第四章 扭转的强度与刚度计算
第4章圆轴扭转时的强度与刚度计算
圆轴扭转后横截面保持平面
第一个结论
圆轴扭转时,横截 面保持平面,平面上 各点只能在平面内转 动
圆轴扭转后横截面保持平面
假设平面不是刚性转动, 直径将变成曲线,A端观察 者看到的情形。
圆轴扭转后横截面保持平面
假设平面不是刚性转动, 直径将变成曲线,B端观察 者看到的情形。
圆轴扭转后横截面保持平面
最终结论
圆轴扭转时,横 截面 保持平面,并且 只能发生刚性转动。
圆轴扭转后横截面保持平面
变形协调方程
圆轴扭转时的变形协调方程
若将圆轴用同轴柱面分割成许多半径不等的圆柱,根据上述结论,在dx长度 上,虽然所有圆柱的两端面均转过相同的角度d,但半径不等的圆柱上产生的剪 应变各不相同,半径越小者剪应变越小。
其中P为功率,单位为千瓦(kW); n为轴的转速,单位为转/分(r/min)。
4.1外加扭力矩、扭矩与 扭矩图
P[马力]
Me
7024 n[r / min]
[N m]
若P为功率,单位为马力 (1马力=735.5 N•m/s )
n为轴的转速,单位为转/分(r/min)
4.1外加扭力矩、扭矩与 扭矩图
max
M x,max Wp
[ ]
[ ]为许用剪应力;是指圆轴所有横截面
上最大剪应力中的最大者,
钢 [ ] (0.5 ~ 0.6)[ ] 铸铁 [ ] (0.8 ~ 1)[ ]
例题1
已知:P=7.5kW, n=100r/min,最大剪应力不得超过40MPa,空心圆轴的内外直 径之比 = 0.5。二轴长度相同。
圆轴扭转时横截面上的剪应力表达式
圆轴扭转时横截面上的剪应力表达式
圆轴扭转时横截面上的最大剪应力
第四章 扭转(张新占主编 材料力学)
2M A M e M B 0 (2)
联立式(1)与式(2),得
Me MB 3
MA MB Me 3
26
4.6 等直圆轴扭转时的应变能
圆轴在外力偶作用下发生扭转变形,轴内将积蓄应变能。这种 应变能在数值上等于外力所做的功。
T1 在位移 d1上所做的功为 dW T1d1
PB M eB M eC 9549 n 796(N m) PA M eA 9549 1910(N m) n PD M eD 9549 318(N m) n
5
(2)求扭矩(扭矩按正方向假设) 1-1 截面
M M M
x
0
T1 M eB 0
T1 M eB 796N m
d1 85.3 mm
取 d1 85.3 mm。 BC段:同理,由扭转强度条件得 d2 67.4 mm ,由扭转刚度条件得
d 2 74.4 mm
取 d 2 74.4 mm。
23
(2)将轴改为空心圆轴后,根据强度条件和刚度条件确定轴的 外径D。 由强度条件得 D 96.3 mm 由刚度条件得 D 97.3 mm 取 D 97.3 mm ,则内径为
T Me
M e RdA RRd 2R 2
A 0
2
Me 2 2R
8
二、切应力互等定理
M
z
0
(dy)dx ( dx)dy
得到
切应力互等定理:在单元体在相互垂直的一对平面上,切应力 同时存在,数值相等,且都垂直于两个平面的交线,方向共同 指向或共同背离这一交线。 纯剪应力状态:单元体上四个侧面上只有切应力,而无正应力 作用
第四章:扭转
T Ip
——切应力公式
扭转
4、圆轴扭转时横截面上的最大切应力
max 发生在横截面周边上各点处
max
T max TR T Ip Ip Ip R
max
取 I p /R = Wt —抗扭截面系数 最大切应力: max
max
O
T
T Wt
注意: 以上公式只适合于扭转圆轴, 且材料服从胡克定律。
R γ l
剪切胡克定律:
当切应力不超过材料的剪切比例极 限,切应力与切应变成正比,即:
Gγ
G ——剪变模量
对各向同性材料,E, , G 之间关系: G
E 2(1 )
扭转
四、圆轴扭转时的应力 1、实验现象:
圆周线——形状、大小、
间距不变,各圆周线绕轴 线相对转动了一个角度。
横截面上的最大切应力
max
T 1000 6 Pa 41.7 10 Pa 41.7 MPa 6 Wt 24 10
扭转
例4-4 如图所示,圆轴 AB的 AC 段为空心,CB段为实 心。已知 D 3cm、 d 2cm ;圆轴传递的功率 P 7.5kW,转速 n 360 r/ min。试求 AC及CB段的 Me Me 最大与最小切应力。 解:(1)计算扭矩
许用切应力
u
n
max
u s u b
T
max
塑性材料 脆性材料
对等截面圆轴
Wt
圆轴强度计算可解决工程中的三类问题:
(1)强度校核;(2)截面设计;(3)确定许用载荷。
扭转
例4-5 如图阶梯轴, d1 80mm、d 2 50mm;外力偶矩 M 2 3.2 kN m 、M 3 1.8kN m; M 1 5 kN m 、 材料的许用切应力[ ] 60 MPa 。试校核该轴强度。
