(完整版)北师大版七年级数学上数学试卷及答案

合集下载

北师大版七年级上册数学期末试卷及答案完整版 3套

北师大版七年级上册数学期末试卷及答案完整版 3套

七年级数学上册期末试卷及答案(考试时间100分钟,试卷满分100分)一、选择题(本大题共6小题,每小题2分,共12分,在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号直接填写在试卷相应位置上) 1.下列四个算式中,有一个算式与其他三个算式的计算结果不同,则该算式是 A .()21-B .21-C .()31- D .1--2.已知水星的半径约为24400000米,用科学记数法表示为( )米A .80.24410⨯ B .61044.2⨯ C .71044.2⨯ D .624.410⨯ 3.下列各式中,运算正确的是A .3a 2+2a 2=5a 4B .a 2+a 2=a 4C .6a -5a =1D .3a 2b -4ba 2=-a 2b4.如图所示几何体的左视图是5.如果∠α和∠β互补,且∠α>∠β,则下列表示∠β的余角的式子中:①90°-∠β;②∠α-90°;③180°-∠α;④12(∠α-∠β).正确的是: A .①②③④B .①②④C .①②③D .①②6.大于1的正整数m 的三次幂可“分裂”成若干个连续奇数的和,如23=3+5,33=7+9+11,43=13+15+17+19,…若m 3分裂后,其中有一个奇数是103,则m 的值是 A .9B .10C .11D .12二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在试卷相应位置上)7.已知∠A =30°36′,它的余角 = . 8.如果a -3与a +1互为相反数,那么a = . 9.写出所有在652- 和1之间的负整数: . 10.如果关于x 的方程2x +1=3和方程032=--xk 的解相同,那么k 的值为________.11.点C 在直线AB 上,AC = 8 cm ,CB = 6 cm ,点M 、N 分别是AC 、BC 的中点, 则线段MN 的长为 .12.如图,将一刻度尺放在数轴上(数轴的单位长度是1cm ),刻度尺上“0cm”和“8cm”分别对应数轴上的-3和x ,那么x 的值为 .13.|x -3|+(y +2)2=0,则y x 为 .14.如图是一个简单的数值运算程序,当输入n 的值为3时,则输出的结果为 .15.一个正方体的平面展开图如图,已知正方体相对两个面上的数之和为零,则a+b = .16.小明同学在某月的日历上圈出2×2个数(如图),正方形方框内的4个数的和是28,那么这4个数是三、解答题(本大题共9小题,共68分.请在试卷指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤. 17.(本题8分)计算: (1)9+5×(-3)-(-2)2 ÷ 4; (2)()()14-2-61-31-212⨯+⎪⎭⎫ ⎝⎛÷⎪⎭⎫⎝⎛ 18.(本题8分)解下列方程: (1)13421+=+x x ; (2)1612312-+=-x x . 19.(本题5分)先化简,再求值:)]2(23[25222b a ab abc b a abc -+--,其中a =21-,b =-1,c =3. 20.(本题6分)作图与推理:如图,是由一些大小相同的小正方体组合成的简单几何体(1)图中有块小正方体;(2)该几何体的主视图如图所示,请在下面方格纸中分别画出它的左视图和俯视图.21.(本题6分)在边长为16cm的正方形纸片的四个角各剪去一个同样大小的正方形,折成一个无盖的长方体.(1)如果剪去的小正方形的边长为xcm,请用x来表示这个无盖长方体的容积;(2)当剪去的小正方体的边长x的值分别为3cm和3.5cm时,比较折成的无盖长方体的容积的大小.22.(本题7分)如图,在三角形ABC中,先按要求画图,再回答问题:(1)过点A画∠BAC的平分线交BC于点D;过点D画AC的平行线交AB于点E;过点D画AB的垂线,垂足为F.(画图时保留痕迹)(2)度量AE、ED的长度,它们有怎样的数量关系?(3)比较DF、DE的大小,并说明理由.23.(本题8分)如图,已知同一平面内∠AOB=90o,∠AOC=60o,(1)填空∠AOC= ;(2)如OD平分∠BOC,OE平分∠AOC,直接写出∠DOE的度数为°;(3)试问在(2)的条件下,如果将题目中∠AOC=60o改成∠AOC=2α(α<45o),其他条件不变,你能求出∠DOE的度数吗?若能,请你写出求解过程;若不能,请说明理由.24.(本题8分)我市为打造八圩港风光带,现有一段河道整治任务由A B 、两工程队完成.A 工程队单独整治该河道要16天才能完成;B 工程队单独整治该河道要24天才能完成.现在A 工程队单独做6天后,B 工程队加入合做完成剩下的工程,问A 工程队一共做了多少天? (1)根据题意,万颖、刘寅两名同学分别列出尚不完整的方程如下: 万颖:=++⨯x )241161(6161________ ; 刘寅:()1241161=⨯+y根据万颖、刘寅两名同学所列的方程,请你分别指出未知数x y 、表示的意义,然后在,然后在方框中补全万颖、刘寅同学所列的方程:万颖:x 表示 ,刘寅:y 表示 ,万颖同学所列不完整的方程中的方框内该填 ,刘寅同学所列不完整的方程中的方框内该填 . (2)求A 工程队一共做了多少天.(写出完整的解答过程) 25.(本题10分)已知:线段AB=20 cm .(1)如图1,点P 沿线段AB 自A 点向B 点以2厘米/秒运动,点P 出发2秒后,点Q 沿线段BA 自B 点向A 点以3厘米/秒运动,问再经过几秒后P 、Q 相距5cm?