电化学分析法最全
电化学分析方法简介
电化学分析方法简介化学分析方法是现代化学研究的重要组成部分,其中电化学分析是一种重要的方法之一。
本文旨在简要介绍电化学分析的基本原理、分类和应用。
一、基本原理电化学分析是利用电化学反应的性质对样品进行分析的一种方法。
电化学反应是指化学反应中涉及到电子的转移,包括氧化还原反应、离子迁移反应等。
对于这些反应,可以通过测量其产生的电流或电势来推断反应体系中的各种化学成分。
电化学分析中主要利用电位和电流等性质进行测量和分析,因此需要具备一定的电化学基础知识。
二、分类电化学分析可以分为电位法、电流法、阻抗法等几种不同的方法。
这些方法的本质是不同的,具体适用范围也有所不同。
1. 电位法电位法是通过测量反应体系在电极表面所产生的电势差来推断反应体系中产生的化学反应。
这种方法通常用于测定氧化还原电位、 pH 等参数。
2. 电流法电流法是通过测量反应体系中的电流来推断反应效应。
这种方法可以用于测量未知的化合物浓度、离子迁移率等参数。
3. 阻抗法阻抗法主要是利用反应电阻的变化来推断反应结果。
这种方法通常用于分析电极、膜等材料的电学性质。
三、应用电化学分析有广泛的应用领域,包括生化分析、环境分析等多个方面。
1. 生化分析电化学方法在生物领域应用广泛。
例如,通过将酶与电极表面固定化,可以利用电势或电流等参数测量酶催化的反应。
这种方法可以用于测量血糖、胆固醇等化学成分。
此外,电化学分析还可以用于研究细胞的生物电学性质等。
2. 环境分析电化学方法可以用于环境领域的分析。
例如,通过测量水体中的电导率、 pH 等参数可以推断水体中的离子浓度和酸碱度,这对于水体污染的控制具有重要意义。
另外,电化学分析还可以用于空气中的污染物测量等。
综上,电化学分析方法是一种基于电化学反应的分析方法。
其原理简单、可靠性高,适用于多个领域的分析。
同时,电化学分析方法也存在一定的局限性,需要根据具体实验情况选择合适的分析方法。
第八章电化学分析法
20211//1122//2299
第十重要的、常用的指示电极
特点:仅对溶液中特定离子有选择性响应〔离子选择性电极〕电极 的关键:是一个称为选择膜的敏感元件〔敏感膜〕。 敏感膜是一个能分开两种电解质溶液,并对某类离子有选择性 响应〔离子交换和扩散,不发生电子得失〕
标准 Ag-AgCl 电极 1.0 mol / L +0.2223
饱和 Ag-AgCl 电极 饱和溶液 +0.1990
温度校正,〔标准Ag-AgCl电极〕,t ℃时的电极电位为:
t 0 .226 2 1 3 4 0 (t2)5
20211//1122//2299
第十六页,共60页。
〔3〕标准氢电极
20211//1122//2299
第二十页,共60页。
20211//1122//2299
第二十一页,共60页。
第八章 电化学分析法
第三节 直接电位法
一、电位分析法原理 二、ISE种类、结构和原理
三、离子选择电极的特性
第二十二页,共60页。
一、电位分析法的原理
电位分析是通过在零电流(为什么?)条件 下测定两电极间的电位差〔电池电动势〕 所进行的分析测定。
E电动势 iR
装置:参比电极、指示电极、电位差计 (酸度计、电位滴定仪〕;
当测定时,参比电极的电极电位保持不变, 电池电动势随指示电极的电极电位而变,而 指示电极的电极电位随溶液中待测离子活度 而变。
20211//1122//2299
第二十三页,共60页。
1、直接电位法:电极电位与溶液中电活性物质活度有关,通 过测量溶液的电动势,根据能斯特方程计算被测物质的含量 如饮用水中氟离子含量测定
盐桥:饱和KCl溶 液中参加3%琼脂; K+、Cl-的扩散速度 接近,使液接电位 保持恒定在 1-2mV。
化学实验中的常见电化学分析方法
化学实验中的常见电化学分析方法电化学分析是一种常见的化学分析方法,通过应用电化学原理,利用电流、电势、电解质溶液等参数来进行物质的检测和分析。
它能够快速、灵敏地检测出微量物质,并且具有较高的准确性和重现性。
本文将介绍几种在实验室中常见的电化学分析方法。
一、电解电位法电解电位法是最常见的电化学分析方法之一,它通过测量电极在电解质溶液中产生的电位变化来分析物质。
在实验中,通常采用参比电极和工作电极的组合,参比电极用于提供一个标准的电势参考,而工作电极用于与待测物质发生反应。
主要包括极谱法、库仑分析法和电势滴定法等。
1. 极谱法极谱法是通过控制电解质溶液中的电流,测量电极的电势变化来分析物质。
常见的极谱法包括阳极极谱和阴极极谱。
阳极极谱常用于有机化合物的分析,如药物、农药等,而阴极极谱常用于金属、合金等无机物质的分析。
2. 库仑分析法库仑分析法是通过测量电解质溶液中的电流大小和时间,计算出反应物质的含量。
它常用于分析氧化还原反应、电沉积和电解等过程中的物质。
3. 电势滴定法电势滴定法是利用电解电位的变化来进行滴定分析的方法。
它常用于测定银离子、溶氧量、氟离子等物质的含量。
