桩基完整性(声波透射试验)试验方法

合集下载

声波透射法与钻芯法在桩基检测中的应用

声波透射法与钻芯法在桩基检测中的应用

声波透射法与钻芯法在桩基检测中的应用关键词:声波透射法;钻芯法;预埋管钻芯法一、声波透射法1.1检测原理采用声波透射法对桩基完整性进行检测的原理为:采用发射源在桩基中发出弹性脉冲波,同时用接收装置对这一脉冲波在桩基混凝土中传播的波动特征进行记录;如果桩基混凝土不连续或存在破损的界面,则在缺陷面上将产生一个波阻抗界面,在声波到达这个界面后,将发生反射与透射,导致实际接收到的能量显著减小;如果桩基混凝土中有严重缺陷,如孔洞、松散和蜂窝,则声波会发生散射与绕射;以声波在传播时能量发生的衰减与初至时间为依据,结合频率产生的变化与波形发生的畸变,确定测区中桩基混凝土密实度等技术参数。

对不同检测面与高度对应的波特征进行测试记录,通过处理分析可以确定测区中桩基混凝土参考强度与内存缺陷。

桩基施工开始前,以桩径大小为依据埋设声测管,将其作为换能器主要通道。

在实际测试过程中,将两根声测管作为一组,在水的耦合作用下,信号从其中一根声测管当中发出,在另外一根接收,并采用超声仪对相关技术参数进行测量和采集记录。

测试过程中换能器从桩基的底部开始不断向上进行提升检测,直到遍布整个桩基的测试面。

1.2优缺点声波透射法的优点包括:具有较高的准确性,可对桩基混凝土是否完整进行整体检测,同时还能在很大程度上对桩基混凝土的实际强度进行反映。

与钻芯法相比,不仅检测速度较快而且费用相对较低。

以某桥梁工程的1~8#桩基为例进行分析,其设计直径为1600mm,采用声波透射法对其进行检测。

从检测的信号可以看出,该桩基的1.1~2.9m处有缺陷,后采用钻芯法进行验证,发现该桩基的1.75~2.83m处存在夹泥的现象。

声波透射法的缺点包括:声测管容易发生堵塞,难以对桩基底部的沉渣与桩端持力层实际情况进行检测,而且桩基底部的实际情况较复杂,存在一些可能对检测结果造成影响的因素,需借助钻芯法等其他方法来验证该方法检测后得出的结果。

根据相关检测经验,可能对桩底实际检测结果造成影响的因素包括:声测管的底部存在积水导致表面产生锈蚀,使声测管和混凝土的胶结变差;在声测管的底部,容易被泥浆所覆盖,也会使声测管和混凝土之间的胶结变差;对声测管进行的清洗不到位或不彻底,在声测管底部存在很多的沉积物。

声波透射法检测桩基培训

声波透射法检测桩基培训

频率测量是量测接收信号第一个波的周期,再按频率 值是周期的倒数的关系计算而得:
f=1000/T
(3)
f – 信号主频值(kHz);
T – 信号周期(μs)。
如果波形畸变,测得频率的误差就较大。
声波透射法检测桩身质量,采用声时、振幅、频率三 者声学参数来综合分析、判断确定桩身完整性。
二、仪器设备 1、声波发射与接收换能器选择 (1)圆柱状径向无指向性; (2)外径小于声测管内径,有效工作面轴向长度不大于
1、当检测剖面出现多个测点的声速值普遍偏低且离散性很小时, 采用声速低限值判据Vi<Vc。故判定为声速低于低限值异常。
2、当波幅异常时的临界值判据,如某段测点的波幅值Api<Am6时,波幅可判定为异常。
3、当采用斜率法的PSD值作为辅助异常点判据时,按PSD数值 在某深度处的突变,结合波幅变化情况进行异常点判定。
V=L/t
(1)
式中:V – 超声波速 (km/s);
L – 埋管的间距 (mm);
t – 声时 (μs) 。
从实测的声速特征可以反应穿透的混凝土介质特性的变化。 由(1)式可知,在埋管间距相等情况下,当声时增加时,波 速减小,混凝土强度相对降低;相反,当声时减小时,声速 增加,混凝土强度增加,据此可以判断桩身完整性,缺陷位 置及缺陷程度。
五、检测报告 除了与其他基桩检测报告容相同外,声波透射 法还提供如下内容:
1、声测管布置图;
2、受检桩每个检测剖面声速—深度曲线、波幅—深
度曲线。并将相应判据临界值所对应的标志线 绘制于同一个坐标系; 3、当采用他频值或PSD值进行辅助分析判定时,绘
制主频—深度曲线或PSD曲线;
4、对缺陷分布图示述。
三、现场检测

基桩的声波透射法检测

基桩的声波透射法检测

基桩的声波透射法检测报告一、工程概况桥梁长度约1140km,占正线长度86.5%;隧道长度约16km,占正线长度1.2%;路基长度162km,占正线长度12.3%;全线铺设无碴正线约1268公里,占线路长度的96.2%。

有碴轨道正线约50公里,占线路长度的3.8%。

全线用地总计5000km2。

铁路桥梁基桩进行声波透射法检测。

二、检测依据1. 工程设计文件及施工图;2.《铁路工程基桩无损检测规程》TB10218-99三、检测方法和适用范围1.声波透射法检测声波透射法检测基桩结构完整性的基本原理是:由超声脉冲发射源在混凝土内激发高频弹性脉冲波,并用高精度的接收系统记录该脉冲波在混凝土内传播过程中表现的波动特征;当混凝土内存在不连续或破损界面时,缺陷面形成波阻抗界面,波到达该界面时,产生波的透射和反射,使接收到的透射能量明显降低;当混凝土内存在松散、蜂窝、孔洞等缺陷时,将产生波的散射和绕射;根据波的初至到达时间和波的能量衰减特征、频率变化及波形畸变程度等特性,可以获得测区范围内混凝土的声学参数。

