第四章课后习题

合集下载

第四章酸碱滴定法课后习题及答案

第四章酸碱滴定法课后习题及答案

第四章酸碱滴定法课后习题及答案第四章酸碱滴定法习题4-14.1 下列各种弱酸的p K a已在括号内注明,求它们的共轭碱的pK b;(1)HCN(9.21);(2)HCOOH(3.74);(3)苯酚(9.95);(4)苯甲酸(4.21)。

4.2 已知H3PO4的p K a=2.12,p K a=7.20,p K a=12.36。

求其共轭碱PO43-的pK b1,HPO42-的pK b2.和H2PO4-的p K b3。

4.3 已知琥珀酸(CH2COOH)2(以H2A表⽰)的p K al=4.19,p K b1=5.57。

试计算在pH4.88和5.0时H2A、HA-和A2-的分布系数δ2、δ1和δ0。

若该酸的总浓度为0.01mol·L-1,求pH=4.88时的三种形式的平衡浓度。

4.4 分别计算H2CO3(p K a1=6.38,pK a2=10.25)在pH=7.10,8.32及9.50时,H2CO3,HCO3-和CO32-的分布系数δ2` δ1和δ0。

4.5 已知HOAc的p Ka = 4.74,NH3·H2O的pKb=4.74。

计算下列各溶液的pH值:(1) 0.10 mol·L-1HOAc ;(2) 0.10 mol·L-1 NH3·H2O;(3) 0.15 mol·L-1 NH4Cl;(4) 0.15 mol·L-1 NaOAc。

4.6计算浓度为0.12 mol·L-1的下列物质⽔溶液的pH(括号内为p Ka)。

(1)苯酚(9.95);(2)丙烯酸(4.25);(3)吡啶的硝酸盐(C5H5NHNO3)(5.23)。

解:(1) 苯酚(9.95)4.7 计算浓度为0.12 mol·L-1的下列物质⽔溶液的pH(p Ka:见上题)。

(1)苯酚钠;(2)丙烯酸钠;(3)吡啶。

4.8 计算下列溶液的pH:(1)0.1mol·L-1NaH2PO4;(2)0.05 mol·L-1K2HPO4。

自动控制原理课后习题第四章答案

自动控制原理课后习题第四章答案

G(s)H(s)=
Kr s(s+1)(s+3)
σ根 s=3-K+ω轨r4-3-迹+p4s132ω1-3的+~3ω32分p===s2-离+001K点.p-3r=3:KK~0θrr===012+ωω6021,o=3,=0+±1810.7o
8

1.7
s1
A(s)B'系(s)统=根A'轨(s迹)B(s)
s3 p3
s=sK2±r没=j24有.8.6位×于2K.r根6=×4轨80.迹6=上7,. 舍去。
2
第四章习题课 (4-9)
4-9 已知系统的开环传递函数,(1) 试绘制出
根轨迹图。
G(s)H与(s虚)=轴s交(0点.01s+1K)(系0.统02根s+轨1迹)

70.7
解: GKK(rr=s=)10H5(0s)=ωω2s1,(3=s=0+±17000K.7)r(s+50)
s1
A(s)B'(系s)统=A根'(轨s)迹B(s)
s3 p3
p2
p1
-4
-2
0
((24))ζ阻=尼03.振5s2荡+1响2应s+s的81==K-r0值0.7范+围j1.2
s=s-s10=3=.-80-56.8+50K.7r×=20=s.82-=54×-.631..1155×3.15=3.1
-2.8
450
1080
360


第四章习题课 (4-2)
4-2 已知开环传递函数,试用解析法绘制出系
统的根轨迹,并判断点(-2+j0),(0+j1),

统计学第四章课后题及答案解析

统计学第四章课后题及答案解析

第四章一、单项选择题1.由反映总体单位某一数量特征的标志值汇总得到的指标是()A.总体单位总量B.质量指标C.总体标志总量D.相对指标2.各部分所占比重之和等于1或100%的相对数()A.比例相对数 B.比较相对数 C.结构相对数 D.动态相对数3.某企业工人劳动生产率计划提高5%,实际提高了10%,则提高劳动生产率的计划完成程度为()A.104.76%B.95.45%C.200%D.4.76%4.某企业计划规定产品成本比上年度降低10%实际产品成本比上年降低了14.5%,则产品成本计划完成程度()A.14.5%B.95%C.5%D.114.5%5.在一个特定总体内,下列说法正确的是( )A.只存在一个单位总量,但可以同时存在多个标志总量B.可以存在多个单位总量,但必须只有一个标志总量C.只能存在一个单位总量和一个标志总量D.可以存在多个单位总量和多个标志总量6.计算平均指标的基本要求是所要计算的平均指标的总体单位应是()A.大量的B.同质的C.有差异的D.不同总体的7.几何平均数的计算适用于求()A.平均速度和平均比率B.平均增长水平C.平均发展水平D.序时平均数8.一组样本数据为3、3、1、5、13、12、11、9、7这组数据的中位数是()A.3B.13C.7.1D.79.某班学生的统计学平均成绩是70分,最高分是96分,最低分是62分,根据这些信息,可以计算的测度离散程度的统计量是()A.方差B.极差C.标准差D.变异系数10.用标准差比较分析两个同类总体平均指标的代表性大小时,其基本的前提条件是( )A.两个总体的标准差应相等B.两个总体的平均数应相等C.两个总体的单位数应相等D.两个总体的离差之和应相等11.已知4个水果商店苹果的单价和销售额,要求计算4个商店苹果的平均单价,应采用()A.简单算术平均数B.加权算术平均数C.加权调和平均数D.几何平均数12.算术平均数、众数和中位数之间的数量关系决定于总体次数的分布状况。

计导 课后习题参考答案(第4章

计导  课后习题参考答案(第4章

第4章位运算一、复习题1.逻辑运算和算术运算有什么区别?答:逻辑运算是把二进制位看成逻辑值(真或假)进行的运算,包括或运算、与运算、非运算和异或运算。

算术运算是把二进制位看成数值(整数、浮点数)进行的运算,包括加、减、乘、除运算。

2.乘法与加法有什么关系?请举例说明。

答:乘法相当于连加。

例如:3*2=2+2+2。

3.在最后的相加中,最左边一列是怎样进位的?答:如果最左边的列相加后还有进位,则舍弃进位。

4.N(位分配单位)可以等于1吗?为什么?答:不可以,因为在N位分配单位中,最左边的数用来表示正负。

当N=1时,不能表示任何数。

5.解释“溢出”这个词。

答:是指试图把一个数存储在超出指定分配单元所允许的范围时发生的错误。

6.在浮点数的加法运算中,怎么样调整指数不同的数的表示?答:移动小数点,使两者指数相同。

一般调整小指数为大指数。

7.一元运算和二元运算有何不同?答:一元运算输入一个位模式输出一个位模式。

二元运算输入二个位模式输出一个位模式。

8.二元逻辑有哪些?答:或运算、与运算和异或运算。

9.什么是真值表?答:所有输入组合与相应的输出值的对照表。

10.非运算符的作用是什么?答:有1个输入操作数,对输入的位模式逐位取反,即将0变为1,将1变为0。

11.与运算符的结果何时为真?答:当两个操作数同时为真时,与运算的结果为真。

12.或运算符的结果何时为真?答:当两个操作数不全为假时,或运算的结果为真。

13.异或运算符的结果何时为真?答:当两个操作数不相同时,异或运算符的结果为真。

14.何谓与运算符的固有规则?答:任何数与0进行与运算的结果为0。

15.何谓或运算符的固有规则?答:任何数与1进行或运算的结果为1。

16.何谓异或运算符的固有规则?答:如果一个输入位为1,则运算结果就是另一个输入的相对应位取反。

17.何种二元运算可以用来置位?掩码应该用什么位模式?答:或运算。

对于目标位模式中需要置1的位,掩码的相应位设为1。

计算机网络课后习题参考答案第四章

计算机网络课后习题参考答案第四章

第四章网络层1.网络层向上提供的服务有哪两种?是比较其优缺点。

网络层向运输层提供“面向连接”虚电路(Virtual Circuit)服务或“无连接”数据报服务前者预约了双方通信所需的一切网络资源。

优点是能提供服务质量的承诺。

即所传送的分组不出错、丢失、重复和失序(不按序列到达终点),也保证分组传送的时限,缺点是路由器复杂,网络成本高;后者无网络资源障碍,尽力而为,优缺点与前者互易2.网络互连有何实际意义?进行网络互连时,有哪些共同的问题需要解决?网络互联可扩大用户共享资源范围和更大的通信区域进行网络互连时,需要解决共同的问题有:不同的寻址方案不同的最大分组长度不同的网络接入机制不同的超时控制不同的差错恢复方法不同的状态报告方法不同的路由选择技术不同的用户接入控制不同的服务(面向连接服务和无连接服务)不同的管理与控制方式3.作为中间设备,转发器、网桥、路由器和网关有何区别?中间设备又称为中间系统或中继(relay)系统。

物理层中继系统:转发器(repeater)。

数据链路层中继系统:网桥或桥接器(bridge)。

网络层中继系统:路由器(router)。

网桥和路由器的混合物:桥路器(brouter)。

网络层以上的中继系统:网关(gateway)。

4.试简单说明下列协议的作用:IP、ARP、RARP和ICMP。

IP协议:实现网络互连。

使参与互连的性能各异的网络从用户看起来好像是一个统一的网络。

网际协议IP是TCP/IP体系中两个最主要的协议之一,与IP协议配套使用的还有四个协议。

ARP协议:是解决同一个局域网上的主机或路由器的IP地址和硬件地址的映射问题。

RARP:是解决同一个局域网上的主机或路由器的硬件地址和IP地址的映射问题。

ICMP:提供差错报告和询问报文,以提高IP数据交付成功的机会因特网组管理协议IGMP:用于探寻、转发本局域网内的组成员关系。

5.IP地址分为几类?各如何表示?IP地址的主要特点是什么?分为ABCDE 5类;每一类地址都由两个固定长度的字段组成,其中一个字段是网络号net-id,它标志主机(或路由器)所连接到的网络,而另一个字段则是主机号host-id,它标志该主机(或路由器)。

第四章利率期货课后习题及答案

第四章利率期货课后习题及答案

第四章利率期货复习思考题4.1.利率期货的定义是什么,包含哪些品种?4.2.欧洲美元期货是如何报价的?4.3.3,欧洲美元期货的理论价格如何计算?4.4.欧洲美元期货的隐含远期利率与远期利率有什么差异?为什么?4.5.写出我国国债期货转换因子的计算公式,并说明符号的含义。

4.6.写出基于最便宜交割债券价格的国债期货理论报价公式。

4.7.国债期货名义国债设计带来哪些特殊概念。

4.8.最便宜交割债的作用有哪些?4.9.转换因子的特征有哪些?4.10.债券报价为何采取净价报价?4.I1.2007年1月8日,某投资者想锁定在2007年6月20日开始的3个月的利率,投资面值为500万美元。

