插值与数据拟合模型
插值与拟合实验
x x x x
j 1 j 1 j + 1 j + 1
, x , x 其
j 1
≤ x
x ≤
≤ x
x
j
j
≤ 它
j + 1
1 , 6≤ x≤6 【例 2】 g ( x ) = 】 2 1+ x
用分段线性插值法求插值,并观察插值误差 用分段线性插值法求插值 并观察插值误差. 并观察插值误差 1.在[-6,6]中平均选取 个点作插值 在 中平均选取5个点作插值 中平均选取 个点作插值(xch11) 2.在[-6,6]中平均选取 个点作插值 在 中平均选取11个点作插值 中平均选取 个点作插值(xch12) 3.在[-6,6]中平均选取 个点作插值 在 中平均选取21个点作插值 中平均选取 个点作插值(xch13) 4.在[-6,6]中平均选取 个点作插值 在 中平均选取41个点作插值 中平均选取 个点作插值(xch14)
Matlab程序: 程序: 程序 ch607.m
【例 5】 】 已知飞机下轮廓线上数据如下, 已知飞机下轮廓线上数据如下,求x每改变0.1时的y值。 每改变0.1时的y 0.1时的
X Y
0 0
3 5 7 9 11 12 13 14 15 12 17 20 21 20 18 12 10 16
机翼下 轮廓线
【例 6】 】 测得平板表面3*5网格点处的温度分别为: 3*5网格点处的温度分别为 测得平板表面3*5网格点处的温度分别为: 82 81 80 82 84 79 63 61 65 81 84 84 82 85 86 试作出平板表面的温度分布曲面z=f(x,y)的图形。 试作出平板表面的温度分布曲面z=f(x,y)的图形。 z=f(x,y)的图形 1.先在三维坐标画出原始数据,画出粗糙的温度分布曲图. 1.先在三维坐标画出原始数据,画出粗糙的温度分布曲图. 先在三维坐标画出原始数据 输入以下命令: 输入以下命令: x=1:5; y=1:3; temps=[82 81 80 82 84;79 63 61 65 81;84 84 82 85 86]; mesh(x,y,temps) 2.以平滑数据,在x、y方向上每隔0.2个单位的地方进行插值. 以平滑数据, 方向上每隔0.2个单位的地方进行插值. 0.2个单位的地方进行插值
(数学建模课件)第八部分插值与拟合
例9 多项式函数拟合 x=[34 36 37 38 39 39 39 40 40 41 42 43 43 45 47 48]; y=[1.30 1.00 0.73 0.90 0.81 0.70 0.60 0.50 0.44 0.56 0.30 0.42 0.35 0.40 0.41 0.60]; close; plot(x,y) p=polyfit(x,y,2) xi=linspace(34,48,1000); %绘图的X轴数据 z=polyval(p,xi); %得到多项式在数据点处 的值 close; plot(x,y,’ko’,xi,z,’r-’)
xi=0:2*pi*300; yi=interp1(x,y,xi,’cubic’); plot(xi,yi);
2020/7/8
例3 三次样条插值 x=1:12; y=[5 6 9 15 25 29 31 30 22 25 27 24]; close; plot(x,y,x,y,’+’) pp=spline(x,y); [b,c]=unmkpp(pp)
例5 下表给出某企业从1968—2008年间,工龄为 10年、20年、30年的职工的月均工资数据。试 用线性插值求出1973—2003年每隔10年,工龄 为15年、25年职工的月均工资。
工龄 10 年份
1968
507
1978
793
1988
1032
1998
1265
2008
2020/7/8
2496
20
2020/7/8
2、二维插值
Z1=interp2 (X,Y,Z,X1,Y1,’method’) 其中X和Y为两个向量,分别描述原始数据点的 自变量取值,Z是对应于X和Y的函数值;X1和 Y1是两个向量,描述欲插值的点。Method的含 义同一维插值。Z1是根据相应的插值方法得到 的插值结果。
插值与拟合
且 f(1.5) ≈L1(1.5) = 0.885。
Lagrange插值法的缺点
• 多数情况下,Lagrange插值法效果是不错的, 但随着节点数n的增大,Lagrange多项式的次 (Runge)现象。
• 例:在[-5,5]上用n+1个等距节点作插值多项 式Ln(x),使得它在节点处的值与函数y = 1/(1+25x2)在对应节点的值相等,当n增大时, 插值多项式在区间的中间部分趋于y(x),但 对于满足条件0.728<|x|<1的x, Ln(x)并不趋 于y(x)在对应点的值,而是发生突变,产生 剧烈震荡,即Runge现象。
总结
• 拉格朗日插值:其插值函数在整个区间 上是一个解析表达式;曲线光滑;收敛 性不能保证,用于理论分析,实际意义 不大。
• 分段线性插值和三次样条插值:曲线不 光滑(三次样条已有很大改进);收敛 性有保证;简单实用,应用广泛。
1.2 二维插值
• 二维插值是基于一维插值同样的思想, 但是它是对两个变量的函数Z=f(x,y)进 行插值。
• n=5; • x0=-1:1/(n-1):1;y0=1./(1+25*x0.^2);y1=lagr(x0,y0,x); • subplot(2,2,2), • plot(x,z,'r-',x,y,'m-'),hold on %原曲线 • plot(x,y1,'b'),gtext('L8(x)','FontSize',12),pause %Lagrange曲线
基函数为
l0 (x)
x x1 x0 x1
x2 1 2
2
x
l1(x)
线性插值函数为
matlab插值与拟合
matlab插值与拟合
在MATLAB中,插值和拟合都是通过函数来实现的。