测试记录不同测试剖面、不同高度上的超声波动特征,经过处理分析就能判别测区内混凝土的参考强度和内部存在缺陷的性质、大小及空间位置。

在基桩施工前,根据桩直径的大小预埋一定数量的声测管,作为换能器的通道。

测试时每两根声测管为一组,通过水的耦合,超声脉冲信号从一根声测管中的换能器发射出去,在另一根声测管中的声测管接收信号,声波检测仪测定有关参数并采集记录储存。

换能器由桩底同时从下往上依次检测,遍及各个截面。

声波透射法测桩的特点:检测全面、细致,现场操作简便,迅速,不受桩长、长径比的限制,一般也不受场地限制。

声波透射法基桩质量检测工作程序框图1 2 3 4 52.检测仪器1)声波发射与接收换能器应符合下列要求:➢ 圆柱状径向振动,沿径向无指向性;➢ 外径小于声测管内径,有效工作面轴向长度不大于150mm;➢ 谐振频率宜为30~60kHz;➢ 水密性满足1MPa水压不渗水。

声波透射法检测桩基完整性几种典型波形的分析

声波透射法检测桩基完整性几种典型波形的分析

( 5 ) 桩径小于 2 . 5 m 时埋置 3根检 测管 , 检 测管成等 三角形状 分布 , 管与管之间应相互平行 ; 桩径 大于 2 . 5 m 时埋置 4根检测 管, 检 测管成正 方形状 分布 , 管 与管之 间应相互平行 。
l 声 波 透射 法基 本原 理
在被测桩 内预埋若干检测 管作 为检测通道 , 将发射探 头和接收探头 置于声测 管中, 管 内充满清水作 为耦合剂。 由超声波检测 仪中的 电压式 换 能器 ( 发射探 头) 发射一系列 周期性超声脉冲波 , 脉 冲穿过被检测 的桩 体, 被另一个 电压式换 能器 ( 接受 探头) 所接 收, 超声检测 仪显示 出超声 脉冲穿过被检 测桩体时 的各种参数 , 然后 由仪器 的数据处 理系统按判断 软件对接 收信 号的各种参数进行综 合判断和分析 , 我们根据 分析结果可 对桩 身混凝土 的完整性 、 内部缺 陷性 质、 位置 以及桩身混凝 土总体 均匀
性 等 做 出判 断 。

l , - T - g ' . 5 毪■ f预堙 示 棚
越径大 干2 -檀舅 . f 豫嚏 示棚
图 1 检测管布置示意图
由于声波透 射法的原理与低应变 法不同, 所 以声波透射 法不会受到 桩长、 桩径 的限制 , 可 以较准确 的显 示基桩 内部缺 陷的位置 、 范围及严重 程度等 , 检测 结果更为准 确, 尤其是 大直径超长 桩等低应变 法难 以检测 的基桩其检测效果更佳 。
3 常见 几种检 测情 况 的分析
3 . 1 层 间结 合 不 良型
典型特征为: 分层 明显, 层问薄弱, 如 图 2所示 。 种情 况是干 灌时浇筑稍有停顿 , 振捣方式不正确。经询问, 现场 一 泵车大概装 6 8 m, 混凝土 。考虑桩径 ( 2 0 0 0 mm) 后可得每浇筑 一次, 大概 桩身上 升 1 . 9 1 — 2 . 5 5 m左右 。见波形图波幅列上 , 薄弱层大概 也是 2 m出 现一次 , 很 有规 律。 ( 1 4 . 0 m、 1 2 . 0 m、 1 0 m、 8 . 1 m、 6 . 2 m ) 经现场 询 问得之 , 现 场拌和楼距离此基桩较远 , 浇筑 时产 生较长时间间隔 。振捣时可 能也未 插入下一层或者甚至是不能插入下一层 。造成层 间结合不好 。 种情况为水灌浇筑停 顿很 长时间。此类桩主要表现为波幅很弱 , 波速偏低 ( 一般 比正常波速 低 5 0 0 ~ 6 0 0 m/ s以上) , 形 成原 因主 要是浇筑 过程不连 续, 比如说道 路问题混凝 土不能及时供应 , 天气或其他 原因导 致浇筑停 顿, 混凝土 已经开始初凝后 插入导管继续浇筑 , 造成桩 身混凝 土存在薄弱夹层前 声 测管预 埋 的注 意事 项

超声波法检测基桩完整性

超声波法检测基桩完整性
相关关系是有一定规律的,故波幅成为可用的声参 量。
声波在传播过程中,质点振动的幅度,随着传播 距离的延伸,而逐渐减小,也就是波幅的衰减,其规 律如下:
声波透射法基本原理
式中:
Am—— 发射点的波幅 A —— 为传播了L距离后接收点的波幅 e —— 为自然对数的底 α —— 为声衰减系数
由此可见,声波是按指数规律衰减的。 衰减系数α 与介质的物理性能有关。 致密的混凝土衰减小;疏松的混凝土衰减大;
或“蜂窝”状缺陷。
4. 桩底沉渣。
5.人为因素造成的质量缺陷
超声波法检测基桩完整性
基桩分类
基桩工程常见质量问题
声波透射法基本原理 仪器设备 现场检测技术方法及影响因素 数据分析处理与报告编写 工程实例
CT成像技术
声波透射法基本原理
经常看到从事声波透射法检测基桩完整性的同志,对 测试声参量的分析判断,力不从心,难下结论,十分尴尬。 出现这种局面的原因可归纳为: 对声波的一般传播规律掌握的不好; 不注重掌握施工过程的相关资料(如对灌注桩的成孔、 成桩工艺及工艺过程、工程地质资料、水文地质资料 等);
检测细致,结果准确可靠; 不受桩长、桩径限制; 无盲区,声测管埋到什么部位,就可以检测到什
么部位,包括桩顶低强区和桩底沉渣区; 不需桩顶露出地面即可检测,方便施工;
正因为如此,虽然该方法需要预埋声测管, 用较高,但仍然得到广泛的采用,特别是桥梁、 高层建筑的大型、特大型灌注桩的检测。
混凝土声学参数与测量
速)就降低。
混凝土声学参数与测量
有时混凝土内部缺陷是由较为疏松的材料构成 (例如漏振等情况形成的蜂窝、孔洞或配料错误形成 的低密实区),由于这些部位的声速要比正常混凝土 声速低,也会使得这些测点的声时加大。