因此,投资者买入了5个价格为94.79的欧洲美元合约。

问:该投资者锁定的利率水平是多少?4.12.交易者认为美国经济正在走强,同时中期国债收益率将会提高(5年期与10年期)。

该交易者以12025/32的价格卖出10份2014年3月的5年期美国中期国债期货合约。

交易者的观点正确无误。

经济数据继续表明美国经济正在逐步走强。

5年期国债收益率增加,2014年3月的5年期中期国债期货价格下跌。

交易者以12003/32的价格买回10份2014年3月的5年期中期国债期货合约,试计算交易者的损益情况。

4.13.美国当月首个周五公布的每月非农业就业人数大大逊于预期。

这表示经济走弱程度出乎人们意料。

结果使得国债收益率下降,美国国债期货价格上涨。

交易者注意到2014年3月10年期中期国债期货对该报告做出这样的反应:仅出现了从12505/32涨至12515/32的小幅反弹。

他认为数据走弱是一次重大意外,而越来越多的参与者不久将需要买入中期国债。

交易者以12515.5/32的价格买入10份2014年3月10年期中期国债期货合约。

交易者的观点正确无误。

中期国债收益率继续下降,10年期中期国债期货价格进一步上涨。

1小时之后交易者以12523/32的价格重新卖出10份2014年3月10年期中期国债期货合约。

大学化学课后习题答案解析(第四章)

大学化学课后习题答案解析(第四章)

第四章电化学与金属腐蚀1.是非题(对的在括号内填“+”,错的填“-”号)(1)取两根铜棒,将一根插入盛有0.1mol·dm-3CuSO4溶液的烧杯中,另一根插入盛有1mol·dm-3CuSO4溶液的烧杯中,并用盐桥将两只烧杯中的溶液连结起来,可以组成一个浓差原电池。

( )(2)金属铁可以置换Cu2+,因此三氯化铁不能与金属铜反应。

( )(3)电动势E(或电极电势φ)的数值与反应式(或半反应式)的写法无关,而标准平衡常数Kθ的数据,随反应式的写法(即化学计量数不同)而变。

( )(4)钢铁在大气的中性或弱酸性水膜中主要发生吸氧腐蚀,只有在酸性较强的水膜中才主要发生析氢腐蚀。

( )(5)有下列原电池(-)Cd|CdSO4(1.0mol·dm-3)||CuSO4(1.0mol·dm-3)|Cu(+) 若往CdSO4溶液中加入少量Na2S 溶液,或往CuSO4溶液中加入少量CuSO4·5H2O晶体,都会使原电池的电动势变小。

( )解:(1)+;(2)–;(3)+;(4)+;(5)–。

2.选择题(将所有正确答案的标号填入空格内)(1)在标准条件下,下列反应均向正方向进行:Cr2O72 - +6Fe2++14H+=2Cr3++6Fe3++7H2O2Fe3++Sn2+=2Fe2++Sn4+它们中间最强的氧化剂和最强的还原剂是______。

(a)Sn2+和Fe3+(b)Cr2O72 -和Sn2+(c)Cr3+和Sn4+(d)Cr2O72 -和Fe3+(2)有一个原电池由两个氢电极组成,其中有一个是标准氢电极,为了得到最大的电动势,另一个电极浸入的酸性溶液[设p(H2)=100kPa]应为(a)0.1mol·dm-3HCl (b)0.1mol·dm-3HAc+0.1mol·L-1NaAc(c)0.1mol·dm-3Hac (d)0.1mol·dm-3H3PO4(3)在下列电池反应中Ni(s)+Cu2+(aq)→Ni2+(1.0mol·dm-3)+Cu(s)当该原电池的电动势为零时,Cu2+浓度为(a)5.05×10-27mol·dm-3(b)5.71×10-21mol·dm-3(c)7.10×10-14mol·dm-3(d)7.56×10-11mol·dm-3(4)电镀工艺是将欲镀零件作为电解池的();阳极氧化是将需处理的部件作为电解池的()。

第四章的课后习题答案

第四章的课后习题答案

第四章各节答案第一节 牛顿第一定律基础训练1.D 2.C 3.CD 4.C 5.C 6.D 7.D8.他忽略了车子还要受到摩擦力,当停止用力时,车由于受到摩擦力就会停下来。

如果没有摩擦力车子就会永远运动下去,力不是维持运动的原因。

能力提高1.CD 2.B 3.ABC 4.AB 5.AD 6.A 7.D8.(1)车做匀速直线运动,(2)向右做匀加速运动或向左做匀减速运动,(3)向左做匀加速运动或向右做匀减速运动9.可靠的实验事实、原来的速度作匀速直线 ②③①④ ② ①③④ 力来维持 伽利略 理想实验法10.小球落下后保持原来的速度,因车做减速运动,所以小球落在O 点的前方。

答案为 g a 2第二节 实验:探究加速度与力、质量的关系基础训练1. 物体的质量。

2.作用力。

3.C. 4.正比。

5、B.6、a 1=mg/2m=g/2,a 2=mg/m=g∴a 2=2 a 1,故C正确。

7、ABD8、解析:本题设计原理是利用滑块在斜面做匀加速运动时,其加速度为a=gsin θ-μgcos θ得出μ=tanθ-a/gcos θ则需要求出L d h t,∴μ=h/d-2l2/gt2d,为减小误差应多测量几次取平均值。

能力提高1. C2.(1)图略 (2)图像可以看出,加速度与力成正比,与质量的倒数成反比。

(3)在图像上取一点求得斜率就得到物体的质量为0.35kg,(4)在图像上取一点求得斜率就得到作用力为4.02N .3.(1)a =4.00m/s 2。

(2)小车质量m ;斜面上沿下滑方向任意两点间的距离l 及这两点的高度差h 。

4.(1)探究加速度与力、质量的关系的原理是利用控制变量法,则有:①当作用力不变时,加速度与质量的倒数成正比;②当物体的质量不变时,加速度与作用力成正比。

(2) 到的仪器还有C D F .5.D 6.11.0==ga μ 7.由图可知,当拉力从0增到F0的过程中,物体的加速度为零,说明小车处于静止状态,因此必然存在一个力与拉力大小相等方向相反,这个里一定是小车受到的摩擦力。

大学物理课后习题(第四章)

大学物理课后习题(第四章)

