎪⎪⎝⎭⎩,,,≥ ······························································································4分L 1当1012t <<,即02t <<时,211111(1)2244S t t t ⎛⎫=-=--+ ⎪⎝⎭, ∴当1t =时,S 有最大值14. ······························································································ 6分(3)由1OA OB ==,所以OAB △是等腰直角三角形,若在1L 上存在点C ,使得C P Q △是以Q 为直角顶点的等腰直角三角形,则P Q Q C =,所以O Q Q C =,又1L x ∥轴,则C ,O 两点关于直线L 对称,所以1AC OA ==,得(11)C ,. ················································ 7 分 下证90PQ C ∠=°.连C B ,则四边形OACB 是正方形.法一:(i )当点P 在线段OB 上,Q 在线段A B 上 (Q 与B C 、不重合)时,如图–1.由对称性,得BC Q Q O P Q PO Q O P ∠=∠∠=∠,, ∴ 180Q PB Q C B Q PB Q PO ∠+∠=∠+∠=°,∴ 360()90PQ C Q PB Q C B PBC ∠=-∠+∠+∠=°°. ················································· 8分 (ii )当点P 在线段OB 的延长线上,Q 在线段A B 上时,如图–2,如图–3∵12Q PB Q C B ∠=∠∠=∠,, ∴90PQ C PBC ∠=∠=°. ·························· 9分 (iii )当点Q 与点B 重合时,显然90PQ C ∠=°. 综合(i )(ii )(iii ),90PQ C ∠=°.∴在1L 上存在点(11)C ,,使得C P Q △是以Q 为直角顶点的等腰直角三角形. ············ 11 分法二:由1OA OB ==,所以OAB △是等腰直角三角形,若在1L 上存在点C ,使得C P Q△L 123题图-3是以Q 为直角顶点的等腰直角三角形,则P Q Q C =,所以O Q Q C =,又1L x ∥轴, 则C ,O 两点关于直线L 对称,所以1AC OA ==,得(11)C ,. ·············································· 7 分 延长M Q 与1L 交于点N .(i )如图–4,当点Q 在线段A B 上(Q 与A B 、不重合)时, ∵四边形OACB 是正方形,∴四边形OMNA 和四边形MNCB 都是矩形,A Q N △和Q BM △都是等腰直角三角形. ∴90N C M B M Q N Q AN O M Q N C Q M B ====∠=∠=,,°. 又∵OM MP =, ∴M P Q N =, ∴Q N C Q M P △≌△, ∴M PQ N Q C ∠=∠, 又∵90M Q P M PQ ∠+∠=°, ∴90M Q P N Q C ∠+∠=°.∴90C Q P ∠=°. ············································································································ 8分 (ii )当点Q 与点B 重合时,显然90PQ C ∠=°. ·············································· 9分 (iii )Q 在线段A B 的延长线上时,如图–5, ∵BC Q M PQ ∠=∠,∠1=∠2 ∴90C Q P C BM ∠=∠=°综合(i )(ii )(iii ),90PQ C ∠=°.∴在1L 上存在点(11)C ,,使得C P Q △是以Q 为直角顶点的等腰直角三角形. ········ 11分L 1L 123题图-5法三:由1OA OB ==,所以OAB △是等腰直角三角形,若在1L 上存在点C ,使得C P Q △是以Q 为直角顶点的等腰直角三角形,则P Q Q C =,所以O Q Q C =,又1L x ∥轴,则C ,O 两点关于直线L 对称,所以1AC OA ==,得(11)C ,. ························ 9分连PC ,∵|1|PB t =-,12O M t =,12t M Q =-,∴22222(1)122PC PB BC t t t =+=-+=-+,2222222211222t t t O Q O P C Q O MM Q t ⎛⎫⎛⎫===+=+-=-+ ⎪ ⎪⎝⎭⎝⎭.∴222PC OP QC =+,∴90C Q P ∠=°. ······································································· 10分∴在1L 上存在点(11)C ,,使得C P Q △是以Q 为直角顶点的等腰直角三角形. ··········· 11分15.(09年广东清远)28.