桩基检测方法

桩基检测方法

桩基检测方法
1排桩、抗滑桩均采用声波透射法检测桩基完整性。

2、声波透射法是通过在桩身预埋声测管,将声波发射、接受换能器分别放入声测管内,管内注满清水,将换能器置于同一水平面或保持一定高差,进行声波发射和接受,使声波在混凝土中传播,通过对声波传播时间、波幅及主频等声学参数的测试与分析,对桩身完整性做出评价的一种检测方法该方法一般不受场地限制,测试精度高,在缺陷的判断上较其他方法更全面,检测范围可覆盖全桩长的各个横截面;
3、为了更好顺利完成桩基检测工作,准确检测桩基完整性,故埋设声测管施工环节尤为重要,声测管在钢筋笼制造场预先安装在已成型的钢筋笼上,声测管要下端采用钢板封闭,上端加盖,管内无杂物;声测管应可靠的固定在钢筋笼内,预防连接处断裂或堵管现象;连接处要光滑过度,不漏水;管口要易高出桩顶200mm以上,且各声测管管口高度要一致,成型后的声测管要垂直、相互平行,防止堵塞现象。

桩身完整性检测方法

桩身完整性检测方法

桩身完整性检测方法桩基工程是土木工程中常见的一种基础工程,其质量直接关系到工程的安全和稳定。

而桩身的完整性则是桩基工程中一个非常重要的指标,它直接关系到桩的承载能力和使用寿命。

因此,对桩身的完整性进行有效的检测和评估,对于确保工程质量具有非常重要的意义。

一、超声波检测方法。

超声波检测是一种常见的桩身完整性检测方法,其原理是利用超声波在不同介质中传播的速度不同来检测材料内部的缺陷情况。

通过超声波探头对桩身进行扫描,可以清晰地观察到桩内部的裂缝、空洞等缺陷情况,从而评估桩身的完整性。

二、钻孔检测方法。

钻孔检测是一种直接观测桩身内部情况的方法,其原理是通过在桩身上钻取小孔,然后利用内窥镜等设备对孔内部进行观察。

通过钻孔检测,可以直接观察到桩身内部的情况,包括裂缝、空洞、锈蚀等情况,从而评估桩身的完整性。

三、电阻率检测方法。

电阻率检测是一种通过测量材料电阻率来评估桩身完整性的方法。

当材料内部存在缺陷时,其电阻率会发生变化,通过测量这种变化可以判断桩身的完整性情况。

电阻率检测方法简单、快捷,可以对大面积的桩身进行检测,具有一定的实用性。

四、声波透射检测方法。

声波透射检测是一种利用声波在材料内部传播的特性来评估桩身完整性的方法。

通过在桩身表面布置传感器,然后向桩身内部发送声波,通过接收传感器上的信号来判断桩身内部的情况。

声波透射检测方法对材料的要求较高,但可以对桩身进行全面的检测。

五、综合应用。

在实际工程中,通常会采用多种方法对桩身的完整性进行检测,以确保检测结果的准确性和可靠性。

比如,可以先利用超声波检测方法对桩身进行初步评估,然后再结合钻孔检测方法进行深入观察,最终通过电阻率检测和声波透射检测方法进行综合评估,从而得出最终的结论。

总之,桩身完整性检测是桩基工程中非常重要的一环,其结果直接关系到工程的质量和安全。

因此,在进行桩身完整性检测时,需要选择合适的方法,并且进行综合应用,以确保检测结果的准确性和可靠性。

基桩的声波透射法检测-摘自实用桩基工程手册

基桩的声波透射法检测-摘自实用桩基工程手册

基桩的声波透射法检测-摘自实用桩基工程手册基桩作为建筑物的重要支撑结构,其质量关系到建筑物的稳定性和安全性。

因此,在工程建设过程中,对基桩的检测和评估显得尤为重要。

常见的基桩检测方法有钻孔取样、静载试验、动载试验和声波透射法检测等。

本文将重点介绍基桩的声波透射法检测。

声波透射法检测原理声波透射法检测是一种利用高频声波在物质中传播的物理现象,对混凝土中的缺陷进行检测的方法。

通过对声波的传播速度和反射信号的强度、时间等参数的测量和分析,可评估混凝土构件的质量。

声波透射法检测原理简单,其基本原理是利用高频声波在物质中传播时,会受到物质密度、均匀性、结构性质等因素的影响而产生反射、衍射、散射等现象。

当声波在过程中遇到混凝土的缺陷,如裂缝、空洞、松散部位等,将会被反射或散射。

通过对反射和散射声波的分析,可以得出混凝土结构内缺陷的位置、形状和大小等信息。

声波透射法检测仪器和操作流程声波透射法检测常用仪器为Pundit(由Proceq公司推出)和PUNDIT PL-HT (由Sonic of Italy推出)。

其操作流程如下:1.仪器进行自校准2.仪器进行测量位置的标定3.设置测量参数(如声源和传感器的位置、频率、滤波器、校准距离等)4.测量并记录声波数据5.对数据进行处理和分析,得出混凝土结构的质量信息需要注意的是,在进行声波透射法检测时,应根据具体情况选择合适的算法。

例如,对于多层混凝土结构,应选择多道方法进行检测,以避免盲区和伪同步等问题。

另外,声波透射法检测需要对测量环境进行重视,闪烁灯、高温、潮湿等环境都可能影响检测结果,因此在进行检测时要注意测量环境的控制和消除。

声波透射法检测的优缺点声波透射法检测有以下优点:1.检测速度快:声波透射法检测不需要进行混凝土开裂,而是利用声波的特性通过表面进行检测,因此速度比静、动载试验都快。

2.检测范围广:声波透射法检测可以检测混凝土结构内的任何缺陷,如空洞、裂缝、松散部位等。

低应变检测桩身完整性和声波透射法检测桩基

低应变检测桩身完整性和声波透射法检测桩基

实验报告课程:桩基检测与评定题目:低应变检测桩身完整性与桩基超声波透射法院系:土木工程系专业:年级:姓名:指导教师:西南交通大学峨眉校区2012 年7 月 1 日基 桩 反 射 波 法 试 验检 测 报 告一.基本原理基桩低应变动力检测反射波法的基本原理是将桩身假定为一维弹性杆件(桩长>>直径),在桩顶锤击力作用下,产生一压缩波,沿桩身向下传播。