材料力学第四章 扭转
max
T GI p
180
(/m)
×
例5 图示圆轴,已知mA =1kN.m, mB =3kN.m, mC
=2kN.m;l1 =0.7m,l2 =0.3m;[]=60MPa,[ ]=0.3°/m,
G=80GPa;试选择该轴的直径。
mA
mB mC 解: ⑴按强度条件
A
l1
B l2 C
max
9.55
200 300
6.37
(kN m)
×
n D
m2 1 m3 2 m1 3 m4
n A 1 B 2 C 3D
②求扭矩(扭矩按正方向假设)
m 0 , T1 m2 0, T1 m2 4.78kN m m 0; T2 m1 m2 0
T2 m2 m3 (4.78 4.78) 9.56kN m
T
2 r02
t
T 2 A0
t
T
A0为平均半径所作圆的面积。
×
三、切应力互等定理:
´
a
b
dy
´
c
z
dx
d t
mz 0; t dxdy t dxdy
'
这就是切应力互等定理:在单元体相互垂直的两个截面
上,切应力必然成对出现,且数值相等,两者都垂直于两平
面的交线,其方向或共同指向交线,或共同背离交线。
垂直,则杆件发生的变形为扭转变形。
A
B O
A
BO
m
m
——扭转角(两端面相对转过的角度)
——剪切角,剪切角也称切应变。
×
§4–2 扭转的内力—扭矩与扭矩图
一、扭矩 圆杆扭转横截面的内力合成
结果为一合力偶,合力偶的力偶 矩称为截面的扭矩,用T 表示之。 m
第 4 章 圆轴扭转时的强度与刚度计算
基础篇之四第4章 圆轴扭转时的强度与刚度计算杆的两端承受大小相等、方向相反、作用平面垂直于杆件轴线的两个力偶,杆的任意两横截面将绕轴线相对转动,这种受力与变形形式称为扭转(torsion )。
本章主要分析圆轴扭转时横截面上的剪应力以及两相邻横截面的相对扭转角,同时介绍圆轴扭转时的强度与刚度设计方法。
4-1 外加扭力矩、扭矩与扭矩图作用于构件的外扭矩与机器的转速、功率有关。
在传动轴计算中,通常给出传动功率P 和转递n ,则传动轴所受的外加扭力矩M e 可用下式计算:[][]e kw 9549[N m]r /min P M n =⋅其中P 为功率,单位为千瓦(kW );n 为轴的转速,单位为转/分(r/min )。
如功率P 单位用马力(1马力=735.5 N •m/s ),则e []7024[N m][r /min]P M n =⋅马力 外加扭力矩M e 确定后,应用截面法可以确定横截面上的内力—扭矩,圆轴两端受外加扭力矩M e 作用时,横截面上将产生分布剪应力,这些剪应力将组成对横截面中心的合力矩,称为扭矩(twist moment ),用M x 表示。
图4-1 受扭转的圆轴用假想截面m -m 将圆轴截成Ⅰ、Ⅱ两部分,考虑其中任意部分的平衡,有M x -M e = 0由此得到图4-3 剪应力互等M x = M e与轴力正负号约定相似,圆轴上同一处两侧横截面上的扭矩必须具有相同的正负号。
因此约定为:按右手定则确定扭矩矢量,如果横截面上的扭矩矢量方向与截面的外法线方向一致,则扭矩为正;相反为负。
据此,图4-1b 和c 中的同一横截面上的扭矩均为正。
当圆轴上作用有多个外加集中力矩或分布力矩时,进行强度计算时需要知道何处扭矩最大,因而有必要用图形描述横截面上扭矩沿轴线的变化,这种图形称为扭矩图。
绘制扭矩图的方法与过程与轴力图类似,故不赘述。
【例题4-1】 变截面传动轴承受外加扭力矩作用,如图4-2a 所示。
——扭转的强度和刚度计算
例l 一直径为50mm的传动轴如图所示。电动机通过A轮输 入100kW的功率,由B,C和D轮分别输出45kW、25kW和30kW 以带动其它部件。要求:(1)画轴的扭矩图,(2)求轴的最大切 应力。
解 1.作用在轮上的力偶矩可 由公式计算得到,分别为
2.作扭矩图 最大扭矩发生在AC段内
M x max = 1.75kN ⋅ m 3.最大切应力
WP
([τ] 称为许用剪应力。)
强度计算三方面: ① 校核强度: ② 设计截面尺寸:
③ 计算许可载荷:
τ max
= Tmax WP
≤ [τ ]
WP
≥
Tmax
[τ ]
WP
⎪⎩⎪⎨⎧空实::ππ1Dd633(116−
α
⎫ ⎪ 4)⎪⎭⎬
Tmax ≤ WP[τ ]
[例]
功率为150kW,转速为15.4转/秒的电动机转子轴如图,
θ = Mx
GI T
=
4000 80 ×109 × 286
×10 −8
= 0.01745 rad/m = 1o /m
§7 薄壁圆筒的扭转试验
例2 直径d=100mm的实心圆轴,两端受力偶矩T=10kN·m作 用而扭转,求横截面上的最大切应力。若改用内、外直径比值为 0.5的空心圆轴,且横截面面积和以上实心轴横截面面积相等,问 最大切应力是多少?