第四章热学基础选择题4—1 有一截面均匀的封闭圆筒,中间被一光滑的活塞隔成两边,如果其中一边装有0.1kg某一温度的氢气,为了使活塞停在圆筒的正中央,则另一边应装入同一温度的氧气的质量为( C )(A)1kg16; (B) 0.8kg; (C) 1.6kg; (D) 3.2kg.4—2 根据气体动理论,理想气体的温度正比于( D )(A) 气体分子的平均速率; (B)气体分子的平均动能;(C) 气体分子的平均动量的大小; (D)气体分子的平均平动动能.4—3 在一固定的容器内,理想气体的温度提高为原来的两倍,那么( A )(A) 分子的平均平动动能和压强都提高为原来的两倍;(B) 分子的平均平动动能提高为原来的四倍,压强提高为原来的两倍;(C) 分子的平均平动动能提高为原来的两倍,压强提高为原来的四倍;(D) 分子的平均平动动能和压强都提高为原来的四倍.4—4 一瓶氦气和一瓶氮气的密度相同,分子的平均平动动能相同,且均处于平衡态,则它们( C )(A) 温度和压强都相同;(B) 温度和压强都不相同;(C) 温度相同,但氦气的压强大于氮气的压强;(D) 温度相同,但氦气的压强小于氮气的压强.4—5 下面说法中正确的是( D )(A) 在任何过程中,系统对外界做功不可能大于系统从外界吸收的热量;(B) 在任何过程中,系统内能的增量必定等于系统从外界吸收的热量;(C) 在任何过程中,系统内能的增量必定等于外界对系统所做的功;(D) 在任何过程中,系统从外界吸收的热量必定等于系统内能的增量与系统对外界做功之和.4—6 如图所示,一定量的理想气体,从状态A 沿着图中直线变到状态B ,且A AB B p V p V =,在此过程中: ( B )(A) 气体对外界做正功,向外界放出热量;(B) 气体对外界做正功,从外界吸收热量;(C) 气体对外界做负功,向外界放出热量;(D) 气体对外界做负功,从外界吸收热量.4—7 如图所示,一定量的理想气体从状态A 等压压缩到状态B ,再由状态B 等体升压到状态C .设2C B p p =、2A B V V =,则气体从状态A 到C 的过程中 ( B )(A) 气体向外界放出的热量等于气体对外界所做的功;(B) 气体向外界放出的热量等于外界对气体所做的功;(C) 气体从外界吸收的热量等于气体对外界所做的功;(D) 气体从外界吸收的热量等于外界对气体所做的功.4—8 摩尔定容热容为2.5R (R 为摩尔气体常量)的理想气体,由状态A 等压膨胀到状态B ,其对外界做的功与其从外界吸收的热量之比为 ( C )(A) 2:5; (B) 1:5; (C) 2:7; (D) 1:7.4—9 质量相同的同一种理想气体,从相同的状态出发,分别经历等压过程和绝热过程,使其体积增加一倍.气体温度的改变为 ( C )(A) 绝热过程中降低,等压过程中也降低;(B) 绝热过程中升高,等压过程中也升高;(C) 绝热过程中降低,等压过程中升高;(D) 绝热过程中升高,等压过程中降低.4—10 一理想气体的初始温度为T ,体积为V .由如下三个准静态过程构成一个循环过程.先从初始状态绝热膨胀到2V ,再经过等体过程回到温度T ,最后等温压缩到体积V .在此循环过程中,下述说法正确的是 ( A )(A) 气体向外界放出热量; (B) 气体对外界做正功;(C) 气体的内能增加; (D) 气体的内能减少.4—11 有人试图设计一台可逆卡诺热机,在一个循环中,可从400K 的高温热源吸收热量1800J ,向300K 的低温热源放出热量800J ,同时对外界作功1000J ,这样的设计是( B )(A) 可以的,符合热力学第一定律;(B) 可以的,符合热力学第二定律;(C) 不行的,卡诺循环所做的功不能大于向低温热源放出的热量;(D) 不行的,这个热机的效率超过理论最大值.4—12 对运转在1T 和2T 之间的卡诺热机,使高温热源的温度1T 升高T ∆,可使热机效率提高1η∆;使低温热源的温度2T 降低同样的值T ∆,可使循环效率提高2η∆.两者相比,有( B )(A) 12ηη∆>∆; (B) 12ηη∆<∆;(C) 12ηη∆=∆; (D) 无法确定哪个大.4—13 在o 327C 的高温热源和o27C 的低温热源间工作的热机,理论上的最大效率为( C )(A) 100%; (B) 92%; (C) 50%; (D) 25%.4—14 下述说法中正确的是 ( C )(A) 在有些情况下,热量可以自动地从低温物体传到高温物体;(B) 在任何情况下,热量都不可能从低温物体传到高温物体;(C) 热量不能自动地从低温物体传到高温物体;(D) 热量不能自动地从高温物体传到低温物体.4—15 热力学第二定律表明 ( D )(A) 热机可以不断地对外界做功而不从外界吸收热量;(B) 热机可以靠内能的不断减少而对外界做功;(C) 不可能存在这样的热机,在一个循环中,吸收的热量不等于对外界作的功;(D) 热机的效率必定小于100%.4—16 一个孤立系统,从平衡态A 经历一个不可逆过程变化到平衡态B ,孤立系统的熵增量B A S S S ∆=- 有 ( A )(A) 0S ∆>; (B) 0S ∆<; (C) 0S ∆=; (D) 0S ∆≥.计算题4—17 容器内装满质量为0.1kg 的氧气,其压强为61.01310Pa ⨯,温度为o 47C .因为漏气,经过若干时间后,压强变为原来的一半,温度降到o 27C .求:(1) 容器的容积;(2) 漏去了多少氧气.解 (1) 由状态方程m pV RT M=,可得气体的体积,即容器的容积为 333360.18.31(47273)m 8.2010m 3210 1.01310m V RT Mp -⨯⨯+===⨯⨯⨯⨯ (2) 压强变为12p p =,温度降为()227327K T =+时,由状态方程,可得剩余气体的质量为36311113210 1.013108.20102kg 0.0533kg 8.31(27273)Mp V m RT ⨯⨯⨯⨯⨯⨯===⨯+ 漏掉的气体质量为1(0.10.0533)kg 0.0467kg m m m -∆=-=-=4—18 如图所示,a 、c 间曲线是1000mol 氢气的等温线,其中压强51410Pa p =⨯, 521010Pa p =⨯.在点a ,氢气的体积31 2.5m V =,求:(1) 该等温线的温度;(2) 氢气在点b 和点d 的温度b T 和d T .解 (1) 由状态方程m pV RT M=,可得在等温线上,气体的温度为 52111010 2.5K 301K 10008.31p V M T m R ⨯⨯==⨯= (2) 气体由点c 等体增压至点b ,压强增大为原来的10 2.54=倍,由等体方程21b cp p T T =,可得气体在点b 的温度为212.5 2.5301K 753K b c c p T T T p ===⨯= 气体由点a 等体减压至点d ,压强减小为原来的410,由等体方程21a d p p T T =,可得气体在点d 的温度为1244301K 120K 1010d a a p T T T p ===⨯= 4—19 22.010kg -⨯氢气装在334.010m -⨯的容器内,求当容器的压强为53.9010Pa⨯时,氢气分子的平均平动动能.解 由状态方程m pV RT M=,可得气体的温度为 MpV T mR=气体分子的平均平动动能为 t 353222233332223210 3.9010 4.010 J 3.8910J 2210 6.02310a MpV MpV kT k mR mN ε----===⨯⨯⨯⨯⨯=⨯=⨯⨯⨯⨯4—20 在一个具有活塞的容器中盛有一定量的气体.如果压缩气体,并对它加热,使它的温度从o 27C 升到o177C ,体积减少一半.求:(1) 气体的压强是原来压强的多少倍;(2) 气体分子的平均平动动能是原来平均平动动能的多少倍.解 (1) 由状态方程m pV RT M=,可得压缩后与压缩前的压强之比为 21212132(273177)(27327)p VT p V T +===+ 即压强增加为原来的三倍.(2) 子的平均平动动能t 32kT ε=与温度成正比,因此,压缩后与压缩前的分子的平均平动动能之比为 t22t112731773 1.5273272T T εε+====+ 即增加为原来的1.5倍.4—21 容器中储有氦气,其压强为71.01310Pa ⨯,温度为o 0C .求:(1) 单位体积中分子数n ;(2) 气体的密度;(3) 分子的平均平动动能.解 (1) 由p nkT =,可得单位体积中的分子数为73273231.01310m 2.6910m 1.3810273p n kT ---⨯===⨯⨯⨯ (2) 气体的密度为2727334 1.6710 2.6910kg m 18.0kg m mn ρ---==⨯⨯⨯⨯⋅=⋅(3) 分子的平均平动动能为2321t 33 1.3810273J 5.6510J 22kT ε-==⨯⨯⨯=⨯4—22 如图所示,一系统从状态A 沿ABC 过程到达状态C ,从外界吸收了350J 的热量,同时对外界做功126J .(1) 如沿ADC 过程,对外界作功为42J ,求系统从外界吸收的热量;(2) 系统从状态C 沿图示曲线返回状态A ,外界对系统做功84J ,系统是吸热还是放热?数值是多少?解 由热力学第一定律,ΔQ E A =+,可得从状态A 到状态C ,系统内能的增量为Δ350J 126J 224J ABC ABC E Q A =-=-=(1) 沿ADC 过程从状态A 到状态C ,系统吸收的热量为Δ224J 42J 266J ADC ADC Q E A =+=+=(2) 从状态C 沿图示曲线所示过程返回状态A ,系统吸收的热量为Δ224J 84J 308J CA CA Q E A =+=--=-308J<0CA Q =-,说明系统向外界放热308J .4-23 如图所示,一定量的空气, 起始在状态A ,其压强为52.010Pa ⨯,体积为332.010m -⨯沿直线AB 变化到状态B 后,压强变为51.010Pa ⨯,体积变为333.010m -⨯.求此过程中气体对外界所做的功.解 在此过程中气体作正功,大小为图示直线AB 下的面积()()()()5533121 2.010 1.010 3.010 2.010J 150J 2A B B A A p p V V -=+-=⨯+⨯⨯-⨯= 4—24 在标准状态下,1mol 的氧气经过一等体过程,到达末状态.从外界吸收的热量为336J .求气体到达末状态的温度和压强.设氧气的摩尔定容热容,m 52V C R =. 解 初始为标准状态,50 1.01310Pa p =⨯,230 2.2410m V -=⨯,0273K T =.气体经过等体过程吸受的热量等于内能的增量,,m V Q E C T =∆=∆.由此可得1mol 氧气经过等体过程后温度变化为,m 336 K 16.1K 2.58.31V Q T C ∆===⨯ 气体到达末状态时的温度为 0273K 16.1K 289K T T T =+∆=+=由等体方程,00p pT T =,可得气体到达末状态时的压强为5500 1.01310289 Pa 1.0710Pa 273p p T T ⨯==⨯=⨯ 4—25 在标准状态下,0.032kg 的氧气经过一等温过程,到达末状态.从外界吸收的热量为336J .求气体到达末状态的压强和体积.解 0.032kg 的氧气是1mol .标准状态为50 1.01310Pa p =⨯,230 2.2410m V -=⨯, 0273K T =.气体经过等温过程,吸受的热量等于其对外界所作的功:000000lnln V p Q A p V p V V p === 由此可得 520000336ln ln 0.1481.01310 2.2410V p Q V p p V -====⨯⨯⨯ 气体到达末状态的压强和体积分别为0.14850.14840 1.01310 Pa 8.710Pa p p e e --==⨯⨯=⨯0.14820.1483230 2.2410 m 2.6010m V V e e ----==⨯⨯=⨯4—26 1mol 的氦气,从温度为o 27C 、体积为232.010m -⨯,等温膨胀到体积为234.010m -⨯后,再等体冷却到o 27C -,设氦气的摩尔定容热容,m 32V C R =,请作出P V -图,并计算这一过程中,氦气从外界吸收的热量和对外界做的功.解 过程的P V -图如图所示.在等温过程AB 中,气体吸受的热量等于对外所做的功,为()232ln 4.010 8.3127327lnJ 1.7310 J 2.010BAB AB A AV Q A RT V --==⨯=⨯+⨯=⨯⨯ 在等体过程BC 中,气体做功为零,即0BC A =,吸受的热量为(),m 38.31(2727) J 673 J 2BC V C B m Q C T T M -=-=⨯⨯+=- 在整个过程ABC 中,气体吸受的热量和所作的功分别为()31.730.67 J 1.0610 J AB BC Q Q Q =+=-=⨯31.7310 J AB A A ==⨯4—27 将1mol 理想气体等压加热,使其温度升高72K ,气体从外界吸收的热量为31.610 J ⨯.求:(1) 气体对外界所做的功;(2) 气体内能的增量;(3) 比热容比.解 (1) 在此等压过程中气体对外界所做的功为8.3172 J 598 J A R T =∆=⨯=(2) 在此等压过程中气体内能的增量为33(1.610598)J 1.0010J E Q A ∆=-=⨯-=⨯(3) 气体的摩尔定压热容和定容热容分别为31111,m 1.6010J mol K 22.2J mol K 72p Q C T ----⨯==⋅⋅=⋅⋅∆ ()1111,m ,m 22.28.31J mol K 13.9J mol K V p C C R ----=-=-⋅⋅=⋅⋅比热容比为,m,m 22.2 1.6013.9p V C C γ=== 4—28 1mol 理想气体盛于气缸中,压强为51.01310Pa ⨯,体积为231.010m -⨯.先将此气体在等压下加热,使体积增大一倍.然后在等体下加热,使压强增大一倍.最后绝热膨胀使温度降为初始温度.请将全过程在p V -图中画出,并求在全过程中内能的增量和对外所做的功.设气体的摩尔定压热容,m 52p C R =. 解 过程的P V -图如图所示.因为末状态D 与初状态A 的温度相同,所以,从状态A 到状态D 的全过程中的内能增量为零:0E ∆=由热力学第一定律,ΔQ E A =+,由于0E ∆=,因此,全过中程气体吸受的热量等于对外界所做的功:()(),m ,m p B A V C B A Q C T T C T T ==-+-而,m ,m 5322V p C C R R R R =-=-= pV RT =于是()()5322B B A AC C B B A Q p V p V p V p V ==-+- 由于2B B A A p V p V =,24C C B B A A p V p V p V ==,因此5331111 1.01310 3.010 J 1.6710 J 22A A A Q p V -===⨯⨯⨯⨯=⨯ 4—29 1mol 的氮气,温度为o 27C ,压强为51.01310Pa ⨯.将气体绝热压缩,使其体积变为原来的15.求: (1) 压缩后的压强和温度;(2) 在压缩过程中气体所做的功( 1.4)γ=.解 (1) 在绝热过程中,pV γ为常数.压缩后的压强为 5 1.4500 1.013105Pa 9.6410Pa V p p V γ⎛⎫==⨯⨯=⨯ ⎪⎝⎭在绝热过程中,1V T γ-亦为常数.压缩后的温度为1(1.41)00(27273)5K 571K V T T V γ--⎛⎫==+⨯= ⎪⎝⎭(2) 将 1.4γ=代入,m ,mV V C RC γ+=,可得,m 52V C R =.在绝热压缩过程中,气体对外界所做的功,等于内能的减少:3055()8.31[571(27273)]J 5.6310J 22A E R T T =-∆=--=-⨯⨯-+=-⨯ 负号说明,在绝热压缩过程中,是外界对气体做功.4—30 一卡诺热机低温热源温度为o 7C ,效率为40%,若要把它的效率提高到50%,高温热源的温度应提高多少开?解 在效率为40%和50%的两种情况下,低温热源温度2T 相同.由211T T η=-,两种情况下的效率分别可表为 21122140%150%1T T T T T ηη==-==-+∆由此可得,高温热源的温度应提高 22112737K 93.3K 0.500.6033T T T +⎛⎫∆=-=== ⎪⎝⎭4—31 一卡诺热机,高温热源的温度为400K ,每一个循环从高温热源吸收75 J 热量,并向低温热源放出60 J 热量.求:(1) 低温热源温度;(2) 循环效率.解 (1) 对卡诺循环,有2211Q T T Q =,由此可得低温热源的温度为 221160400 K 320 K 75Q T T Q ==⨯=(2) 热机的循环效率为21601120%75Q Q η=-=-= 4—32 一卡诺机,在温度o 127C 和o 27C 两个热源间运转. (1)若一个正循环,从o 127C 热源吸收1200 J 热量,求向o 27C 的热源放出的热量;(2)若此循环逆向工作,从o 27C 的热源吸收1200 J 热量,求向o 127C 的热源放出的热量.解 (1) 对卡诺热机,2211Q T T Q =,由此可得,一个正循环向低温热源放出的热量为 2211272731200 J 900 J 127273T Q Q T +==⨯=+ (2) 对卡诺制冷机,有2211Q T Q T '=',由此可得,一个逆循环向高温热源放出的热量为 112241200 J 1600 J 3T Q Q T ''==⨯= 4—33 理想气体做卡诺循环,高温热源的热力学温度是低温热源热力学温度的n 倍,求在一个循环中,气体从高温热源吸收的热量有多少比例传给了低温热源.解 对卡诺热机,2211Q T T Q =,将12T n T =代入,可得 211Q Q n= 气体从高温热源吸收的热量有1n传给了低温热源. 4-34 质量为m ,摩尔质量为M 的理想气体,其摩尔定容热容为,m V C .在可逆的等体过程中温度从1T 升高到2T ,试证明在这一过程中气体的熵增量为2,m 1ln V T m S C M T ∆= 证 在气体的初态和末态间作可逆的等体曲线.气体沿此曲线,在温度升高d T 的元过程中,吸热为,m d d V m Q C T M=,熵增为,m d d d V Q m T S C T M T== 温度从1T 升高到2T ,气体的熵增量为 22112,m ,m 1d d ln S T V V S T T m T m S S C C M T M T ∆===⎰⎰ 4-35 质量为m ,摩尔质量为M 的理想气体,在可逆的等压过程中,温度从1T 升高到2T ,求在这一过程中,气体的熵增量.已知气体的摩尔定压热容为,m p C .解 在气体的初态和末态间作可逆的等压曲线.气体沿此曲线,在温度升高d T 的元过程中,吸热为,m d d p m Q C T M=,熵增为 ,m d d d p Q m T S C T M T== 温度从1T 升高到2T ,气体的熵增为22112,m ,m 1d d ln S T p p S T T m T m S S C C M T M T ∆===⎰⎰。