插值是通过创建新的数据点来填充在已知数据点之间的空白。
MATLAB提供了几种不同的插值方法,例如分段线性插值、三次样条插值、立方插值等。
具体使用哪种插值方法取决于数据的特性和所需的精度。
插值函数的一般形式是`interp1(x, y, xi, 'method')`,其中`x`和`y`是已知的数据点,`xi`是待插值点的横坐标向量,`method`是插值方法,例如最近邻点插值、线性插值、三次样条插值、立方插值等。
拟合是通过调整一个数学模型来使得该模型尽可能地接近给定的数据点。
在MATLAB中,可以使用`polyfit`函数进行多项式拟合。
该函数的一般形式是`p = polyfit(x, y, n)`,其中`x`和`y`是已知的数据点,`n`是多项式的阶数。
该函数返回一个向量`p`,表示多项式的系数。
可以使用`polyval`函数来评估这个多项式模型在给定数据点上的值。
需要注意的是,插值和拟合都是数学上的近似方法,它们只能尽可能地逼近真实的情况,而不能完全准确地描述数据的变化。
因此,选择合适的插值和拟合方法是非常重要的。
在Matlab中如何进行数据插值与拟合
在Matlab中如何进行数据插值与拟合引言:数据处理是科学研究与工程开发中不可或缺的环节之一。
而数据插值和拟合则是数据处理中常用的技术手段。
在Matlab这一强大的数值分析工具中,提供了丰富的函数与工具箱,使得数据插值与拟合变得更加便捷高效。
本文将详细阐述在Matlab中如何进行数据插值与拟合,并介绍几个常用的插值与拟合方法。
一、数据插值数据插值是通过已知的有限个数据点,推导出数据点之间未知位置上的数值。
在Matlab中,可以利用interp1函数进行数据插值。
假设我们有一组离散的数据点,存储为两个向量x和y。
那么,可以通过以下步骤进行数据插值:1. 调用interp1函数,并传入x和y作为输入参数。
```matlabxi = linspace(min(x), max(x), n);yi = interp1(x, y, xi, '方法');```其中,xi是插值点的位置,min和max分别是x向量的最小值和最大值,n是插值点的数量。
'方法'是要使用的插值方法,可以选择线性插值(method='linear')、样条插值(method='spline')等。
2. 绘制插值结果曲线。
```matlabplot(x, y, 'o', xi, yi)legend('原始数据','插值结果')```使用plot函数可以绘制原始数据点和插值结果的曲线。
通过设置不同的插值方法和插值点的数量,可以探索不同的插值效果。
二、数据拟合数据拟合是通过已知的一组数据点,找到一个符合数据趋势的函数模型。
在Matlab中,可以利用polyfit函数进行多项式拟合。
假设我们有一组离散的数据点,存储为两个向量x和y。
那么,可以通过以下步骤进行数据拟合:1. 调用polyfit函数,并传入x和y作为输入参数。
```matlabp = polyfit(x, y, n);```其中,n是多项式的次数,p是拟合多项式的系数。
插值法与数据拟合法
第七讲插值方法与数据拟合§ 7.1 引言在工程和科学实验中,常常需要从一组实验观测数据(x i , y i ) (i= 1, 2, …, n) 揭示自变量x与因变量y 之间的关系,一般可以用一个近似的函数关系式y = f (x) 来表示。
函数f (x) 的产生办法因观测数据与要求的不同而异,通常可采用两种方法:插值与数据拟合。
§ 7.1.1 插值方法1.引例1 已经测得在北纬32.3︒海洋不同深度处的温度如下表:根据这些数据,我们希望能合理地估计出其它深度(如500米、600米、1000米…)处的水温。
解决这个问题,可以通过构造一个与给定数据相适应的函数来解决,这是一个被称为插值的问题。
2.插值问题的基本提法对于给定的函数表其中f (x) 在区间[a, b] 上连续,x0,x1,…,x n为[a, b] 上n + 1个互不相同的点,要求在一个性质优良、便于计算的函数类{P(x)} 中,选出一个使P(x i ) = y i,i= 0, 1, …, n(7.1.1) 成立的函数P(x) 作为 f (x) 的近似,这就是最基本的插值问题(见图7.1.1)。
为便于叙述,通常称区间[a, b] 为插值区间,称点x0,x1,…,x n为插值节点,称函数类{P(x)} 为插值函数类,称式(7.1.1) 为插值条件,称函数P(x) 为插值函数,称f (x) 为被插函数。
求插值函数P(x) 的方法称为插值法。
§ 7.1.2 数据拟合1.引例2 在某化学反应中,已知生成物的浓度与时间有关。
今测得一组数据如下:根据这些数据,我们希望寻找一个y = f (t) 的近似表达式(如建立浓度y与时间t之间的经验公式等)。
从几何上看,就是希望根据给定的一组点(1, 4.00),…,(16, 10.60),求函数y = f (t) 的图象的一条拟合曲线。
2.数据拟合问题的基本提法 对于给定的函数表x x 0 x 1 … x n y = f (x )y 0y 1…y n其中f (x ) 在区间 [a , b ] 上连续,x 0,x 1,…,x n 为 [a , b ] 上n + 1个互不相同的点,要求找一个简单合理的函数近似表达式 ϕ (x ),使 ϕ (x ) 与f (x ) 在某种准则下最为接近,这就是最基本的数据拟合问题(见图7.1.2)。
数学建模插值与拟合概要
cz =griddata〔x,y,z,cx,cy,‘method’〕
被插值点 的函数值插值 节点被插值点插值方法
‘nearest’最邻近插值
‘linear’ 双线性插值 ‘cubic’ 双三次插值 'v4'- MATLAB提供的插值方法
缺省时, 双线性插值
要求cx取行向量,cy取为列向量.