当桩身存在明显波阻抗Z 变化的截面将产生反射和透射波,反射的相位和幅值大小由波阻抗Z 变化决定。

桩身波阻抗Z 由桩的横截面积A 、桩身材料密度ρ等决定即Z=A C ⋅⋅ρ。

假设在基桩中某处存在一个波阻抗变化界面,界面上部波阻抗1Z =111A C ρ,上部波阻抗2Z =222A C ρ①当1Z =2Z 时,表示桩截面均匀,无缺陷。

②当1Z >2Z 时,表示在相应位置存在缩径或砼质量较差等缺陷,反射波速度信号与入射波速度信号相位一致。

③当1Z <2Z 时,表示在相应位置存在扩径,反射波与入射波速度信号相位相反。

当桩身存在缺陷时,根据缺陷反射波时刻与桩顶锤击触发时刻的差值△t 和桩身传播速度C 来推算缺陷位置Lx=△t ²C/2二.现场检测大致流程是用力锤对桩顶作瞬态激振,以产生脉冲应力波,由设置在桩顶的加速度传感器接收入射波和反射波信号,该信号经电荷放大后,经桩基分析系统处理,根据反射波的时差,相位和幅值即可判断桩身的缺陷位置、类型及程度。

传感器的安装对现场信号的采集影响较大,理论上传感器越轻、越贴近桩面、与桩面之间接触刚度越大,传递特性越好,测试信号也越接近桩面的质点振动。

对实心桩的测试,传感器安装位置宜为距桩心2/3~3/4半径处;对空心桩的测试,锤击点与传感器安装位置宜在同一水平面上,且与桩中心连线形成90°夹角,传感器安装位置宜为桩壁厚的1/2处。

传感器的安装必须通过藕合剂垂直与桩面粘接,此次实验使用的是经口加工的口香糖。

超声跨孔声波透射法检测混凝土灌注桩完整性

超声跨孔声波透射法检测混凝土灌注桩完整性

超声跨孔声波透射法检测混凝土灌注桩完整性摘要:为全面提升混凝土灌注桩质量检测水平,要结合测试标准和要求,选取更加适宜的测定方式,发挥新型技术方案的优势作用,在满足施工标准和工程设施质量要求的基础上,更好地推动混凝土项目的发展进步。

本文介绍了超声跨孔声波透射法的原理和数据判定依据,并着重讨论了混凝土灌注桩完整性检测中超声跨孔声波透射法应用的流程。

关键词:超声跨孔声波透射法;混凝土灌注桩;完整性随着现代建筑工程项目的发展,大型基础建筑工程中灌注桩的质量受到了越来越多的关注,在充分考量建筑物本身结构以及经济性需求的同时,要完善桩结构完整性测试方案,实现经济效益和社会效益的双赢。

一、超声跨孔声波透射法概述近几年,声波投射法被广泛应用在混凝土结构质量检测中,常见的方法分为三类(见图1),本文主要是以桩内跨孔声波投射法为研究对象,结合工程项目实际情况以及工程规范要求,探讨基于声波透射建立的检测机制。

图1 声波透射法分类(一)工作原理超声跨孔声波透射法在应用过程中,其工作原理是围绕声波在介质中传递过程产生能量过程展开的,声波本身属于机械波的一种,相较于电磁波,机械波传播过程往往会存在不同程度上的扰动现象,振动形式单一,因此,按照机械波传播方向和振动方向会将其划分为横波和纵波。

而超声跨孔声波透射法就是借助其能量传递的过程,在混凝土灌注桩结构中预设平行与待测结构的声测管道,在此基础上将结构探头直接伸入到灌注桩内部,此时,按照逐点、逐段的方式完成实时性测试。

在超声跨孔声波透射法测试结束后,混凝土灌注桩船舶会反馈出不同的声学参数,主要包括能量参数、波形状态、声速等,操作人员对参数进行汇总,然后统一对比评估就能最大程度上完成桩身完整性的评定。

(二)判定依据依据声波透射法的实际测量过程可知,混凝土灌注桩桩身完整性评估中,声时、声速、波幅、波形是非常关键的测试要素,为了有效发挥超声跨孔声波透射法的优势作用,就要进一步明确判定的主要依据[1]。

声波透射法检测灌注桩完整性PPT课件

声波透射法检测灌注桩完整性PPT课件
回弹综合法检测泵送砼强度技术规程》(DBJ/T 01-78-2003) 深圳市标准《深圳地区基桩质量检测技术规程》(SJG 09-99) 国家行业标准《混凝土结构现场检测技术标准》(GBT 50784-
2013)
第二部分 声波透射法检测桩 身完整性检测仪器
1、声波透射法自动检测仪——
超声检测仪,径向换能器
信号质量好振动模式单 一 ,频谱图中的主峰尖 锐,干净,无旁峰
3、声波透射法检测设备的发展
声波透射法因其优势得到广泛应用,声透法检测仪器不断更 新换代,实现测试过程全自动、多剖面、图像化
提升系统的自动化—连续提升,自动记录深度 测试系统的自动化—采集、判读、记录、存储的自动化 处理分析的智能化—数据处理软件、测试结果的图示 一次提升完成多个剖面 剖面的二维测试与结果的三维分析
声时加长,声速降低 波幅降低 接收波主频向低频偏移 波形畸变
测试原理与混凝土上部结构的超声探伤类同
声波透射法检测桩身完整性
检测目的: 桩身缺陷及其位置,判定桩身完整性 检测桩身混凝土均匀性 估测桩身混凝土的抗压强度
检测条件:预埋声测管
检测仪器: 超声仪 圆管型径向换能器
声波透射法的优势
中华人民共和国建筑工业标准《混凝土超声波检测仪》(JG/T 5004-92)
中国工程建设标准化协会标准《超声回弹综合法检测混凝土强 度技术规程》(CECS02:2005)
交通部行业标准《水运工程混凝土试验规程》(JTJ 270-98) 建设部与地矿部《基桩低应变动力检测规程》(JGJ/T 93-95) 一些地区性的声测技术规程,如北京地方标准:《回弹法、超声
《公路工程基桩动测技术规程》 (JTG/T F81-01-2004)
部分省、市、自治区或行业内部制定的相关规程