解: 圆轴各横截面上的扭矩均为 Mx=T=10kN·m。 (1)实心圆截面
(2)空心圆截面 由面积相等的条件,可求得空心圆截面的内、外直径。令 内直径为d1,外直径为D,α = d1 / D = 0.5,则有
由此求得
空心圆截面
实心圆截面
计算结果表明,空心圆截面上的最大切应力比实心圆截
材料力学第4章扭转变形
1 1
T
1 1
T
1
Me
+
B
x
T Me
Me
B
T图 x
例 一传动轴如图,转速n = 300r/min; 主动轮输 入的功率P1= 500kW,三个从动轮输出的功率分 别为: P2= 150kW, P3= 150kW, P4= 200kW。 试作轴的扭矩图。
解: 首先必须计算作用在各轮上的外力偶矩
M2 1
2 T
1
1 T
1
材料不同),可见在两
杆交界处的切应力是不
同的。
d
D
§4. 7 非圆截面杆扭转的概念
对非圆截面杆的扭转问题,主要介绍矩形截面 杆的扭转。
试验现象
横向线变 成曲线
横截面发生 翘曲不再保 持为平面
平面假设不再 成立,可能产 生附加正应力
自由扭转 翘曲不受限制。 纵向纤维无伸长 横截面上无正应力
T
max
O
max
D
d
T
Ip
max
T Wp
圆截面的极惯性矩Ip和扭转截面系数Wp —几何性质 实心圆截面:
d
O
d
O
d D d
Ip
2 d A πd 4
A
32
Wp
Ip d /2
πd 3 16
Ip
2 d A πD4
A
32
1 4
Wp
Ip D /2
πD 3 16
1 4
4-4 圆轴扭转强度条件与合理设计
B 0
按叠加原理:
B BB BM 0
BB、BM分别为MB、Me 引起的在杆端B的扭转角。
线弹性时,物理关系(胡克定理)为
圆轴扭转专题讲座公开课获奖课件百校联赛一等奖课件
2
32
Wt
1 D3
16
D
2、空心圆轴
IP
2dA R 2 2 d 1 (R4 r 4 )
r
2
1 (D4 d 4 ) 1 D4 (1 4 )
32
32
Wt
1 D3 (1 4 )
16
d
D
例题5 实心圆轴旳直径d=100mm,长L=1m,两端受力偶矩 m=14KN.m作用,设材料旳剪变模量G=80×109N/m, 求: 1)最大剪应力τmax; 2)图示截面上A、B、C三点剪应力旳数值及方向; 3)若将圆轴在保持截面面积A相同步改为d/D=1/2
a′
b′
c′
d′
ac、bd代表旳是两个横截面
提出假设: 横截面似一刚性平面,在外力偶矩作用下绕轴
转过一定旳角度,仍维持为圆截面。
平面假设成立!
观察到旳变形:
a
b
1)平面假设成立
2)轴向无伸缩
c
d
a′
b′
c′
d′
3)纵向线变形后仍为平行直线 4)横截面上同一圆周上全部旳点绕轴心转过相同旳角度
二、变形几何规律
图示一皮带传动轴,轮子A用皮带直接与原动机连接,轮 子B和C与机床连接。已知轮子A传递旳功率为60kW, 轮子B 传递34kW,轴旳转速150r/min,略去轴承旳摩擦
力,试作出轴旳扭矩图。
m1
m2 m3
B
A
C
解:1、外力偶矩
N
60
m2
9549
n
9549 150
3819.6N.m
m1
9549
G d
dx
T
IP
d T
材料力学 第4章扭转变形
1、T为横截面上的扭矩
max
2、Ip为截面参数,取决于截面形状 与尺寸 3、ρ为所求点距圆心距离。
d 2
max
最大切应力
r
max
d
T Tr T I p I p / r Wp
Wp Ip r
称为抗扭截 面系数
最大扭转切应力 发生在圆轴表面
同样适用于空心圆截面杆受扭的情形
T3
3 3
MD D x
(2)2-2截面上的应力计算
由扭矩图得知T2=-9.56kNm T IP 9560 40 10 3 26.6MPa 4 12 π 110 10 / 32 (2) 强度计算 危险横截面在AC段,Tmax=9.56kNm
τ max Tmax 9560 36.6MPa 3 9 WP π 110 10 / 16
T1 2M
M
A
C
T
M
x
2M
§4-3 圆轴扭转横截面上的应力
问题分析与研究思路
M
1
2
T M
M
问题:横截面应力大小、方向、分布均未知,仅知合成扭矩T。 连续体的静不定问题 。 分析方法:静力学、几何、物理三方面。 关键是几何方面:建立单变量的变形协调条件 几何方面:实观观测 合理假设
连续体的变形协调条件(数学公式)
D3
IP
D4
32
, WP
D3
16
4-4 圆轴扭转强度条件与合理设计
一、扭转失效 低碳钢扭转破坏
塑性材料扭转失效时,先发生屈服,最终沿横截面 断裂。
铸铁扭转破坏
脆性材料扭转失效时,变形很小,最终沿与轴线成 45°螺旋面断裂。
工程力学-圆轴扭转变形分析
P=7.5kW,轴的转速n=80r/min。试选择实心圆轴的直径d和空心圆轴的外
径d 2。己知空心圆轴的内外径之比=d 1/d 2=0.8,许用扭转切应力 [τ]=40MPa。
解:(1)外力偶矩为
M e 9550 7.5 N m 895 .3 N m 80
(2)扭矩为 T = Me = 895.3N· m (3)实心圆轴直径 根据强度条件
各点切应力的大小与该点到圆心的距离成正比,其分布 规律如图