▪ %给出〔xi,yj〕点的高程 zij:
▪>>[X,Y]=meshgrid(0:1:20,0:1:20); ▪ % 给出加密的插值坐标网格
第二十五页,共66页。
>>Z=interp2(x,y,z,X,Y,’spline’); %在坐标上进行样条插值
画图: >>clf;%清空图形坐标系中的内容
>>mesh(X,Y,Z) %在网格上画出插值的结果
h=1:0.1:12;
t=interp1(hours,temps,h,'spline'); plot(hours,temps,'+',h,t,hours,temps,'r:')
%作图
xlabel('Hour'),ylabel('Degrees Celsius’)
第十三页,共66页。
第十四页,共66页。
返回
第三十一页,共66页。
%程序一:插值并作海底曲面图
x =[129.0 140.0 103.5 88.0 185.5 195.0 105.5 157.5 107.5 77.0 81.0 162.0 162.0 117.5 ];
y =[ 7.5 141.5 23.0 147.0 22.5 137.5 85.5 -6.5 -81 3.0 56.5 -66.5 84.0 -33.5 ];
插值与拟合算法分析
插值与拟合算法分析在数学与计算机科学领域,插值与拟合算法是两种常用的数据处理技术。
插值算法通过已知数据点之间的内插来估算未知数据点的值,而拟合算法则通过求取最佳拟合曲线或函数来逼近已知数据点。
本文将对插值与拟合算法进行详细分析,并比较它们在不同应用中的优缺点。
一、插值算法插值算法主要用于通过已知数据点之间的内插来估算未知数据点的值。
常用的插值算法包括拉格朗日插值、牛顿插值、样条插值等。
这些算法根据插值函数的不同特点,适用于不同类型的数据处理。
1. 拉格朗日插值拉格朗日插值是一种基于代数多项式的插值方法。
它通过构造一个全局多项式函数来拟合已知数据点,并推导出未知数据点的估算值。
拉格朗日插值算法具有简单易懂、计算效率高等优点,但在处理大量数据点时可能会出现龙格现象,导致插值结果有一定误差。
2. 牛顿插值牛顿插值是一种基于差商的插值方法。
它通过计算差商的递推关系,构造一个分段多项式函数来拟合已知数据点。
相比于拉格朗日插值,牛顿插值算法具有更高的数值稳定性和精度,并且可以方便地进行动态插值。
3. 样条插值样条插值是一种基于分段函数的插值方法。
它将整个数据区间划分为若干小段,并使用不同的插值函数对每一段进行插值。
样条插值算法通过要求插值函数的高阶导数连续,能够更好地逼近原始数据的曲线特征,因此在光滑性较强的数据处理中常被使用。
二、拟合算法拟合算法主要用于通过最佳拟合曲线或函数来逼近已知数据点。
常用的拟合算法包括最小二乘拟合、多项式拟合、非线性拟合等。
这些算法可以使拟合曲线与已知数据点尽可能地接近,从而进行更精确的数据分析和预测。
1. 最小二乘拟合最小二乘拟合是一种通过最小化残差平方和来求取最佳拟合曲线的方法。
它利用数据点与拟合曲线的差异来评估拟合效果,并通过求取最小残差平方和的参数值来确定拟合曲线的形状。
最小二乘拟合算法广泛应用于线性回归和曲线拟合等领域。
2. 多项式拟合多项式拟合是一种通过多项式函数来逼近已知数据点的方法。
数学建模 插值与拟合
%作图
2020/8/19
例 已知飞机下轮廓线上数据如下,Байду номын сангаасx每改变0.1时的y值。
X0 3
5
7
9 11 12 13 14 15
Y 0 1.2 1.7 2.0 2.1 2.0 1.8 1.2 1.0 1.6
机翼下轮 廓线
y
x
自己思考,10分钟小组讨论!
2020/8/19
二维插值
(1)二维插值的定义
用MATLAB作网格节点数据的插值
z=interp2(x0,y0,z0,x,y,’method’)
被插值点 的函数值
插值 节点
被插值点 插值方法
‘nearest’ 最邻近插值 ‘linear’ 双线性插 值 ‘cubic’ 双三次插 值 要求x0,y0单调;x,y可取为缺矩省阵时,, 或x取双行线向性量插,值y 取为列向量,x,y的值分别不能超出x0,y0的范围。
一、函数插值 二、曲线拟合
一维插值 二维插值
2020/8/19
在工程中,常有这样的问题:给定 一批数据点(它可以是设计师给定,也 可能是从测量与采样中得到),需确定 满足特定要求的曲线(面)通过所给所 有数据点,这就是插值问题。
2020/8/19
一维插值
(1)插值的定义 (2)插值的方法
拉格朗日插值 分段线性插值 三次样条插值
x x2 x0 x2
y0
x x1
x0 x0
x x2 x1 x2
y1
x x2
x0 x0
x x1 x2 x1
y2
直接验证可知,Ln x满足插值条件.
