线性规划与二次规划

合集下载

线性规划与二次规划的应用

线性规划与二次规划的应用

投资组合优化
定义:在给定风险 水平下,最大化预 期收益或最小化风 险
应用场景:股票、 债券等金融资产 组合
目标:实现资产 保值增值,降低 风险
方法:利用二次 规划算法进行优 化求解
电力系统优化
二次规划用于解决电力系统中的无功优化问题,提高电力系统的稳定性和经济性。 通过二次规划,可以优化电力系统的运行方式,降低线损,提高输电效率。 二次规划在电力系统中的应用还包括负荷预测、机组组合、经济调度等方面。
实例:如某公司 需要将产品从多 个产地运往多个 销售地,如何安 排运输工具和运 输路线使得总成 本最低。
分配问题
定义:将有限的资源按照一定的约束条件分配给各个部门或个体,使得总效益最大
应用场景:资源分配、生产计划、物流调度等
线性规划模型:通过线性方程组表示约束条件和目标函数,求解最优解
实例:某公司有10台机器,需要生产3种产品,每种产品需要不同数量的机器,如何分配机器 使得总产量最大
算法原理:基于 K u h n - Tu c k e r 条 件和梯度下降法, 通过迭代更新可 行解,逐渐逼近 最优解。
算法步骤:初始 化可行解,计算 目标函数的梯度 和约束条件的雅 可比矩阵,迭代 更新可行解,直 到满足收敛条件。
算法优势:内点 法具有全局收敛 性和多项式时间 复杂性,适用于 大规模优化问题。
感谢您的观看
灵活性
线性规划的灵活性:适用于多种问题,如生产计划、资源分配等 二次规划的灵活性:适用于凸优化问题,如最小二乘法、约束最小化等
线性规划的局限性:对于非线性问题,需要转化为线性问题,可能损失精度 二次规划的局限性:对于非凸问题,可能陷入局部最优解,而非全局最优解
单纯形法
定义:单纯形法是一种求解线 性规划问题的迭代算法

优化设计复习题(原)

优化设计复习题(原)