圆轴扭转时,最大切应力 max 发生在圆轴表面。当ρ=R 时,其值为:
TR T max Ip IP / R
令 Wp
Ip R
max
T Wp
Wp称为扭转截面系数,它表示截面抵抗扭转破坏的能 力,单位是(mm)3。
工程中承受扭转的圆轴通常采用实心圆轴和空心圆轴两种形
max
T 16T 3 Wp πd
16 T 3 16 895.3 d 3 m 0.048m 48mm 6 [ ] 3.14 40 10
(4)空心圆轴外径
根据强度条件
max
T 16T 3 4 Wp πd 2 (1 )
16 T 16 895.3 3 d2 m 4 6 4 [ ](1 ) 3.14 40 10 (1 0.8 )
3
0.058m 58m m
内径d 1=α×d 2= 0.8×58 mm = 46.4mm
(5)比较重量
在长度相等、材料相同的情况下,空心圆轴与实心圆 轴重量之比等于横截面面积之比,即
四、圆轴扭转时的强度 计算
圆轴的扭转的强度条件
max
Tmax Wp
转轴扭转强度、刚度校核
传动轴满足强度要求。 2)刚度校核 传动轴的极惯性矩为
IP 0.1D 4 (1 a4 ) {0.1 904[1 (85 / 90)4 ]}mm4 134 10 4 mm4
max 180 M n /(GI P ) (180 1500 103 / 80 103 134 10 4 ) 103/m
当两轴材料、长度相同,它们的重量之比等于横截面面
积之比。设A1、A2分别为空心轴和实心轴的面积,则有
A 1
/
A 2
[
(D
2
d
2)
/
4] /(D 22
/
4)
(90 2
852 )
/
612
0.235
第四节 圆轴扭转时的强度和刚度计算
一、强度计算
为了保证圆轴安全正常地工作,即
max M n/Wn [ ]
(6-12)
例6-4 某传动轴,已知轴的直径d=40mm,转速
n材=料20的0许r/m用i切n,应力 60MPa ,试求此轴可传递的最大功率。
解 (1)确定许可外力偶矩
由扭转强度条件得
M n Wn[ ] (0.2 403 109 60 106 )N m 768N m
最
大力偶矩M =1500N·m,G =80GPa。
(1)试校核其强度及刚度。 (2)若将AB轴改为实心轴,试求其直径。 (3)比较空心轴和实心轴的重量。 解 (1)试校核其强度及刚度。 1) 强度校核 传动轴各截面上的扭矩均为
Mn = M = 1500N·m
传动轴的抗扭截面系数为
Wn 0.2D 3 (1 d 4 ) {0.2 903[1 (85 / 90)4 ]}mm3 29800 mm3 传动轴横截面上的最大切应力为
理论力学第四章扭转
内力T称为截面n-n上的扭矩。
Me
Me
x T
Me
扭矩的符号规定:按右手螺旋法则判断。
右手的四指代表扭矩的旋转方向,大拇指代表其矢量方向,若 其矢量方向与截面的外法线方向相同,则扭矩规定为正值,反之为 负值。
+
T
-
扭矩图:表示沿杆件轴线各横截面上扭矩变化规律的图线。
4
32 7640180 80109 π 2 1
86.4 103 m 86.4mm
d1 86.4mm
4.直径d2的选取
按强度条件
A M e1 d1
B d2 C
M e2
M e3
3 16T 3 16 4580
②各纵向线均倾斜了同一微小角度 。
③所有矩形网格均歪斜成同样大小的平行四边形。
结论:
0, 0
横截面上
0 0
根据对称性可知切应力沿圆周均匀分布;
t D, 可认为切应力沿壁厚均匀分布, 且方向垂直于其半径方向。
t
D
微小矩形单元体如图所示:
①无正应力
②横截面上各点处,只产生垂 直于半径的均匀分布的剪应力
强度计算三方面:
① ②
校核强度:
max
Tm a x WP
设计截面尺寸:
WP
Tmax
[ ]
[ ]
Wt
实:D3 16 空:1D6(3 1 4)
③ 计算许可载荷: Tmax WP[ ]
例4.2 图示阶梯状圆轴,AB段直径 d1=120mm,BC段直径
d2=100mm 。扭转力偶矩 MA=22 kN•m, MB=36 kN•m, MC=14 kN•m。 材料的许用切应力[t ] = 80MPa ,试校核该轴 的强度。
《材料力学》第四章 扭转
第四章 扭转§4—1 工程实例、概念一、工程实例1、螺丝刀杆工作时受扭。
2、汽车方向盘的转动轴工作时受扭。
3、机器中的传动轴工作时受扭。
4、钻井中的钻杆工作时受扭。
二、扭转的概念受力特点:杆两端作用着大小相等方向相反的力偶,且作用面垂直杆的轴线。
变形特点:杆任意两截面绕轴线发生相对转动。
轴:主要发生扭转变形的杆。
§4—2 外力偶矩、扭矩一、外力:m (外力偶矩)1、已知:功率 P 千瓦(KW ),转速 n 转/分(r /min ; rpm)。
外力偶矩:m)(N 9549⋅=nPm 2、已知:功率 P 马力(Ps),转速 n 转/分(r /min ;rpm)。
外力偶矩:m)(N 7024⋅=nPm 二、内力:T (扭矩) 1、内力的大小:(截面法)mT m T mx==-=∑002、内力的符号规定:以变形为依据,按右手螺旋法则判断。
(右手的四指代表扭矩的旋转方向,大拇指代表其矢量方向,若其矢量方向背离所在截面则扭矩规定为正值,反之为负值。