Notice:拉格朗日多项式插值次数越高,越易产生振荡,这 种振荡称为龙格(Runge)现象 。
数值分析实验插值与拟合
数值分析实验插值与拟合插值是指根据已知的数据点,通过其中一种数学方法来构造一个函数,使得该函数在已知的数据点上与被插值函数相等。
插值方法可以分为两类:基于多项式的插值和非多项式插值。
基于多项式的插值方法中,最常用的是拉格朗日插值和牛顿插值。
拉格朗日插值方法通过一个n次多项式来逼近被插值函数,该多项式通过n个已知数据点中的所有点。
牛顿插值方法则通过一个n次多项式来逼近被插值函数,该多项式通过n个已知数据点中的前m+1个点。
非多项式插值方法中,最常用的是分段线性插值和样条插值。
分段线性插值方法将插值区间划分为多个小段,在每一段内使用线性函数来逼近被插值函数。
样条插值方法则使用分段低阶多项式来逼近被插值函数,保证了插值函数和原函数在插值区间内的连续性、光滑性。
拟合是指在给定的离散数据点集合上,通过选取一个函数,使得该函数与数据点之间的误差最小化。
拟合方法可以分为两类:线性拟合和非线性拟合。
线性拟合方法中,最简单的是最小二乘法。
最小二乘法拟合是通过最小化观测数据与拟合函数的残差平方和来选择最佳函数参数。
在实验中,最小二乘法常用于线性回归问题,例如估计一个直线或者平面来拟合数据。
非线性拟合方法中,最常用的是非线性最小二乘法和局部加权回归。
非线性最小二乘法通过将非线性拟合问题转化为线性问题,使用最小二乘法来寻找最佳参数。
局部加权回归方法则通过给予不同数据点不同的权重,以更好地逼近数据点。
在数值分析实验中,插值与拟合可以应用于各种实际问题。
例如,在地理信息系统中,通过已知的地理坐标点来插值出未知点的地理信息。
在气象学中,通过已知的气象数据点来插值出未知点的气象信息。
在工程学中,通过已知的测量数据点来拟合出一个最佳的拟合函数来预测未来的测量值。
需要注意的是,插值和拟合的精度在很大程度上取决于数据的分布和拟合函数的选择。
如果数据点过于稀疏或者数据点中存在异常值,可能导致插值和拟合结果不准确。
因此,在进行插值和拟合之前,需要对数据进行预处理,例如去除异常值、平滑数据等。
插值法与数据拟合
x=0:3:9;
y=x.*cos(x);
xx=linspace(0,9);
plot(x,y,'o');%样本点
hold on;
plot(xx,interp1(x,y,xx,'spline'),'r');%interp1只能使用默认边界条件
plot(xx,spline(x,[0 y 0],xx),'r:');%spline可以使用第一类边界条件,这里y'(0)=y'(9)=0 pp=csape(x,y,'second');
>> yi=New_int(x,y,0.596)
yi =0.631914405504000
4、已知函数在下列各点的值为:
0.2
0.4
0.6
0.8
1.0
0.98
0.92
0.81
0.64
0.38
试用4次牛顿插值多项式 对数据进行插值,根据{ },画出图形。
解:X=[0.2:0.2:1.0]; y=[0.98,0.92,0.81,0.64,0.38];
解:a=-1;b=1;n=100;h=(b-a)/n;
>> x=a:h:b;y=1./(1+25.*x.^2);
>> plot(x,y,'k')
其函数原图形分别如下所示:
图二龙格函数的图形
用龙格函数的Lagrange()插值函数画图源程序
当n =10时,有:
functionRunge(10)
% Runge现象
xx=[0:0.5:64]; yy=sqrt(ห้องสมุดไป่ตู้x);
实验报告—拟合与插值
实验报告七拟合与插值一、曲线拟合1、多项式拟合【示例】以下步骤可对二维数据作多项式拟合。
已知:数据横坐标:a=[1 2 5 7 11 12];数据纵坐标:b=[ 32.78 32.65 27.25 25.55 19.24 14.65];【解】先将数据绘制成散点图:a=[1 2 5 7 11 12]; b=[ 32.78 32.65 27.25 25.55 19.24 14.65];plot(a,b, '-o') % 绘图,线型为实线,点型为空心圆点,颜色为默认的蓝色。
观察绘制出来的图形,大致在一条直线上,所以用一次多项式(直线)拟合:p= polyfit(a,b,1); y1=p (1)*a+p (2); % 线性拟合。
polyfit命令中的数字“1”表示用一次多项式。
% p是向量,各分量表示多项式从高到低的各个系数;y1是用这些系数构造的多项式的值。
hold on; plot(a,y1,'r') % 绘制图形,观察拟合效果。
颜色为红色。
也可以试着用三次多项式来拟合:q= polyfit(a,b,3); y2= q(1)*a.^3+q(2)*a.^2+q(3)*a+ q(4); % 3次多项式拟合hold on; plot(a,y2,'k') % 绘制曲线,观察拟合效果。
颜色为黑色。
