计算流体力学part1(基础知识1)
01-计算流体力学概述

限制其流动的固体壁之间的相互作用问题。
内部绕流外部绕流
7
龙卷风雷暴
全球气候飓风飞机舰艇
空气污染河流、水利
高速列车潜艇
11
水上运动自行车赛艇
赛车冲浪
建筑
农业:灌溉
25 2627 2829
30
Basic Fins Vented Fins
Slotted Chamfered Corner
Corners Corners Cutting
拐角修正即可以达到减振效果
流固耦合效应研究—
39
¾风荷载预测——大连中国石油大厦(2007年,2009年)
三维鞍形薄膜屋盖(2001年-至今)
41
CFD数值模拟的模型示意图
流场速度分布矢量图
45
深圳大运会体育场(2007年)
流场速度分布矢量图
47
¾复杂地形的风环境预测与评估
50
度
为0.4665R(FAST反射面距离球心的半径为R,R=300m)。
馈源运动球面与FAST反射面之间的关系示意图0度风向角下馈源运动球面附近的风场分布该高度处的风场由于受到山势的阻
挡效应,FAST反射面上空的相当高
55Space Structure Research Center, HIT, CHINA 55/60
210度
210度
无挡风墙
挡风墙(a)
56Space Structure Research Center, HIT, CHINA 56/60210度
210度
挡风墙(b)
挡风墙(c)。
计算流体力学入门

计算流体力学入门第一章基本原理和方程1.计算流体力学的基本原理1.1为什么会有计算流体力学1.2计算流体力学是一种科研工具1.3计算流体力学是一种设计工具1.4计算流体力学的冲击-其它方面的应用1.4.1汽车和发动机方面的应用1.4.2工业制造领域的应用1.4.3土木工程中的应用1.4.4环境工程中的应用1.4.5海军体形中的应用(如潜艇)在第一部分,作为本书的出发点,首先介绍计算流体力学的一些基本原理和思想,同时也导出并讨论流体力学的基本控制方程组,这些方程组是计算流体力学的物理基础,在理解和应用计算流体力学的任何一方面之前,必须完全了解控制方程组的数学形式和各项的物理意义,所有这些就是第一部分的注意内容。
1.1 为什么有计算流体力学时间:21世纪早期。
地点:世界上任何地方的一个主要机场。
事件:一架光滑美丽的飞机沿着跑道飞奔,起飞,很快就从视野中消失。
几分钟之内,飞机加速到音速。
仍然在大气层内,飞机的超音速燃烧式喷气发动机将飞机推进到了26000ft/s-轨道速度-飞行器进入地球轨道的速度。
这是不是一个充满幻想的梦?这个梦还没有实现,这是一个星际运输工具的概念,从20世纪八十年代到九十年代,已经有几个国家已经开始这方面的研制工作。
特别的,图1.1显示的是一个艺术家为NASD设计的飞行器的图纸。
美国从八十年代中期开始就进行这项精深的研究。
对航空知识了解的人都知道,象这种飞行器,这样的推进力使飞机飞的更快更高的设想总有一天会实现。
但是,只有当CFD发展到了一定程度,能够高效准确可靠的计算通过飞行器和发动机周围的三维流场的时候,这个设想才能实现,不幸的是地球上的测量装置-风洞-还不存在这种超音速飞行的飞行体系。
我们的风洞还不能同时模拟星际飞行器在飞行中所遇到的高Ma和高的流场温度。
在21世纪,也不会出现这样的风洞,因此,CFD就是设计这种飞行器的主要手段。
为了设计这种飞行器和其它方面的原因,出现了CFD-本书的主要内容。
第二章--计算流体力学的基本知识

第二章--计算流体力学的基本知识第二章计算流体力学的基本知识流体流动现象大量存在于自然界及多种工程领域中,所有这些工程都受质量守恒、动量守恒和能量守恒等基本物理定律的支配。
这章将首先介绍流体动力学的发展和流体力学中几个重要守恒定律及其数学表达式,最后介绍几种常用的商业软件。
2.1计算流体力学简介2.1.1计算流体力学的发展流体力学的基本方程组非常复杂,在考虑粘性作用时更是如此,如果不靠计算机,就只能对比较简单的情形或简化后的欧拉方程或N-S方程进行计算。
20世纪30~40年代,对于复杂而又特别重要的流体力学问题,曾组织过人力用几个月甚至几年的时间做数值计算,比如圆锥做超声速飞行时周围的无粘流场就从1943年一直算到1947年。