word 教育资料优化设计复习题一、单项选择题(在每小题列出的选项中只有一个选项是符合题目要求的)1.多元函数F(X)在点X *附近偏导数连续, F ’(X *)=0且H(X *)正定,则该点为F(X)的( ) ①极小值点 ②极大值点 ③鞍点 ④不连续点 2.F(X)为定义在n 维欧氏空间中凸集D 上的具有连续二阶偏导数的函数,若H(X)正定,则称F(X)为定义在凸集D 上的( ) ①凸函数 ②凹函数 3.黄金分割法中,每次缩短后的新区间长度与原区间长度的比值始终是一个常数,此常数是( ) ①0.382 ②0.186 ③0.618 ④0.816 4.在单峰搜索区间[x 1,x 3](x 1<x 3)内,取一点x 2,用二次插值法计算得x 4(在[x 1,x 3]内),若x 2>x 4,并且其函数值F (x 4)<F(x 2),则取新区间为( ) ①[x 1,x 4] ②[x 2,x 3] ③[x 1,x 2] ④[x 4,x 3] 5.用变尺度法求一n 元正定二次函数的极小点,理论上需进行一维搜索的次数最多为( ) ①n 次 ②2n 次 ③n+1次 ④2次6.下列特性中,梯度法不具有的是( ) ①二次收剑性 ②要计算一阶偏导数 ③对初始点的要求不高 ④只利用目标函数的一阶偏导数值构成搜索方向 8.对于极小化F(X),而受限于约束g μ(X)≤0(μ=1,2,…,m)的优化问题,其内点罚函数表达式为( ) ① Ф(X,r (k))=F(X)-r(k)11/()gX u u m=∑② Ф(X,r (k))=F(X)+r(k)11/()gX u u m =∑③ Ф(X,r (k))=F(X)-r(k)max[,()]01gX u u m=∑④ Ф(X,r (k))=F(X)-r (k)min[,()]01g X u u m=∑9.外点罚函数法的罚因子为( ) ①递增负序列 ②递减正序列 ③递增正序列 ④递减负序列 10.函数F (X )为在区间[10,20]内有极小值的单峰函数,进行一维搜索时,取两点13和16,若F (13)<F (16),则缩小后的区间为( ) ①[10,16] ②[10,13] ③[13,16] ④[16,20] 11.多元函数F (X )在X *处存在极大值的充分必要条件是:在X *处的Hesse 矩阵( ) ①等于零 ②大于零 ③负定 ④正定 12.对于函数F (x )=x 21+2x 22,从初始点x (0)={1,1}T 出发,沿方向s (0)={-1,-2}T进行一维搜索,最优步长因子为( )①10/16 ②5/9 ③9/34 ④1/213.目标函数F (x )=x 21+x 22-x 1x 2,具有等式约束,其等式约束条件为h(x)=x 1+x 2-1=0,则目标函数的极小值为( ) ①1 ②0.5 ③0.25 ④0.1 14. 优化设计的自由度是指( )① 设计空间的维数 ② 可选优化方法数 ③ 所提目标函数数 ④ 所提约束条件数 15. 在无约束优化方法中,只利用目标函数值构成的搜索方法是( ) ①梯度法 ② Powell 法 ③共轭梯度法 ④变尺度法 17. 利用0.618法在搜索区间[a,b ]内确定两点a 1=0.382,b 1=0.618,由此可知区间[a,b ]的值是( ) ①[0,0.382] ② [0.382,1] ③ [0.618,1]④ [0,1]18. 已知函数F(X)=x 12+x 22-3x 1x 2+x 1-2x 2+1,则其Hesse 矩阵是( ) ① ⎥⎦⎤⎢⎣⎡--2332 ② ⎥⎦⎤⎢⎣⎡2332③ ⎥⎦⎤⎢⎣⎡2112 ④ ⎥⎦⎤⎢⎣⎡--3223 19. 对于求minF(X)受约束于g i (x)≤0(i=1,2,…,m)的约束优化设计问题,当取λi ≥0时,则约束极值点的库恩—塔克条件为( )①()i i 1F X g (X)mi λ=∇=∇∑,其中λi 为拉格朗日乘子② ()i i 1F X =g (X)mi λ=-∇∇∑,其中λi 为拉格朗日乘子③ ()i i 1F X g (X)qi λ=∇=∇∑,其中λi 为拉格朗日乘子,q 为该设计点X 处的约束面数④()i i 1F X g (X)qi λ=-∇=∇∑,其中λi 为拉格朗日乘子,q 为该设计点X 处的约束面数20. 在共轭梯度法中,新构造的共轭方向S (k+1)为( ) ① S (k+1)= ∇F(X (k+1))+β(k)S (K),其中β(k)为共轭系数② S (k+1)=∇F(X (k+1))-β(k)S (K),其中β(k)为共轭系数 ③ S (k+1)=-∇F(X (k+1))+β(k)S (K),其中β(k)为共轭系数④ S (k+1)=-∇F(X (k+1))-β(k)S (K),其中β(k)为共轭系数 21. 用内点罚函数法求目标函数F(X)=ax+b 受约束于g(X)=c-x ≤0的约束优化设计问题,其惩罚函数表达式为( ) ① (k)1ax b r c-x+-,r (k)为递增正数序列② (k)1ax b r c-x +-,r (k)为递减正数序列 ③ (k)1ax b r c-x ++,r (k)为递增正数序列word 教育资料④ (k)1ax b r c-x++,r (k)为递减正数序列22. f(x)在区间[x 1,x 3]上为单峰函数,x 2为区间中的一点,x 4为利用二次插值法求得的近似极值点,若x 4-x 2<0,且f(x 4)≥f(x 2),则新的搜索区间为( )① [x 1,x 4] ② [x 2,x 3] ③ [x 1,x 2] ④[x 4,x 3]23. 已知F(X)=x 1x 2+2x 22+4,则F(X)在点X (0)=⎭⎬⎫⎩⎨⎧-11的最大变化率为( )① 10 ② 4 ③ 2 ④ 1024.试判别矩阵1111⎡⎣⎢⎤⎦⎥,它是( )矩阵 ①单位 ②正定矩 ③负定 ④不定 ⑤半正定 ⑥半负定 25.约束极值点的库恩——塔克条件为:-∇=∇=∑F X g Xii qi()()**λ1,当约束函数是g i (X)≤0和λi>0时,则q 应为( )①等式约束数目 ②不等式约束数目 ③起作用的等式约束数目 ④起作用的不等式约束数目26.在图示极小化的约束优化问题中,最优点为( ) ①A ②B ③C ④D27.内点罚函数(X,r (k))=F(X)-r (k)101g X g X u u u m(),(())≤=∑,在其无约束极值点X ·(r (k))逼近原目标函数的约束最优点时,惩罚项中( ) ①r (k)趋向零,11g X u u m()=∑不趋向零 ②r (k)趋向零,11g X u u m()=∑趋向零 ③r (k)不趋向零,11g X u u m()=∑趋向零 ④r (k)不趋向零,11g X u u m()=∑不趋向零 29.0.618法在迭代运算的过程中,区间的缩短率是( )①不变的 ②任意变化的 ③逐渐变大 ④逐渐变小 30.对于目标函数F(X)受约束于g u (X) ≤0(u=1,2,…,m)的最优化设计问题,外点法惩罚函数的表达式是( )①()()(k)(k)2()1X,M F X M {max[(),0]},mk u u g X M =Φ=+∑为递增正数序列②()()(k)(k)2()1X,M F X M {max[(),0]},mk u u g X M =Φ=+∑为递减正数序列③()()(k)(k)2()1X,M F X M {min[(),0]},mk u u g x M =Φ=+∑为递增正数序列 ④()()(k)(k)2()1X,MF X M {min[(),0]},mk uu g x M=Φ=+∑为递减正数序列31.对于二次函数F(X)=12X T AX+b T X+c,若X *为其驻点,则▽F(X *)为( )①零 ②无穷大 ③正值 ④负值 32.在约束优化方法中,容易处理含等式约束条件的优化设计方法是( )①可行方向法 ②复合形法 ③内点罚函数法 ④外点罚函数法33.已知F(X)=(x 1-2)2+x 22,则在点X (0)=00⎧⎨⎩⎫⎬⎭处的梯度为( )①∇=⎧⎨⎩⎫⎬⎭F X ()()000 ②∇=-⎧⎨⎩⎫⎬⎭F X ()()020 ③∇=⎧⎨⎩⎫⎬⎭F X ()()040 ④∇=-⎧⎨⎩⎫⎬⎭F X ()()04034.Powell 修正算法是一种( )①一维搜索方法②处理约束问题的优化方法③利用梯度的无约束优化方法④不利用梯度的无约束优化方法 二、多项选择题(在每小题列出的多个选项中有两个以上选项是符合题目要求的,多选、少选、错选均无分) 35.下列矢量组中,关于矩阵A=105051--⎡⎣⎢⎤⎦⎥..共轭的矢量组是( )①s 1={0 1} ,s 2={1 0}T②s 1={-1 1}T ,s 2={1 1}T③s 1={1 0}T ,s 2={1 2}T④s 1={1 1}T ,s 2={1 2}T⑤.s 1={1 2}T ,s 2={2 1}T36. 对于只含不等式约束的优化设计问题,可选用的优化方法有( )① Powell 法 ② 变尺度法 ③ 内点罚函数法 ④ 外点罚函数法E. 混合罚函数法37. 根据无约束多元函数极值点的充分条件,已知驻点X*,下列判别正确的是( )①若Hesse矩阵H(X*)正定,则X*是极大值点②若Hesse矩阵H(X*)正定,则X*是极小值点③若Hesse矩阵H(X*)负定,则X*是极大值点④若Hesse矩阵H(X*)负定,则X*是极小值点⑤若Hesse矩阵H(X*)不定,则X*是鞍点38.下述Hesse矩阵中,正定矩阵为()①3335⎡⎣⎢⎤⎦⎥②313153337⎡⎤⎢⎥-⎢⎥-⎢⎥⎣⎦③3445⎡⎣⎢⎤⎦⎥④245434542⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦⑤523222327⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦39.F(X)在区间[a,b]上为单峰函数,区间内函数情况如图所示:F1=F2。