大学物理课后习题答案(第四章) 北京邮电大学出版社

大学物理课后习题答案(第四章) 北京邮电大学出版社

习题四4-1 符合什么规律的运动才是谐振动?分别分析下列运动是不是谐振动: (1)拍皮球时球的运动;(2)如题4-1图所示,一小球在一个半径很大的光滑凹球面内滚动(设小球所经过的弧线很短).题4-1图解:要使一个系统作谐振动,必须同时满足以下三个条件:一 ,描述系统的各种参量,如质量、转动惯量、摆长……等等在运动中保持为常量;二,系统是在 自己的稳定平衡位置附近作往复运动;三,在运动中系统只受到内部的线性回复力的作用. 或者说,若一个系统的运动微分方程能用0d d 222=+ξωξt描述时,其所作的运动就是谐振动.(1)拍皮球时球的运动不是谐振动.第一,球的运动轨道中并不存在一个稳定的平衡位置;第二,球在运动中所受的三个力:重力,地面给予的弹力,击球者给予的拍击力,都不是线 性回复力.(2)小球在题4-1图所示的情况中所作的小弧度的运动,是谐振动.显然,小球在运动过程中,各种参量均为常量;该系统(指小球凹槽、地球系统)的稳定平衡位置即凹槽最低点,即系统势能最小值位置点O ;而小球在运动中的回复力为θsin mg -,如题4-1图(b)所示.题 中所述,S ∆<<R ,故R S∆=θ→0,所以回复力为θmg -.式中负号,表示回复力的方向始终与角位移的方向相反.即小球在O 点附近的往复运动中所受回复力为线性的.若以小球为对象,则小球在以O '为圆心的竖直平面内作圆周运动,由牛顿第二定律,在凹槽切线方向上有θθmg t mR -=22d d令R g=2ω,则有0d d 222=+ωθt4-2 劲度系数为1k 和2k 的两根弹簧,与质量为m 的小球按题4-2图所示的两种方式连 接,试证明它们的振动均为谐振动,并分别求出它们的振动周期.题4-2图解:(1)图(a)中为串联弹簧,对于轻弹簧在任一时刻应有21F F F ==,设串联弹簧的等效倔强系数为串K 等效位移为x ,则有111x k F x k F -=-=串222x k F -=又有 21x x x +=2211k F k F k Fx +==串所以串联弹簧的等效倔强系数为2121k k k k k +=串即小球与串联弹簧构成了一个等效倔强系数为)/(2121k k k k k +=的弹簧振子系统,故小球作谐振动.其振动周期为2121)(222k k k k m k mT +===ππωπ串(2)图(b)中可等效为并联弹簧,同上理,应有21F F F ==,即21x x x ==,设并联弹簧的倔强系数为并k ,则有2211x k x k x k +=并故 21kk k +=并同上理,其振动周期为212k k m T +='π4-3 如题4-3图所示,物体的质量为m ,放在光滑斜面上,斜面与水平面的夹角为θ,弹簧的倔强系数为k ,滑轮的转动惯量为I ,半径为R .先把物体托住,使弹簧维持原长,然 后由静止释放,试证明物体作简谐振动,并求振动周期.题4-3图解:分别以物体m 和滑轮为对象,其受力如题4-3图(b)所示,以重物在斜面上静平衡时位置为坐标原点,沿斜面向下为x 轴正向,则当重物偏离原点的坐标为x 时,有221d d sin t xm T m g =-θ①βI R T R T =-21②βR t x=22d d )(02x x k T +=③ 式中k mg x /sin 0θ=,为静平衡时弹簧之伸长量,联立以上三式,有kxRt xR I mR -=+22d d )(令I mR kR +=222ω 则有0d d 222=+x t x ω故知该系统是作简谐振动,其振动周期为)/2(22222K R I m kR I mR T +=+==ππωπ4-4 质量为kg 10103-⨯的小球与轻弹簧组成的系统,按)SI ()328cos(1.0ππ+=x 的规律作谐振动,求:(1)振动的周期、振幅和初位相及速度与加速度的最大值;(2)最大的回复力、振动能量、平均动能和平均势能,在哪些位置上动能与势能相等? (3)s 52=t 与s 11=t 两个时刻的位相差;解:(1)设谐振动的标准方程为)cos(0φω+=t A x ,则知:3/2,s 412,8,m 1.00πφωππω===∴==T A又πω8.0==A v m 1s m -⋅51.2=1s m -⋅2.632==A a m ω2s m -⋅(2)N63.0==m m a FJ 1016.32122-⨯==m mv EJ1058.1212-⨯===E E E k p 当pk E E =时,有pE E 2=,即 )21(212122kA kx ⋅=∴ m 20222±=±=A x(3) ππωφ32)15(8)(12=-=-=∆t t4-5 一个沿x 轴作简谐振动的弹簧振子,振幅为A ,周期为T ,其振动方程用余弦函数表示.如果0=t 时质点的状态分别是:(1)Ax -=0;(2)过平衡位置向正向运动;(3)过2Ax =处向负向运动; (4)过2A x -=处向正向运动. 试求出相应的初位相,并写出振动方程.解:因为 ⎩⎨⎧-==0000sin cos φωφA v A x将以上初值条件代入上式,使两式同时成立之值即为该条件下的初位相.故有)2cos(1πππφ+==t T A x )232cos(232πππφ+==t T A x )32cos(33πππφ+==t T A x )452cos(454πππφ+==t T A x 4-6 一质量为kg 10103-⨯的物体作谐振动,振幅为cm 24,周期为s 0.4,当0=t 时位移为cm 24+.求:(1)s 5.0=t 时,物体所在的位置及此时所受力的大小和方向; (2)由起始位置运动到cm 12=x 处所需的最短时间; (3)在cm 12=x 处物体的总能量. 解:由题已知s 0.4,m 10242=⨯=-T A ∴1s rad 5.02-⋅==ππωT又,0=t 时,0,00=∴+=φA x故振动方程为m )5.0cos(10242t x π-⨯= (1)将s 5.0=t 代入得0.17m m )5.0cos(102425.0=⨯=-t x πN102.417.0)2(10103232--⨯-=⨯⨯⨯-=-=-=πωxm ma F方向指向坐标原点,即沿x 轴负向.(2)由题知,0=t 时,00=φ,t t =时3,0,20πφ=<+=t v A x 故且 ∴s322/3==∆=ππωφt (3)由于谐振动中能量守恒,故在任一位置处或任一时刻的系统的总能量均为J 101.7)24.0()2(10102121214223222--⨯=⨯⨯⨯===πωA m kA E4-7 有一轻弹簧,下面悬挂质量为g 0.1的物体时,伸长为cm 9.4.用这个弹簧和一个质量为g 0.8的小球构成弹簧振子,将小球由平衡位置向下拉开cm 0.1后 ,给予向上的初速度10s cm 0.5-⋅=v ,求振动周期和振动表达式.解:由题知 12311m N 2.0109.48.9100.1---⋅=⨯⨯⨯==x g m k而0=t 时,-12020s m 100.5m,100.1⋅⨯=⨯-=--v x ( 设向上为正)又s 26.12,51082.03===⨯==-ωπωT m k 即m 102)5100.5()100.1()(22222220---⨯=⨯+⨯=+=∴ωv x A45,15100.1100.5tan 022000πφωφ==⨯⨯⨯=-=--即x v∴ m)455cos(1022π+⨯=-t x4-8 图为两个谐振动的t x -曲线,试分别写出其谐振动方程.题4-8图解:由题4-8图(a),∵0=t 时,s2,cm 10,,23,0,0000===∴>=T A v x 又πφ即 1s rad 2-⋅==ππωT故 m)23cos(1.0ππ+=t x a由题4-8图(b)∵0=t 时,35,0,2000πφ=∴>=v A x 01=t 时,22,0,0111ππφ+=∴<=v x又 ππωφ253511=+⨯=∴πω65=故 mt x b )3565cos(1.0ππ+=4-9 一轻弹簧的倔强系数为k ,其下端悬有一质量为M 的盘子.现有一质量为m 的物体从离盘底h 高度处自由下落到盘中并和盘子粘在一起,于是盘子开始振动. (1)此时的振动周期与空盘子作振动时的周期有何不同? (2)此时的振动振幅多大?(3)取平衡位置为原点,位移以向下为正,并以弹簧开始振动时作为计时起点,求初位相并写出物体与盘子的振动方程.解:(1)空盘的振动周期为k M π2,落下重物后振动周期为k mM +π2,即增大. (2)按(3)所设坐标原点及计时起点,0=t 时,则k mg x -=0.碰撞时,以M m ,为一系统动量守恒,即0)(2v M m gh m +=则有M m ghm v +=20 于是gM m khk mg M m gh m k mg v x A )(21))(2()()(22222++=++=+=ω(3)g m M kh x v )(2tan 000+=-=ωφ(第三象限),所以振动方程为 ⎥⎦⎤⎢⎣⎡+++++=g m M kh t M m k g M m kh k m g x )(2arctan cos )(214-10 有一单摆,摆长m 0.1=l ,摆球质量kg 10103-⨯=m ,当摆球处在平衡位置时,若给小球一水平向右的冲量14s m kg 100.1--⋅⋅⨯=∆t F ,取打击时刻为计时起点)0(=t ,求振动的初位相和角振幅,并写出小球的振动方程.解:由动量定理,有0-=∆⋅mv t F∴1-34s m 01.0100.1100.1⋅=⨯⨯=∆⋅=--m t F v按题设计时起点,并设向右为x 轴正向,则知0=t 时,100s m 01.0,0-⋅==v x >0∴ 2/30πφ= 又1s rad 13.30.18.9-⋅===l g ω∴m 102.313.301.0)(302020-⨯===+=ωωv v x A故其角振幅rad 102.33-⨯==Θl A小球的振动方程为rad)2313.3cos(102.33πθ+⨯=-t4-11 有两个同方向、同频率的简谐振动,其合成振动的振幅为m 20.0,位相与第一振动的位相差为6π,已知第一振动的振幅为m 173.0,求第二个振动的振幅以及第一、第二两振动的位相差.题4-11图解:由题意可做出旋转矢量图如下. 由图知01.02/32.0173.02)2.0()173.0(30cos 222122122=⨯⨯⨯-+=︒-+=A A A A A∴ m 1.02=A设角θ为O AA1,则 θcos 22122212A A A A A -+=即1.0173.02)02.0()1.0()173.0(2cos 2222122221=⨯⨯-+=-+=A A A A A θ即2πθ=,这说明,1A 与2A 间夹角为2π,即二振动的位相差为2π.4-12 试用最简单的方法求出下列两组谐振动合成后所得合振动的振幅:(1) ⎪⎩⎪⎨⎧+=+=cm )373cos(5cm )33cos(521ππt x t x (2)⎪⎩⎪⎨⎧+=+=cm)343cos(5cm )33cos(521ππt x t x解: (1)∵ ,233712πππφφφ=-=-=∆∴合振幅 cm 1021=+=A A A(2)∵ ,334πππφ=-=∆∴合振幅 0=A4-13 一质点同时参与两个在同一直线上的简谐振动,振动方程为⎪⎩⎪⎨⎧-=+=m)652cos(3.0m )62cos(4.021ππt x t x试分别用旋转矢量法和振动合成法求合振动的振动幅和初相,并写出谐振方程。