二、电化学传感器法电化学传感器法是基于电化学原理的一种常见的快速检测方法,它通过改变电极电位来检测待测物质。
电化学传感器的结构一般由工作电极、参比电极和引用电极(或对电极)组成。
1. 离子选择电极离子选择电极通过选择性地与某种特定离子发生反应,从而改变电极电位来检测离子的浓度。
常见的离子选择电极包括氢离子选择电极、钠离子选择电极等。
2. 气体传感器气体传感器是使用气敏电极或半导体电极来检测气体成分的一种电化学分析方法。
它广泛应用于环境监测、工业安全等领域,能够快速、灵敏地检测气体的浓度。
三、电化学阻抗法电化学阻抗法是通过测量电化学电路中的阻抗变化来分析物质。
它主要用于表征电极界面的电化学过程,包括界面电容、界面电导、界面电阻等参数。
电化学阻抗法常用于金属腐蚀、电池性能评价、涂层质量检测等领域。
《电化学分析法》课件
电化学分析法的优缺点
优点
准确性高、灵敏度高、选择性好
缺点
操作复杂、实验时间较长
应用前景
在环境监测、药物研究、生物分析等领域具有广泛的应用前景。
总结和展望
电化学分析法的意义
电化学分析法在科学研究和工程应用中发挥着重 要的作用,为我们认识和应用化学提供了重要的 手段。
未来电化学分析方法的发展趋势
未来,我们可以期待更加高效、快速和精确的电 化学分析方法的出现,并在更多的领域得到应用。
透析法
透析法是利用物质在半透膜上的透析性质进行分析的电化学方法。 通过离子或分子的扩散过程,可以实现对物质的分离、浓缩和检测。
循环伏安法
循环伏安法是一种通过在电势上下限之间循环扫描电流,研究和分析电极表面的电化学行为的方法。 它可以用于研究电极表面的反应动力学、电催化性能等,并在电化学储能、电分析化学等领域得到广泛 应用。
恒定电位法
恒定电位法是一种常用的电化学分析方法,通过控制电位保持在恒定值上, 测量与电位变化相关的电流,实现对物质的定量或定性分析。 该方法需要使用特定的实验装置和操作步骤,确保实验的准确性和重现性。
极谱法
极谱法是一种利用电极在一定电势范围内产生的电流与电势之间的关系,进 行分析和检测的电化离子,以及各种化学物质的含量和浓度。
《电化学分析法》PPT课 件
这是一份关于电化学分析法的PPT课件,通过本课件,我们将深入探讨电化 学分析法的基本原理和应用,帮助大家更好地理解和运用这一重要的分析方 法。
什么是电化学分析法
电化学分析法利用电化学反应的原理和方法,对化学物质进行分析和检测。通过控制电位、电流等参数, 实现对物质的定量或定性分析。 电化学分析法可分为恒定电位法、极谱法、透析法和循环伏安法等不同的分类。
电化学分析法(最全)
电化学分析法[日期:2011-06—24] 来源:作者:[字体:大中小] 电化学分析法(electroanalytical chemistry)是根据电化学原理和物质在溶液中的电化学性质及其变化而建立起来的一类分析方法。
这类方法都是将试样溶液以适当的形式作为化学电池的一部分,根据被测组分的电化学性质,通过测量某种电参量来求得分析结果的。
电化学分析法可分为三种类型.第一种类型是最为主要的一种类型,是利用试样溶液的浓度在某一特定的实验条件下与化学电池中某种电参量的关系来进行定量分析的,这些电参量包括电极电势、电流、电阻、电导、电容以及电量等;第二种类型是通过测定化学电池中某种电参量的突变作为滴定分析的终点指示,所以又称为电容量分析法,如电位滴定法、电导滴定法等;第三种类型是将试样溶液中某个待测组分转入第二相,然后用重量法测定其质量,称为电重量分析法,实际上也就是电解分析法。
电化学分析法与其他分析方法相比,所需仪器简单,有很高的灵敏度和准确度,分析速度快,特别是测定过程的电信号,易与计算机联用,可实现自动化或连续分析。
目前,电化学分析方法已成为生产和科研中广泛应用的一种分析手段。
第一节电势分析法电势分析法是一种电化学分析方法,它是利用测定原电池的电动势(即用电势计测定两电极间的电势差),以求得物质含量的分析方法。
电势分析法又可分为直接电势法(potentiometric analysis)和电势滴定法(potentiometric titration)。
直接电势法是根据测量原电池的电动势,直接求出被测物质的浓度.应用最多的是测定溶液的pH。
近些年来,由于离子选择性电极的迅速发展,各种类型的离子选择性电极相继出现,应用它作为指示电极进行电势分析,具有简便、快速和灵敏的特点,特别是它能适用于其它方法难以测定的离子.因此,直接电势法在土壤、食品、水质、环保等方面均得到广泛的应用.电势滴定法是利用电极电势的变化来指示滴定终点的分析方法。
电化学分析的方法和应用
电化学分析的方法和应用电化学分析是物理化学中的一种重要分析方法,其基本原理是利用电化学反应的方法,测定电解质溶液中的化学物质的含量和电化学参数的确定。
电化学分析方法通常分为直接电化学分析和间接电化学分析两种。
1、直接电化学分析直接电化学分析是指通过对于物质的电子转移过程进行定量分析,确定物质的化学成分和电化学参数。
其中最经典的就是伏安法和循环伏安法。