如图9,已知一个三角形纸片ABC ,BC 边的长为8,BC 边上的高为6,B ∠和C ∠都为锐角,M 为A B 一动点(点M 与点A B 、不重合),过点M 作MN BC ∥,交AC 于点N ,在AMN △中,设MN 的长为x ,MN 上的高为h .(1)请你用含x 的代数式表示h .(2)将AMN △沿MN 折叠,使AMN △落在四边形BCNM 所在平面,设点A 落在平面的点为1A ,1A M N △与四边形BCNM 重叠部分的面积为y ,当x 为何值时,y 最大,最大值为多少?(09年广东清远28题解析)解:(1)MN BC ∥ AMN ABC ∴△∽△68h x ∴=34x h ∴=····································································· 3分(2)1AM N A M N △≌△1A M N ∴△的边MN 上的高为h ,①当点1A 落在四边形BCNM 内或BC 边上时,1A M N y S =△=211332248M N h x x x ==··(04x <≤) ························································ 4分BCNM A 图9②当1A 落在四边形BCNM 外时,如下图(48)x <<,设1A EF △的边E F 上的高为1h , 则132662h h x =-=-11EF M NA EF A M N ∴ ∥△∽△11A M N ABC A EF ABC ∴ △∽△△∽△1216A E F S h S ⎛⎫= ⎪⎝⎭△△ABC168242A B C S =⨯⨯= △ 22363224122462E Fx S x x ⎛⎫- ⎪∴==⨯=-+ ⎪⎪⎝⎭1△A 1122233912241224828A M N A EF y S S x x x x x ⎛⎫=-=--+=-+- ⎪⎝⎭△△ 所以 291224(48)8y x x x =-+-<< ············································································ 6分综上所述:当04x <≤时,238y x =,取4x =,6y =最大当48x <<时,2912248y x x =-+-,取163x =,8y =最大86>∴当163x =时,y 最大,8y =最大 ······················································································ 8分16.(09年广东汕头)24.(本题满分12分)正方形ABCD 边长为4,M 、N分别是BC 、CD 上的两个动点,当M 点在BC 上运动时,保持A M 和MN 垂直,(1)证明:Rt Rt ABM MCN △∽△;(2)设BM x =,梯形ABCN 的面积为y ,求y 与x 之间的函数关系式;当M 点运动到什么位置时,四边形ABCN 面积最大,并求出最大面积;(3)当M 点运动到什么位置时Rt Rt ABM AMN △∽△,求x 的值.(09年广东汕头24题解析)解:(1)在正方形ABCD 中,490A B B C C D B C ===∠=∠=,°,AM MN ⊥ ,MNCBEFAA 1N DAC DBM第24题图 DA90AMN∴∠=°,90CMN AMB∴∠+∠=°.在Rt ABM△中,90MAB AMB∠+∠=°,CMN MAB∴∠=∠,Rt RtABM MCN∴△∽△.·······················································3分(2)Rt RtABM MCN△∽△,44A B B M xM C C N x C N∴=∴=-,,244x xC N-+∴=,···················································································································· 5分22214114428(2)102422A B C Nx xy S x x x⎛⎫-+∴==+=-++=--+⎪⎝⎭梯形,当2x=时,y取最大值,最大值为10.··················································································· 7分(3)90B AMN∠=∠=°,∴要使ABM AMN△∽△,必须有A M A BM N B M=, ································································ 9分由(1)知A M A BM N M C=,BM MC∴=,∴当点M运动到BC的中点时,ABM AMN△∽△,此时2x=.···································· 12分(其它正确的解法,参照评分建议按步给分)17.(09年广东深圳)23.(本题10分)已知:Rt△ABC的斜边长为5,斜边上的高为2,将这个直角三角形放置在平面直角坐标系中,使其斜边AB与x轴重合(其中OA<OB),直角顶点C落在y轴正半轴上(如图11)。

相关文档
最新文档