二次规划

二次规划


从一个准互补基本可行解到另一个准互补基本可 行解的转换,直至得到互补基本可行解。 初始解:人工变量为进基变量,选离基变量使之 成为准互补基本可行解。
z0 max{ qi | i 1,...., m n} qs z 0, w q ez0 q eqs 0

主元选择规则:

若wi(zi)离基,则zi(wi)进基。 离基变量按最小比值原则选取。
用Lemke方法求解:
2 min f ( x) x12 x1 x2 2 x2 x1 10 x2
3 x1 2 x2 x 0 s.t. 1 x2 0
w1 9 w2 0 w 3 16 z1 0 z 2 0 z3 0 z 10 0
x L ( x, ) 0 L ( x, ) 0
Q R H A : R S A 0
T T 1
H AT x c 0 b A
x Qc R T b
可行下降方向
若x点的某一方向 , d 则称d为x的可行下降方向。
既是该点的可行方向, 又是该点的下降方向
§5.5.1 Zoutendijk(约坦狄克)可行 方向法
I. 线性约束情形 II. 不等式约束情形 III.一般约束情形
待解决的问题

搜索方向的确定
搜索步长的确定 初始点的确定


线性约束情形
6
0 0 26 / 5 0 9/5 0 14 / 5
0 0 0 13 / 14 33 / 14 0 3/ 2

二次规划ppt课件

二次规划ppt课件

• 满足约束条件的点称可行点,可行点集合构成可行域
2
线性规划与非线性规划
• 非线性规划(Nonlinear Programming)
• 非线性规划的数学模型可以表示为
min f x
xRn
s.t. gi x 0 i hj x 0 j
• 在目标函数或者约束函数中至少有一个函数是非线性的 • 当非线性规划问题的可行域为整个实数域时,称为无约束优化问题,
0
优化问题无界或者不可行
• output.a lgorithm
output.iterations
优化算法类型 算法的迭代次数
• lambda.ineqlin
不等式约束的乘子
lambda.eqlin
等式约束的乘子
14
lambda.lower / upper 变量下界和上界
案例分析
• 假设有四种投资1,2,3,4,第i种投资的收益率 ri 的预期收益均值为 i E ri ,
• 在满足收益率条件下最小化风险模型:
min f x 1 xTQx 2
2 s.t. uT x M
4
xi 1, x 0
1
16
案例分析
Q 社保债券 技术交易中心 管理咨询中心 游乐中心 预期收益
社保债券 2 0.4 0.1 0 7
技术交易中心 管理咨询中心
0.4
0.1
4
3
3
6
-1
1
8
10
游乐中心 0 -1 1 10 14
方差
2 iBiblioteka Erii2
表示投资的风险大小,即收益率关于均值的偏离程度
• 令 xi 为第i个项目的投资额占总投资的比例,向量 x x1, x2, x3, x4 T表示一个

线性规划

线性规划
饲料 蛋白质(g) A1 0.3 A2 2 A3 1 A4 0.6 A5 1.8
矿物质(g)
维生素(mg)
0.1
0.05
0.05
0.1
0.02
0.02
0.2
0.2
0.05
0.08
希望建立数学模型,既能满足动物需要,又使总成 本最低的饲料配方
模型
饲料 符号 A1 x1 A2 x2 A3 x3 A4 x4 A5 x5
约 l2 : 12x1 8x2 480 束 12x1 8x2 480 l4 条 3x1 100 l3 : 3x1 100 件 c l4 : x1 0, l5 : x2 0 x1 , x2 0 目标 函数
l1 : x1 x2 50
x2 A
l1 B l2 C Z=3600 l3
线性规划问题的数学模型的一般形式
( 1)列出约束条件及目标函数 (2)画出约束条件所表示的可行域 (3)在可行域内求目标函数的最优解及最优值
线性规划问题的标准形式
{
max y=cTx s.t. Ax=b x≥0
求解方法: (1)单纯形法 (2)软件求解:Lindo, Lingo, matlab,sas
RANGES IN WHICH THE BASIS IS UNCHANGED: OBJ COEFFICIENT RANGES VARIABLE CURRENT ALLOWABLE ALLOWABLE COEF INCREASE DECREASE X1 X2 ROW 72.000000 24.000000 8.000000
Max z 72x1 64x2
z=c (常数) ~等值线
0
l5
Z=0
x1 D Z=2400

二次规划基本介绍

二次规划基本介绍
(2-5)
BXB CXC b
XB B-1C bB-1
(2) 确定被替换基本变量 x r
bi br 0) min( aik 1i m aik ark
x1 b1 x b r r xm bm
4.3二次规划
Find x min f ( x ) s. t . g ( x ) ≤ 0 ( j 1, 2,, n ) j
非线性约束优化问题
(目标函数—非线性) (约 束—非线性)
非线性优化问题
(目标函数—非线性)
线性约束优化问题
(目标函数—非线性) (约 束—线 性)
有约束优化问题
ai x( k1) bi ai ( x( k ) k d ) bi ai x( k ) bi
ai x ( k 1) bi
二次规划:不等式约束问题的有效集法
二次规划:不等式约束问题的有效集法
二次规划:其它算法简介
这就是K-K-T条件,
P

f (x)