(1) 伏安法伏安法是电化学中最基本的、最为广泛应用的直接电化学分析方法之一。
伏安法是指测量电流和电压互相作用的技术,其原理基于作用在电解质上的外加电压和电解质内部电势差之间的转化关系。
根据标准电极电位的基本概念,伏安法可以测定化学物质的浓度、电活性、反应质量、粘度等参数,进而推导出相关的电化学反应机理。
(2) 循环伏安法循环伏安法是基于伏安法改进而来的一种电化学分析方法。
它通过逐渐改变电位使电极电势作周期性的正向和反向变化,并测量得到的正向和反向电流。
循环伏安法可以用来研究化学反应动态过程和电化学参量的相关性,以及亚单层物质的电化学性能表征。
2、间接电化学分析间接电化学分析是基于化学反应过程对于电子转移过程的影响,进行定量分析的方法。
其中最为常用的是极谱法和恒流安培法。
(1)极谱法极谱法是电化学分析中常见的一种间接电化学分析方法,其基本思路是利用电化学反应在电化学电极上起到了一定的影响,通过测量这个影响来推测化学成分的某些特性。
极谱法可以测定有机和无机物质在电化学上重要的参数,比如氧化还原电位,激活势、稳定性等等。
(2) 恒流安培法恒流安培法是电流分析中使用广泛的一种定量方法。
它是根据法拉第第一定律建立的,即在一定时间范围内,通过电解质溶液中真的电荷量是与电流强度正比的。
根据这个原理,可以通过恒流安培法测定化学物质在电解质溶液中的含量、存在状态和电化学参数的变化。
电化学分析方法在范围之内极为广泛,可应用于不同领域,比如地质、化学、生化、药学等等。
总之,电化学分析方法是一种十分重要、十分实用的分析方法,其应用带来的重要性和影响也是不可估量的。
电化学分析法(最全)汇总
电化学分析法[日期:2011-06-24] 来源:作者:[字体:大中小] 电化学分析法(electroanalytical chemistry)是根据电化学原理和物质在溶液中的电化学性质及其变化而建立起来的一类分析方法。
这类方法都是将试样溶液以适当的形式作为化学电池的一部分,根据被测组分的电化学性质,通过测量某种电参量来求得分析结果的。
电化学分析法可分为三种类型。
第一种类型是最为主要的一种类型,是利用试样溶液的浓度在某一特定的实验条件下与化学电池中某种电参量的关系来进行定量分析的,这些电参量包括电极电势、电流、电阻、电导、电容以及电量等;第二种类型是通过测定化学电池中某种电参量的突变作为滴定分析的终点指示,所以又称为电容量分析法,如电位滴定法、电导滴定法等;第三种类型是将试样溶液中某个待测组分转入第二相,然后用重量法测定其质量,称为电重量分析法,实际上也就是电解分析法。
电化学分析法与其他分析方法相比,所需仪器简单,有很高的灵敏度和准确度,分析速度快,特别是测定过程的电信号,易与计算机联用,可实现自动化或连续分析。
目前,电化学分析方法已成为生产和科研中广泛应用的一种分析手段。
第一节电势分析法电势分析法是一种电化学分析方法,它是利用测定原电池的电动势(即用电势计测定两电极间的电势差),以求得物质含量的分析方法。
电势分析法又可分为直接电势法(potentiometric analysis)和电势滴定法(potentiometric titration)。
直接电势法是根据测量原电池的电动势,直接求出被测物质的浓度。
应用最多的是测定溶液的pH。
近些年来,由于离子选择性电极的迅速发展,各种类型的离子选择性电极相继出现,应用它作为指示电极进行电势分析,具有简便、快速和灵敏的特点,特别是它能适用于其它方法难以测定的离子。
因此,直接电势法在土壤、食品、水质、环保等方面均得到广泛的应用。
电势滴定法是利用电极电势的变化来指示滴定终点的分析方法。
电化学分析【电化学方法总结】
电化学分析【电化学方法总结】循环伏安法1 定义:循环伏安法(Cyclic Voltammetry) 以等腰三角形的脉冲电压加在工作电极上,控制电极电势以不同的速率,随时间以三角波形一次或多次反复扫描,使电极上能交替发生还原反应和氧化反应,记录电流-电势曲线。
单圈扫描:电位在初始电位维持一段平衡(静置)时间后,开始匀速变化(扫描速度为v=dE/dt),扫描到第1个换向电位后,某些仪器可维持在第1个换向电位一段时间,然后电位反向扫描到第2个换向电位,某些仪器也可维持在第2个换向电位一段时间,然后再扫描到最终电位)。
多圈扫描:在初始电位起扫后,在第1、2个换向电位之间循环扫描多圈,最后扫描到最终电位。
2 特点:Ⅰ:激励信号:施加的电压为三角波电压,双向扫描,分为氧化过程和还原过程,氧化态电势高,还原态电势低。
Ⅱ:参数设置:两个可调参数为电位范围和扫描速度。
设置电位范围时需根据溶液的初始条件设置起始电位,起始电位不应破坏溶液的初始条件;若起始电位与溶液初始条件不一致,则在静置几秒内所发生的氧化还原反应未被记录。
Ⅲ:实验条件:进行循环伏安扫描时体系应处于静止状态,若搅拌则记录的图中不会出现峰,相反呈S 型。
3 所得信息:Ⅰ:判断电极反应的可逆程度,依据为峰电流比及峰电势差,对于可逆体系:i pa /i pc ≈1;E pa /E pc ≈2.3RT/nF。