谈声波透射法在桩基完整性检测中的应用

谈声波透射法在桩基完整性检测中的应用
播速度会发生较明显的变化ꎬ我们就可以准确的判断桩基
础可能出现的缺陷 [3] ꎮ 公式如下:
E(1 - σ)

ρ(1 + σ) (1 - σ)
其中ꎬE 为弹性模量ꎻρ 为密度ꎻσ 为泊松比ꎮ
v=
2. 2 PSD 判据法的基本原理
PSD [4] 判据根据桩身某一剖面测点的实测声时 t c 和测
点高程 hꎬ得出一个以 t c 为因变量ꎬh 为自变量的函数ꎬt c =
9mpa?标准值272mpa?2超声波检测技术和psd判据法的基本原理21超声波检测技术基本原理在混凝土介质中激发一定频率的弹性波?该弹性波在介质中传播时?遇到混凝土介质缺陷会产生反射透射绕射散射衰减?从而造成穿过该介质的接收波波幅衰减波形畸变波速降低等?由接收换能器接收的波形?对波的到时波幅频率及波形特征进行分析?判断混凝土桩的完整性及缺陷的性质位置范围及缺陷的程度1?2?超声波在介质中的传播速度与介质的弹性模量密度和泊松比有关?所以超声波在不同介质中的传播速度也有所不同?利用这一特性?当超声波在桩身中进行传播时?如果桩身存在断桩塌孔缩颈和沉渣等缺陷时?超声波的传播速度会发生较明显的变化?我们就可以准确的判断桩基础可能出现的缺陷3?公式如下
Key words: numerical simulationꎬ roadwayꎬ anchorꎬ support form
准值 27. 2 MPaꎮ
2 超声波检测技术和 PSD 判据法的基本原理
2. 1 超声波检测技术基本原理
在混凝土介质中激发一定频率的弹性波ꎬ该弹性波在
介质中传播时ꎬ遇到混凝土介质缺陷会产生反射、透射、绕
射、散射、衰减ꎬ从而造成穿过该介质的接收波波幅衰减、波
形畸变、波速降低等ꎮ 由接收换能器接收的波形ꎬ对波的到

声波透射法检测方法

声波透射法检测方法
47 50 52 54 56 58 61 64 67 69
5.2.3 将 vn-k 与异常判断值 v0 进行比较,当 vn-k ≤ v0 时,vn-k 及其以后
的数据均为异常,去掉
vn-k
及其以后的异常数据;再用数据
v v ~ 1
n-k-1
重复式(6)~(8)的计算步骤,直到 vi 序列中余下的全部数据满足:
t0 —仪器系统延迟时间(μs); t′—几何因素声时修正值(μs);
l′—每检测剖面相应两声测管的外壁间净距离(mm);
vi—第 i 测点声速(km/s);
Api—第 i 测点波幅值(dB);
ai —第 i 测点信号首波峰值(V);
a0—零分贝信号幅值(V);
fi — 第 i 测点信号主频值(kHz),也可由信号频谱的
声波透射法检测方法
1.依据规程:
1.1《建筑基桩检测技术规程》JGJ 106-2003;
1.2《公路工程基桩动测技术规程》JTG/T F81-01-2004;
1.3《超声法检测混凝土缺陷技术规程》CECS21:2000;
1.4《超声回弹综合法检测混凝土强度技术规范》CECS 02:2005;
2.试验目的及适用范围:
主)。
5.2 声速临界值应按下列步骤计算:
5.2.1 将同一检测剖面各测点的声速值 vi 由大到小依次排序,即
v1≥v2≥…vn-k≥…vn-1≥vn
(5)
式中 v —按序排列后的第 i 个声速测量值;
n —检测剖面测点数;
k —从零开始逐一去掉式(5)vi 序列尾部最小数值的数据个数。
vL—声速低限值(km/s),由预留同条件混凝土试件的抗压强度与声速 对比试验结果,结合本地区实际经验确定。

声波透射法基桩完整性检测及缺陷判定分析

声波透射法基桩完整性检测及缺陷判定分析

声波透射法基桩完整性检测及缺陷判定分析桩基础的质量直接关系到整个建筑物(构筑物)的安全,也关系到人民的生命、财产安全。

因此,桩基础工程的试验和质量检验尤为重要,设计前、施工中和施工后都要进行必要的试验和检验,能否检测到基桩的缺陷、如何测定缺陷的位置,并准确地对其进行评价成为基桩质量检测的一个核心问题。

一、对于缺陷程度及范围的判定需要结合平测、斜测或扇形测试的两种测试方法综合测定换能器同步平测测试速度快、效率高,可作为是否存在缺陷的初步判断依据;但仅依据平测的数据进行完整性判定,其准确性降低,因此尤其是对于缺陷范围及其严重程度进行判定时,应至少结合斜测、扇形测试中的种方法。

例如:某工程21-1#基桩为采用钻孔、反循环工艺施工的灌注混凝土摩擦桩,设计桩径1.5m、设计桩长49. 5m、预埋4根声测管,采用声波透射法平测法测试、测点间距0.25m,其中1-2、1-3、1-4 剖面在13.2~14米处同时出现声参量异常(如图2所示),异常范围的波速比平均波速下降15%、幅度比平均幅度下降30dB,而其他剖面在此位置无明显异常,初步判断因此该桩在13~14米处存在异常(缺陷),且缺陷区在I号声测管所在的方位,但无法判定缺陷范围,进而将其归入II类还I是III类桩。

为确定缺陷的严重程度和范围,在1-2、1-3、1-4 剖面,从9~19m的范围内,分别作收、发换能器约45°倾斜的双向斜测,测点间距为10cm,斜测结果如图3所示,通过每一剖面、每一方向斜测的数据,确定其斜测的各个声参量异常的测线,各剖面的异常测线的包络范围如图上阴影部分所示,可以看出1-3、1-2、1-4 剖面的径向缺陷尺寸依次增大,且1-3、1-2 剖面未超过1/2测距,因此该缺陷是靠近1号声测管方向的缩径类缺陷;从缺陷范围上看纵向尺寸在0.8m左右、径向尺寸小于桩径的四分之一,从缺陷区声参量及波形上看声参量幅度不太大、且波形基本完整,因此将此缺陷判定为轻微缺陷,该桩判为II类桩。

基桩完整性检测(声波透射法)