(2)如图2:AO=4 cm , PO=2 cm , ∠POB=60o ,点P 绕着点O 以60度/秒的速度逆时针旋转一周停止,同时点Q 沿直线BA 自B 点向A 点运动,假若点P 、Q 两点能相遇,求点Q 运动的速度 .参考答案一、选择题 ACDD BB 二、填空题7.59o 24′ 8.1 9.-2,-1 10.7 11.7cm 戓1cm 12.5 13.-8 14.870 15.-1 16.3,4,10,11 三、解答题17.(1)解:原式=9+(-15)-1 (2分)= -7(4分) (2)解:原式=()()()14-46-31-6-21⨯+⨯⨯=-3+2-56…………………3分 =-57 …………………4分 或原式=()()14-46-61⨯+⨯= -1-56=-57…………………4分 18.(1)解:去分母得 3(x+1)=8x+6………………………………1分 去括号、移项、合并同类项,得 -5x=3………………………………2分 系数化为1,得 x=53-. ………………………………4分 (2)解:去分母得 2(2x-1)=(2x+1)-6………………………………1分 去括号、移项、合并同类项,得 2x=-3………………………………2分 系数化为1,得 x=23-. ………………………………4分 19.解:原式=]243[25222b a ab abc b a abc -+-- (1分) = b a ab abc b a abc 22224325+--- (2分) = 242ab abc - (3分) 当a =21-,b =-1,c =3时. 原式= 2)1()21(43)1()21(2-⨯-⨯-⨯-⨯-⨯ (4分) =23+ =5 (5分) 20.(各2分)1121.(1)容积:2)216(x x - ……………3分(2)当x=3时,容积为300cm 3……………4分 当x=3.5时,容积为283.5 cm 3……………5分答 当剪去的小正方形的边长为3cm 时,无盖长方体的容积大些.……………6分 22.(1)画角平分线(2分),画平行线(3分),画垂线 (4分) (2)AE=ED (5分) (3)DF<DE , (6分)理由:直线外一点和直线上各点连接的所有线段中,垂线段最短.(7分) 23.(1)150° ………………………1分 (2)45° ………………………3分 (3)解:因为∠AOB =90°,∠AOC =2α 所以∠BOC =900+2α因为OD 、OE 平分∠BOC ,∠AOC 所以∠DOC =21∠BOC =45o +α,∠CO E=21∠AOC =α ……6分 所以∠DO E=∠DOC -∠CO E=450 ……8分 说明:其他解法参照给分.24.(1)x 表示A 、B 合做的天数(或者B 完成的天数);y 表示A 工程队一共做的天数; 1 ; y-6 . (每空1分共4分) (2)解:设A 工程队一共做的天数为y 天,由题意得:=-+)6(241161y y 1 …………………6分 解得y=12答:A 工程队一共做的天数为12天. ……8分 用另一种方法类似得分.(2)解答不完整只有答案扣2分. 25.解:(1)设再经过t s 后,点P 、Q 相距5cm , ①P 、Q 未相遇前相距5cm ,依题意可列223205t t +-()+=, 解得,t =115……2分 ②P 、Q 相遇后相距5cm ,依题意可列223205t t ++()+=, 解得,t =215……4分 答:经过115s 或215s 后,点P 、Q 相距5cm . 解:(2)点P ,Q 只能在直线AB 上相遇,则点P 旋转到直线AB 上的时间为12060=2s或120180560s += ……6分设点Q 的速度为y m/s ,当2秒时相遇,依题意得,2y 20218-==,解得y =9 当5秒时相遇,依题意得,5y 20614-==,解得y 2.8= 答:点Q 的速度为9m /s 2.8m /s 或. …………8 分 若只有一解得5分.数 学 试 卷 北 师 大 版 七 年 级 上 册一、精心选一选(每小题3分,共30分) 1.-21的相反数是( )A .2B .-2C .21 D .-212.下列式子正确的是( )A .-0.1>-0.01B .—1>0C .21<31D .-5<3 3. 沿图1中虚线旋转一周,能围成的几何体是下面几何体中的 ( )A B C D 图1 4.多项式12++xy xy 是( )A .二次二项式B .二次三项式C .三次二项式D .三次三项式5.桌上放着一个茶壶,4个同学从各自的方向观察,请指出图3右边的四幅图,从左至右分别是由哪个同学看到的( )A .①②③④B .①③②④C .②④①③D .④③①②6.数a ,b 在数轴上的位置如图2所示,则b a +是( )A .正数B .零C .负数D .都有可能7. 每天供给地球光和热的太阳与我们的距离非常遥远,它距地球的距离约为15000000千米,将150000000千米用科学记数法表示为( )A .0.15×910千米 B .1.5×810千米 C .15×710千米 D .1.5×710千米 8.图5是某市一天的温度变化曲线图,通过该图可知,下列说法错误的是( ) A .这天15点时的温度最高B .这天3点时的温度最低C .这天最高温度与最低温度的差是13℃D .这天21点时的温度是30℃9.一个正方体的侧面展开图如图4所示,用它围成的正方体只可能是( )温度/℃383430 26 22 15 18 21 24图3 O O O O A B C D 图4图210.已知4个矿泉水空瓶可以换矿泉水一瓶,现有16个矿泉水空瓶,若不交钱,最多可以喝矿泉水( )A .3瓶B .4瓶C .5瓶D .6瓶 二、细心填一填(每空3分,共30分)11.52xy -的系数是 。