2
x
*
g1 (x)
g1 (x) 0
二次规划
一.二次规划的数学模型 二.二次规划的最优性条件 三.等式约束二次规划的解法 四.不等式约束二次规划的有效集解法 五.其它算法简介
二次规划:最优性条件
二次规划:等式约束问题
二次规划:等式约束问题
二次规划:等式约束问题
单纯形法的小结
(一)线性规划的标准形式: (二)基本概念
m i nz c T x Ax b s.t. x 0 j
T
(1)可行解:满足全部约束条件的决策向量称为可行解。 x ( x1 , x2 ,, xn , ) (2)可行域:全部可行解所构成的空间称为可行域。 (3)最优解:使目标函数达到最小的可行解称为最优解。 (4)无界解:若目标函数无下界称为无界解。

matlab学习笔记之求解线性规划问题和二次型问题

matlab学习笔记之求解线性规划问题和二次型问题

matlab学习笔记之求解线性规划问题和⼆次型问题⼀、线性规划问题 已知⽬标函数和约束条件均为线性函数,求⽬标函数的最⼩值(最优值)问题。

1.求解⽅式:⽤linprog函数求解2.linprog函数使⽤形式: x=linprog(f,A,b) x=linprog(f,A,b,Aeq,beq) x=linprog(f,A,b,Aeq,beq,lb,ub) x=linprog(f,A,b,Aeq,beq,lb,ub,x0) x=linprog(f,A,b,Aeq,beq,lb,ub,x0,options) [x,fval]=linprog(…) [x, fval, exitflag]=linprog(…) [x, fval, exitflag, output]=linprog(…) [x, fval, exitflag, output, lambda]=linprog(…)3.介绍⼀种最常⽤的: [x,fval,exitflag,output,lambda] = linprog(f,A,b,Aep,beq,lb,ub);其中,f是⽬标函数系数矩阵;A和b是不等式约束条件的参数;Aeq和beq是等式约束条件的参数;lb和ub为x取值的取值范围。

lambda.ineqlin—不等式约束A,b lambda.eqlin—等式约束Aep,bep lambda.upper—上界条件ub lambda.lower—下界条件lb4.实例:⽬标函数:f(x) = –5x1 – 4x2 –6x3,约束条件: x1 – x2 + x3 ≤ 20 3x1 + 2x2 + 4x3 ≤ 42 3x1 + 2x2 ≤ 30 0 ≤ x1, 0 ≤ x2, 0 ≤ x3Matlab程序:>> f = [-5; -4; -6]; A = [1 -11; 324; 320]; b = [20; 42; 30]; lb = zeros(3,1);>> [x,fval,exitflag,output,lambda] = linprog(f,A,b,[],[],lb);>> xx =0.000015.00003.0000>> fvalfval =-78.0000⼆、⼆次型规划问题 理解完线性规划问题再来学习⼆次型规划问题就简单得多了,可以相似类⽐。

优化问题的Matlab求解方法

优化问题的Matlab求解方法

优化问题的Matlab求解方法引言优化问题在实际生活中有着广泛应用,可以用来解决很多实际问题。

Matlab作为一款强大的数学计算软件,提供了多种求解优化问题的方法。

本文将介绍在Matlab中求解优化问题的常见方法,并比较它们的优缺点。

一、无约束无约束优化问题是指没有约束条件的优化问题,即只需要考虑目标函数的最大或最小值。

在Matlab中,可以使用fminunc函数来求解无约束优化问题。

该函数使用的是拟牛顿法(quasi-Newton method),可以迭代地逼近最优解。

拟牛顿法是一种迭代方法,通过逐步近似目标函数的梯度和Hessian矩阵来求解最优解。

在使用fminunc函数时,需要提供目标函数和初始点,并可以设置其他参数,如迭代次数、容差等。

通过不断迭代,拟牛顿法可以逐步逼近最优解。

二、有约束有约束优化问题是指在优化问题中加入了约束条件。

对于有约束优化问题,Matlab提供了多种求解方法,包括线性规划、二次规划、非线性规划等。

1. 线性规划线性规划是指目标函数和约束条件都为线性的优化问题。

在Matlab中,可以使用linprog函数来求解线性规划问题。

该函数使用的是单纯形法(simplex method),通过不断迭代来逼近最优解。

linprog函数需要提供目标函数的系数矩阵、不等式约束矩阵和约束条件的右手边向量。

通过调整这些参数,可以得到线性规划问题的最优解。

2. 二次规划二次规划是指目标函数为二次型,约束条件线性的优化问题。

在Matlab中,可以使用quadprog函数来求解二次规划问题。

该函数使用的是求解二次规划问题的内点法(interior-point method),通过迭代来求解最优解。

quadprog函数需要提供目标函数的二次项系数矩阵、线性项系数矩阵、不等式约束矩阵和约束条件的右手边向量。

通过调整这些参数,可以得到二次规划问题的最优解。

3. 非线性规划非线性规划是指目标函数或者约束条件中至少有一个是非线性的优化问题。

求解二次规划问题的拉格朗日及有效集方法

求解二次规划问题的拉格朗日及有效集方法

求解二次规划问题的拉格朗日及有效集方法——最优化方法课程实验报告学院:数学与统计学院班级:硕2041班姓名:王彭学号:3112054028指导教师:阮小娥同组人:钱东东求解二次规划问题的拉格朗日及有效集方法求解二次规划问题的拉格朗日及有效集方法摘要二次规划师非线性优化中的一种特殊情形,它的目标函数是二次实函数,约束函数都是线性函数。

由于二次规划比较简单,便于求解(仅次于线性规划),并且一些非线性优化问题可以转化为求解一些列的二次规划问题,因此二次规划的求解方法较早引起人们的重视,称为求解非线性优化的一个重要途径。