第四章 课后习题及答案

第四章 课后习题及答案

第四章中学生学习心理课后习题及答案一、理论测试题(一)单项选择题1.当人从黑暗走入亮处后,视网膜的光感受阈限会迅速提高,这个过程是()。

A.适应B.对比C. 明适应D.暗适应2.人的视觉、听觉、味觉等都属于( )。

A.外部感觉B.内部感觉C.本体感觉D.机体感觉3.在热闹的聚会上或逛自由市场时,如果你与朋友聊天,朋友说话时的某个字可能被周围的噪音覆盖,但你还是知道你的朋友在说什么,这是知觉的()在起作用。

A、选择性B、整体性C、恒常性D、理解性4. 知觉的条件在一定范围改变时,知觉映像却保持相对稳定,这是知觉的()。

A.选择性B.整体性C.恒常性D.理解性5.大教室上课,教师借用扩音设备让全体学生清晰感知,这依据感知规律的()。

A.差异率B.强度率C.活动率D.组合率6.“万绿丛中一点红”容易引起人们的无意注意,这主要是由于刺激物具有()。

A.强度的特点B.新异性的特点C.变化的特点D.对比的特点7.小学低年级学生注意了写字的间架结构,就忽略了字的笔画,注意了写字而忘了正确的坐姿,原因是这个年龄阶段的学生()发展水平较低。

A.注意的广度B.注意的稳定性C.注意的分配D.注意的转移8.“视而不见,听而不闻”的现象,典型地表现了()。

A.注意的指向性B.注意的集中性C.注意的稳定性D.注意的分配性9.一种记忆特点是信息的保存是形象的,保存的时间短、保存量大,编码是以事物的物理特性直接编码,这种记忆是()。