)3、注意的问题:(1)、截开面上设正值的扭矩方向;(2)、在采用截面法之前不能将外力简化或平移。
4、内力图(扭矩图):表示构件各横截面扭矩沿轴线变化的图形。
作法:同轴力图:§4—3 薄壁圆筒的扭转 一、薄壁圆筒横截面上的应力(壁厚0101r t ≤,0r :为平均半径) 实验→变形规律→应力的分布规律→应力的计算公式。
1、实验:2、变形规律:圆周线——形状、大小、间距不变,各圆周线只是绕轴线转动了一个不同的角度。
纵向线——倾斜了同一个角度,小方格变成了平行四边形。
3、切应变(角应变、剪应变):直角角度的改变量。
4、定性分析横截面上的应力(1) 00=∴=σε ;(2)00≠∴≠τγ因为同一圆周上切应变相同,所以同一圆周上切应力大小相等。
⑶ 因为壁厚远小于直径,所以可以认为切应力沿壁厚均匀分布,而且方向垂直于其半径方向。
材料力学:第四章 扭转
回顾: 极惯性矩、抗扭截面系数的计算
抗扭截面系数 极惯性矩
薄壁圆管 扭转切应力
回顾: 圆轴扭转强度条件 & 应力计算公式
薄壁圆管扭 转切应力
圆轴扭转 强度条件
max
[ ] u
n
扭转极限应力τu =
扭转屈服应力ts (塑性材料) 扭转强度极限tb (脆性材料)
§5 圆轴扭转变形与刚度计算
单辉祖:材料力学Ⅰ
14
例题
例 2-1 MA=76 Nm, MB=191 Nm, MC=115 Nm, 画扭矩图 解:用截断法,列力偶
矩平衡方程,和x轴正向 相同者取正 (1) 1-1截面
单辉祖:材料力学Ⅰ
(2) 2-2截面 T2 MC 115 N m
(3) 画扭矩图
15
§3 圆轴扭转横截面上的应力
单辉祖:材料力学Ⅰ
64
薄壁杆扭转
开口与闭口薄壁杆
截面中心线
-截面壁厚平分线
薄壁杆
-壁厚<<截面中心线 长度的杆件
闭口薄壁杆
-截面中心线为封闭曲线的薄壁杆
开口薄壁杆
-截面中心线为非封闭曲线的薄壁杆
单辉祖:材料力学Ⅰ
65
闭口薄壁杆扭转应力与变形
假设 切应力沿壁厚均匀分布, 并平行于中心线切线 应力公式
单辉祖:材料力学Ⅰ
62
例题
例 7-1 试比较闭口与开口薄壁圆管的抗扭性能,设 R0=20d
解:1. 闭口薄壁圆管
2. 开口薄壁圆管
3. 抗扭性能比较
单辉祖:材料力闭学Ⅰ口薄壁杆的抗扭性能远比开口薄壁杆好
63
§8 薄壁杆扭转
开口与闭口薄壁杆 闭口薄壁杆扭转应力与变形 开口薄壁杆扭转简介 薄壁杆合理截面形状 例题
第四章扭转的强度与刚度计算
Mnn=—MC-MB=—702(N•m)
AD段:Mnm—MD=0
Mnm=MD=468(N•m)
根据所得数据,即可画出扭矩图[图19—5(e)]。由扭矩图可知,最大扭矩发生在CA段内,且Mnmax=702N•m
如图19-15所示汽车传动轴AB,由45号钢无缝钢管制成,该轴的外径
D=90mm,壁厚t=2.5mm,工作时的最大扭矩Mn=1.5kNm,材料的许用剪应力[」=
60MPa。求(1)试校核AB轴的强度;(2)将AB轴改为实心轴,试在强度相同的条件 下,确定轴的直径,并比较实心轴和空心轴的重量。
解 (1)校核AB轴的强度:
d D _2t
ot=—=
D D
90一22・5=0.944
90
轴的最大剪应力为
力偶矩m’=0.8kN -m,M3=1.5kN -m,已知材料的剪切弹性模量G=80GPa,试计算:AC
BC段:以Mn1表示截面1一1上的扭矩,并任意地把mn1的方向假设为图19-5(b)
所示。根据平衡条件'mx=0得:
Mn1亠MB=0
Mn1_-MB_-351(N•m)
结果的负号说明实际扭矩的方向与所设的相反,应为负扭矩。BC段内各截面上的
扭矩不变,均为351N•m。所以这一段内扭矩图为一水平线。同理,在CA段内:
和最大的单位长度扭转角咖。
解(1)画扭矩图:用截面法逐段求得:
mn1=m’=0.8kN-m
Mn2- -M3--1.5kN-m
画出扭矩图[图19-16(b)]
(2) 计算极惯性矩:
3b1N-m
¥
1
702Nm
图Байду номын сангаас9-5
同济大学材料力学第四章 扭转 3学时
N马力 m 7.02 n
(kN m)
N KW m 9.55 n
(kN m)
第四章 扭转/二 外力偶矩、扭矩和扭矩图
2 求扭转内力的方法—截面法
Ⅰ
Ⅰ
3 受扭圆轴横截面上的内力—扭矩
I
Mn
I
第四章 扭转/二 外力偶矩、扭矩和扭矩图
4 扭矩的符号规定—右手螺旋法则
mI I
m
Mn
扭 矩 符 号 规 定 :
m1
d1
m2
d2
m3
I P1 I P2
d1
A
0.8kN· m
0.8m
B
1.0m
C
32 d 2 4 236cm 4 32
25.1cm
4
AB
BC
M n1L1 0.0318rad GI P1
M n 2 L2 0.0079rad GI P 2
1.5kN· m
AC AB BC 0.0318rad 0.0079rad 0.0239rad
0
τ
τ
σmin
τ
45 0
0
σmax
第四章 扭转/三 圆轴扭转时的强度计算
3 圆轴扭转时的强度条件 为保证圆轴安全工作,要求轴内的最大工作切 应力不超过材料的许用切应力,即:
max
式中的许用扭转切应力 ,是根据扭转试验, 并考虑适当的工作安全系数确定的.