Ⅱ:判断电极表面的修饰情况,峰电流大说明电极传递电子能力较强。
但这只能定性判断,实际循环伏安图中,存在充电电流的影响,因此CV 峰电流测量不太容易精确。
Ⅲ:判断其控制步骤和反应机理,若i p ∝v ,则此过程为表面控制,发生在电极表面;若i p ∝v 1/2,则此过程为扩散控制,发生在溶液中。
循环伏安法可作用于可逆的电极过程,也可作用于不可逆或准可逆的电极过程以及各种伴随航行反应的过程,不同的电极过程分别阳极峰电势E pa 和阴极峰电势E pc ,并给出峰电位差△E p 和峰电流之比。
电化学分析法
二.循环伏安法
循环伏安法(Cyclic Voltammetry)是一种常用的动电位(循环线性电位扫描) 暂态电化学测量方法,是电极反应动力学、机理及可逆性研究的重要手段之一, 应用非常广泛。 循环伏安法常用来测量电极反应参数,判断其控制步骤和反应机理,并观察 整个电势扫描范围内可发生哪些反应,及其性质如何。对于一个新的电化学体系, 首选的研究方法往往就是循环伏安法,可称之为“电化学的谱图”。本法除了使用 汞电极外,还可以用铂、金、玻璃碳、碳纤维微电极以及化学修饰电极等。
3.3扫描电化学显微镜技术 扫描电化学显微镜是20世纪80年代提出并发展起来的一种扫描探头显微镜技 术。它基于微电极及扫描隧道显微镜(STM)的发展而产生出来的一种分辨率介 于普通光学显微镜与STM之间的电化学现场检测新技术。 它是将一支可三维移动的微电极作为探针插入电解质溶液中,在离固相基底 很近的位置进行扫描,从而获得相应微区电化学和相关信息。相较于STM和原子 力显微镜(AFM)而言,扫描电化学显微镜基于电化学原来工作,可测量微区内物 质氧化或还原所给出的电化学电流。可用于研究导体和绝缘体基底表面的几何形 貌、固/液、液/液界面的氧化还原活性、分辨不均匀电极表面的电化学活性、微 区电化学动力学、生物过程及对材料进行微加工等。 应用: ①对样品表面扫描成像 ②研究异相电荷转移反应 ③研究均相化学反应动力学 ④对样品表面微区进行加工 ⑤进行单细胞研究 ⑥与其他技术联用如石英晶体微天平(QCM)来研究有机或无机薄膜性质。
图2.电解池
图1.原电池
1.4.2电极的分类
在电化学分析中通常采用两电极(指示电极和参比电极)系统和三电极(工作 电极、参比电极和辅助电极)系统进行测量。 1.参比电极:在电化学测量过程中,其电极电位基本上不发生变化,它的电位 置被视为零,称这种电极为参比电极。常用的有银-氯化银电极和甘汞电极。 2.指示电极:指示电极是一种处于平衡体系中或在测量期间主体溶液浓度不发 生任何觉察变化的电极体系,它能快速而灵敏地对溶液中参与电极反应的离子活度 产生Nernst响应,亦称电位型电化学传感器。 3.工作电极:在电化学测量中,电极表面有净电流通过的电极称为工作电极, 如极谱分析中的滴汞电极。 4.辅助电极:他们与工作电极配对,组成电池,形成电流回路,在电极上发生 的反应不是实验中所需研究或测试的。这种电极仅提供传导电子的场所。当通过的 电流很大时,参比电极难于承受,此时必须采用辅助电极构成三电极系统来控制工 作电极上的电位。
电化学分析法
2、电解条件的特殊性 离子到达电极表面除扩散外,还有迁移和对流,后 两者应该除去。
(1)消除迁移电流——加支持电解质, 使池内阻变小,电压降低。
(2)消除对流电流——不搅拌消除。
(3)消除氧波和极谱极大——
极谱分析还需加入除氧剂和表面活性剂,以 除氧和消除极谱极大。 O2 + 2 H+ + 2e H2O2 + 2e +2H+ i 极谱极大 H2O2 2H2O E = - 0.05V E = - 0.9V
电化学分析的关键是电极:
Pt电极系统——电解分析和库仑分析 离子选择性电极——电位分析和电位型传感器 滴汞、铂碳或微铂电极——极谱与伏安分析、电流 型传感器
3、电化学分析的特点:
1、仪器简单,价格较光学分析仪器便宜;
2、灵敏度高,如极谱分析可达10-12 M;
由于电导分析比较简单,教材没有讲。
电导分析的一个重要用途是测量水的纯度。如果水的纯 度达到18M,则认为是高纯水。
Cd2+ + 2e +Hg
分三个阶段
Cd(Hg)
(1)电位尚未负到Cd 的还原电位;
(2)Cd开始还原,扩 散电流产生; (3)极限扩散电流产 生。
i
极限扩散电流 id 电流上升阶段 i
残余电流 ir
-0.2
-0.5
-1
E(V)
C
C C0 X C0—电极表面浓度 C—本体溶液浓度
X
C [Cd ] [Cd ] i X
— +
纳米传感
Semi-conducting Nanotube Molecular Wires as Chemical Sensors for NH3 and NOx. Hydrogen Sensors / Palladium Mesowire Arrays
电化学分析
电化学分析引言电化学分析是一种利用电化学原理和方法对化学物质进行定性和定量分析的技术。