数学的发展,计算机的不断进步,以及流体力学各种计算方法的发明,使许多原来无法用理论分析求解的复杂流体力学问题有了求得数值解的可能性,这又促进了流体力学计算方法的发展,并形成了"计算流体力学"。
从20世纪60年代起,在飞行器和其他涉及流体运动的课题中,经常采用电子计算机做数值模拟,这可以和物理实验相辅相成。
数值模拟和实验模拟相互配合,使科学技术的研究和工程设计的速度加快,并节省开支。
数值计算方法最近发展很快,其重要性与日俱增。
自然界存在着大量复杂的流动现象,随着人类认识的深入,人们开始利用流动规律来改造自然界。
最典型的例子是人类利用空气对运动中的机翼产生升力的机理发明了飞机。
航空技术的发展强烈推动了流体力学的迅速发展。
*流体运动的规律由一组控制方程描述。
计算机没有发明前,流体力学家们在对方程经过大量简化后能够得到一些线形问题解读解。
但实际的流动问题大都是复杂的强非线形问题,无法求得精确的解读解。
计算机的出现以及计算技术的迅速发展使人们直接求解控制方程组的梦想逐步得到实现,从而催生了计算流体力学这门交叉学科。
计算流体力学是一门用数值计算方法直接求解流动主控方程(Euler 或Navier-Stokes方程)以发现各种流动现象规律的学科。
第一章流体力学基本知识

矩形 hD=2/3 h
例题1-1:在某一输水渠道中,有一木板矩形闸门,宽b=0.8m,闸门前水深 h=1.2m,试求闸门上的静水总压力及其作用点。 解: P=P =h c c
h h = =0.6m c 2 =9800 N=9.8KN
=bh=0.8 1.2=0.96m2
1-1流体的主要力学性质
一、流体的惯性-取决于流体的质量 密度: 单位体积流体的质量 重度: 单位体积流体的重量 影响因素:压强 温度
二、流体的粘度 流速分布图(图1-1)
粘度: 流体流动时阻抗变形的特征
影响因素:压力
温度
粘度大小表示:动力粘度系数
运动粘度系数
三、流体的压缩性和热胀性 表征量:弹性模量和压缩系数
不可压缩流体稳定流连续方程式:
ω1v1= ω2v2 (质量守恒的数学表达式)
例题1-4
三、稳定流的能量方程式 1.元流的能量方程式(不可压缩的理想流体) 伯奴里方程式(1-18) 2.总流的能量方程式
(1)均匀流、缓变流和急变流(图1-18)
(2)理想条件下的方程式(a)(b)(c)(d)(e)(f)(g)
一般情况下,可忽略不计。
流体可以看作是一种易于流动、具有粘滞性、 不易压缩并且充满其所在空间无任何空隙的质点所 组成的理想连续介质。
1-2流体静力学
一、流体静压强及其特征 基本特征:(1)流体静压强的方向与作用面垂直, 并指向作用面。
(2)任意一点各方向的流体静压强均相等。 二、流体静压强的分布规律
能量方程式的物理意义与几何意义1物理意义z单位重量流体的位能pr单位重量流体的压能v22gv2g单位重量流体的动能单位重量流体的动能zprv22g单位重量流体的机械能2几何意义z位置水头pr压力水头v22g平均流速水头zprv22g总水头3总水头线和侧压管水头线图1194
计算流体力学简明讲义

第一章绪论第一节计算流体力学:概念与意义一、计算流体力学概述任何流体运动的规律都是由以下3个基本定律为基础的:1)质量守恒定律;2)牛顿第二定律(力=质量×加速度),或者与之等价的动量定理;3)能量守恒定律。
这些基本定律可由积分或者微分形式的数学方程(组)来描述。
把这些方程中的积分或者(偏)微分用离散的代数形式代替,使得积分或微分形式的方程变为代数方程(组);然后,通过电子计算机求解这些代数方程,从而得到流场在离散的时间/空间点上的数值解。
这样的学科称为计算流体(动)力学(Computational Fluid Dynamics,以下简称CFD)。
CFD有时也称流场的数值模拟,数值计算,或数值仿真。
在流体力学基本方程中的微分和积分项中包括时间/空间变量以及物理变量。
要把这些积分或者微分项用离散的代数形式代替,必须把时空变量和物理变量离散化。
空间变量的离散对应着把求解域划分为一系列的格子,称为单元体或控制体(mesh,cell,control volume)。
格子边界对应的曲线称为网格(grid),网格的交叉点称为网格点(grid point)。
对于微分型方程,离散的物理变量经常定义在网格点上。