基桩完整性检测(声波透射法)

1.3 超声波的特点
4、超声波的能量比声波大得多。
5、超声波在固体中的传输损失很小,探测 深度大,由于超声波在异质界面上会发生反 射、折射、衍射等现象,尤其是不能通过气 体固体界面。如果介质中有气孔、裂纹等缺 陷(缺陷中有气体)或夹层,超声波的传播 路径会发生改变,对应的声时、声速、声幅 值等参数发生不同程度的变化,由此来判断 缺陷类型与程度。
谢谢大家!
6、现场拉升换能器的人员需要佩戴防滑手 套,拉升过程中要保持缓慢匀速状态;
7、提升过程中,如发现换能器卡在声测管 内,不要用力拉拽;
8、检测结束后,及时清理深度计数轮及从 动轮中的泥土。
第四章 数据分析与判断
4.1 波速、波幅及频率计算
4.1 波速、波幅及频率计算
4.1 波速、波幅及频率计算
1、原始数据通过分析软件打开后,对于可疑数据首先 确认该测点首波是否搜索准确;
2、对于疑似存在缺陷的基桩,应及时采用加密测点、 斜侧、线型扫射等方法进行复测;
3、对于类型判定存在争议的基桩,可采用取芯、开挖 等方式进行扩大验证;
4、结果判定前应区分该基桩为钳岩桩还是摩擦桩; 5、准确解读检测依据中的判定标准。
超声波检测技术
第1章 超声波法的基本知识 第2章 超声波法的基本原理 第3章 现场测试技术 第4章 数据分析与判断 第5章 工程实例
第一章 超声波法的基本知识
检测示意图
1.1 检测依据
《公路工程基桩动测技术规程》JTG/T F81-01-2004 (适用于低应变法、超声波法、高应变法)
1.2 名词解释
检测原理
超声脉冲信号在混凝土的传播过程中因发生衍 射、折射、多次反射及不同的吸收衰减,使接 收信号在混凝土中传播的时间、振动幅度、波 形及主频等发生变化,这样接收信号就携带了 有关传播介质(即被测桩身混凝土)的密实缺 陷情况、完整程度等信息。由仪器的数据处理 与判断分析软件对接收信号的各种声参量进行 综合分析,即可对桩身混凝土的完整性进行检 测,判断桩基缺陷的程度并确定其位置。

桩基超声波透射法完整性检测

桩基超声波透射法完整性检测

桩基超声波透射法完整性检测引言近几十年,我国工程建设蓬勃发展,桩基础在高层建筑、大型厂房、桥梁码头、海上钻井平台及核电站等重要工程中被广泛应用;由于桩基属于地下隐蔽工程,桩基施工过程中受到所处地质条件、施工技术工艺等多种因素的影响,成桩难免存在各种不足,影响成桩的质量和使用效果,比如缩径、扩径、离析、蜂窝、混凝土强度偏低或夹泥,甚至断桩等不利缺陷;如何快速、准确的评价桩身质量,是桩基检测工程一直所关注的话题;桩基无损检测方法有低应变反射波法和超声波透射法,其中低应变反射波法因其操作简单、经济合理,能较准确地发现缺陷被广泛采用;但是该方法受到桩长桩径的限制,并且不能检测出桩基顶部缺陷和多个缺陷,而超声波透射检测方法作为无损检测方法中重要的一种方法,且超声波透射法能较好地反映桩身的完整性,完全可以满足检测要求和工程需要;技术原理超声波透射法是通过对声测管之间混凝土的缺陷情况的检测来进行桩身完整性评价;其基本原理:在混凝土桩基内事先预埋检测管作为超声波的检测通道,并在检测管内灌注足量的清水作为试验检测的耦合剂,然后将超声波检测设备的超声波发射探头与接收探头置于声测管的两侧,通过发射探头不断发射超声脉冲波,超声波脉冲经过混凝土桩基,由接收探头接收,仪器记录了超声脉冲在混凝土桩基传播过程中的波动情况,如混凝土桩基中存在连续性差或破损等缺陷,这些缺陷面就会成为波阻抗界面而产生透射和反射现象,导致超声波脉冲能量衰减情况严重,而出现蜂窝、孔洞、松散等严重缺陷时就会出现散射和绕射现象;通过研究分析波的初至到达时间即能量衰减特征、频谱变化和波形等特征,进而可以分析评价混凝土桩基的施工质量及其缺陷所在的位置,并对桩基混凝土的强度和均匀性做出评价;利用超声波透射法进行桩基检测的原理如图1所示;图1 超声波透射法桩基检测原理图按图2和图3的布置图预埋声测管;首先将发射换能器和接收换能器在安装扶正器后置于声测管之中,并确保能够在声测管内部顺利的升降;测点的间距应当在左右,如果在试验检测过程中发现异常情况,应该适当的对测点进行加密;发射以及接收换能器应该在同一标高或者是相差固定的高度进行检测,检测尽可能的从声测管的底部自下而上的开展,对超声波的行声时、波幅及接收波频率等参数进行测量,对于各种不正常的波形应当及时的记录;对于存在多根声测管的桩基,应该以两根声测管作为一组,分组进行桩基质量的试验检测;在对桩基的每组声测管试验检测结束后,应该对桩基进行随机的重复性的试验检测,抽检量应该控制在桩基试验检测量10%-20%,尽可能的控制声时相对标准差在5%范围内,波幅相对标准差在10%范围内,对于声时及波幅存在明显异常的情况应进行重复测试,以准确的反映试验桩基的检测质量;图2 圆形桩声测管布置图图3 矩形桩声测管布置图勘察内容:某工程的溶蚀风化深槽桩基检测装置说明:非金属超声波检测仪勘察目的:1查明桩基缺陷;2了解桩基强度,为工程设计和施工处理提供依据;勘察结果:本次共检测了2号,7号,14号,17号,20号,21号,27号,28号,30号,34号10根桩;共检测存在严重缺陷的桩有2根;7号桩:孔深为,纵波速度为3610~4010m/s;从图4中可以看出,7号桩深度在2m以下的桩体,曲线变化不大,波速值稳定在3800~4000m/s,表明桩体是完整的,没有缺陷,桩强度合格属于I类桩;24号桩:孔深为18m,桩体波速变化较大,在3200~4290m/s之间变化;1~2和1~3剖面12m~14m和16m~18m段桩体测不到波,可能存在离析或脱浆缺陷,2~3剖面16m~段平均波速为2760m/s,比桩体上部的波速还低,表明桩体存在严重缺陷,离析、脱浆现象严重,属于IV类桩;27号桩:孔深为12m,0~段桩体波速变化不大,较为稳定,为3540~3630m/s,~12m段桩体波速变化大,在2070m/s~3070m/s,表明桩体存在严重缺陷,离析、脱浆现象严重,属于IV类桩;经过处理后,桩体质量得到明显地改善,达到II类桩的标准;图4 7号桩声波测试波速曲线图图5 24号桩声波测试波速曲线图图6 27号桩声波测试波速曲线图。