A.短时记忆B.感觉记忆C.长时记忆D.动作记忆10.我们常常有这样的经验,明明知道对方的名字,但想不起来,这印证了遗忘的()。

A.干扰说B.消退说C.提取失败说D.压抑说11.学习后立即睡觉,保持的效果往往比学习后继续活动保持的效果要好,这是由于()。

A.过度学习B.记忆的恢复现象C.无倒摄抑制的影响D.无前摄抑制的影响12.遇见小时候的同伴,虽然叫不出他(她)的姓名,但确定是认识的,此时的心理活动是()。

大学物理课后习题答案第四章

大学物理课后习题答案第四章

第四章机械振动4.1一物体沿x 轴做简谐振动,振幅A = 0.12m ,周期T = 2s .当t = 0时,物体的位移x = 0.06m ,且向x 轴正向运动.求:(1)此简谐振动的表达式;(2)t = T /4时物体的位置、速度和加速度;(3)物体从x = -0.06m ,向x 轴负方向运动第一次回到平衡位置所需的时间. [解答](1)设物体的简谐振动方程为x = A cos(ωt + φ),其中A = 0.12m ,角频率ω = 2π/T = π.当t = 0时,x = 0.06m ,所以cos φ = 0.5,因此φ = ±π/3. 物体的速度为v = d x /d t = -ωA sin(ωt + φ).当t = 0时,v = -ωA sin φ,由于v > 0,所以sin φ< 0,因此:φ = -π/3.简谐振动的表达式为:x = 0.12cos(πt – π/3).(2)当t = T /4时物体的位置为;x = 0.12cos(π/2 – π/3) = 0.12cosπ/6 = 0.104(m). 速度为;v = -πA sin(π/2 – π/3) = -0.12πsinπ/6 = -0.188(m·s -1).加速度为:a = d v /d t = -ω2A cos(ωt + φ)= -π2A cos(πt - π/3)= -0.12π2cosπ/6 = -1.03(m·s -2). (3)方法一:求时间差.当x = -0.06m 时,可得cos(πt 1 - π/3) = -0.5, 因此πt 1 - π/3 = ±2π/3.由于物体向x 轴负方向运动,即v < 0,所以sin(πt 1 - π/3) > 0,因此πt 1 - π/3 = 2π/3,得t 1 = 1s .当物体从x = -0.06m 处第一次回到平衡位置时,x = 0,v > 0,因此cos(πt 2 - π/3) = 0, 可得 πt 2 - π/3 = -π/2或3π/2等.由于t 2> 0,所以πt 2 - π/3 = 3π/2, 可得t 2 = 11/6 = 1.83(s).所需要的时间为:Δt = t 2 - t 1 = 0.83(s).方法二:反向运动.物体从x = -0.06m ,向x 轴负方向运动第一次回到平衡位置所需的时间就是它从x = 0.06m ,即从起点向x 轴正方向运动第一次回到平衡位置所需的时间.在平衡位置时,x = 0,v < 0,因此cos(πt - π/3) = 0,可得 πt - π/3 = π/2,解得t = 5/6 = 0.83(s).[注意]根据振动方程x = A cos(ωt + φ),当t = 0时,可得φ = ±arccos(x 0/A ),(-π<φ<= π), 初位相的取值由速度决定.由于v = d x /d t = -ωA sin(ωt + φ),当t = 0时,v = -ωA sin φ,当v > 0时,sin φ< 0,因此 φ = -arccos(x 0/A );当v < 0时,sin φ> 0,因此φ = arccos(x 0/A )π/3.可见:当速度大于零时,初位相取负值;当速度小于零时,初位相取正值.如果速度等于零,当初位置x 0 = A 时,φ = 0;当初位置x 0 = -A 时,φ = π.4.2已知一简谐振子的振动曲线如图所示,试由图求:(1)a ,b ,c ,d ,e 各点的位相,及到达这些状态的时刻t 各是多少?已知周期为T ; (2)振动表达式; (3)画出旋转矢量图. [解答]方法一:由位相求时间.(1)设曲线方程为x = A cos Φ,其中A 表示振幅,Φ = ωt + φ表示相位. 由于x a = A ,所以cos Φa = 1,因此Φa = 0.由于x b = A /2,所以cos Φb = 0.5,因此Φb = ±π/3;由于位相Φ随时间t 增加,b 点位相就应该大于a 点的位相,因此Φb = π/3.由于x c = 0,所以cos Φc = 0,又由于c 点位相大于b 位相,因此Φc = π/2.同理可得其他两点位相为:Φd = 2π/3,Φe = π.c 点和a 点的相位之差为π/2,时间之差为T /4,而b 点和a 点的相位之差为π/3,时间之差应该为T /6.因为b 点的位移值与O 时刻的位移值相同,所以到达a 点的时刻为t a = T /6. 到达b 点的时刻为t b = 2t a = T /3.图4.2到达c 点的时刻为t c = t a + T /4 = 5T /12. 到达d 点的时刻为t d = t c + T /12 = T /2. 到达e 点的时刻为t e = t a + T /2 = 2T /3.(2)设振动表达式为:x = A cos(ωt + φ),当t = 0时,x = A /2时,所以cos φ = 0.5,因此φ =±π/3; 由于零时刻的位相小于a 点的位相,所以φ = -π/3, 因此振动表达式为. 另外,在O 时刻的曲线上作一切线,由于速度是位置对时间的变化率,所以切线代表速度的方向;由于其斜率大于零,所以速度大于零,因此初位相取负值,从而可得运动方程.(3)如图旋转矢量图所示.方法二:由时间求位相.将曲线反方向延长与t 轴 相交于f 点,由于x f = 0,根据运动方程,可得所以:.显然f 点的速度大于零,所以取负值,解得t f = -T /12.从f 点到达a 点经过的时间为T /4,所以到达a 点的时刻为:t a = T /4 + t f = T /6, 其位相为:. 由图可以确定其他点的时刻,同理可得各点的位相.4.3 有一弹簧,当其下端挂一质量为M 的物体时,伸长量为9.8×10-2m .若使物体上下振动,且规定向下为正方向.(1)t = 0时,物体在平衡位置上方8.0×10-2m 处,由静止开始向下运动,求运动方程;(2)t = 0时,物体在平衡位置并以0.60m·s -1速度向上运动,求运动方程. [解答]当物体平衡时,有:Mg – kx 0 = 0, 所以弹簧的倔强系数为:k = Mg/x 0, 物体振动的圆频率为:s -1). 设物体的运动方程为:x = A cos(ωt + φ).(1)当t = 0时,x 0 = -8.0×10-2m ,v 0 = 0,因此振幅为:=8.0×10-2(m);由于初位移为x 0 = -A ,所以cos φ = -1,初位相为:φ = π. 运动方程为:x = 8.0×10-2cos(10t + π).(2)当t = 0时,x 0 = 0,v 0 = -0.60(m·s -1),因此振幅为:v 0/ω|=6.0×10-2(m);由于cos φ = 0,所以φ = π/2;运动方程为:x = 6.0×10-2cos(10t +π/2).4.4 质量为10×10-3kg 的小球与轻弹簧组成的系统,按的规律作振动,式中t 以秒(s)计,x 以米(m)计.求: (1)振动的圆频率、周期、振幅、初位相; (2)振动的速度、加速度的最大值;(3)最大回复力、振动能量、平均动能和平均势能;cos(2)3t x A T ππ=-cos(2)03t T ππ-=232f t Tπππ-=±203a a t T πΦπ=-=ω==0||A x ==A =20.1cos(8)3x t ππ=+(4)画出这振动的旋转矢量图,并在图上指明t 为1,2,10s 等各时刻的矢量位置. [解答](1)比较简谐振动的标准方程:x = A cos(ωt + φ),可知圆频率为:ω =8π,周期T = 2π/ω = 1/4 = 0.25(s),振幅A = 0.1(m),初位相φ = 2π/3.(2)速度的最大值为:v m = ωA = 0.8π = 2.51(m·s -1); 加速度的最大值为:a m = ω2A = 6.4π2 = 63.2(m·s -2). (3)弹簧的倔强系数为:k = mω2,最大回复力为:f = kA = mω2A = 0.632(N); 振动能量为:E = kA 2/2 = mω2A 2/2 = 3.16×10-2(J), 平均动能和平均势能为:= kA 2/4 = mω2A 2/4 = 1.58×10-2(J). (4)如图所示,当t 为1,2,10s 等时刻时,旋转矢量的位置是相同的.4.5 两个质点平行于同一直线并排作同频率、同振幅的简谐振动.在振动过程中,每当它们经过振幅一半的地方时相遇,而运动方向相反.求它们的位相差,并作旋转矢量图表示.[解答]设它们的振动方程为:x = A cos(ωt + φ), 当x = A /2时,可得位相为:ωt + φ = ±π/3.由于它们在相遇时反相,可取Φ1 = (ωt + φ)1 = -π/3,Φ2 = (ωt + φ)2 = π/3,它们的相差为:ΔΦ = Φ2 – Φ1 = 2π/3,或者:ΔΦ` = 2π –ΔΦ = 4π/3.矢量图如图所示.4.6一氢原子在分子中的振动可视为简谐振动.已知氢原子质量m = 1.68×10-27kg ,振动频率v = 1.0×1014Hz ,振幅A = 1.0×10-11m .试计算:(1)此氢原子的最大速度; (2)与此振动相联系的能量.[解答](1)氢原子的圆频率为:ω = 2πv = 6.28×1014(rad·s -1), 最大速度为:v m = ωA = 6.28×103(m·s -1).(2)氢原子的能量为:= 3.32×10-20(J).4.7 如图所示,在一平板下装有弹簧,平板上放一质量为1.0kg 的重物,若使平板在竖直方向上作上下简谐振动,周期为0.50s ,振幅为2.0×10-2m ,求:(1)平板到最低点时,重物对平板的作用力;(2)若频率不变,则平板以多大的振幅振动时,重物跳离平板? (3)若振幅不变,则平板以多大的频率振动时,重物跳离平板? [解答](1)重物的圆频率为:ω = 2π/T = 4π,其最大加速度为:a m = ω2A ,合力为:F = ma m ,方向向上.重物受到板的向上支持力N 和向下的重力G ,所以F = N – G . 重物对平板的作用力方向向下,大小等于板的支持力: N = G + F = m (g +a m ) = m (g +ω2A ) = 12.96(N).(2)当物体的最大加速度向下时,板的支持为:N = m (g - ω2A ). 当重物跳离平板时,N = 0,频率不变时,振幅为:A = g/ω2 = 3.2×10-2(m).(3)振幅不变时,频率为:3.52(Hz).4.8 两轻弹簧与小球串连在一直线上,将两弹簧拉长后系在固定点A 和B 之间,整个系统放在光滑水平面上.设两弹簧的原长分别为l 1和l 2,倔强系统分别为k 1和k 2,A和B 间距为L ,小球的质量为m .(1)试确定小球的平衡位置;k pE E =212m E mv=2ωνπ==(2)使小球沿弹簧长度方向作一微小位移后放手,小球将作振动,这一振动是否为简谐振动?振动周期为多少?[解答](1)这里不计小球的大小,不妨设L > l 1 + l 2,当小球平衡时,两弹簧分别拉长x 1和x 2,因此得方程:L = l 1 + x 1 + l 2 + x 2;小球受左右两边的弹簧的弹力分别向左和向右,大小相等,即k 1x 1 = k 2x 2. 将x 2 = x 1k 1/k 2代入第一个公式解得:.小球离A 点的距离为:.(2)以平衡位置为原点,取向右的方向为x 轴正方向,当小球向右移动一个微小距离x 时,左边弹簧拉长为x 1 + x ,弹力大小为:f 1 = k 1(x 1 + x ), 方向向左;右边弹簧拉长为x 1 - x ,弹力大小为:f 2 = k 2(x 2 - x ), 方向向右.根据牛顿第二定律得:k 2(x 2 - x ) - k 1(x 1 + x ) = ma ,利用平衡条件得:,即小球做简谐振动.小球振动的圆频率为:.4.9如图所示,质量为10g 的子弹以速度v = 103m·s -1水平射入木块,并陷入木块中,使弹簧压缩而作简谐振动.设弹簧的倔强系数k = 8×103N·m -1,木块的质量为4.99kg ,不计桌面摩擦,试求:(1)振动的振幅;(2)振动方程.[解答](1)子弹射入木块时,由于时间很短,木块还来不及运动,弹簧没有被压缩,它们的动量守恒,即:mv = (m + M)v 0.解得子弹射入后的速度为:v 0 = mv/(m + M) = 2(m·s -1),这也是它们振动的初速度.子弹和木块压缩弹簧的过程机械能守恒,可得:(m + M ) v02/2 = kA 2/2, 所以振幅为:10-2(m). (2)振动的圆频率为:= 40(rad·s -1).取木块静止的位置为原点、向右的方向为位移x 的正方向,振动方程可设为:x = A cos(ωt + φ).当t = 0时,x = 0,可得:φ = ±π/2;由于速度为正,所以取负的初位相,因此振动方程为:x = 5×10-2cos(40t - π/2).4.10如图所示,在倔强系数为k 的弹簧下,挂一质量为M 的托盘.质量为m 的物体由距盘底高h 处自由下落与盘发生完全非弹性碰撞,而使其作简谐振动,设两物体碰后瞬时为t = 0时刻,求振动方程.[解答]物体落下后、碰撞前的速度为:物体与托盘做完全非弹簧碰撞后,根据动量守恒定律可得它们的共同速度为,这也是它们振动的初速度.设振动方程为:x = A cos(ωt + φ),211212()k x L l l k k =--+211111212()k L l x l L l l k k =+=+--+2122d ()0d xm kk x t++=ω=22T πω==A v =ω=v =0m v v m M ==+图4.9 图4.10其中圆频率为:物体没有落下之前,托盘平衡时弹簧伸长为x 1,则:x 1 = Mg/k .物体与托盘磁盘之后,在新的平衡位置,弹簧伸长为x 2,则:x 2= (M + m )g/k . 取新的平衡位置为原点,取向下的方向为正,则它们振动的初位移为x 0 = x 1 - x 2 = -mg/k .因此振幅为:初位相为:4.11 装置如图所示,轻弹簧一端固定,另一端与物体m 间用细绳相连,细绳跨于桌边定滑轮M 上,m 悬于细绳下端.已知弹簧的倔强系数为k = 50N·m -1,滑轮的转动惯量J = 0.02kg·m 2,半径R = 0.2m ,物体质量为m = 1.5kg ,取g = 10m·s -2.(1)试求这一系统静止时弹簧的伸长量和绳的张力;(2)将物体m 用手托起0.15m ,再突然放手,任物体m 下落而整个系统进入振动状态.设绳子长度一定,绳子与滑轮间不打滑,滑轮轴承无摩擦,试证物体m 是做简谐振动; (3)确定物体m 的振动周期;(4)取物体m 的平衡位置为原点,OX 轴竖直向下,设振物体m 相对于平衡位置的位移为x ,写出振动方程.[解答](1)在平衡时,绳子的张力等于物体的重力T = G = mg = 15(N).这也是对弹簧的拉力,所以弹簧的伸长为:x 0 = mg/k = 0.3(m).(2)以物体平衡位置为原点,取向下的方向为正,当物体下落x 时,弹簧拉长为x 0 + x ,因此水平绳子的张力为:T 1 = k (x 0+ x ).设竖直绳子的张力为T 2,对定滑轮可列转动方程:T 2R – T 1R = Jβ, 其中β是角加速度,与线加速度的关系是:β = a/R .对于物体也可列方程:mg - T 2 = ma . 转动方程化为:T 2 – k (x 0 + x ) = aJ/R 2,与物体平动方程相加并利用平衡条件得:a (m + J/R 2) = –kx ,可得微分方程:,故物体做简谐振动. (3)简谐振动的圆频率为:s -1). 周期为:T 2 = 2π/ω = 1.26(s).(4)设物体振动方程为:x = A cos(ωt + φ),其中振幅为:A = 0.15(m). 当t = 0时,x = -0.15m ,v 0 = 0,可得:cos φ = -1,因此φ = π或-π, 所以振动方程为:x = 0.15cos(5t + π),或x = 0.15cos(5t - π).4.12一匀质细圆环质量为m ,半径为R ,绕通过环上一点而与环平面垂直的水平光滑轴在铅垂面内作小幅度摆动,求摆动的周期.[解答]通过质心垂直环面有一个轴,环绕此轴的转动惯量为:I c = mR 2.根据平行轴定理,环绕过O 点的平行轴的转动惯量为I = I c + mR 2 = 2mR 2.当环偏离平衡位置时,重力的力矩为:M = mgR sin θ, 方向与角度θ增加的方向相反.ω=A ==00arctan v x ϕω-==222d 0d /x kx t m J R +=+ω=根据转动定理得:Iβ = -M ,即,由于环做小幅度摆动,所以sin θ≈θ,可得微分方程:. 摆动的圆频率为:周期为:4.13 重量为P 的物体用两根弹簧竖直悬挂,如图所示,各弹簧的倔强系数标明在图上.试求在图示两种情况下,系统沿竖直方向振动的固有频率.[解答](1)前面已经证明:当两根弹簧串联时,总倔强系数为k = k1k 2/(k 1 + k 2),因此固有频率为(2)前面还证明:当两根弹簧并联时,总倔强系数等于两个弹簧的倔强系数之和,因此固有频率为.4.14质量为0.25kg 的物体,在弹性力作用下作简谐振动,倔强系数k = 25N·m -1,如果开始振动时具有势能0.6J ,和动能0.2J ,求:(1)振幅;(2)位移多大时,动能恰等于势能?(3)经过平衡位置时的速度.[解答]物体的总能量为:E = E k + E p = 0.8(J).(1)根据能量公式E = kA2/2,得振幅为:.(2)当动能等于势能时,即E k = E p ,由于E = E k + E p ,可得:E = 2E p ,即,解得:= ±0.179(m). (3)再根据能量公式E = mv m2/2,得物体经过平衡位置的速度为: 2.53(m·s -1).4.15 两个频率和振幅都相同的简谐振动的x-t 曲线如图所示,求: (1)两个简谐振动的位相差;(2)两个简谐振动的合成振动的振动方程. [解答](1)两个简谐振动的振幅为:A = 5(cm), 周期为:T = 4(s),圆频率为:ω =2π/T = π/2,它们的振动方程分别为:x 1 = A cos ωt =5cosπt /2, x 2 = A sin ωt =5sinπt /2 =5cos(π/2 - πt /2)即x 2=5cos(πt /2 - π/2).位相差为:Δφ = φ2 - φ1 = -π/2. (2)由于x = x 1 + x 2 = 5cosπt /2 +5sinπt /2 = 5(cosπt /2·cosπ/4 +5sinπt /2·sinπ/4)/sinπ/4 合振动方程为:(cm).22d sin 0d I mgR tθθ+=22d 0d mgRt Iθθ+=ω=222T πω===2ωνπ===2ωνπ===A =2211222kA kx =⨯/2x =m v =cos()24x t ππ=- (b)图4.134.16 已知两个同方向简谐振动如下:,.(1)求它们的合成振动的振幅和初位相; (2)另有一同方向简谐振动x 3 = 0.07cos(10t +φ),问φ为何值时,x 1 + x 3的振幅为最大?φ为何值时,x 2 + x 3的振幅为最小?(3)用旋转矢量图示法表示(1)和(2)两种情况下的结果.x 以米计,t 以秒计.[解答](1)根据公式,合振动的振幅为:=8.92×10-2(m). 初位相为:= 68.22°.(2)要使x 1 + x 3的振幅最大,则:cos(φ– φ1) = 1,因此φ– φ1 = 0,所以:φ = φ1 = 0.6π. 要使x 2 + x 3的振幅最小,则 cos(φ– φ2) = -1,因此φ– φ2 = π,所以φ = π + φ2 = 1.2π.(3)如图所示.4.17质量为0.4kg 的质点同时参与互相垂直的两个振动:, .式中x 和y 以米(m)计,t 以秒(s)计.(1)求运动的轨道方程;(2)画出合成振动的轨迹;(3)求质点在任一位置所受的力.[解答](1)根据公式:,其中位相差为:Δφ = φ2 – φ1 = -π/2,130.05cos(10)5x t π=+210.06cos(10)5x t π=+A =11221122sin sin arctancos cos A A A A ϕϕϕϕϕ+=+0.08cos()36x t ππ=+0.06cos()33y t ππ=-2222212122cos sin x y xyA A A A ϕϕ+-∆=∆所以质点运动的轨道方程为:. (2)合振动的轨迹是椭圆.(3)两个振动的圆频率是相同的ω = π/3,质点在x 方向所受的力为,即F x = 0.035cos(πt /3 + π/6)(N).在y 方向所受的力为,即F y = 0.026cos(πt /3 - π/3)(N).用矢量表示就是,其大小为,与x 轴的夹角为θ = arctan(F y /F x ).4.18 将频率为384Hz 的标准音叉振动和一待测频率的音叉振动合成,测得拍频为3.0Hz ,在待测音叉的一端加上一小块物体,则拍频将减小,求待测音叉的固有频率.[解答]标准音叉的频率为v 0 = 384(Hz), 拍频为Δv = 3.0(Hz), 待测音叉的固有频率可能是v 1 = v 0 - Δv = 381(Hz), 也可能是v 2 = v 0 + Δv = 387(Hz).在待测音叉上加一小块物体时,相当于弹簧振子增加了质量,由于ω2 = k/m ,可知其频率将减小.如果待测音叉的固有频率v 1,加一小块物体后,其频率v`1将更低,与标准音叉的拍频将增加;实际上拍频是减小的,所以待测音叉的固有频率v 2,即387Hz .4.19示波器的电子束受到两个互相垂直的电场作用.电子在两个方向上的位移分别为x = A cos ωt 和y = A cos(ωt +φ).求在φ = 0,φ = 30º,及φ = 90º这三种情况下,电子在荧光屏上的轨迹方程.[解答]根据公式,其中Δφ = φ2 – φ1 = -π/2,而φ1 = 0,φ2 = φ.(1)当Δφ = φ = 0时,可得,质点运动的轨道方程为y = x ,轨迹是一条直线.(2)当Δφ = φ = 30º时,可得质点的轨道方程, 即,轨迹是倾斜的椭圆.(3)当Δφ = φ = 90º时,可得, 即x 2 + y 2 = A 2,质点运动的轨迹为圆.4.20三个同方向、同频率的简谐振动为,,.222210.080.06x y +=22d d x x x F ma m t==20.08cos()6m t πωω=-+22d d y y y F ma m t==20.06cos()3m t ωω=--πi+j x y F F F =F =2222212122cos sin x y xyA A A A ϕϕ+-∆=∆2222220x y xyA A A+-=222214x y A+=222/4x y A +=22221x y A A +=10.08cos(314)6x t π=+20.08cos(314)2x t π=+350.08cos(314)6x t π=+求:(1)合振动的圆频率、振幅、初相及振动表达式; (2)合振动由初始位置运动到所需最短时间(A 为合振动振幅). [解答]合振动的圆频率为:ω = 314 = 100π(rad·s -1). 设A 0 = 0.08,根据公式得:A x = A 1cos φ1 + A 2cos φ2 + A 3cos φ3 = 0,A y = A 1sin φ1 + A 2sin φ2 + A 3sin φ3 = 2A 0 = 0.16(m), 振幅为:,初位相为:φ = arctan(A y /A x ) = π/2.合振动的方程为:x = 0.16cos(100πt + π/2).(2)当时,可得:,解得:100πt + π/2 = π/4或7π/4.由于t > 0,所以只能取第二个解,可得所需最短时间为t = 0.0125s .x A =A =/2x =cos(100/2)2t ππ+。