它基于物质与电子间的相互作用,在电化学电池中实现了化学反应与电流的相互转化。
电化学分析方法包括电位测量、电流测量和电量测量等,广泛应用于环境监测、药物研发、食品安全等领域。
电化学原理电化学分析的理论基础主要源于电化学原理。
根据电化学原理,电化学分析可以通过测量电流、电势和电荷等参数来推断分析物的浓度和性质。
电化学反应在电极上发生,产生的电流与反应速率成正比。
通常情况下,电化学分析中使用电化学电池,其中包含一个工作电极和一个参比电极。
工作电极是用于分析的电极,而参比电极是用于维持电位稳定的电极。
常用的电化学分析方法1. 极谱法极谱法是一种利用极谱曲线研究化学物质的分析方法。
它通过在可控电位下扫描电流,并测量与电流强度相关的电化学信号。
极谱法主要有线性扫描伏安法、循环伏安法和方波伏安法等。
线性扫描伏安法可用于分析不同物质的电位和峰电流,循环伏安法可用于研究电化学反应的可逆性,而方波伏安法则对电极表面发生的快速反应具有较高的灵敏度。
电位滴定法是一种常用的电化学分析方法。
它通过在工作电极上加入电位扫描,并测量电流的变化来测定分析物的含量或浓度。
电位滴定法可在无色、有机或无机物质中进行,可以精确测量非常小的物质浓度。
它主要应用于药物分析、环境监测和食品安全等领域。
3. 计时伏安法计时伏安法是一种基于电位和时间之间的关系进行分析的电化学方法。
它通过在电化学电池中施加可变的电位,并测量电流的变化来确定分析物的测量值。
计时伏安法主要应用于测定微量金属离子和无机物质的浓度。
它具有快速、灵敏和准确的特点,因此在环境监测和生物医学研究中得到广泛应用。
应用领域电化学分析在许多领域中具有广泛的应用。
1. 环境监测电化学分析在环境监测中起着重要的作用,可以用于测定水中的重金属离子、有机物和污染物的含量。
通过电化学分析,可以及时准确地监测环境中的污染物,并采取相应的措施进行治理和保护。
电化学分析法的类别
电导增量法
总结词
电导增量法是通过比较反应前后溶液电导率 的变化来确定反应进程的方法。
详细描述
电导增量法利用了化学反应过程中离子浓度 的变化会导致电导率变化的原理,通过比较 反应前后溶液的电导率,可以了解反应进程
和反应速率。
电导滴定法
总结词
电导滴定法是一种通过滴定操作来测定物质浓度的电 导法。
详细描述
应用范围
常规极谱法广泛应用于环境监测、生物分析、药物研究等领域,可检测 多种金属离子、有机物和生物分子等。
脉冲极谱法
定义
脉冲极谱法是一种改进的极谱法,通过施加短暂的脉冲电压来减小充电电流的影响,提高 检测灵敏度和分辨率。
工作原理
在脉冲极谱法中,施加一个短暂的脉冲电压,使待测物质在电极上还原或氧化,产生电流 响应。由于脉冲电压的持续时间较短,可以减小充电电流的影响,提高检测的灵敏度和分 辨率。
总结词
控制电位电解法是一种通过控制电极电位,使电解质溶液中的离子在电极上发生氧化或还原反应的方 法。
详细描述
控制电位电解法主要用于研究电极反应的动力学过程和机理,以及测定电极反应的速率常数、活化能 等参数。该方法对于研究电极过程和电化学反应机制具有重要意义。
恒电量放电法
总结词
恒电量放电法是一种通过控制放电电量 的大小和时间,使电解质溶液中的离子 在电极上发生氧化或还原反应的方法。
电化学分析法的类别
目录
• 伏安法 • 电位法 • 电解法 • 电导法 • 极谱法
01
伏安法
线性扫描伏安法
总结词
线性扫描伏安法是一种常用的电化学分析方法,通过在电极 上施加线性电压扫描,测量电流响应来研究电化学反应过程 。
详细描述
第十章 电化学分析法
主要内容
概念 参比电极与指示电极 电位法测溶液的pH值
永停滴定法
概念:
电化学分析法:根据物质在溶液中的电化学性质及 其变化来进行含量测定的方法。它是以测量溶液 的电导、电位、电流和电量等电化学参数,对待 测组分进行含量测定。 电位法:电化学分析方法之一,是利用测量原电池 的电动势以求出被测物质含量的分析方法。将待 测物质的溶液与指示电极、参比电极组成原电池, 由于电池电动势和被测溶液浓度之间服从能斯特 方程式,因此测得电池的电动势,即可求出待测 溶液的浓度。
3、滴定剂与被测滴定剂均为可逆电对 如硫酸铈滴定亚铁: 开始滴定后,溶液中生成Fe3+, 形成可逆电对Fe3+/Fe2+,产生电 流,并随着[Fe3+]增大,电流增 强,当[Fe3+]=[Fe2+]时电流最大, 然后,随着[Fe2+]变小电流减弱 终点到达时,过量的Ce4+与反应 生成的Ce3+形成可逆电对,产生 电流
玻璃膜电位的形成:
玻璃电极在水溶液中浸泡,形成一个三层结构,即中间的干 玻璃层和两边的水化硅胶层。浸泡后的玻璃膜示意图:
续前
因玻璃膜内的[H+]的浓度和Ag-AgCl电极的电位是 恒定的,则玻璃电极的电位就取决于膜外溶液的 [H+]浓度,即被测溶液的[H+]浓度。因此,通过 测定玻璃电极的电位,就可以测定溶液的pH 值。
AgCl + e
Ag + Cl E = E0 AgCl/Ag
电极电位(25℃):
- 0.059 lg [Cl-]