桩基声波透射法检测

桩基声波透射法检测

桩基声波透射法检测超声波透射法检测混凝土质量的原理是事先在桩内预埋若干条声测管,作为超声波接收和发射换能器的通道。

检测时在一个管内放入发射超声波的发射探头在另一个管内放入接收超声波的接收探头。

两个探头由底部往上同步提升,仪器记录超声波在由二管组成的舲测面内传播的声学特征。

根据波的到达时间,幅度大小,频率变化及波形畸变程度,经过分析处理,从而判定出舲质量状况,存在缺陷的性质、大小及空间位置、於匀质性。

现场检测(1)现场检测前准备工作应符合以下规定:1)当受检桩桩身混凝土强度不得低于设计强度等级的70%或预留立方体试块强度不得小于15MPa时方可开展检测。

2)采用率定法确定仪器系统延迟时间。

3)计算几何因素声时修正值。

4)在桩顶测量相应声测管外壁间净距离。

5)将各声测管内注满清水,检查声测管畅通情况,换能器应能在全程范围内正常升降。

(2)现场的检测过程一般分两个步骤开展,首先是采用平测法对全桩各个检测剖面开展普查,找出声学参数异常的测点。

然后,对声学参数异常的测点采用加密测试、斜测或扇形扫测等细测方法,这样一方面可以验证普查结果,另一方面可以进一步确定异常部位的范围,为桩身完整性类别的判定提供可靠依靠。

D现场平测和斜测应符合以下规定:①将发射与接收声波换能器通过深度标志分别置于两个声测管道中的测点处。

平测时,发射与接收声波换能器始终保持一样深度(图4a);斜测时,发射与接收声波换能器始终保持固定高差(图4b),且两个换能器中点连线即声测的水平夹角不应大于30°。

②检测过程中,应将发射与接收声波换能器同步升降,声测线间距不应大于200mm,并应及时校核换能器的深度。

③对于每条声测线,应实时显示和记录接收信号的时程曲线,读取声时、首波幅值,当需要采用信号主频值作为异常点辅助判据时,还应读取信号主频值。

④混凝土灌注桩完整性检测时,任意两根声测管组合成一个检测剖面,分别对所有检测剖面完成普查检测。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

桩基完整性(声波透射试验)2.1一般规定(1)对于桩径小于0.6m的桩,不宜采用本方法,因为桩径较小时声波换能器与检测管的声耦合会引起较大的相对测试误差。

其桩长不受限制。

(2)当出现下列情况之一时,不得采用本方法a 声测管未沿桩身通长配置b声测管堵塞导致检测数据不全c声测管数量不符合要求(3)受检桩混凝土强度不应低于设计强度的70%,且不低于15MPa,2.2检测基本原理及方法混凝土是由多种材料组成的多相非匀质体。

对于正常的混凝土,声波在其中传播的速度是有一定范围的,当传播路径遇到混凝土有缺陷时,如断裂、裂缝、夹泥和密实度差等,声波要绕过缺陷或在传播速度较慢的介质中通过,声波将发生衰减,造成传播时间延长,使声时增大,计算声速降低,波幅减小,波形畸变,利用超声波在混凝土中传播的这些声学参数的变化,来分析判断桩身混凝土质量。

声波透射法检测桩身混凝土质量,是在桩身中预埋2~4根声测管。

将超声波发射、接收探头分别置于2根导管中,进行声波发射和接收,使超声波在桩身混凝土中传播,用超声仪测出超声波的传播时间t、波幅A及频率f等物理量,就可判断桩身结构完整性。

2.3仪器设备(1)试验装置声波透射法试验装置包括超声检测仪、超声波发射及接收换能器(亦称探头)、预埋测管等,也有加上换能器标高控制绞车和数据处理计算机。

其装置见图37-21。

(2)超声检测仪的技术性能应符合下列规定:接收放大系统的频带宽度宜为5~50kHz,增益应大于100dB,并带有0~60(或80)dB的衰减器,其分辨率应为1dB,衰减器的误差应小于1dB,其档间误差应小于1%。

发射系统应输出250~1000V的脉冲电压,其波形可为阶跃脉冲或矩发射系统应输出250~1000V的脉冲电压,其波形可为阶跃脉冲或矩形脉冲。

显示系统应同时显示接收波形和声波传播时间,其显示时间范围宜大于300μs,计时精度应大于1μs,仪器必须稳定可行,2h中声时漂移不得大于±0.2μs。

(3)换能器应采用柱状径向振动的换能器,将超声仪发出的电脉冲信号转换成机械振动信号,其共振频率宜为25~50kHz,外形为圆柱形,外径Φ30mm,长度200mm。

换能器宜装有前置放大器,前置放大器的频带宽度宜为5~50kHz。

绝缘电阻应达5MΩ,其水密性应满足在1MPa水压下不漏水。

桩径较大时,宜采用增压式柱状探头。

(4)声测管是声波透射法检测装置的重要组成部分,宜采用钢管或钢质波纹管,其内径宜为50~60m。

2.4 测试技术(1)预埋声测管应符合下列规定:桩径D≤800mm应埋设2根管;800mm<D≤2000mm应埋设不少于3根管;桩径D>2000mm应埋设不少于4根管。