汽车理论课后习题答案 第四章 汽车的制动性

汽车理论课后习题答案 第四章 汽车的制动性

第四章4.1 一轿车驶经有积水层的—良好路面公路,当车速为100km/h 时要进行制动。

问此时有无可能出现滑水现象而丧失制动能力?轿车轮胎的胎压为179.27kPa 。

答:假设路面水层深度超过轮胎沟槽深度估算滑水车速:i h p 34.6=μ i p 为胎压(kPa ) 代入数据得:89.84=h μkm/h而h μμ> 故有可能出现滑水现象而失去制动能力。

4.2在第四章第三节二中.举出了CA700轿车的制动系由真空助力改为压缩空气助力后的制动试验结果。

试由表中所列数据估算''2'221ττ+的数值,以说明制动器作用时间的重要性。

提示:由表4-3的数据以及公式max202292.2526.31b a a a u u s +⎪⎭⎫ ⎝⎛''+'=ττ 计算''2'221ττ+的数值。

可以认为制动器起作用时间的减少是缩短制动距离的主要原因。

4.3一中型货车装有前、后制动器分开的双管路制功系,其有关参数如下;1)计算并绘制利用附着系数曲线与制动效率曲线。

2)求行驶车速30km/h ,在.0=ϕ80路面上车轮不抱死的制动距离。

计算时取制动系反应时间s 02.0'2=τ,制动减速度上升时间s 02.0''2=τ。

3)求制功系前部管路损坏时汽车的制功距离,制功系后部管路损坏时汽车的制功距离。

答案:1)前轴利用附着系数为:gf zh b zL +=βϕ 后轴利用附着系数为: ()gr zh a z L --=βϕ1空载时:g h b L -=βϕ0=413.0845.085.138.095.3-=-⨯ 0ϕϕ> 故空载时后轮总是先抱死。

由公式()Lh La zE g r rr /1/ϕβϕ+-==代入数据rrE ϕ845.0449.21.2+=(作图如下)满载时:g h b L -=βϕ0=4282.017.1138.095.3=-⨯ 0ϕϕ<时:前轮先抱死L h Lb zE g f ff //ϕβϕ-==代入数据f E =fϕ17.1501.11-(作图如下)0ϕϕ>时:后轮先抱死 ()Lh La zE g r rr /1/ϕβϕ+-==代入数据r E =rϕ17.1449.295.2+(作图如下)2)由图或者计算可得:空载时 8.0=ϕ制动效率约为0.7因此其最大动减速度g g a b 56.07.08.0max =⨯= 代入公式:max202292.2526.31b a a a u u s +⎪⎭⎫ ⎝⎛''+'=ττg56.092.253030202.002.06.312⨯+⨯⎪⎭⎫ ⎝⎛+==6.57m 由图或者计算可得: 满载时 制动效率为0.87因此其最大动减速度g g a b 696.087.08.0max '=⨯= 制动距离max202292.2526.31b a a a u u s +⎪⎭⎫ ⎝⎛''+'=ττg696.092.253030202.002.06.312⨯+⨯⎪⎭⎫ ⎝⎛+==5.34m3)A.若制动系前部管路损坏 Gz dt dug G F xb ==2)(2g z zh a LGF -=⇒后轴利用附着系数 gr zh a Lz -=ϕ⇒后轴制动效率Lh La z E g r rr /1/ϕϕ+==代入数据得:空载时:r E =0.45满载时:r E =0.60a)空载时 其最大动减速度g g a b 36.045.08.0max =⨯=代入公式:max202292.2526.31b a a a u u s +⎪⎭⎫ ⎝⎛''+'=ττg36.092.253030202.002.06.312⨯+⨯⎪⎭⎫ ⎝⎛+==10.09mb)满载时 其最大动减速度g g a b 48.06.08.0max =⨯=代入公式:max202292.2526.31b a a a u u s +⎪⎭⎫ ⎝⎛''+'=ττg48.092.253030202.002.06.312⨯+⨯⎪⎭⎫ ⎝⎛+==7.63mB .若制动系后部管路损坏 Gz dt dug G F xb ==1)(1g z zh b LGF +=⇒前轴利用附着系数 gf zh b Lz +=ϕ⇒前轴制动效率Lh Lb zE g f ff /1/ϕϕ-==代入数据 空载时:f E =0.57 满载时:f E =0.33a)空载时 其最大动减速度g g a b 456.057.08.0max =⨯=代入公式:max202292.2526.31b a a a u u s +⎪⎭⎫ ⎝⎛''+'=ττg456.092.253030202.002.06.312⨯+⨯⎪⎭⎫ ⎝⎛+==8.02mb)满载时 其最大动减速度g g a b 264.033.08.0max =⨯=代入公式:max202292.2526.31b a a a u u s +⎪⎭⎫ ⎝⎛''+'=ττg264.092.253030202.002.06.312⨯+⨯⎪⎭⎫ ⎝⎛+==13.67m4.4在汽车法规中,对双轴汽车前、后轴制功力的分配有何规定。

大学物理(第二版)上册课后习题详解第四章-静电场

大学物理(第二版)上册课后习题详解第四章-静电场

11
C m-2。求此系统的电场分
布。 解 如题 4.10 图所示, 三个区域的场强由两平行无限大均匀带 电面产生的场强的叠加,其电场强度分别为
E2
E2
4.10 解图
E2
E1
1 , E2 2 2 0 2 0
设水平向右的方向为场强的正方向,则 左边区域:
EⅠ E1 E2
题 4.8 图
29
电荷为 Q2。求电场分布规律。 解 因电荷呈球对称分布,电场强度也为球对称分布,取半径为 r 的同心球面为高斯面, 由高斯定理得
2 E dS 4r E
q
0
当 r R1 时,该高斯面内无电荷,
q 0 ,故
Q1 (r 3 R13 ) ,故 3 R2 R13
4.2 一根不导电的细塑料杆,被弯成近乎完整的圆,圆的半径为 0.5m,杆的两端有 2cm 的缝隙, 3.12 10 C 的正电荷均匀地分布在杆上,求圆心处电场的大小和方向。 解 运用叠加原理,可以把带电体看成是一个带正电的整圆环和一段长为 2cm 带负电的 圆弧产生的电场的叠加,而圆环在中心产生的电场为零。所以电场就等于长为 2cm 的带负电 的圆弧产生的电场。由于圆弧长度远小于半径,故可看成是一点电荷,所以
q0 必须在两电荷之间才能平衡,设与 2q 之间的距离为 x ,若合力为零,则有
2qq0 qq0 1 2 4 0 x 4 0 (l x) 2 1
由此可得 x 2 4lx 2l 2 0 ,解此方程可得
x (2 2)l 。只能取负号,所以
x (2 2)l ,为稳定平衡状态。
q , 2l
x
dx
2l
4.11 解图

大学物理学课后习题4第四章答案

大学物理学课后习题4第四章答案

x 轴正方向运动,代表此简谐振动的旋转矢量图为
()
[答案:B]
(2)两个同周期简谐振动曲线如图所示,振动曲线 1 的相位比振动曲线 2
的相位 (

(A)落后
2
(B)超前
2
(C)落后
(D)超前
[答案: B]
习题 4.1(2)图
(3)一质点作简谐振动的周期是 T,当由平衡位置向 x 轴正方向运动时,从
E
1 2
mvm2
3.16 102 J
E p E k 1 E 1.58102 J 2
当 Ek E p 时,有 E 2E p ,

1 kx 2 1 ( 1 kA2 )
2
22

x 2 A 2m
2
20
(3)
(t2 t1 ) 8 (5 1) 32
4.4 一个沿 x 轴作简谐振动的弹簧振子,振幅为 A ,周期为T ,其振动 方程用余弦函数表示.如果 t 0 时质点的状态分别是:
的单位是 s,则 (A)波长为 5m
向传播 [答案:C]
(B)波速为 10ms-1
(C)周期为 1 s 3
(D)波沿 x 正方
(8)如图所示,两列波长为 的相干波在 p 点相遇。波在 S1 点的振动初相是 1 ,点 S1 到点 p 的距离是 r1。波在 S2 点的振动初相是2 ,点 S2 到点 p 的距离是
(A)它的动能转化为势能. (B)它的势能转化为动能. (C)它从相邻的一段质元获得能量其能量逐渐增大. (D)它把自己的能量传给相邻的一段质元,其能量逐渐减小.
[答案:D]
4.2 填空题 (1)一质点在 X 轴上作简谐振动,振幅 A=4cm,周期 T=2s,其平衡位置