银-氯化银电极:
银-氯化银电极的电极电位(25℃)
0.1mol/LAg-AgCl 电极 KCl 浓度 电极电位(V) 0.1 mol / L +0.2880 标准 Ag-AgCl 电极 1.0 mol / L +0.2355 饱和 Ag-AgCl 电极 饱和溶液 +0.2000
电化学分析法最全
)电化学分析法(最全电化学分析法]小大中2011-06-24]来源:作者:[字体:[日期:)是根据电化学原理和物质在溶液中的电化electroanalytical chemistry电化学分析法(这类方法都是将试样溶液以适当的形式作为化学性质及其变化而建立起来的一类分析方法。
学电池的一部分,根据被测组分的电化学性质,通过测量某种电参量来求得分析结果的。
是利用试样溶液的电化学分析法可分为三种类型。
第一种类型是最为主要的一种类型,这些电参浓度在某一特定的实验条件下与化学电池中某种电参量的关系来进行定量分析的,量包括电极电势、电流、电阻、电导、电容以及电量等;第二种类型是通过测定化学电池中电如电位滴定法、某种电参量的突变作为滴定分析的终点指示,所以又称为电容量分析法,然后用重量法测定其质第三种类型是将试样溶液中某个待测组分转入第二相,导滴定法等;量,称为电重量分析法,实际上也就是电解分析法。
分析速有很高的灵敏度和准确度,电化学分析法与其他分析方法相比,所需仪器简单,度快,特别是测定过程的电信号,易与计算机联用,可实现自动化或连续分析。
目前,电化学分析方法已成为生产和科研中广泛应用的一种分析手段。
电势分析法第一节即用电势计测定两电极(电势分析法是一种电化学分析方法,它是利用测定原电池的电动势,以求得物质含量的分析方法。
电势分析法又可分为直接电势法)间的电势差 (potentiometric titration)。
和电势滴定法(potentiometric analysis)应用最多的是测定溶液直接电势法是根据测量原电池的电动势,直接求出被测物质的浓度。
近些年来,由于离子选择性电极的迅速发展,各种类型的离子选择性电极相继出现,的pH特别是它能适用于其它具有简便、快速和灵敏的特点,应用它作为指示电极进行电势分析,方法难以测定的离子。
因此,直接电势法在土壤、食品、水质、环保等方面均得到广泛的应用。
电势滴定法确定的滴定终点电势滴定法是利用电极电势的变化来指示滴定终点的分析方法。
电化学分析法
测定其它离子浓度,目前多采用离子选择性电极作指示电极。
第十五章 电化学分析法
课堂互动
你知道如何使用pH计测定饮用水和葡萄糖的pH值吗?如 何选择标准缓冲溶液校正仪器?
酸度计测定溶液pH动画
三、电位滴定法
1.基本原理
电位滴定法是在滴定过程中通过测定电位变化以确 定滴定终点的方法,和直接电位法相比,电位滴定 法不需要准确测定电极的电极电势,它是靠电极电 势的突跃来指示滴定终点。
第十五章 电化学分析法
四、永停滴定法
2.滴定方式 (1)滴定液为不可逆电对而被测物质为可逆电对
化学计量点
S2O32+滴定I2溶液
(2)滴定液为可逆电对而被测物质为不可逆电对
化学计量点 I2滴定S2O32+溶液
第十五章 电化学分析法
(3)滴定液与被测物质均为可逆电对
化学计量点 Ce4+滴定Fe2+溶液
第十五章 电化学分析法
2. 确定化学计量点的方法
E-V曲线法
△E/△V-V曲线法
△2E/△V 2-V曲线法
四、永停滴定法
1. 基本原理
永停滴定法测定时,是把两只铂指示电极同时插入待滴定 的溶液中,在两个铂电极间外加一小电压(10 mV~ 100mV),然后进行滴定,通过观察滴定过程中电流计指 针变化,根据电流变化的特性,确定化学计量点。
第十五章 电化学分析法
(1)指示电极 指示电极的电极电势随待测溶液离子活度(或浓度) 的变化而变化;
参比电极的电极电势不随待溶液离子活度(或浓度) 的变化而变化,具有稳定性和重现性。
指示电极 (1)金属-金属离子电极简称金属电极 由于只有一个相 界面,又称为第一类电极。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电化学分析法[日期:2011-06-24] 来源:作者:[字体:大中小] 电化学分析法(electroanalytical chemistry)是根据电化学原理和物质在溶液中的电化学性质及其变化而建立起来的一类分析方法。
这类方法都是将试样溶液以适当的形式作为化学电池的一部分,根据被测组分的电化学性质,通过测量某种电参量来求得分析结果的。
电化学分析法可分为三种类型。
第一种类型是最为主要的一种类型,是利用试样溶液的浓度在某一特定的实验条件下与化学电池中某种电参量的关系来进行定量分析的,这些电参量包括电极电势、电流、电阻、电导、电容以及电量等;第二种类型是通过测定化学电池中某种电参量的突变作为滴定分析的终点指示,所以又称为电容量分析法,如电位滴定法、电导滴定法等;第三种类型是将试样溶液中某个待测组分转入第二相,然后用重量法测定其质量,称为电重量分析法,实际上也就是电解分析法。