某一个网格点上的微分运算可以近似表示为这个网格点和相邻的几个网格点上物理量和网格点坐标的代数关系(这时的数值方法称为有限差分方法)。
对于积分型方程,离散物理量可以定义在单元体的中心、边或者顶点上。
单元体上的积分运算通常表示为单元体的几何参数、物理变量以及相邻单元体中物理变量的代数关系(这时的数值方法称为有限体积方法和有限元方法)。
所谓数值解就是在这些离散点或控制体中流动物理变量的某种分布,他们对应着的流体力学方程的用数值表示的近似解。
由此可见,CFD得到的不是传统意义上的解析解,而是大量的离散数据。
这些数据对应着流体力学基本方程的近似的数值解。
对于给定的问题,CFD 研究的目的在于通过对这些数据的分析,得到问题的定量描述。
流体力学基础知识

流体力学基础知识(总15页) -本页仅作为预览文档封面,使用时请删除本页-第一章流体力学基本知识学习本章的目的和意义:流体力学基础知识是讲授建筑给排水的专业基础知识,只有掌握了该部分知识才能更好的理解建筑给排水课程中的相关内容。
§1-1流体的主要物理性质1.本节教学内容和要求:1.1本节教学内容:流体的4个主要物理性质。
1.2教学要求:(1)掌握并理解流体的几个主要物理性质(2)应用流体的几个物理性质解决工程实践中的一些问题。
1.3教学难点和重点:难点:流体的粘滞性和粘滞力重点:牛顿运动定律的理解。
2.教学内容和知识要点:易流动性(1)基本概念:易流动性——流体在静止时不能承受切力抵抗剪切变形的性质称易流动性。
流体也被认为是只能抵抗压力而不能抵抗拉力。
易流动性为流体区别与固体的特性2.2密度和重度(1)基本概念:密度——单位体积的质量,称为流体的密度即:Mρ=VM——流体的质量,k g;V——流体的体积,m3。
常温,一个标准大气压下Ρ水=1×103k g/m32Ρ水银=×103k g/m3基本概念:重度:单位体积的重量,称为流体的重度。
重度也称为容重。
Gγ=VG——流体的重量,N;V——流体的体积,m3。
∵G=m g∴γ=ρg常温,一个标准大气压下γ水=×103k g/m3γ水银=×103k g/m3密度和重度随外界压强和温度的变化而变化液体的密度随压强和温度变化很小,可视为常数,而气体的密度随温度压强变化较大。
2..3粘滞性(1)粘滞性的表象基本概念:流体在运动时抵抗剪切变形的性质称为粘滞性。
当某一流层对相邻流层发生位移而引起体积变形时,在流体中产生的切力就是这一性质的表现。
为了说明粘滞性由流体在管道中的运动速度实验加以分析说明。
用流速仪测出管道中某一断面的流速分布如图一所示设某一流层的速度为u,则与其相邻的流层为u+d u,d u为相邻流层的速度增值,设相邻流层的厚度为d y,则d u/d y叫速度梯度。
流体力学基本知识

第一章流体力学基本知识解析第一节流体及其空气的物理性质流动性是流体的基本物理属性。
流动性是指流体在剪切力作用下发生连续变形、平衡破坏、产生流动,或者说流体在静止时不能承受任何剪切力。
易流动性还表现在流体不能承受拉力。
(一) 流体的流动性通风除尘与气力输送涉及的流体主要是空气。
流体是液体和气体的统称,由液体分子和气体分子组成,分子之间有一定距离。
但在流体力学中,一般不考虑流体的微观结构而把它看成是连续的。
这是因为流体力学主要研究流体的宏观运动规律它把流体分成许多许多的分子集团,称每个分子集团为质点,而质点在流体的内部一个紧靠一个,它们之间没有间隙,成为连续体。
实际上质点包含着大量分子,例如在体积为10-15cm3的水滴中包含着3×107个水分子,在体积为1mm3的空气中有2.7×1016个各种气体的分子。
质点的宏观运动被看作是全部分子运动的平均效果,忽略单个分子的个别性,按连续质点的概念所得出的结论与试验结果是很符合的。
然而,也不是在所有情况下都可以把流体看成是连续的。
高空中空气分子间的平均距离达几十厘米,这时空气就不能再看成是连续体了。
而我们在通风除尘与气力输送中所接触到的流体均可视为连续体。
所谓连续性的假设,首先意味着流体在宏观上质点是连续的,其次还意味着质点的运动过程也是连续的。
有了这个假设就可以用连续函数来进行流体及运动的研究,并使问题大为简化。
(二)惯性(密度)流体的第一个特性是具有质量。
流体单位体积所具有流体彻底质量称为密度,用符号ρ表示。