最新第四章 酸碱滴定法课后习题及答案资料

最新第四章 酸碱滴定法课后习题及答案资料

第四章酸碱滴定法习题4-14.1 下列各种弱酸的p K a已在括号内注明,求它们的共轭碱的pK b;(1)HCN(9.21);(2)HCOOH(3.74);(3)苯酚(9.95);(4)苯甲酸(4.21)。

4.2 已知H3PO4的p K a=2.12,p K a=7.20,p K a=12.36。

求其共轭碱PO43-的pK b1,HPO42-的pK b2.和H2PO4-的p K b3。

4.3 已知琥珀酸(CH2COOH)2(以H2A表示)的p K al=4.19,p K b1=5.57。

试计算在pH4.88和5.0时H2A、HA-和A2-的分布系数δ2、δ1和δ0。

若该酸的总浓度为0.01mol·L-1,求pH=4.88时的三种形式的平衡浓度。

4.4 分别计算H2CO3(p K a1=6.38,pK a2=10.25)在pH=7.10,8.32及9.50时,H2CO3,HCO3-和CO32-的分布系数δ2` δ1和δ0。

4.5 已知HOAc的p Ka = 4.74,NH3·H2O的pKb=4.74。

计算下列各溶液的pH值:(1) 0.10 mol·L-1HOAc ;(2) 0.10 mol·L-1 NH3·H2O;(3) 0.15 mol·L-1 NH4Cl;(4) 0.15 mol·L-1 NaOAc。

4.6计算浓度为0.12 mol·L-1的下列物质水溶液的pH(括号内为p Ka)。

(1)苯酚(9.95);(2)丙烯酸(4.25);(3)吡啶的硝酸盐(C5H5NHNO3)(5.23)。

解:(1) 苯酚(9.95)4.7 计算浓度为0.12 mol·L-1的下列物质水溶液的pH(p Ka:见上题)。

(1)苯酚钠;(2)丙烯酸钠;(3)吡啶。

4.8 计算下列溶液的pH:(1)0.1mol·L-1NaH2PO4;(2)0.05 mol·L-1K2HPO4。

第四章 高分子分子量及分布课后习题

第四章 高分子分子量及分布课后习题

第4章分子量及分子量分布一、思考题1.写出四种平均分子量的定义式,它们有什么样的大小顺序?2.利用稀溶液的依数性可测定高聚物的哪种平均分子量?简述测定数均相对分子质量的几种方法的测试原理。

3.用光散射法测定高聚物的质均相对分子质量时,为何对不同尺寸高分子的试样要采用不同的公式?4.黏度法中涉及哪几种黏度概念?它们之中何者与溶液的浓度无关?写出黏度法测黏均相对分子质量的过程及公式。

5.描述高聚物分子量分布有哪些方式?如何作出高聚物的积分质量分布曲线和微分质量分布曲线?6.体积排除理论是如何解释GPC 法的分级原理的?二、选择题1.已知[]1-=KM η,判断以下哪一条正确? ( ) ①n M M =η ②W M M =η ③ηM M M M Z W n ===2.下列哪个溶剂是线型柔性高分子的良溶剂? ( ) ①1χ=1.5 ② 1χ=0.5 ③ 1χ=0.23.已知[]KM =η,判断以下哪一条正确? ( ) ①n M M =η ②W M M =η ③ηM M M M Z W n === ( )4.下列哪种方法可以测定聚合物的绝对相对分子质量? ( ) ①凝胶渗透色谱法 ②光散射法 ③黏度法5.用GPC 测定聚合物试样的相对分子质量分布时,从色谱柱最先分离出来的是 ( ) ①相对分子质量最小的②相对分子质量最大的③依据所用的溶剂不同,其相对分子质量大小的先后次序不同6.高聚物样品的黏均相对分子质量不是唯一确定值的原因是 ( ) ①黏均相对分子质量与Mark-Houwink 方程中的系数K 有关②黏均相对分子质量与Mark-Houwink 方程中的系数α和K 有关 ③样品相对分子质量具有多分散性7.高聚物多分散性越大,其多分散性系数d 值 ( ) ①越大于1 ② 越小于1 ③越接近18.测定同一高聚物样品的相对分子质量,以下哪个结果正确? ( ) ①黏度法的结果大于光散射法的②VPO 法的结果大于黏度法的③黏度法的结果大于端基分析法的三、计算题1. 分别计算出下列两种情况下的M n和M w,并对计算结果进行解释。

统计学课后第四章习题答案

统计学课后第四章习题答案

第4章练习题1、一组数据中出现频数最多的变量值称为()A。

众数 B.中位数 C。

四分位数 D.平均数2、下列关于众数的叙述,不正确的是()A。

一组数据可能存在多个众数 B.众数主要适用于分类数据C。

一组数据的众数是唯一的 D。

众数不受极端值的影响3、一组数据排序后处于中间位置上的变量值称为()A。

众数 B.中位数 C。

四分位数 D.平均数4、一组数据排序后处于25%和75%位置上的值称为()A.众数 B。

中位数 C。

四分位数 D。

平均数5、非众数组的频数占总频数的比例称为()A.异众比率 B。

离散系数 C.平均差 D.标准差6、四分位差是()A.上四分位数减下四分位数的结果 B。

下四分位数减上四分位数的结果C。

下四分位数加上四分位数 D.下四分位数与上四分位数的中间值7、一组数据的最大值与最小值之差称为()A.平均差 B。

标准差 C.极差 D.四分位差8、各变量值与其平均数离差平方的平均数称为()A.极差B.平均差C.方差 D。

标准差9、变量值与其平均数的离差除以标准差后的值称为()A.标准分数B.离散系数 C。

方差 D.标准差10、如果一个数据的标准分数—2,表明该数据()A。

比平均数高出2个标准差 B.比平均数低2个标准差C。

等于2倍的平均数 D。

等于2倍的标准差11、经验法则表明,当一组数据对称分布时,在平均数加减2个标准差的范围之内大约有()A.68%的数据B.95%的数据C.99%的数据D。

100%的数据12、如果一组数据不是对称分布的,根据切比雪夫不等式,对于k=4,其意义是()A。

至少有75%的数据落在平均数加减4个标准差的范围之内B。

至少有89%的数据落在平均数加减4个标准差的范围之内C. 至少有94%的数据落在平均数加减4个标准差的范围之内D。

至少有99%的数据落在平均数加减4个标准差的范围之内13、离散系数的主要用途是()A。

反映一组数据的离散程度 B。

反映一组数据的平均水平C.比较多组数据的离散程度D.比较多组数据的平均水平14、比较两组数据离散程度最适合的统计量是()A.极差B.平均差C.标准差 D。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第4 章网络层
4-31以下地址中的哪一个和86.32/12匹配?请说明理由。

(1)86.33.224.123;(2)86.79.65.216;(3)86.58.119.74;(4)86.68.206.154。

答案:
(1)与11111111 11110000 00000000 00000000逐比特相“与”和86.32/12匹配
(2)与11111111 11110000 00000000 00000000逐比特相“与”和86.32/12不匹配
(3)与11111111 11110000 00000000 00000000逐比特相“与”和86.32/12不匹配
(4)与11111111 11110000 00000000 00000000逐比特相“与”和86.32/12不匹配
4-32以下的地址前缀中哪一个地址和2.52.90.140匹配?请说明理由。

(1)0/4;(2)32/4;(3)4/6;(4)80/4。

答案:(1)2.52.90.140与11110000 00000000 00000000 00000000逐比特相“与”和0/4匹配
(2)2.52.90.140与11110000 00000000 00000000 00000000逐比特相“与”和32/4不匹配
(3)2.52.90.140与11110000 00000000 00000000
00000000逐比特相“与”和4/6不匹配
(4)2.52.90.140与11110000 00000000 00000000 00000000逐比特相“与”和80/4不匹配
4-33下面的前缀中的哪一个和地址152.7.77.159及152.31.47.252都匹配?请说明理由。

(1)152.40/13;(2)153.40/9;(3)152.64/12;(4)152.0/11。

答案:(1)152.7.77.159与11111111 11111000 00000000 00000000逐比特相“与”和(1)不匹配,故(1)不符合条件。

(1)152.7.77.159与11111111 10000000 00000000 00000000逐比特相“与”和(2)不匹配,故(2)不符合条件。

(1)152.7.77.159与11111111 11110000 00000000 00000000逐比特相“与”和(3)不匹配,故(3)不符合条件。

(1)152.7.77.159与11111111 11100000 00000000 00000000逐比特相“与”和(4)匹配,152.31.47.252和11111111 11100000 00000000 00000000逐比特相“与”和(4)匹配,故(4)不符合条件。

4-34与下列掩码相对应的网络前缀各有多少比特?
(1)192.0.0.0;(2)240.0.0.0;(3)255.224.0.0;(4)255.255.255.252。

答案:点分十进制的地址化成二进制记法,1的个数就是前缀的个数。

(1)11000000 00000000 00000000 00000000,对应的网络前缀是2比特
(2)11110000 00000000 00000000 00000000,对应的网络前缀是4比特
(3)11111111 11100000 00000000 00000000,对应的网络前缀是11比特
(4)11111111 11111111 11111111 11111100,对应的网络前缀是30比特
4-37 某单位分配到一个地址块136.23.12.64/26。

现在需要进一步划分4个一样大的子网。

试问:
(1)每个子网的前缀有多长?
(2)每一个子网中有多少个地址?
(3)每一个子网的地址块是什么?
(4)每一个子网可分配给主机使用的最小地址和最大地址是什么?
4-38 IGP和EGP这两类协议的主要区别是什么?
答案:IGP:内部网关协议,只关心本自治系统内如何传送数据报,与互联网中其他自治系统使用说明协议无关。

EGP:外部网关协议,在不同的AS边界传递路由信息的协议,不关心AS内部使用何种协议。

4-39试简述RIP、OSPF和BGP路由选择协议的主要特点。

答案:
4-40 RIP使用UDP,OSPF使用IP,而BGP使用TCP。

这样
做有何优点?为什么RIP周期性地和临站交换路由信息而BGP却不这样做?
答案:RIP协议处于UDP协议的上层,RIP所接收的路由信息都封装在UDP的数据报中;OSPF的位置位于网络层,由于要交换的信息量较大,故应使报文的长度尽量短,故采用IP;BGP要在不同的自治系统之间交换路由信息,由于网络环境复杂,需要保证可靠的传输,所以选择TCP。

内部网关协议主要是设法使数据报载一个自治系统中尽可能有效地从源站传送到目的站,在一个自治系统内部并不需要考虑其他方面的策略,然而BGP使用的环境却不同。

主要有以下三个原因:第一,因特网规模太大,使得自治系统之间的路由选择非常困难。

第二,对于自治系统之间的路由选择,要寻找最佳路由是不现实的。

第三,自治系统之间的路由选择必须考虑有关策略。

由于上述情况,边界网关协议BGP只能是力求寻找一条能够到达目的地网络且比较好的路由,而并非要寻找一条最佳路由,所以BGP不需要像RIP那样周期性和临站交换路由信息。

,。

相关文档
最新文档