二次规划的算法较多,本文仅介绍求解等式约束凸二尺规划的拉格朗日方法以及求解一般约束凸二次规划的有效集方法。

关键字:二次规划,拉格朗日方法,有效集方法。

- 1 -《最优化方法》课程实验报告- 2 - 【目录】摘要........................................................................................................................... - 1 -1 等式约束凸二次规划的解法............................................................................... - 3 -1.1 问题描述.................................................................................................... - 3 -1.2 拉格朗日方法求解等式约束二次规划问题............................................ - 3 -1.2.1 拉格朗日方法的推导...................................................................... - 3 -1.2.2 拉格朗日方法的应用...................................................................... - 4 -2 一般凸二次规划问题的解法............................................................................... - 5 -2.1 问题描述.................................................................................................... - 5 -2.2 有效集法求解一般凸二次规划问题........................................................ - 6 -2.2.1 有效集方法的理论推导.................................................................. - 6 -2.2.2 有效集方法的算法步骤.................................................................. - 9 -2.2.3 有效集方法的应用........................................................................ - 10 -3 总结与体会......................................................................................................... - 11 -4 附录..................................................................................................................... - 11 -4.1 拉格朗日方法的matlab程序................................................................. - 11 -4.2 有效集方法的Matlab程序 .................................................................... - 11 -求解二次规划问题的拉格朗日及有效集方法- 3 -1 等式约束凸二次规划的解法1.1 问题描述我们考虑如下的二次规划问题⎪⎩⎪⎨⎧=+b Ax t s x c Hx x T T ..,21min (1.1) 其中n n R H ⨯∈对称正定,n m R A ⨯∈行满秩,n R x c,∈,m R b ∈。

二次规划基本介绍

二次规划基本介绍

二次规划基本介绍二次规划(Quadratic Programming,简称QP)是数学规划的一种特殊形式,它的目标函数是二次函数,约束条件是线性函数。

在实际应用中,二次规划被广泛应用于经济学、运筹学、工程学等领域,具有重要的理论和实际意义。

二次规划的一般形式可以表示为:$$\begin{aligned}\min_{x} \quad & \frac{1}{2} x^T Q x + c^T x \\\text{s.t.} \quad & Ax \ge b \\&Cx=d\end{aligned}$$其中,$x$是优化变量,$Q$是一个对称正定的矩阵,$c$、$b$、$d$都是列向量,$A$、$C$是约束矩阵。

在约束条件中,$Ax \ge b$表示一组不等式约束,$Cx = d$表示一组等式约束。

二次规划的优化目标是寻找满足约束条件的$x$,使得目标函数最小。

目标函数由两部分组成,一部分是二次项,一部分是线性项,其中$Q$是二次项的系数矩阵,$c$是线性项的系数向量。

由于$Q$是一个对称正定矩阵,所以二次项是凸的,使得问题具有良好的性质。

二次规划的解法有多种方法,以下介绍其中两种常用的方法:内点法和激活集方法。

内点法是一种迭代求解二次规划问题的方法。

它通过将二次规划问题转化为一系列等价的线性规划问题来求解。

在每一次迭代中,内点法通过将问题的方向限制在可行域的内部,逐渐逼近最优解。

使用内点法求解二次规划问题的一个优点是,可以在多项式时间内找到最优解,尤其适用于大规模的问题。

激活集方法是一种基于约束的求解方法。

它通过不断修改约束条件,从而求解二次规划问题。

在每一次迭代中,激活集方法选取一个子集,称为“激活集”,包含满足等式约束、不等式约束等的约束条件。

然后通过解析方法或数值方法求解这个子问题,得到对应的最优解。

该方法的优点是,可以很好地处理不等式约束和等式约束,并且收敛性良好。

除了内点法和激活集方法,还有其他的求解方法,如:序列二次规划、信赖域算法、光滑方法等。

二次规划.ppt

二次规划.ppt

等式约束的二次规划问题
直接消去法 求解问题(1)最简单又最直接的方法就是利用约束来消去部分变量,从而把问题
转化成无约束问题,这一方法称为直接消去法。
将 A 分解成为如下形式:
A B,N
其中 B 为基矩阵,相应的将 x,c, H 作如下分块:
x

xB xN

,
c

cB cN

,
H

H11 H21
H12
H 22

其中 H11 为 m m 维矩阵。这样,问题(1)的约束条件变为: BxB NxN b
即:
xB B1b B1NxN (2)
等式约束的二次规划问题
将(2)代入 f x中就得到与问题(1)等价的无约束问题:
min
如果 Hˆ 2正定,则问题(3)的最优解为: x*N Hˆ 21cˆN
此时,问题(1)的解为:
x*

xx**NB


B1b

0


B1N

I

Hˆ 21cˆN
记点 x* 处的拉格朗日乘子为 λ* ,则有: AT λ* f x* Hx* c ,故知:
x1 2x2 x3 4 x1 x2 x3 2
通过高斯消元法可得:

x1 x1

2x2 4 x2 2

x3 x3

x1


1 3
x3


x2

2
2 3
x3
代入 f x 中可得到等价的无约束问题:
min

二次规划资料

二次规划资料

向。
内点法的改进
• 修正内点法:引入正则化项,提高内点法的稳定性和收敛性。
• 梯度投影法:利用梯度的投影性质,简化内点法的计算。
• 并行内点法:利用多核处理器并行计算,提高计算速度。
修正牛顿法
修正牛顿法原理
• 基本思想:引入正则化项,使得海森矩阵具有更好的条件数。
• 更新公式:^(k+1) = ^k - ^(-1)^k - ^(-1),其中为步长因子。
• 敏感性分析图:绘制模型结构与最优解的关系图,直观
的可行域,从而影响最优解的值和位置。
展示模型结构变化对最优解的影响。
06
二次规划问题的拓展与推广
多目标二次规划问题
多目标二次规划问题
• 定义:多目标二次规划问题是一类求解多个目标函数的二次规划问题,目标函数
之间可能存在冲突或权衡。
• 决策变量:多目标二次规划问题需要求解一组决策变量的最优值。
非线性二次规划问题
• 定义:非线性二次规划问题是一类目标函数或约束条件为非线性函数的二次规划
问题。
• 决策变量:非线性二次规划问题需要求解一组决策变量的最优值。
• 目标函数:非线性二次规划问题的目标函数是一个非线性二次多项式函数,通常
表示为最小化形式。
非线性二次规划问题的求解方法
• 转化为线性问题:通过变量替换或线性化方法,将非线性二次规划问题转化为线性
参数变化对最优解的影响
敏感性分析的方法
• 目标函数系数变化:目标函数系数的变化会影响最优解
• 参数扫描:遍历参数取值范围,观察最优解的变化情况。
的值和位置。
• 敏感性分析图:绘制参数与最优解的关系图,直观展示
• 约束条件变化:约束条件的变化会影响最优解的可行域,