M n max WP
159.2
第四章 扭转/二 外力偶矩、扭矩和扭矩图
课堂练习 图示圆轴中,各轮上的转矩分别为mA=4kN·m, mB=10kN·m, mC=6kN · m,试求1-1截面和2-2截面上的 轮 扭矩,并画扭矩图。
扭转刚度
T
D
D 2
FD 扭矩: 扭矩: T = 2
簧丝横截面上的应力: 簧丝横截面上的应力:
FS
1、剪力 F 引起的 τ1 近似 、 S 认为是均匀分布 2、扭矩 T 引起的 τ 2 按照 、 圆轴扭转计算
τ1
τ 2max
簧丝横截面上的应力: 簧丝横截面上的应力:
τ1 =
π
F d2
4F = πd 2
τ1
A d
簧丝横截面上的应力: 簧丝横截面上的应力:
τ max
8FD d = +1 A 3 πd 2D
τ1
τ 2max
A
对于簧丝的直径 d 远小 于弹簧的中径D的情况 的情况, 于弹簧的中径 的情况,
d
τ max
8FD ≅ πd 3
在考虑簧丝的曲率和
τ1 分布不均匀时: 分布不均匀时:
二、圆轴扭转刚度的计算 ϕ ′= ϕ 单位长度扭转角
l
T 显然 ϕ′ = GIP
圆轴扭转刚度条件为: 圆轴扭转刚度条件为:
ϕ′ ≤ [ϕ′]
单位长度扭转角的许可值
[ϕ′] ( ) m
0
圆轴扭转刚度条件为: 圆轴扭转刚度条件为:
T 180 GI × π ≤ [ϕ′] P m ax
Tmax =155 N ⋅ m
轴的强度条件为: 轴的强度条件为:
Tmax 16Tmax = = ≤ [τ ] 3 πD W t
16Tmax
MⅡ
T(N ⋅ m)
MⅢ
MⅣ
τ max
D≥3
π [τ ]
=3
16×155 π × 40×106
39.3
圆轴扭转时的强度和刚度计算
A1 / A2 = [π (D 2 − d 2 ) / 4] /(πD 2 2 / 4) = (90 2 − 852 ) / 612 = 0.235
传动轴满足强度要求。 2)刚度校核 传动轴的极惯性矩为
I P = 0.1D 4 (1 − a 4 ) = {0.1 × 90 4 [1 − (85 / 90 ) 4 ]}mm 4 = 134 × 10 4 mm 4 θ max = 180 M n /(πGI P )
= (180 × 1500 × 10 3 / 80 × 10 3 × 134 × 10 4 π ) × 10 3 °/m
= 0.8°/m < [θ ]
传动轴满足刚度要求。 (2)计算实心轴的直径
1)按强度条件设计(设直径为D1)。若实心轴与空心轴强 度相同,当材料相同时,它们的抗扭截面系数应相等,即
W n = πD 13 / 16 = πD 3 (1 Βιβλιοθήκη a 4 ) / 16由此得
D 1 = D3 1 − a 4 = [90 × 3 1 − (85 / 90) 4 ]mm = 53mm
根据扭转刚度条件,可以解决三类问题, 即校核刚度、 设计截面和确定许可载荷 。
例6-5 汽车传动轴AB由45号无缝钢管制成,外径D=90mm,
[ 内径d=85mm,许用切应力 [τ ]=60MPa,θ ] =1.0°/m,工作时最
大力偶矩M =1500N·m,G =80GPa。 (1)试校核其强度及刚度。 (2)若将AB轴改为实心轴,试求其直径。 (3)比较空心轴和实心轴的重量。 解 (1)试校核其强度及刚度。 1) 强度校核 传动轴各截面上的扭矩均为
θ max = 180M n /(πGI P ) ≤ [θ ]
(6-13)
材料力学 (扭转)(四章 圆轴扭转时的强度与刚度计算)
Mx 0: T1 MA 0
C
T1 MA 7.03KN.m
22
Mx 0: -T2 MC 0
T2 MC 2.32KN.m
X
(4)讨论现在的设计是否合理。
若将A轮与B轮调换, X 则扭矩图如下:
可见轴内的最大扭矩值减小了。10
T(KN.M)
§3.2 薄壁圆筒扭转
在圆筒表面画 上许多纵向线 与圆周线,形成 许多小方格.