在均质流体内引用平均密度的概念,用符号ρ表示:Vm =ρ式中: m ——流体的质量[Kg];V ——流体的体积[m 3]; ρ——流体密度Kg/m 3。
但对于非均质流体,则必需用点密度来描述。
所谓点密度是指当ΔV →0值的极限(dV dm V m V 0 lim ),即:dV dm V m lim V =∆∆=→∆0ρ公式中,ΔV →0理解为体积缩小为一点,此点的体积可以忽略不计,同时,又必须明确,这点和分子尺寸相比必然是相当大的,它必定包括多个分子,而不至丧失流体的连续性。
计算流体力学课件-part1

2024/2/28
19
❖Computational Fluid Dynamics
计算流体流体力学
第二讲 典型模型方程的数学性质
模型方程的概念
➢完整方程
连续方程
动量方程
能量方程
2024/2/28
20
❖Computational Fluid Dynamics
沿特征线,扰动波的幅值不变,传播速度为c
则在t>0时,传播过程如下图:
2024/2/28
27
❖Computational Fluid Dynamics
计算流体流体力学
第二讲 典型模型方程的数学性质
模型方程的特征
➢单波方程
➢c>0时,传播沿x正向 ➢C<0时,传播沿x负向 ❖扰动波以有限速度传播是双曲型方程的重要 特征(波形和波幅可能会变化,此处为什么不 变?)
如何表达初始形状三角形
如何存储数据 如何积分
数值积分,HOW?
如何显示结果
TECPLOT
尝试改变几个常数,看看结果有何变化,常数反映了什么?
2024/2/28
22Biblioteka ❖Computational Fluid Dynamics
回顾
控制方程
模型方程
➢NS ➢EULER ➢Impressible NS ➢RANS
➢单波方程可以模拟EULER方程的一些特征
2024/2/28
28
❖Computational Fluid Dynamics
计算流体流体力学
第二讲 典型模型方程的数学性质
模型方程的特征
流体力学基本知识 ppt课件

〈2〉温度升高,气体的粘度增大(气体的内 聚力很小,它的粘滞性主要是分子间动量 交换的结果。当T上升,作相对运动的相邻 流层间的分子的动量交换加剧,使得气体 的粘度增大。)
流体力学基本知识
6
三、流体的压缩性和热胀性
一、流体运动的基本概念
(一)压力流与无压流 1.压力流:流体在压差作用下流动时,流体 整个周围都和固体壁相接触,没有自由表 面。 2.无压流:液体在重力作用下流动时,液体 的部分周界与固体壁相接触,部分周界与 气体接触,形成自由表面。
流体力学基本知识
14
(三)流线与迹线
1.流线:流体运动时,在流速场中画出某时 刻的这样的一条空间曲线,它上面所有流 体质点在该时刻的流速矢量都与这条曲线 相切,这条曲线就称为该时刻的一条流线。
流体力学基本知识
26
四、沿程阻力系数λ和流速系数C的确定
沿程阻力系数λ 是反映边界粗糙情况和流态 对水头损失影响的一个系数。1933年尼古 拉兹表发表了其反映圆管流运情况的实验 结果,得出了一些结论:
1.层流区 2.层流转变为紊流的过渡区 3.紊流区
流体力学基本知识
27
(一)沿程阻力系数λ的经验公式 1.水力光滑区 2.水力过渡区 3.粗糙管区
2.迹线:流体运动时,流体中某一个质点在 连续时间内的运动轨迹称为迹线。流线与 迹线是两个完全不同的概念。非恒定流时 流线与迹线不相重合,在恒定流时流线与 迹线相重合。
流体力学基本知识
15
(二)恒定流与非恒定流
1.恒定流:流体运动时,流体中任一位置的 压强,流速等运动要素不随时间变化的流 动称为恒定流动。
大学物理流体力学基础知识点梳理

大学物理流体力学基础知识点梳理一、流体的基本概念流体是指能够流动的物质,包括液体和气体。
与固体相比,流体具有易变形、易流动的特点。
流体的主要物理性质包括密度、压强和黏性。
密度是指单位体积流体的质量,用ρ表示。
对于均质流体,密度等于质量除以体积;对于非均质流体,密度是空间位置的函数。
压强是指流体单位面积上所受的压力,通常用 p 表示。
在静止流体中,压强的大小只与深度和流体的密度有关,遵循着著名的帕斯卡定律。
黏性是流体内部抵抗相对运动的一种性质。
黏性的存在使得流体在流动时会产生内摩擦力,阻碍流体的流动。