【要求】执行以上命令,并仿照示例,对下列数据作多项式拟合,写出拟合多项式:数据横坐标:x=[1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20];数据纵坐标:y= [70.2 41.6 -9.1 -52 -100 -67.4 -112 -166 -104 -168 -103 -128 -90.5 -52.1 -10.4 60.6 85.9 153 199 301];024681012141618202、一般的最小二乘拟合【示例1】已知数据横、纵坐标分别为x =1:0.5:10; y=[0.84 2.24 3.64 3.74 1.2701 -4.29 -12.11 -19.79 -23.97 -21.34 -10.06 9.09 32.19 52.76 63.32 57.69 33.38 -6.78 -54.40];并已知该组数据满足 12sin()ay x a x =,其中12,a a 为待定系数。
数学模型第十章插值和拟合方法建模--101数据插值方法及应用 29页PPT文档
水位 10.210 9.936 9.653 9.409 9.180 8.921 8.662
时刻 19.959 20.839 22.015 22.958 23.880 24.986 25.908
水位 8.433 8.220 // 10.820 10.591 10.354 10.180
05.09.2019
05.09.2019
课件
9
若只要求得函数在插值点处数值,可用下列
Lagrange 插值公式
Pn (x)
n i0
n
yi (
j0, ji
x xj ) xi x j
多项式插值光滑但不具有收敛性,一般不宜采用高
次多项式(如 m>7)插值。
05.09.2019
课件
10
例 2、在万能拉拨机中有一个园柱形凸轮,其底园半 径 R=300mm,凸轮的上端面不在同一平面上,而要 根据动杆位移变化的需要进行设计制造。按设计要 求,将底园周 18 等分,旋转一周。第 i 个分点对应柱 高 yi (i 0,1,2,,18) ,数据见下表。为了数控加工,需要 计算出园周上任一点的柱高。
流速 38.455 32.122 41.718 //
// 73.686 76.434
时刻 12.954 13.875 14.982 15.903 16.826 17.931 19.037
流速 71.686 60.190 68.333 59.217 52.011 56.626 63.023
时刻 19.959 20.839 22.015 22.958 23.880 24.986 25.908
5 188.6
11 191.6
17 458.3
05.09.2019
Matlab数学建模学习笔记——插值与拟合
Matlab数学建模学习笔记——插值与拟合⽬录插值与拟合插值和拟合的区别图⽚取⾃知乎⽤户yang元祐的回答插值:函数⼀定经过原始数据点。
假设f(x)在某区间[a,b]上⼀系列点上的值y_i=f(x_i),i=0,1,\dots,n。
插值就是⽤较简单、满⾜⼀定条件的函数\varphi(x)去代替f(x)。
插值函数满⾜条件\varphi(x_i)=y_i,i=0,1,\dots,n拟合:⽤⼀个函数去近似原函数,不要求过已知数据点,只要求在某种意义下它在这些点上的总偏差最⼩。
插值⽅法分段线段插值分线段插值就是将每两个相邻的节点⽤直线连起来,如此形成的⼀条折线就是就是分段线性插值函数,记作I_n(x),它满⾜I_n(x_i)=y_i,且I_n(x)在每个⼩区间[x_i,x_{i+1}]上是线性函数(i=0,1\dots,n-1)。
I_n(x)可以表⽰为I_n(x)=\sum_{i=0}^n y_il_i(x),其中l_i(x)= \begin{cases} \frac{x-x_{i-1}}{x_i-x_{i-1}},&x\in [x_{i-1},x_i],i \neq 0,\\ \frac{x-x_{i+1}}{x_i-x_{i+1}},&x\in [x_i,x_{i+1}],i \neq n,\\ 0,&其他 \end{cases}I_n(x)有良好的收敛性,即对x\in [a,b],有\lim _{n \rightarrow \infin}I_n(x)=f(x)⽤I_n(x)计算x点的插值的时候,只⽤到x左右的两个点,计算量与节点个数n⽆关。
但是n越⼤,分段越多,插值误差越⼩。
拉格朗⽇插值多项式朗格朗⽇(Lagrange)插值的基函数为\begin{aligned} l_i(x)&=\frac{(x-x_0)\cdots(x-x_{i-1})(x-x_{i+1})\cdots(x-x_n)}{(x_i-x_0)\cdots(x_i-x_{i-1})(x_i-x_{i+1})\cdots(x_i-x_n)}\\ &= \prod_{j=0\\j\neq i}^{n} \frac{x-x_j}{x_i -x_j},i=0,1,\cdots,n。
数值计算中的插值和拟合方法
在数值计算中,插值和拟合是两种常用的方法,用于通过已知数据点推测未知数据点的数值。
插值是一种通过已知数据点构建一个函数,以便在这些数据点之间进行预测。
而拟合是一种将一个函数与已知数据点进行匹配,以便预测未知数据点的数值。
插值的目标是通过经过已知数据点的连续函数来准确地估计未知数据点的数值。
最简单的插值方法是线性插值,它假设两个相邻数据点之间的函数值是线性变化的。
线性插值可以用于计算两个已知数据点之间的任何位置的函数值。
如果我们有更多的数据点,可以使用更高阶的插值方法,如二次插值或三次插值。
这些方法使用多项式来表示数据点之间的函数,以便更准确地预测未知数据点。
然而,插值方法并不总是最理想的选择。
在某些情况下,通过已知数据点精确地构建一个连续函数是不可能的。
这可能是因为数据点之间的差异太大,或者数据点的数量太少。
在这种情况下,拟合方法可以提供更好的预测结果。