电化学分析法与其他分析方法相比,所需仪器简单,有很高的灵敏度和准确度,分析速度快,特别是测定过程的电信号,易与计算机联用,可实现自动化或连续分析。
目前,电化学分析方法已成为生产和科研中广泛应用的一种分析手段。
第一节电势分析法电势分析法是一种电化学分析方法,它是利用测定原电池的电动势(即用电势计测定两电极间的电势差),以求得物质含量的分析方法。
电势分析法又可分为直接电势法(potentiometric analysis)和电势滴定法(potentiometric titration)。
直接电势法是根据测量原电池的电动势,直接求出被测物质的浓度。
应用最多的是测定溶液的pH。
近些年来,由于离子选择性电极的迅速发展,各种类型的离子选择性电极相继出现,应用它作为指示电极进行电势分析,具有简便、快速和灵敏的特点,特别是它能适用于其它方法难以测定的离子。
因此,直接电势法在土壤、食品、水质、环保等方面均得到广泛的应用。
电势滴定法是利用电极电势的变化来指示滴定终点的分析方法。
电势滴定法确定的滴定终点比指示剂确定的滴定终点更为准确,但操作相对麻烦,并且需要仪器,所以电势滴定法一般适用于缺乏合适的指示剂,或者待测液混浊、有色,不能用指示剂指示滴定终点的滴定分析。
•基本原理在电势分析法中,构成原电池的两个电极,其中一个电极的电极电势能够指示被测离子活度(或浓度)的变化,称为指示电极;而另一个电极的电极电势不受试液组成变化的影响,具有恒定的数值,称为参比电极。
将指示电极和参比电极共同浸入试液中构成一个原电池,通过测量原电池的电动势,即可求得被测离子的活度(或浓度)。
例如某种金属M与其金属离子Mn+组成的指示电极Mn+/M,根据能斯特公式,其电极电势可表示为:φ(Mn+/M)=φθ(Mn+/M)+式中a r(Mn+)为金属离子Mn+的相对活度,因此,若测量出φ(Mn+/M),即可由上式计算出Mn+的活度。
由于单一电极的电极电势是无法测量的,因而一般是通过测量该金属电极与参比电极所组成的原电池的电动势ε,即ε=φ(正)-φ(负) =φ(参比)-φ(指示) =φ(参比)-φθ(Mn+/M)-在一定条件下,参比电极的电极电势和φθ(Mn+/M)为恒定值,可合并为常数K,则:ε= K-(9-1)式(9-1)表明,由指示电极与参比电极组成原电池的电池电动势是该金属离子活度的函数,因此可求得a(Mn+)。
这是电势分析法的理论依据。
•电极的分类(一)指示电极电势分析法中常用的指示电极有金属基电极和离子选择性电极。
1.金属基电极(1)金属—金属离子电极(第一类电极)将金属浸在含有该种金属离子溶液中,达到平衡后构成的电极即为金属—金属离子电极。
其电极电势决定于金属离子的活度(浓度),并符合能斯特方程式。
Mn+ + n e Mφ=φθ+25℃时φ=φθ+因此,这类电极能反应阳离子的活度(浓度)变化,可用于测定有关离子的活度(浓度),这些金属包括银、铜、锌、镉、铅、汞等。
(2)惰性金属电极(零类电极)这类电极是由性质稳定的惰性金属构成,如铂电极。
在溶液中,电极本身并不参加反应,仅作为导体,是物质的氧化态和还原态交换电子的场所,通过它可以指示溶液中氧化还原体系的平衡电极电势,此平衡电极电势与溶液中对应的离子浓度(活度)之间的关系为:φ=φθ+例如,将铂丝插入Fe3+和Fe2+混合溶液中,其电极反应为:Fe3++ e Fe2+电极电势为:φ=φθ+(3 )金属—金属难溶盐电极(第二类电极)这类电极是由一种金属丝涂上该金属的难溶盐,并浸入与难溶盐同类的阴离子溶液而构成的,电极对该阴离子有响应。
常见的有Ag—Ag2S电极、Ag—AgCl电极、Ag—AgI电极等。
Ag—AgCl电极浸入含氯离子的溶液中时,电极反应为:AgCl(S)+e Ag(S)+C1-电极电势为:φ(AgCl/Ag)=φθ(AgCl/Ag)-可见电极电势随氯离子活度(浓度)的变化而变化。
2. 离子选择性电极离子选择性电极也称膜电极,是一种利用选择性薄膜对特定离子产生选择性响应,以测量或指示溶液中的离子活度或浓度的电极。
玻璃电极就是最早的氢离子选择性电极。
近些年来,各种类型的离子选择性电极相继出现,应用它作为指示电极,进行电势分析,具有简便、快速和灵敏的特点,特别是它适用于某些难以测定的离子,因此发展非常迅速,应用极为广泛。
(二)参比电极电势分析法中所使用的参比电极,不仅要求其电极电势与试液组成无关,还要求其性能稳定,重现性好,并且易于制备。
氢电极是重要的参比电极,属一级标准,但它是一种气体电极,使用时很不方便,制备较麻烦,并且容易受有害成分作用而失去其灵敏性,因此,在电化学分析中,一般不用氢电极,常用容易制作的甘汞电极、银-氯化银电极等作为参比电极,在一定条件下,它们的稳定性和再现性都比较好。
•甘汞电极甘汞电极是由金属汞、Hg2Cl2以及KCl溶液组成的电极,其构造如图9-1所示。
电极是由两个玻璃套管组成,内管中封接一根铂丝,铂丝插入纯汞中(厚度约为0.5~1cm),下置一层甘汞(Hg2Cl2)和汞的糊状物,玻璃管中装入KCl溶液,电极下端与被测溶液接触部分是熔结陶瓷芯或石棉丝。