二、流体静力学流体静力学主要研究静止流体的力学规律。
(一)静止流体中的压强分布在静止的均质流体中,压强随深度呈线性增加,其关系式为 p =p₀+ρgh,其中 p₀为液面处的压强,h 为深度,g 为重力加速度。
(二)浮力定律当物体浸没在流体中时,会受到向上的浮力。
浮力的大小等于物体排开流体的重量,即 F 浮=ρgV 排,这就是阿基米德原理。
三、流体动力学(一)连续性方程连续性方程是描述流体在流动过程中质量守恒的定律。
对于不可压缩流体,在稳定流动时,通过管道各截面的质量流量相等,即ρv₁A₁=ρv₂A₂,其中 v 表示流速,A 表示横截面积。
(二)伯努利方程伯努利方程反映了流体在流动过程中能量守恒的关系。
其表达式为p +1/2ρv² +ρgh =常量。
即在同一流线上,压强、动能和势能之和保持不变。
伯努利方程有着广泛的应用。
例如,在喷雾器中,通过减小管径增加流速,从而降低压强,使得液体被吸上来并雾化;在飞机机翼的设计中,利用上下表面流速的差异产生压强差,从而提供升力。
四、黏性流体的流动(一)层流与湍流当流体流速较小时,流体呈现出有规则的层状流动,称为层流;当流速超过一定值时,流体的流动变得紊乱无序,称为湍流。
(二)黏性流体的流动阻力黏性流体在管道中流动时会受到阻力。
阻力的大小与流体的黏度、流速、管道的长度和直径等因素有关。
计算流体力学课件完整版

●实验要受测量技术限制,实验周期长、费用高。
☆ 理论研究 ●在研究流体流动规律的基础上,建立了流体流动基 本方程。 ●对于一些简单流动,通过简化求出研究问题的解析 解。
计算流体力学
●对于实际流动问题,通常需运用流体力学基本方程, 借助于计算机求数值解(计算机数值模拟)— 计算流体力学CFD。
Z
skirt.plt X Y
75 50 25
0 -25 -50 -75
-2
Y(M) 0
2
0 2 4 6 10 8 X(M) 12 14
D) 16 Feb 2003 Velocity Vectors
4.5
4 velocity.plt
3.5
3
2.5
2
1.5
Z
Z
(3D) 16 Feb 2003 IJK-Ordered DZ ata
ijkcyl.plt X Y
Z
-0.4 -0.2 Y0 0.2 0.4
1
0.8
0.6
0.4
0.2
0 -0.4 -0.2 0 X 0.2 0.4
Z
jetflow.plXt Y
0.6 0.5 0.4 0.3 0.2 0.1
0 0 Y0.1 0.2
-0.6 -0.4 -0.2 0 X 0.2 0.4 0.6
轴流叶轮计算与实验叶片表面极限流线
计算流体力学
轴流叶轮计算与实验性能比较
计算流体力学
轴流叶轮计算与实验流场结构比较
计算流体力学
第二章 流体力学数值计算数学模型及定解条件
☆本章所涉及的基本方程有两类: ●流体力学基本方程,基本出发点:质量守恒、动量守恒和能
计算流体力学基础ppt课件

它不受物理模型和实验模型的限制,省钱省时,有较多的灵活性, 能给出详细和完整的资料,很容易模拟特殊尺寸、高温、有毒、 易燃等真实条件和实验中只能接近而无法达到的理想条件。
8
数值解法是一种离散近似的计算方法,依赖于物理上合理、数学上适 用、适合于在计算机上进行计算的离散的有限数学模型,且最终结果 不能提供任何形式的解析表达式,只是有限个离散点上的数值解,并 有一定的计算误差。
对于初始条件和边界条件的处理,直接影响计算结果的精度。
16
划分计算网 采用数值方法求解控制方程时,都是想办法将控制方程在空间区
域上进行离散,然后求解得到的离散方程组。要想在空间域上离 散控制方程,必须使用网格。现已发展出多种对各种区域进行离 散以生成网格的方法,统称为网格生成技术。
不同的问题采用不同数值解法时,所需要的网格形式是有一定区 别的,但生成网格的方法基本是一致的。目前,网格分结构网格 和非结构网格两大类。简单地讲,结构网格在空间上比较规范, 如对一个四边形区域,网格往往是成行成列分布的,行线和列线 比较明显。而对非结构网格在空间分布上没有明显的行线和列线。
数学模型就好理解了,就是对物理模型的数学描写。 比如N-S方程就是对粘性流体动力学的一种数学描写,值得注意的是,数学 模型对物理模型的描写也要通过抽象,简化的过程。
14
建立控制方程 确立初始条件及边界条件 划分计算网格,生成计算节点