拟合的目标是找到一个函数,使其与已知数据点的误差最小。
最常用的拟合方法是最小二乘拟合,它通过最小化数据点的残差的平方和来找到最佳拟合函数。
最小二乘拟合可以用于各种不同的函数类型,如线性拟合、多项式拟合、指数拟合等。
根据数据点的分布和特性,我们可以选择适当的拟合函数来获得最准确的预测结果。
在实际应用中,插值和拟合方法经常同时使用。
例如,在地理信息系统中,我们可能需要通过已知地点的气温数据来估计未知地点的气温。
我们可以使用插值方法来构建一个连续函数,以便在已知地点之间预测未知地点的气温。
然后,我们可以使用拟合方法来匹配这个连续函数与其他已知数据点,以提高预测的准确性。
插值和拟合方法在科学、工程、金融等各个领域都有广泛的应用。
在科学研究中,它们可以用于数据分析和预测,以帮助我们理解和解释实验结果。
在工程中,它们可以用于控制系统设计、信号处理和机器学习等领域。
在金融领域,它们可以用于市场预测和风险管理等重要任务。
总而言之,插值和拟合是数值计算中常用的方法,用于通过已知数据点推测未知数据点的数值。
数值分析中的插值与拟合
数值分析中的插值与拟合插值和拟合是数值分析中常用的技术,用于估计或预测数据集中缺失或未知部分的数值。
在本文中,我们将讨论插值和拟合的概念、方法和应用。
一、插值插值是通过已知数据点之间的连续函数来估计中间数据点的数值。
插值方法可以根据不同的数据和需求选择合适的插值函数,常用的插值方法包括拉格朗日插值、牛顿插值和埃尔米特插值。
1.1 拉格朗日插值拉格朗日插值是一种基于多项式的插值方法。
通过已知的n个数据点,可以构建一个n-1次的插值多项式。
这个多项式通过已知数据点上的函数值来准确地经过每一个点。
1.2 牛顿插值牛顿插值方法也是一种多项式插值方法,通过差商的概念来构建插值多项式。
差商是一个递归定义的系数,通过已知数据点的函数值计算得出。
牛顿插值可以通过递推的方式计算出插值多项式。
1.3 埃尔米特插值埃尔米特插值是一种插值方法,适用于已知数据点和导数值的情况。
它基于拉格朗日插值的思想,通过引入导数信息来逼近数据的真实分布。
埃尔米特插值可以更准确地估计数据点之间的值,并且可以保持导数的连续性。
二、拟合拟合是通过一个模型函数来逼近已知数据点的数值。
拟合方法旨在找到最适合数据集的函数形式,并通过最小化误差来确定函数的参数。
常见的拟合方法包括最小二乘法、多项式拟合和曲线拟合。
2.1 最小二乘法最小二乘法是一种常用的拟合方法,通过最小化数据点到拟合函数的误差平方和来确定最佳拟合曲线或曲面。
最小二乘法适用于线性和非线性拟合问题,可以用于拟合各种类型的非线性函数。
2.2 多项式拟合多项式拟合是一种基于多项式函数的拟合方法。
通过多项式的线性组合来近似已知数据集的数值。
多项式拟合可以通过最小二乘法或其他优化算法来确定拟合函数的系数。
2.3 曲线拟合曲线拟合是一种用曲线函数来逼近已知数据点的拟合方法。
曲线函数可以是非线性的,并且可以根据数据的特点进行选择。
曲线拟合可以通过优化算法来确定拟合函数的参数。
三、应用插值和拟合在数值分析中有广泛的应用。
插值与数据拟合建模
DQ DQ
(5.16) 为求使TF(Q)最小的Q值,解下列不等式组:
TF (Q) TF (Q d ) 0 TF (Q) TF (Q d ) 0. {| Q D |} 10, 且 其中 d min Q D
由假设2知道一个健康人每天接触的人数服 从二项分布,且平均值是m,则 m = (n-1)p 于是 m (5.2) p
n 1
又设一健康人被一名指定病人接触并感染的概 率为 p1 ,则由假设3及(5 .2)式得
p1 p
m
n 1
(5.3)
那么一健康人每天被感染的概率 p2为
p2 1 (1 p1 )i 1 (1 )i n 1
考察报童问题.报童每日早晨从报社以每份 报纸0.30元的批发价购得当日的日报,然后以 每份0.45元的零售价售出.若卖不完,则每份报 纸的积压损失费为0.30元;若不够卖,则缺一 份报纸造成潜在损失的缺货损失费为0.15元.该 报童对以往的销量作了连续一个月的统计,其 记录如表所示.
日需求量D 120 频率P(D) 0.15 130 0.2 140 0.3 150 0.25 160 0.1
0.15
0 3 6
0.2
1.5 0 3
0.3
3 1.5 0
0.25
4.5 3 1.5ຫໍສະໝຸດ 0.16 4.5 3
平均损失 总费用 2.95 2.1 2.175
150
160
9
12
6
9
3
6
0
3
1.5
0
3.6
6.15
从表中可看出,当报童每日订报130份时,平均 损失费用最小,最小损失总费用为2.1元. 设平均总费用为TF(Q),则
数值分析实验报告插值与拟合
结果分析:高次插值稳定性差,而低次插值对于较大区间逼近精度又不够,而且,随着节点的加密,采用高次插值,插值函数两端会发生激烈震荡。解决这一矛盾的有效方法就是采用分段低次代数插值。
(2)
通过采用分段线性插值得到以下结果:
结果分析:通过采用分段线性插值,发现随着插值节点增多,插值计算结果的误差越来越小,而且分段线性插值的优点是计算简单,曲线连续和一致收敛,但是不具有光滑性。
拟合是指通过观察或测量得到一组离散数据序列 ,i=1,2,…,m,构造插值函数 逼近客观存在的函数 ,使得向量 与 的误差或距离最小。
可知当基函数的选择不同时,拟合函数的误差也会不同,所以在对数据进行拟合时应选择适合的基函数。
三、练习思考
整体插值有何局限性?如何避免?