线性规划的十种类型

线性规划的十种类型

线性规划的十种类型线性规划是一种优化问题的数学方法,其目标是找到一组决策变量的最佳值,以使目标函数在一组约束条件下达到最大(最小)值。

线性规划问题可以分为以下十种类型。

1.单目标线性规划:在单目标线性规划中,只有一个目标函数需要最大化或最小化。

例如,最大化营销利润或最小化生产成本。

2.多目标线性规划:多目标线性规划包含两个或更多个目标函数,需要在多个目标之间进行权衡。

例如,同时最大化销售额和最小化生产成本。

3.约束线性规划:在约束线性规划中,问题除了目标函数外,还有一些约束条件需要满足。

例如,生产项产品所需的原材料数量不能超过供应商的可用数量。

4.混合整数线性规划:在混合整数线性规划中,决策变量可以为实数或整数。

该问题既包含线性约束条件,又包含整数约束条件。

例如,在生产计划中考虑到机器的整数需求。

5.二次线性规划:在二次线性规划中,目标函数为二次函数,但约束条件为线性函数。

例如,在市场分析中,为了最大化利润,需要考虑产品价格和销售量之间的二次关系。

6.敏感性分析:敏感性分析用于确定目标函数和约束条件的变化情况下,最优解如何随之变化。

例如,在成本或需求变化时,优化生产或库存计划。

8.资源分配:资源分配问题涉及到如何最优地分配有限资源,以满足不同的需求。

例如,在项目管理中,如何分配时间、金钱和人力资源以最大化项目成功。

9.增益线性规划:增益线性规划是在优化问题中引入风险和不确定性的一种方法。

例如,在金融领域,如何在市场波动和风险条件下最大化回报。

10.竞争性线性规划:竞争性线性规划涉及到多个参与者之间的竞争和博弈。

例如,在拍卖和竞标过程中,如何确定最佳投标策略以赢取项目并最大化利润。

以上是线性规划的十种类型,每种类型都涉及不同的问题和应用领域。

线性规划的方法可以帮助企业、组织和个人做出最佳的决策,以实现其目标并最大化效益。

二次规划的算法研究

二次规划的算法研究
Karmarkar的著名算法…L一梯度投影算法发表以来,其理论上的多项式收敛性及
实际计算的有效性,使得内点算法成为近十多年来优化界研究的热点。受 Karmarkar算法的影响,二次规划的内点算法紧接着也被提了出来。内点算法的基 本思想就是在可行域的内部产生一个点列,使得这个点列收敛到原问题的最优解。
关键词:二次规划Lagrange对偶严格可行内点算法不可行内点算法 中心路径算法线性互补
Abstract
Quadratic programming is an important branch in mathematical programming,
which has wide applications in many fields such as operation research,economical
Linear complementarity
创新性声明
本人声明所呈交的论文是我个人在导师指导下进行的研究工作及取得的研究 成果。尽我所知,除了文中特别加以标注和致谢中所罗列的内容以外,论文中不 包含其他人已经发表或撰写过的研究成果:也不包含为获得西安电子科技大学或 其它教育机构的学位或证书而使用过的材料。与我一同工作的同志对本研究所做 的任何贡献均己在论文中做了明确的说明并表示了谢意。
studying situation Of quadratic programming ale bdefiy introduced in chapter one.In
order to obtain interior point algorithms for convex quadratic progranuning,basic
且/(xt),f(x:),…的极限存在时,有,(Ds垫f(xt);

最优化方法 第三章(二次逼近法)

最优化方法  第三章(二次逼近法)

min s.t.
ci x ci x
1 T Q(d ) d Bk d f ( x k )T d 2
k T

d ci x k 0, i I m 1,..., p
k T

d ci x k 0, i E 1,..., m .
基本思想:将问题转化为求解一系列的二次规划子问 题。从已知点和近似乘子向量进行迭代,由二次规划 问题计算出的结果对迭代过程进行更新。
s.t.
三、二次逼近法 等式约束问题 由等式约束K-T条件,有
f x hE x 0,
T

hE x 0.
T x L x , f x A x F x, 0. hE x hE x



d,
T
k W x k , λ k A x k T d f x k A xk h x 0 E
一般约束问题
min s.t.
f (x), ci x 0, i I m 1,..., p ci x 0, i E 1,..., m .
x 1 不是原二次规划问题的可行解,令
,显然为函数值下降方向。但在 x1
1
d 1 x 1 x1
沿 d 趋向
T a 某些不等式约束 i x bi , i t 1, t 2,..., p ,设
x
1
的过程中,不满足原二次规划问题的
在移动的过程中,最先遇到某个不等式约束,对应 的下标为 l ,相应的交点记为 x ,x 点处对应的有

二次规划

二次规划
1 T x x Gx g T x q 2 AT x b
的唯一整体最优解.
证明:任意的可行解x
令p x * x.
A x* A x b
T T
A xb
T
nm
A p0
T
p Zu, u R
1 T T q ( x) ( x * p ) G ( x * p) g ( x * p) 2 q( x*) u ( Z GZ )u 2
Av 0
列满秩
与假设
v0
矛盾
( p, v) 0
K是非奇异的.
r 定理: 假设 A 为列满秩矩阵, A m , 若投影 Hesse阵 Z T GZ 正定,则满足方程组
KKT对x* , * 中x*是
min s.t
G T A
A x * g 0 * b
性条 件

2 2 2 min q x x1 x2 x3
s.t
x1 x2 x3 1 x2 x3 1
1 2 3
x2 x3 1 x1 2 x3
4 5
q ( x) x1 x2 x3
2 2
2
4 x32 ( x3 1) 2 x32
A* g Gx* * , 只需考虑该方程组的前 m 行就可以给出 * 1 * * AB g B GBB xB GBN xN
^
相应的最优Lagrange乘子 * 可由下式确定,