北师大版七年级上册数学期末试卷(含答案)

北师大版七年级上册数学期末试卷(含答案)

北师大版七年级上册数学期末试卷(含答案)北师大版七年级上册数学期末试卷(含答案)第一部分:选择题(共50题,每题1分;共50分)1. 以下哪个数是无理数?A. √2B. 1C. 3/4D. 0答案:A解析:无理数是不能表示为有限小数或循环小数的实数。

√2 是一个无理数。

2. 在多项式 4x^3 + 3x – 2 中,x 的次数为:A. 2B. 3C. 1D. 0答案:B解析:多项式中最高次数的项决定了整个多项式的次数,所以 x 的次数为 3。

3. 下面哪个图形中的三角形是锐角三角形?A. B. C. D.答案:A解析:锐角是指小于90度的角,只有图形 A 中的三角形是锐角三角形。

4. 决算表中列出了一个公司在一年中的所有收入和支出。

决算表的目的是:A. 记录公司的股东信息B. 衡量公司盈利能力C. 统计员工的工资D. 呈现公司的年度计划答案:B解析:决算表用于衡量公司在一年中的盈利能力和财务状况。

5. 以下哪个数字是一个素数?A. 1B. 4C. 7D. 9答案:C解析:素数是指只能被 1 和自身整除的正整数,而 7 是一个素数。

6. 对于以下方程 4x + 12 = 20 ,解为:A. x = -2B. x = 2C. x = -8D. x = 8答案:B解析:通过变换方程,我们可以得到 x = 2。

7. 将一个正方形的边长增加 20%,那么面积将变为原来的:A. 100%B. 120%C. 140%D. 144%答案:D解析:边长增加 20% 相当于乘以 1.2,而面积是边长的平方,所以面积将变为原来的 1.2^2 = 1.44,即 144%。

8. 下图中,三角形 ABC 中,∠ACB 的度数为:A. 45°B. 60°C. 90°D. 180°答案:B解析:三角形的内角和为180度,而∠ABC = 90度,因此∠ACB = 180度 - 90度 - 30度 = 60度。

北师大版七年级数学上册试卷及答案(word文档良心出品)

北师大版七年级数学上册试卷及答案(word文档良心出品)

北师大版七年级上数学期中考试试题题号一一三总分123456得分一.填空题(每空1分,共30分)1 .有理数-4 , 500, 0, -2.67,5 -中,整数是 ,负整数是 ,正分数是42 .--的相反数是 ____________ ,倒数是 ____________ ,绝对值是__6一3.观察右图,用“ >”或“ <”填空.ca(1) a b (2) c 0 0(3)- a —3c (4) a+c —04 .平方为0.81的数是,立方得—64的数是。