答:整体插值的过程中,若有无效数据则整体插值后插值曲线的平方误差会比较大,即在该数据附近插值曲线的震动幅度较大。在插值处理前,应对原始数据进行一定的筛选,剔除无效数据。
②相同点:通过已知一些离散点集M上的约束,求取一个定义在连续集合S(M包含于S)的未知连续函数,从而达到获取整体规律目的
四、本次实验的重点难点分析
答:加强了对插值和拟合的认识,了解了其算法思想,并使用matlab将其实现。学会了观察插值拟合后的图形,并分析其问题。
画图进行比较:
通过观察图像,经比较可知两结果是很接近的。
2.区间 作等距划分: ,以 ( )为节点对函数 进行插值逼近。(分别取 )
(1)用多项式插值对 进行逼近,并在同一坐标系下作出函数的图形,进行比较。写出插值函数对 的逼近程度与节点个数的关系,并分析原因。
(2)试用分段插值(任意选取)对 进行逼近,在同一坐标下画出图形,观察分段插值函数对 的逼近程度与节点个数的关系。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二讲 插值与数据拟合模型函数插值与曲线拟合都是要根据一组数据构造一个函数作为近似,由于近似的要求不同,二者的数学方法上是完全不同的。
而面对一个实际问题,究竟用插值还是拟合,有时容易确定,有时则并不明显。
在数学建模过程中,常常需要确定一个变量依存于另一个或更多的变量的关系,即函数。
但实际上确定函数的形式(线性形式、乘法形式、幂指形式或其它形式)时往往没有先验的依据。
只能在收集的实际数据的基础上对若干合乎理论的形式进行试验,从中选择一个最能拟合有关数据,即最有可能反映实际问题的函数形式,这就是数据拟合问题。
一、插值方法简介插值问题的提法是,已知1+n 个节点n j y x j j ,,2,1,0),,( =,其中j x 互不相同,不妨设b x x x a n =<<<= 10,求任一插值点)(*j x x ≠处的插值*y 。
),(j j y x 可以看成是由某个函数)(x g y =产生的,g 的解析表达式可能十分复杂,或不存在封闭形式。
也可以未知。
求解的基本思路是,构造一个相对简单的函数)(x f y =,使f 通过全部节点,即),,2,1,0()(n j y x f j j ==,再由)(x f 计算插值,即*)(*x f y =。
1.拉格朗日多项式插值 插值多项式从理论和计算的角度看,多项式是最简单的函数,设)(x f 是n 次多项式,记作0111)(a x a x a x a x L n n n n n ++++=-- (1)对于节点),(j j y x 应有n j y x L j j n ,,2,1,0,)( == (2)为了确定插值多项式)(x L n 中的系数011,,,,a a a a n n -,将(1)代入(2),有⎪⎪⎩⎪⎪⎨⎧=++++=++++=++++---n n n n n n nn nn n n nn n n ya x a x a x a y a x a x a x a y a x a x a x a 01110111110001010(3) 记Tn T n n n nn nn n n ny y y Y a a a A x x x x x x X ),,,(,),,,(,11110011111100==⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=---- 方程组(3)简写成Y XA = (4)注意X det 是Vandermonde 行列式,利用行列式性质可得∏≤<≤-=nk j j kx xX 0)(det因j x 互不相同,故0det ≠X ,于是方程(4)中A 有唯一解,即根据1+n 个节点可以确定唯一的n 次插值多项式。
拉格朗日插值多项式实际上比较方便的做法不是解方程(4)求A ,而是先构造一组基函数:n i x x x x x x x x x x x x x x x x x l n i i i i i i n i i i ,,2,1,0,)())(()()())(()()(110110 =--------=+-+- (5))(x l i 是n 次多项式,满足n j i ji ji x l j i ,,2,1,0,,0,1)( =⎩⎨⎧≠== (6)令∑==ni i i n x l y x L 0)()( (7)显然)(x L n 是满足(2)的n 次多项式,由方程(4)解的唯一性,(7)式表示的)(x L n 的解与(1)式相同。
(5)、(7)称拉格朗日插值多项式,用)(x L n 计算插值称拉格朗日多项式插值。
误差估计插值的误差通过插值多项式)(x L n 与产生节点),(j j y x 的)(x g 之差来估计,记作)(x R n 。
虽然我们可能不知道)(x g 的解析表达式,但不妨设)(x g 充分光滑,具有1+n 阶导数。
利用泰勒展开可以推出,对于任意],[b a x ∈。
),()()!1()()()()(0)1(b a x x n g x L x g x R nj j n n n ∈-+=-=∏=+ξξ (8) 若可以估计1)1(|)(|++≤n n M g ξ (9)则),(,||)!1(|)(|01b a x x n M x R nj j n n ∈-+=∏=+ξ (10) 实际上因为1+n M 常难以确定,所以(10)式并不能给出精确的误差估计。
但是可能看出,n 增加,|)(|x R n 减少;g 越光滑,1+n M 越小,|)(|x R n 越小;x 越接近j x ,|)(|x R n 越小。
例 将区间⎥⎦⎤⎢⎣⎡2,0πn 等分,用x x g y cos )(==产生1+n 个节点,然后作拉格朗日插值多项式。
用)(x L n 计算6cos π(取4位有效数字)。
估计|)(|x R n (取2,1=n )。
解 若1=n ,则)1,0(),(00=y x , ⎪⎭⎫⎝⎛=0,2),(11πy x 。