G正半定
^
G不定、负定、负半定
^
G正半定
( I GG ) g 0 问题有界
^ ^ ^
* T ˆ xB AB T b AB T AN G 1 g ˆ * * 1 ˆ ˆ G正定 xN G g x * x ˆ ˆ G 1 g N

第十九章 RTO

第十九章  RTO

单变量优化-方法 单变量优化 方法
第一种方法: 第一种方法:Newton法,弦割法; 法 弦割法; 在得到迭代格式后进行直接迭代计算 求解近似解; 求解近似解; 第二种方法:插值法; 第二种方法:插值法;一般用二次内插 二次内插求解式: 二次内插求解式: 第三种方法: 第三种方法:拟合法 在得到插值或拟合多项式后令f(x)微 在得到插值或拟合多项式后令 微 分值为0,求出优化解; 分值为 ,求出优化解;
RTO基本要求 限制条件 基本要求-限制条件 基本要求
模型约束: 模型约束: A 操作条件: 操作条件: 设备材料、阀门开度、 设备材料、阀门开度、温度等 B 供料与产品量 供料受初始设计流通量大小确定 产品量受到销售和库存约束 C 存储与库存能力 D 产品杂质
RTO基本要求 优化措施 基本要求-优化措施 基本要求
动态实时优化策略下的分层式预测控制及其在化工过程中的应用
RTO表述及求解 表述 表述及求解-表述 表述及求解
优化问题的表述: 优化问题的表述: 1,经济模型: ,经济模型: 最大利润(最大化的目标函数) 最大利润(最大化的目标函数) 最小成本(最小化目标函数) 最小成本(最小化目标函数) 2,运行模型: ,运行模型: 稳态过程模型 过程变量的所有约束
RTO基本要求 典型流程图 基本要求-典型流程图 基本要求
RTO基本要求 问题 基本要求-问题 基本要求
关于RTO稳态启动的一个问题: 稳态启动的一个问题: 关于 稳态启动的一个问题 在计算机控制系统中,为不过分干扰生 在计算机控制系统中, 产,只有在过程接近稳态时方可进行最 优调节,但若关键变量不易测量, 优调节,但若关键变量不易测量,不可 确定当时是否接近稳态?( ?(DRTO) 确定当时是否接近稳态?( )

二次规划

二次规划
9.6 二次规划
二次规划是特殊的非线性规划,它形式简单,既可以 使用求解非线性规划的一般方法求解,又有特定的解法; 此外,二次规划在实际中有着广泛的应用,例如著名的支 持向量机,在本质上就是一个二次规划问题.本节着重介 绍凸二次规划问题的一些性质和求解方法.
9.6.1 二次规划的基本概念与基本性质
* T i i *
m l
很 明 显 A ( x x ) =0 , 而
i 1 * i T i *
m
i m 1
A
* i
m l
T i
( x x* ) 可 以 写 成 两 部 分 之 和 ,分 别 是
根 据 x* 处 起 作 用 约 束 和 不 起 作 用 不 等 式 约 束 下 标 分 别 求 和 , 由 ( 9-56 ) 和 x H 可以推出
T 1 T ( AB ) AN F , I
(9-71)
并 且 秩 ( F)= n -m , 因 此
T 1 T G G ( A BB BN T 1 B ) AN (9-72) G N F GF ( AN AB , I ) G I NB G NN 由于 F 是列满秩的,并且 G 正定,因此 G N 也是正定的,对称性显然. 定 理 9-5 表 明 对 于 等 式 约 束 的 严 格 凸 二 次 规 划 问 题 ,可 以 用 直 接 消
9.6.2 等式约束二次规划问题
本小节讨论等式约束二次规划问题
min
f ( x)
1 T x Gx r T x, 2
(9-58)
s.t. AT x b,
其 中 ,G 为 n n 阶 对 称 矩 阵 , r 为 n 维 列 向 量 , A 为 n m 阶 矩 阵 , n m 且 秩 ( A )= m , 即 矩 阵 A 是 列 满 秩 的 .

vlukap 公式

vlukap 公式

vlukap 公式摘要:一、引言二、vlukap 公式的定义1.公式背景2.公式推导三、vlukap 公式的应用1.线性规划问题2.二次规划问题四、vlukap 公式的性质1.凸优化问题2.非凸优化问题五、结论正文:一、引言vlukap 公式,全称为Vu-Lu-Kaplan 公式,是一种用于解决优化问题的数值方法。