建立离散方程
离散初始条件和边界条件
给定求解控制参数
解收敛否
否
显示和输出计算结果
21
给定求解控制参数 在离散空间上建立了离散化的代数方程组,并施加离散化的
计算流体力学part基础知识PPT课件

①在直角坐标系中:A P(x, y, z)i Q(x, y, z) j R(x, y, z)k
i rotA
x P
jk y z Q R 第18页/共56页
(21)
一、向量分析初步
5、向量场的环量及旋度
rot A 0 有旋运动, rot A 0 无旋运动。应当指出,流体微团 是否作有旋运动,需视微团是否围绕着通过流体微团的瞬时 轴旋转,而并非决定于流体微团轨迹的几何形状。
a(t) ax (t)i ay (t) j az (t)k (10) 结论:
向量导数在坐标轴上的投影等于相应的向量投 影的导数。
向量的导数在几何上为一切向矢量。
da(t) a(t) dt
第10页/共56页
一、向量分析初步
2、向量函数对于数变量的导数
一个流体微团在空间的位置可用坐标 x, y, z 确定,也可用向径确定:
一、向量分析初步
2、向量函数对于数变量的导数
da(t) lim a(t) dt t0 t
lim
t0
ax (t t
)
i
ay (t) t
j
az (t) t
k
dax (t) i day (t) j daz (t) k
dt
dt
dt
第9页/共56页
一、向量分析初步
2、向量函数对于数变量的导数
dx i dt
dy dt
j
dz dt
k
vxi vy j vzk
第11页/共56页
(11)
一、向量分析初步
3、数量场的梯度
若在数量场 x, y, z 中的一点 p
处,存在着矢量 G ,其方向为函数
计算流体力学基础

For personal use only in study and research; not for commercial use一、计算流体力学的基本介绍一、什么是计算流体力学(CFD)?计算流体力学(Computational Fluid Dynamics)是流体力学的一个新兴的分支,是一个采用数值方法利用计算机来求解流体流动的控制偏微分方程组,并通过得到的流场和其它物理场来研究流体流动现象以及相关的物理或化学过程的学科。
事实上,研究流动现象就是研究流动参数如速度、压力、温度等的空间分布和时间变化,而流动现象是由一些基本的守恒方程(质量、动量、能量等)控制的,因此,通过求解这些流动控制方程,我们就可以得到流动参数在流场中的分布以及随时间的变化,这听起来似乎十分简单。
但遗憾的是,常见的流动控制方程如纳维一斯托克斯(Navier-Stokes)方程或欧拉(Euler)方程都是复杂的非线性的偏微分方程组,以解析方法求解在大多数情况下是不可能的。
实际上,对于绝大多数有实际意义的流动,其控制方程的求解通常都只能采用数值方法的求解。
因此,采用CFD方法在计算机上模拟流体流动现象本质上是流动控制方程(多数情况下是纳维一斯托克斯方程或欧拉方程)的数值求解,而CFD软件本质上就是一些求解流动控制方程的计算机程序。
二、计算流体力学的控制方程计算流体力学的控剖方程就是流体流动的质量、动量和能量守恒方程。
守恒方程的常见的推导方法是基于流体微元的质量、动量和能量衡算。
通过质量衡算可以得到连续性方程,通过动量守恒可以得到动量方程,通过能量衡算可以得到能量方程。
式(1)一(3)是未经任何简化的流动守恒微分方程,即纳维一斯托克斯方程( N-S方程)。
N-S方程可以表示成许多不同形式,上面的N-S方程是所谓的守恒形式,之所以称为守恒形式,是因为这种形式的N-S方程求解的变量p、pu、pv、pw、pE是守恒型的,是质量、动量和能量的守恒变量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(8) (9)
一、向量分析初步
1、向量的点积、叉积、混和积、二重向量积
练习:试证
①
②
v v v v ( a × b ) ⋅ (c × d ) v v v v v v v v = ( a ⋅ c )(b ⋅ d ) − ( a ⋅ d )(b ⋅ c ) v v v v ( a × b ) × (c × d ) v v v v v v v v = b a ⋅ (c × d ) − a b ⋅ (c × d )