G
剪切胡克定律
G-剪切弹性模量
G E
2(1 )
2021/8/19
17
圆轴扭转时的应力和变形
根据观察到的现象, 经过推理,得出关于圆 轴扭转的基本假设。
m
m
圆轴扭转变形前的横截面,变形后仍保持为平面,
形状和大小不变。且相邻两截面间的距离不变。这就 是圆轴扭转的平面假设。
2021/8/19
18
二. 应力在横截面上的分布
2
而象电动机的主轴,水轮 机的主轴也承受扭转作用, 但这些零件除扭转变形外, 还伴随有其它形式的变形, 属于组合变形。
• 以扭转变形为主要变形形式的构件通常称为轴。 • 工程上应用最广的多为圆截面轴,即圆轴。
2021/8/19
3
• 扭转受力的特点是:
• 在构件的两端作用两个大小相等、方向相反且作 用面垂直于构件轴线的力偶矩。致使构件的任意 两个截面都发生绕构件轴线的相对转动,这种形 式的变形即为扭转变形。
在转矩m作用下,发现圆 周线相对地旋转了一个角 度,但大小、形状和相邻 两圆周线的距离不变。
表明,在圆筒的横截面上没有正应力和径向剪应力。
2021/8/19
11
设圆筒平均半径为r,筒壁厚度为t
因圆筒壁厚很小,可认为剪应力沿
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
41一、 传动轴如图19-5(a )所示。
主动轮A 输入功率kW N A 75.36=,从动轮D C B 、、输出功率分别为kW N kW N N D C B 7.14,11===,轴的转速为n =300r/min 。
试画出轴的扭矩图。
解 (1)计算外力偶矩:由于给出功率以kW 为单位,根据(19-1)式: 117030075.3695509550=⨯==n N M A A (N ·m )3513001195509550=⨯===n N M M B C B (N ·m )4683007.1495509550=⨯==n N M D D (N ·m )(2)计算扭矩:由图知,外力偶矩的作用位置将轴分为三段:AD CA BC 、、。
现分别在各段中任取一横截面,也就是用截面法,根据平衡条件计算其扭矩。
BC 段:以1n M 表示截面Ⅰ-Ⅰ上的扭矩,并任意地把1n M 的方向假设为图19-5(b )所示。
根据平衡条件0=∑x m 得:01=+B n M M3511-=-=B n M M (N ·m )结果的负号说明实际扭矩的方向与所设的相反,应为负扭矩。
BC 段内各截面上的扭矩不变,均为351N ·m 。
所以这一段内扭矩图为一水平线。
同理,在CA 段内:M n Ⅱ+0=+B C M MⅡn M = -B C M M -= -702(N ·m ) AD 段:0=D n M M -Ⅲ468==D n M M Ⅲ(N ·m )根据所得数据,即可画出扭矩图[图19-5(e )]。
由扭矩图可知,最大扭矩发生在CA 段内,且702max =n M N ·m二、 如图19-15所示汽车传动轴AB ,由45号钢无缝钢管制成,该轴的外径(a )(c )Cm(d ) (e )图19-5(b )42 D =90mm ,壁厚t =2.5mm ,工作时的最大扭矩M n =1.5kN·m ,材料的许用剪应力][τ=60MPa 。
求(1)试校核AB 轴的强度;(2)将AB 轴改为实心轴,试在强度相同的条件下,确定轴的直径,并比较实心轴和空心轴的重量。
解 (1)校核AB 轴的强度:944.0905.22902=⨯-=-==D t D D d α )(29400)944.01(1690)1(1634343mm D W n =-⨯=-=παπ 轴的最大剪应力为 :69max max 105110294001500⨯=⨯==-n n W M τ(N /m 2)=51MPa ﹤[τ] 故AB 轴满足强度要求。
(2)确定实心轴的直径:按题意,要求设计的实心轴应与原空心轴强度相同,因此要求实心轴的最大剪应力也应该是 :)(51max MPa =τ设实心轴的直径为1D ,则631max 1051161500⨯===D W M nn πτ)(1.53)(0531.01051161500361mm m D ==⨯⨯⨯=π 在两轴长度相同,材料相同的情况下,两轴重量之比等于其横截面面积之比,即 31.01.538590222=-=实心空心A A三、 如图19-16所示的阶梯轴。
AB 段的直径1d =4cm ,BC 段的直径2d =7cm ,外图19-15AB(a )图19-16M (kN .m (b )43力偶矩1M =0.8kN ·m ,3M =1.5kN ·m ,已知材料的剪切弹性模量G =80GPa ,试计算AC ϕ和最大的单位长度扭转角max θ。
解 (1)画扭矩图:用截面法逐段求得:8.011==M M n kN ·m 5.132-=-=M M n kN ·m 画出扭矩图[图19-16(b )](2)计算极惯性矩:1.25324324411=⨯==ππd I P (cm 4)236327324422=⨯==ππd I P (cm 4)(3)求相对扭转角AC ϕ:由于AB 段和BC 段内扭矩不等,且横截面尺寸也不相同,故只能在两段内分别求出每段的相对扭转角AB ϕ和BC ϕ,然后取AB ϕ和BC ϕ的代数和,即求得轴两端面的相对扭转角AC ϕ。
0318.0101.251080800108.0436111=⨯⨯⨯⨯⨯==p n AB GI l M ϕ(rad ) 0079.01023610801000105.1436222-=⨯⨯⨯⨯⨯-==p n BCGI l M ϕ(rad ) 0239.00079.00318.0=-=+=BC AB AC ϕϕϕ(rad )=1.37°(4)求最大的单位扭转角max θ:考虑在AB 段和BC 段变形的不同,需要分别计算其单位扭转角。