它广泛应用于数学、工程和经济学等领域,特别是在线性规划和二次规划问题的求解中具有较高的实用价值。

本文将对vlukap 公式进行详细介绍,包括其定义、应用和性质。

二、vlukap 公式的定义1.公式背景vlukap 公式是由Vu、Lu 和Kaplan 三位学者于1970 年代提出的,是一种基于信赖域的优化算法。

它通过引入信赖域的概念,对传统的优化方法进行了改进,从而在求解优化问题时具有更高的收敛速度。

2.公式推导vlukap 公式的推导过程较为复杂,涉及到信赖域的构建、目标函数的平滑处理以及梯度下降法的应用等。

具体推导过程可参考相关文献。

三、vlukap 公式的应用1.线性规划问题线性规划问题是最优化问题的一种,其目标是最小化或最大化一个线性函数,受到一组线性约束条件的限制。

vlukap 公式在求解线性规划问题时具有较好的性能,特别是在处理大规模、复杂数学模型时,表现出较高的实用价值。

2.二次规划问题二次规划问题是指目标函数为二次函数,约束条件为线性函数的优化问题。

vlukap 公式在求解二次规划问题时同样具有较好的性能,可以有效提高求解速度和精度。

四、vlukap 公式的性质1.凸优化问题对于凸优化问题,vlukap 公式具有全局收敛性,且收敛速度较快。

在实际应用中,许多优化问题都是凸优化问题,因此vlukap 公式具有良好的适用性。

2.非凸优化问题对于非凸优化问题,vlukap 公式的收敛性需要满足一定的条件。

在某些特定情况下,vlukap 公式同样可以实现全局收敛。

但在更多情况下,需要与其他优化算法结合使用,以提高求解效果。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
运至J个港口 M1, M 2 , , M J 装船出口。生产基地 Pi 存储货物的
总量是 si (i 1, 2, , I ), 港口 M j 对货物运输能力是 rj . 设从 基地 Pi 到港口M j 单位质量货品的运输价格是 bij 。
问题:给出最节省的运输方案。
优化变量:设从基地 P运i 输到港口 M的j 货物量为 yij
A
e
J
1
eJ 0
eJ 0
,c
rJ
s1
1是元素全是1的J 维行向量 0是J维行向量
0 1
0
s2
e j是第j个元素为1,其它元素是0的J维行向量雷0达信0号处理国防科1技重点实 验sI室
5.1 线性规划举例
数据拟合问题-Min_Max问 设测定了一组数题据 {(xn , yn ) : n 1,2, , N} ,用m(m n 1) 次 的多项式拟合变量 x 和 y,问题:找一个n次多项式使得所有
数据点的最大偏差是最小的。
问题描述
设多项式函数为
m
y Pm (x) ai xi [1, x, i0
a [a0 , a1, , am ]T
, xm ]a
在每个数据点的偏差
k Pm (xk ) yk [1, xk , , xkm ]a yk
雷达信号处理国防科技重点实验室
5.1 线性规划举例
xi 0, i 1, 2, , m
minbT x
s.t., Ax c x0
x1
b1
c1
a11 a12
x
x2
,
b
b2
,c
c2
,
A
a21
a22
a1m
a2
m
xm
bm
cn
雷a达n1 信号a处n 2理国防科技a重nm点实验室
5.1 线性规划举例
运输问题
有I个生产基地 P1, P2 , , PI 存储着某种货物,这些货物必须
转下页
[1, xk , , xkm ]a yk [1, xk , , xkm ]a yk
雷达信号处理国防科技重点实验室
5.1 线性规划举例
线性规划
min
[ ,a] m1
1 1
1 1
x1 x2
s.t.,
A
a
c
A
1 1
1 1
xn x1
1 1 x2
1 1 xn
x1m x2m
y1
y2
xnm x1m
,
c
yn
y1
x2m y2
xnm yn
雷达信号处理国防科技重点实验室
5.1 线性规划举例
线性分式规划问题-Linear Fractional Programming
问题描述(续)
min a
k
max {
1,2, ,n
k
}
where
绝对值约束转 化为线性约束
k [1, xk , , xkm ]a yk
[1, xk , , xkm ]a yk k [1, xk , , xkm ]a yk k
关于a的线性等式约束
引进辅助变量控制所有样本点的偏差
max{ k } [1, xk , , xkm ]a yk [1, xk , , xkm ]a yk
IJ
总运费:
C
bij yij
J
i 1 j 1
存货量约束: yij si
j 1
I
运输能力约束:
yij rj
i 1
非负约束: yij 0
雷达信号处理国防科技重点实验室
5.1 线性规划举例
线性规划
IJ
min C
bij yij
i 1 j 1
I
s.t., yij rj , j 1, 2, , J i 1
优化变量:设需要一级和二级检验员的人数分别为x1,x2人
工资花费: 8 4 x1 8 3 x2 32x1 24x2
错检损失: 8 25 (1 0.98)x1 815 (1 0.95) x2 2 8x1 12x2
总花费: z 40x1 36x2
约束条件: 8 25x1 815x2 1800 x1 0; x2 0
5x1 3x2 45
雷达信号处理国防科技重点实验室
5.1 线性规划举例
min{z 40x1 36x2 [40,36][x1, x2 ]T } s.t., 5x1 3x2 45
x1 0 x2 0
线性规划:目标函数是线性函数,约束 条件是线性不等式或等式约束。 满足约束条件的所有点构成的集合称作 可行解集合。
max{x1 x2} s.t.,
凸多边形区域
x2 可行解集合
5x1 3x2 45
x1
雷达信号处理国防科技重点实验室
5.1 线性规划举例
配餐问题
有m种不同类型的食物, F1, F2 , , Fm,这些食物提供了有益 于健康的n种营养成分 N1, N2 , , Nn 。c j 是人体每天对营养成分 N j 的最小需求量。bi 是食物 Fi 的单价.a ji 是每单位质量的食物 Fi 包 含营养成分 N j 的量。 问题:如何配餐的花费代价最小 ?
标准化
min bT y
s.t., Ay c y0
J
yij si , i 1, 2, , I
j
yij 0, i 1, 2, , I ; j 1, 2, , J
e1 e1
e
2
e2
e1
r1
e2
r2
b [b11, b12 , y [ y11, y12 ,
, b1J , b21, , b2J , , bI1, , bIJ ]T , , y1J , y21, , y2J , , yI1, , yIJ ]T
数学建模基础
第五讲: 线性规划与二次规划
---水鹏朗 雷达信号处理国防科技重点实验室
5.1 线性规划举例
例1某工厂每日8小时产量不低于1800件。为了进行质量控制,
计划聘请两种不同水平的检验员。 一级检验员:速度25件/小时,正确率98%,计时工资4元/小时; 二级检验员:速度15件/小时,正确率95%,计时工资3元/小时。 检验员每错检一次,工厂要损失2元。 问题:为使总检验费用最省,应聘一级、二级检验员各几名?
优化变量:设每天食物 F的i 量分别是 xi
m
花费代价: C bi xi i 1 m
营养约束: a ji xi c j , j 1, 2, , N i 1 xi 0, i 1, 2, , m
雷达信号处理国防科技重点实验室
5.1 线性规划举例
线性规划
min C
m
bi
xi
i 1
m
s.t., a ji xi c j , j 1, 2, , n i 1
相关文档
最新文档