一、向量分析初步
6、哈密尔顿算子(hamilton operatoz)
Note: ∇是一个矢性微分算子,因此它在计算中具有矢性和微分 的双重性质。作为微分只作用于右边,如∇ϕ ,微分运算规则同样 适用;作为矢量 ∇ ⋅∇ = ∇ 2 = ∆( Laplace算子), ∇ × ∇=0 。计算时, 先作微分运算,后矢量运算。 v v v 例:试证: ∇ ⋅ ( f υ ) = f ∇ ⋅υ + υ ⋅∇f
在直角坐标系中:
∂ϕ v ∂ϕ v ∂ϕ v gradϕ = i+ j+ k ∂x ∂y ∂z
(12)
一、向量分析初步
性质1:方向导数等于梯度在该方向上的投 影,即:
v v ∂ϕ v v v = G ⋅ l = G cos(G ⋅ l) ∂l ∂l ∂ϕ = gradlϕ ∂l
或:
(13)
性质2:数量场中每一点 p 处的梯度,垂直于过 该点的等值面,且指向函数 ϕ ( p ) 增大 最快的方向。
v k az v v (b × c ) z
(7)
一、向量分析初步
1、向量的点积、叉积、混和积、二重向量积 二重向量积的分解式
v v v v v v v v v a × (b × c ) = b ( a ⋅ c ) − c ( a ⋅ b ) v v v v v v v v v ( a × b ) × c = b ( a ⋅ c ) − a (b ⋅ c )
v v v v ①在直角坐标系中:A = P( x, y, z )i + Q( x, y, z ) j + R( x, y, z )k
v i v ∂ rotA = ∂x P
v j ∂ ∂y Q
v k ∂ ∂z R
(21)
一、向量分析初步
u r u r rot A ≠ 0 有旋运动, rot A = 0 无旋运动。应当指出,流体微团 是否作有旋运动,需视微团是否围绕着通过流体微团的瞬时 轴旋转,而并非决定于流体微团轨迹的几何形状。
v v ∂Ax ∂Ay ∂Az divA = ∇ ⋅ A = + + ∂x ∂x ∂x v v v i j k v v ∂Az ∂Ay v ∂Ax ∂Az v ∂Ay ∂Ax v ∂ ∂ ∂ =( − − − rotA = ∇ × A = )i + ( )j +( )k ∂x ∂y ∂z ∂y ∂z ∂z ∂x ∂x ∂y Ax Ay Az
密度,即
v v ∆Γ v n ⋅ rotA = rotn A = lim ∆S → M ∆S
一、向量分析初步
6、哈密尔顿算子(hamilton operator)
v ∂ v ∂ v ∂ + j +k 记∇=i 称之为哈密尔顿算子 ∂x ∂y ∂z ∂ϕ v ∂ϕ v ∂ϕ v gradϕ = ∇ϕ = i+ j+ k ∂x ∂y ∂z
v ∆φ divA = lim = lim Ω→ M ∆V Ω→ M
∫∫
S
v v A ⋅ ds ∆V
(16)
一、向量分析初步
4、向量场的通量及散度
u r ① div A 是一数量,表示场中一点处的通量对体积的变化率,也就 是在该点处对一个单位体积来说所穿出之通量,称为该点处源的 u r u r u r u r div div div div 强度。 A > 0正源, A < 0 负源, A = 0 无源。 A ≡ 0 的场称之 u r 为无源场(如不可压流体div A = 0 ,对单位体积流团来说,流进= 流出) v ∂Ax ∂Ay ∂Az ②在直角坐标下, divA = (17) + + ∂x ∂y ∂z v v v v ( A = Ax i + Ay j + Az k )
流体微团速度为:
( x, y, z ) 确定,也可用向径确定: v
v v v v v dR ∆R R(t + ∆t ) − R(t ) V= = lim = lim dt ∆t →0 ∆t ∆t →0 ∆t ∆x v ∆y v ∆z v i + lim j + lim k = lim ∆t →0 ∆t ∆t →0 ∆t ∆t →0 ∆t v v v dx v dy v dz v = i+ j + k = vx i + v y j + vz k dt dt dt
(11)
一、向量分析初步
3、数量场的梯度