AB 段 m m rad l AB AB /28.2)/(0398.08.00318.01︒====ϕθ BC 段 m m rad l BC BC /453.0)/(0079.00.10079.02︒-=-=-==ϕθ 负号表示转向与AB θ相反。
所以 max θ=AB θ=2.28º/m四、 实心轴如图19-17所示。
已知该轴转速n =300r /min ,主动轮输入功率C N =40kW ,从动轮的输出功率分别为A N =10 kW ,B N =12 kW ,D N =18 kW 。
材料的剪切弹性模量G =80GPa ,若[]τ=50MPa ,[]θ=0.3º/m ,试按强度条件和刚度条件设计此轴的直径。
解 (1)求外力偶矩:3183001095509550=⨯==n N M A A (N ·m )3823001295509550=⨯==n N M B B (N ·m )12733004095509550=⨯==n N M C C ( N ·m )44 5733001895509550=⨯==n N M D D ( N ·m ) (2) 求扭矩、画扭矩图:3181-=-=A n M M (N ·m )7003823182-=--=--=B A n M M M (N ·m ) 5733==D n M M (N ·m )根据以上三个扭矩方程,画出扭矩图[图19-17(b )]。
由图可知,最大扭矩发生在BC 段内,其值为:700max =n M N ·m因该轴为等截面圆轴,所以危险截面为BC 段内的各横截面。
(3)按强度条件设计轴的直径:由强度条件:nn W Mmax max =τ≤][τ163d W n π=得 [])(5.4150107001616333maxmm M d n =⨯⨯⨯=≥πτπ(4)按刚度条件设计轴的直径:由刚度条件:πθ︒⨯=180max max p n GI M ≤][θm /︒ 324d I p π=得d ≥[])(2.64103.0108018010700321803243334max mm G M n =⨯⨯⨯⨯⨯⨯⨯=⨯-πθπ 为使轴同时满足强度条件和刚度条件,所设计轴的直径应不小于64.2mm 。
五、 油泵分油阀门弹簧工作圈数n =8,轴向压力P =90N ,簧丝直径d =2.25mm ,(a )M (N·m 图19-17( b )45簧圈外径1D =18mm ,弹簧材料的剪切弹性模量G =82GPa ,[]τ=400MPa 。
试校核簧丝强度,并计算其变形。
解(1)校核簧丝强度:簧丝平均直径:d D D -=1=18-2.25=15.75(mm ) 弹簧指数:10725.275.15<===d D c由表19-1查得弹簧的曲度系数k =1.21,则][)(38025.275.1590821.1833max τππτ<=⨯⨯⨯==MPa d PD k 该弹簧满足强度要求。
(2)计算弹簧变形: )(7.1025.21082875.15908843343mm Gdn PD =⨯⨯⨯⨯⨯==λ思 考 题19-1 说明扭转应力,变形公式⎰==l o pn n dx GI MI M ϕρτρρ,的应用条件。
应用拉、压应力变形公式时是否也有这些条件限制?19-2 扭转剪应力在圆轴横截面上是怎样分布的?指出下列应力分布图中哪些是正确的?19-3 一空心轴的截面尺寸如图所示。
它的极惯性矩I p 和抗扭截面模量W n 是否可按下式计算?为什么? )(44132απ-=D I p )1(1643απ-=D W n (Dd=α) 19-4 若将实心轴直径增大一倍,而其它条件不变,问最大剪应力,轴的扭转角将如何变化?19-5 直径相同而材料不同的两根等长实心轴,在相同的扭矩作用下,最大剪应力max τ、扭转角ϕ和极惯性矩P I 是否相同?19-6 何谓纯剪切?何谓剪应力互等定理?46习 题19-1 绘制图示各杆的扭矩图。
19-2 直径为D =5cm 的圆轴,受到扭矩n M =2.15kN ·m 的作用,试求在距离轴心1cm处的剪应力,并求轴截面上的最大剪应力。
19-3 已知作用在变截面钢轴上的外力偶矩1m =1.8kN ·m ,2m =1.2kN ·m 。
试求最大剪应力和最大相对转角。
材料的G =80GPa 。
19-4 已知圆轴的转速n =300r /min ,传递功率330.75kW ,材料的][τ=60MPa ,G =82GPa 。
要求在2m 长度内的相对扭转角不超过1º,试求该轴的直径。
19-5 图示一圆截面直径为80cm 的传动轴,上面作用的外力偶矩为1m =1000N ·m ,2m =600N ·m ,3m =200N ·m ,4m =200N ·m ,(1)试作出此轴的扭矩图,(2)试计算各段轴内的最大剪应力及此轴的总扭转角(已知材料的剪切弹性模量G =79GPa );(3)若将外力偶矩1m 和2m 的作用位置互换一下,问圆轴的直径是否可以减少?19-6 发电量为15000kW 的水轮机主轴如图所示,D =55cm ,d =30cm ,正常转速n =250r /min 。
材料的许用剪应力][τ=50MPa 。
试校核水轮机主轴的强度。
思考题19-3图(b ) (c )M n(d )(a ) 思考题19-2图题19-1图(c )d )(b )(a)e 2kN·m 1kN·m 4kN·m 1kN·m4719-7 图示AB 轴的转速n =120r /min ,从B 轮输入功率N =44.15kW ,此功率的一半通过锥形齿轮传给垂直轴C ,另一半由水平轴H 输出。