见图37-22声测管布置方式。

声测管底端及接头应严格密封,保证管外泥冰在1MPa压力下不会渗入管内。

声测管应下端封闭、上端加盖、管内无异物;声测管连接处应光滑过渡,管口应高出桩顶100mm以上,且各声测管管口高度宜一致。

应采取适宜方法固定声测管,使之成桩后相互平行。

(2)现场检测前应测定声波检测仪发射至接收系统的延迟时间t0,并应按下式计算声时修正值tˊ:tˊ=(D-d)/Vt+(d-dˊ)/Vw (37-52)式中D――检测管外径(mm);dˊ――检测管内径(mm);d――换能器外径(mm);Vt――检测管壁厚度方向声速(km/s);Vw――水的声速(km/s);T――声时修正值(μs)。

将发、收换能器置于水中,间距0.5m左右,接收信号波幅调节到二或三格,改变发、收换能器间距,测量不同距离的声时值,按时距曲线求出t0值。

(3)检测步骤应符合下列要求:接收及发射换能器应在装设扶正器后置于检测管内,并能顺利提升及下降。

测量时上述发射与接收换能器可置于同一标高,当发射与接收换能器置于不同标高时,其水平测角可取30°~40°。

测量点距20~40cm 。

当发现读数异常时,应加密测量点距,以保证测点间声场可以覆盖而不至漏测。

发射与接收换能器应同步升降。

各测点发射与接收换能器累计相对高差不应大于2cm ,并应随时校正。

检测宜由检测管底部开始,发射电压值应固定,并应始终保持不变,放大器增益值也应始终固定不变。

调节衰减器的衰减量,使接收信号初至波幅度在荧光屏上为2或3格。

由光标确定首波初至,读取声波传播时间及衰减器衰减量,依次测取各测点的声时及波幅并进行记录。

一根桩有多根检测管时,应将每2根检测管编为一组,分组进行测试,见图37-22。

每组检测管测试完成后,测试点应随机重复抽测10%~20%。

其声时相对标准差不应大于5%;波幅相对标准差不应大于10%。

并对声时及波幅异常的部位应重复抽测。

2.5检测数据分析与判定(1) 各测点的声时tc 、声速v 、波幅Ap 及主频f 应根据现场检测数据,按下列各式计算,并绘制声速-深度(v-z )曲线和波幅-深度(Ap-z )曲线,需要时可绘制辅助的主频-深度(f-z )曲线:t t t t i i '--=0c (1) i i t l v c '=(2)0 p lg20a a A ii = (3)i i T f 1000=(4)式中 tci ——第i 测点声时(μs); ti ——第i 测点声时测量值(μs); t0 ——仪器系统延迟时间(μs); t ′——几何因素声时修正值(μs);l ′——每检测剖面相应两声测管的外壁间净距离(mm ); vi ——第i 测点声速(km/s ); Api ——第i 测点波幅值(dB );ai ——第i 测点信号首波峰值(V );a0——零分贝信号幅值(V );fi —— 第i 测点信号主频值(kHz),也可由信号频谱的主频求得;Ti ——第i 测点信号周期(μs)。

(2) 声速临界值应按下列步骤计算:a 将同一检测剖面各测点的声速值vi 由大到小依次排序,即V1≥v2≥…vn-k ≥…vn-1≥vn (10.4.2-1)式中v ——按序排列后的第i 个声速测量值;n ——检测剖面测点数;k ——从零开始逐一去掉式(10.4.2-1)vi 序列尾部最小数值的数据个数。

b 对从零开始逐一去掉式(10.4.2-1)vi 序列中最小数值后余下的数据进行统计计算。

当去掉最小数值的数据个数为k 时,对包括vn-k 在内的余下的数据v1~vn-k 按下列公式进行统计计算:v 0=vm-λ*sx (10.4.2-2)∑-=-=kn i im vkn v 11(10.4.2-3)()∑-=---=kn i m iv vk n s 12x 11(10.4.2-4)式中v 0—— 异常判断值;vm —— (n-k)个数据的平均值; sx —— (n-k)个数据的标准差;λ ——由表10.4.2查得的与(n-k )相对应的系数。

统计数据个数(n-k)与对应的λ值 表10.4.2去掉vn-k 及其以后的异常数据;再用数据v1~vn-k-1重复式(4.2-2)~(4.2-4)的计算步骤,直到vi 序列中余下的全部数据满足:vi >v0 (4.2-5)此时,v0为声速的异常判断临界值vc 。

d 声速异常时的临界值判据为:vi ≤ vc (4.2-6)当式(4.2-6)成立时,声速可判定为异常。

(3)当检测剖面n 个测点的声速值普遍偏低且离散性很小时,宜采用声速低限值判据:vi < vL (4.3)式中 vi ——第i 测点声速(km/s );vL ——声速低限值(km/s ),由预留同条件混凝土试件的抗压强度与声速对比试验结果,结合本地区实际经验确定。

当式(4.3)成立时,可直接判定为声速低于低限值异常。

(4)波幅异常时的临界值判据应按下列公式计算:∑==ni iAnA 1p m 1(4.4-1)Api <Am –6 (4.4-2)式中 Am ——波幅平均值(dB );n ——检测面测点数。

当式(4.4-2)成立时,波幅可判定为异常。

(5) 当采用斜率法的PSD 值作为辅助异常点判据时,PSD 值应按下列公式计算:PSD = K ∙ Δt (4.5-1)11c c ----=i i i i z z t t K (4.5-2)Δt = tci - tci -1 (4.5-3)式中 tci ——第i 测点声时(μs);tci -1——第i -1测点声时(μs); zi ——第i 测点深度(m );zi -1——第i -1测点深度(m )。

根据PSD 值在某深度处的突变,结合波幅变化情况,进行异常点判定。

(6) 当采用信号主频值作为辅助异常点判据时,主频-深度曲线上主频值明显降低可判定为异常。

(7)桩身完整性类别应结合桩身混凝土各声学参数临界值、PSD 判据、混凝土声速低限值以及桩身质量可疑点加密测试(包括斜测或扇形扫测)后确定的缺陷范围,按本规范表3.5.1的规定和表2.6的特征进行综合判定桩身完整性判定表1)声测管布置图;2)受检桩每个检测剖面声速-深度曲线、波幅-深度曲线,并将相应判据临界值所对应的标志线绘制于同一个坐标系;3)当采用主频值或PSD值进行辅助分析判定时,绘制主频-深度曲线或PSD曲线,4)缺陷分布图示。

相关文档
最新文档