由(5)、(7)式ππx x x l y l y x L 2102002021)(11001-=--⋅+--⋅=+= 6667.066cos 1=⎪⎭⎫⎝⎛=ππL若2=n ,则)1,0(),(00=y x ,⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛=0,2),(,7071.0,4),(2211ππy x y x ,由(5)、(7)式。
⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛---⋅+⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛--⋅+⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-⋅=++=4202)4)(0(024042)0(7071.02040241)(2211002ππππππππππππx x x x x x l y l y l y x L ⎪⎭⎫ ⎝⎛-⨯⨯-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=27071.01624822πππππx x x x8508.066cos 2=⎪⎭⎫⎝⎛=ππL 。
估计|)(|x R n :对于x x g cos )(=可设11=+n M ,记节点间隔nh 2π=。
当()1,+∈j j x x x 时4||||21h x x x x j j <--+nh h h h x x nj j ⋅⋅⋅⋅<-∏= 324||2于是(10)式给出1112)2)(1(4)1(4324)!1(1|)(|++++=+=⋅⋅⋅⋅+<n n n n n n n h nh h h h n x R π 可以算出6cosπ的精确值是0.8660(4位有效数字)⎪⎭⎫⎝⎛⎪⎭⎫⎝⎛6,621ππL L 的误差在|)(|x R n 范围内。
插值多项式的振荡用拉格朗日插值多项式)(x L n 近似))((b x a x g ≤≤虽然随着节点个数的增加,)(x L n 的次数变大,多数情况下误差|)(|x R n 会变小,但n 增加时,)(x L n 的光滑性变坏,有时会出现很大的振荡。
理论上,当∞→n 时,在],[b a 内并不能保证)(x L n 处处收敛于)(x g 。
Runge 给出了一个有名的例子:]5,5[,11)(2-∈+=x x x g 取n j njx j ,,2,1,0,105 =+-=。
对于 ,6,4,2=n 作)(x L n ,会得到如下图所示的结果。
可以看出,对于较大的||x ,随着n 的增加,)(x L n 的振荡越来越大,事实上可以证明,仅当63.3||≤x 时,才有)()(lim x g x L n n =∞→,而在此区间外,)(x L n 是发散的。
高次插值多项式的这些缺陷,促使人们转而寻求简单的低次数多项式插值。
2. 分段线性插值简单地说,将每两个相邻的节点用直线连起来,如此形成的一条折线就是分段线性插值函数,记作)(x I n ,它满足j j n y x I =)(,且)(x I n 在每个小区间],[1+j j x x 上是线性函数),,1,0(n j =。
)(x I n 可以表示为∑==nj j j n x l y x I 0)()( (12)⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=≤≤--=≤≤--=+++---其它时舍去时舍去,0)(,)0(,)(111111n j x x x x x x x j x x x x x x x x l j j j j j j j j j j j (13))(x I n 有良好的收敛性,即对于],[b a x ∈有,)()(lim x g x I n n =∞→。
用)(x I n 计算x 点的插值时,只用到x 左右的两个节点,计算量与节点个数n 无关。
但n 越大,分段越多,插值误差越小。
实际上用函数表作插值计算时,分段线性插值就足够了,如数学、物理中用的特殊函数表,数理统计中用的概率分布表等。
3. 三次样条插值 样条函数的由来分段线性插值虽然简单,n 足够大时精度也相当高。
但是折线在节点处显然不光滑,即)(x I n 在节点处导数不连续。
这影响了它在诸如机械加工等领域(希望插值曲线光滑)中的应用。
所谓样条(Spline),来源于船舶、飞机等设计中描绘光滑外形曲线用的绘图工具。
一根有弹性的细长木条用压铁固定在节点上,其它地方让它自然弯曲,如此画出的曲线称为样条曲线。
因为这种曲线的曲率是处处连续的,所以要求样条函数的二阶导数连续。
人们普遍使用的样条函数是分段三次多项式。
三次样条函数三次样条函数 记作b x a x S ≤≤),(。
要求它满足以下条件:a) 在每个小区间),,1](,[1n i x x i i =-上是3次多项式;b) 在b x a ≤≤上二阶导数连续;c) n i y x S i i ,,1,0,)( ==。
(14) 由条件a ,不妨将)(x S 记为{}n i x x x x S x S i i i ,,1],,[),()(1 =∈=-i i i i i d x c x b x a x S +++=23)( (15)其中i i i i d c b a ,,,为待定系数,共4n 个。
由条件b ,⎪⎩⎪⎨⎧''=''-='='=+++)()(1,,2,1)()()()(111i i ii i i i i i i i i x S x S n i x S x S x S x S (16)容易看出,(14)、(16)式共含有4n -2个方程,为确定)(x S 的4n 个待定参数,尚需再给出2个条件。
最常用的是所谓自然边界条件:0)()(0=''=''n x S x S (17) 可以证明,4n 阶线性方程组(14)、(16)、(17)有唯一解,即)(x S 被唯一确定。
但是,这种解法的工作量太大,方程组又常呈病态,所以实际上要设计简便的解法。
另外,像分段线性函数)(x I n 一样,三次样条函数)(x S 也有良好的收敛性,即在相当一般的条件下,)()(lim x g x S n =∞→。