y 若在数量场 ϕ ( x,ur, z ) 中的一点 p 处,存在着矢量 G ,其方向为函数 在点 p 处变化率最大的方向,其模 也正好是这个最大变化率的数值, ur ur 则称矢量 G 为函数在点 p 处的梯度, gradϕ =, G gradϕ 记作 即:
v v v v v a = a (t ) = ax i + a y j + az k
一、向量分析初步
2、向量函数对于数变量的导数
v v da (t ) ∆a (t ) = lim ∆t →0 ∆t dt ∆ax (t ) v ∆a y (t ) v ∆az (t ) v = lim i+ j+ k ∆t →0 ∆t ∆t ∆t dax (t ) v da y (t ) v daz (t ) v = i+ j+ k dt dt dt
5、向量场的环量及旋度
v v 流体微团速度: υ = υ0 + ω × δ r + [ε ] ⋅ δ r v v v
v v 1 ω = rotυ 2 ②斯托克斯公式(环量和旋度之间的关系)
∫
l
v v v v A ⋅ dl = ∫∫ rotA ⋅ ds
S
(22)
r ③旋度矢量沿任一方向 n 上的投影,就等于该方向上的环量面
一、向量分析初步
4、向量场的通量及散度
v v ds 的流量为:dQ = υ ds = υ ⋅ ds 通量:设流速场v ( M ) ,穿过面元 n
在单位时间内,穿过 S 的流量为:
v Q = ∫∫ υn ds = ∫∫ υ ⋅ ds
S
v
v v v ds = nds n为ds的外法线方向。
u S r 对任一向量场 A ( M ) ,沿其中某一有向曲 面 S 的曲面积分: v r φ = An ds = A ⋅ ds (14) S S u r 叫做矢量场 A ( M )向正侧穿过曲面 S 的通量。 特别当 S 为封闭曲面时
一、向量分析初步
2、向量函数对于数变量的导数
一个流体微团在空间的位置可用坐标
u r v v R(t ) = x(t )i + y (t ) j + z (t )k 经过时间 ∆t ,流团运动到新的位置 : u r v v v R(t + ∆t ) = x(t + ∆t )i + y (t + ∆t ) j + z (t + ∆t )k
一、向量分析初步
2、向量函数对于数变量的导数
向量函数:
v v v ∆a (t ) = a (t + ∆t ) − a (t ) v = [ ax (t + ∆t ) − ax (t )] i v + a y (t + ∆t ) − a y (t ) j v + [ az (t + ∆t ) − az (t )] k v v v = ∆ax (t )i + ∆a y (t ) j + ∆az (t )k
∆S → M
Γ=
∫
l
v v A⋅ d l
(19)
lim
∆S
= lim
∫
∆S → M
∆S
(20)
r 存在,则称之为矢量场在点 M 处沿方向 n 的环量面密度(亦即环量 对面积的变化率)。 u r r r Note:环量面密度与法矢 n 有关,即与 ∆l 有关,也就是与面元 ∆ S 有关;环量面密度是一标量。
流体运动的基本方程
§1-1 预备知识 §1-2 流体运动的基本方程 §1-3 相对坐标系中流体运动的基本 方程 §1-4 正交曲线坐标中流体运动的基 本方程
§1-1 预备知识
一、向量分析初步
1、向量的点积、叉积、混和积、二重向量积
点积:(数量积)
v v v v v v v v (a = ax i + a y j + az k , b = bx i + by j + bz k )
一、向量分析初步
5、向量场的环量及旋度
u r u r 旋度:若在矢量场 A 中的一点 M 处存在这样的一个矢量 R , u r 使得矢量场在点 M处沿 R 方向的环量面密度为最大,这个最 u r u r u r 大的数值正好就是 R ,则称矢量 R 为矢量场 A 在点 M 处的旋 u u r r u r 度,记作 rot A ,即 rot A = R ,简言之,旋度矢量在数值和方 向上表出了最大的环量面密度。 矢量场中的旋度相当于标量场中的梯度。
一、向量分析初步
1、向量的点积、叉积、混和积、二重向量积
二重向量积:
v v v a × (b × c )
r ——是一向量,方向垂至于向量 a 和 r r 向量 b × c 所构成的平面