甘汞电极的电极符号为:Hg,Hg2Cl2(s)│ KCl(a)电极反应为:Hg2Cl2(s) + 2e = 2Hg(l) + 2Cl-电极电势为:φ(Hg2Cl2/Hg)=φθ(Hg2Cl2/Hg) -25℃时φ(Hg2Cl2/Hg)=φθ(Hg2Cl2/Hg) - 0.0592lg a r,e(Cl-)=0.2676 - 0.0592lg a r,e(Cl-)由上式可知,当温度一定时,甘汞电极的电势主要决定于氯离子的活度(浓度)。
若氯离子活度(浓度)一定,则电极电势是恒定的,见表9-1。
常用的参比电极是饱和甘汞电极,温度对电极电势值的影响系数为6.5×10-4V·℃-1,可见在常温或温度变动不大的情况下,由温度变化而产生的误差可以忽略,只是在80℃以上时,饱和甘汞电极的电极电势才变得不稳定,可用Ag-AgCl电极来代替。
表9-1不同浓度KCl溶液的甘汞电极的电极电势(25℃)KCl溶液浓度电极名称电极电势(V)0.1mol·L-11 mol·L-1饱和0.1mol甘汞电极标准甘汞电极饱和甘汞电极(SCE)+0.336 5+0.288 8+0.243 82.银—氯化银电极KCl溶液浓度电极名称电极电势(V)0.1mol·L-11 mol·L-1饱和0.1mol甘汞电极标准甘汞电极饱和甘汞电极(SCE)+0.336 5+0.288 8+0.243 8银—氯化银电极由银丝上覆盖一层氯化银,并浸在一定浓度的KCl溶液中构成。
其电极符号为:Ag,AgCl(s)│Cl-(a)电极反应为:AgCl(s)+e Ag(s)+C1-电极电势为:φ(AgCl/Ag)=φθ(AgCl/Ag)-25℃时φ(AgCl/Ag)=φθ(AgCl/Ag)-0.0592lg a r,e(Cl-)可见其电极电势随氯离子活度(浓度)的变化而变化。
如果把氯离子溶液作为内参比溶液并固定其活度(浓度)不变,Ag—AgCl电极就可以作为参比电极使用。
25℃时不同浓度的KCl 溶液的银—氯化银电极的电极电势见表9-2。
这里应该指出的是,银—氯化银电极通常用作参比电极,但也可以作为氯离子的指示电极。
表9-2不同浓度KCl溶液的银—氯化银电极的电极电势(25℃)KCl溶液浓度电极名称电极电势(V)0.1mol·L-11 mol·L-1饱和0.1mol银—氯化银电极标准银—氯化银电极饱和银—氯化银电极+0.288 0+0.222 3+0.200 0(三)复合电极有些酸度计,将作为指示电极的玻璃电极和作为参比电极的银—氯化银电极组装在两个同心玻璃管中,看起来好像是一支电极,称为复合电极。
其主要部分是电极下端的玻璃球和玻璃管中的一个直径约为2mm的素瓷芯。
当复合电极插入溶液时,素瓷芯起盐桥作用,将待测试液和参比电极的饱和KCl溶液沟通,电极内部的内参比电极(另一个Ag-AgCl电极)通过玻璃球与待测试液接触。
两个Ag-AgCl电极通过导线分别与电极的插头连接。
内参比电极与插头顶部相连接,为负极;参比电极与插头的根部连接,为正极。
•pH玻璃电极及其膜电势(一)玻璃电极玻璃电极是重要的H+离子选择性电极,其电极电势不受溶液中氧化剂或还原剂的影响,也不受有色溶液或混浊溶液的影响,并且在测定过程中响应快,操作简便,不沾污溶液,所以,用玻璃电极测量溶液的pH得到广泛应用。
玻璃电极是由特种软玻璃(原料组成接近22%Na2O、6%CaO和72%SiO2)吹制成球状的电极。
这种玻璃电极在pH小于9的范围内,对H+离子浓度变化的响应表现了极好的选择性,构造见图9-2,球的下半部厚度在0.05~0.15mm之间,玻璃球内盛有0.1 mol·L-1HCl溶液,作为内参比溶液,以Ag-AgCl电极为内参比电极,浸在内参比溶液中。
在使用玻璃电极之前,首先把电极浸泡在去离子水中约24h,使玻璃球的外表面形成很薄的水化层,图9-3是玻璃膜的截面示意图。
在水化层中,玻璃中的Na+由于体积小,活动能力强,会从硅酸盐晶格的结点上向外流动,而水中的H+又相应地进入水化层,原因是硅酸结构与H+结合所形成键的强度远大于Na+(约为1014倍),因此在水化层发生如下的离子交换反应:图9-3膜电位示意图φ(膜)试液a r(H+,试 )内参比溶液a r(H+,内)H+ + Na+G1-Na+ + H+Gl-当水化层与试液接触时,水化层中的H+与溶液中的H+建立如下平衡:H+(水化层)H+(溶液)由于溶液中H+活度不同,有额外的H+由溶液进入水化层或由水化层转入溶液,这样改变了固—液两相界面电荷的分布,从而产生了相界电势φ(外),同样道理,也产生了相界电势φ(内),这样玻璃膜两侧产生的电势差即为膜电势φ(膜),即:φ(膜)=φ(外)-φ(内)=由于内参比溶液H+活度是一定的,a r(H+,内)为一常数,则φ(膜) =K + 0.0592 lg a r(H+,试)φ(膜) =K-0.0592 pH(9-2)式中K为常数,φ(膜)的大小仅与膜外溶液a r(H+,试)有关。