2 2, c 3 , 一,,, ,, 2x y , 一,, 5 .在(-6)中,底数是,指数是,-一1的系数是-------- 3 —6 .长方体是由 个面围成,圆柱是由 个面围成,圆锥是由9 .一辆货车从家乐福出发,向东走了 4千米到达小彬家,继续走了 2.5千米到达小锌家,又向 西走了 12.5千米到达小明家,最后回到家乐福.(1)小明家距小彬家 千米;(2)货 车一共行驶了 千米.10 .电表的计数器上先后两次读数之差 ,就是这段时间内的用电量,某家庭6月1日0时电表 显示的读数是121度,6月7日24时电表显示的读数是 163度.从电表显示的读数中,估计这 个家庭六月份的总用电量是 度.11.如图是2003年11月份的日历,现用一矩形在日历中任意框出4个数a b7.八棱柱有 个顶点,条棱,个面.个面围成.请用一c dC.积一定比每一个因数大D.两数相等,它们的绝对值一定相等1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 232425262728293012. 一辆公共汽车有56个座位,空车出发,第一站上2位乘客,第二站上4位乘客,第三站上6 位乘客,依次下去,第n 站上 位乘客,站以后车上坐满乘客.,选择题:(每小题2分,共20分.每小题只有一个正确的选项符合题意)题号 123 45678910答案1 .长方体的截面中,边数最多的多边形是 A .四边形 B. 五边形 C.2.下面平面图形经过折叠不能围成正方体的( )六边形 D. 七边形()3.下面各正多面体的每个面是同一种图形的是①正四面体 ②正六面体 ③ 正八面体 ④正十二面体 ⑤正二十面体A. ①②③B. ①③④C.4 . 一个数的相反数比它的本身小 ,则这个数是A.正数B. 负数C.①③⑤ D. ①④⑤() 正数和零D. 负数和零 ()(1). (-a)2=a 2(2). -a 2=( - a)2(3). (-a)3=a 3 (4). | -a 3 |= a 3A. 1个B. 2个C. 3个D.4个6.下面各种说法中正确的是A.被减数一定大于差B.两数的和一一定大于每一个加数7.百位数字是a,十位数字是b,个位数字是c,这个三位数是.解答题(要写出解答步骤.共50分)2.(5 分)先化简,2(a 2b+3ab 2) —3(a 2b —1) —2a 2b —2再求值,其中 a = —2, b = 23.(4分)图中是由几个小立方块搭成的几何体的俯视图 的小立方块的个数,请画出这个几何体的主视图和左视图4. (4分)某人用400元购买了 8套儿童服装,准备以一定价格出售 .如果以每套儿童服装55元的价格为标准,超出的记作正数,不足的记作负数,记录如下: +2 , -3 ,+2, +1,-2,-1, 0, -2 ((1)当他卖完这八套儿童服装后是盈利还是亏损 (2)盈利(或亏损)了多少钱?5 .(4分)小强买了张50元的乘车IC 卡,如果他乘车的次数用m 表示,则记录他每次乘车A .abc B.a+b+c C.100a+10b+c, D.100c+10b+a8.下列计算中,正确的是A. 4a _ 2a =2B. 3a 2a2 2 _ 2 2 2 _ _—4a C. - a - a — —2a D. 2a - a — a9.已知大家以相同的效率做某件工作, a 人做b 天可以完工,若增加c 人,则提前完工的天数b .B. ----- -bC.a c. ab ba cD.b.上a c10.若 a<0, ab <0,则 | b —a+3 | —| a —b —9 | 的值为A.6B. -6C. 12D.-2a 2b 121.计算(共28分.其中(1)(2) (3) (4) 小题各 3 分,(5)(6) (7) (8) 题各4分.) (1).-12+15-|-7-8| (2).(-3)X (-9)-(-5) (3).―工6 3 4 12 21 32 2 2(5) (-3) -( -1-)(4).1+ (-3) x (--)32 . 2 ―/ 、 / 、,(6) -2 x :{[4— ,(-4)+( - 0 4)] ,( 4)}(7) (x 2 +2xy + y 2) -(x 2 —xy + y 2) (8) 9a —[7a —2a — 2( a — 3a)] — 3,小正方形中的数字表示在该位置 单位:元)余额n (元)150-0.8 2 50-1.6 3 50-2.4 450-3.2(1)写出乘车的次数m 表示余额n 的关系式.(2)利用上述关系式方t 算小强乘了 13次车还剩下多少元? (3)小强最多能乘几次车?6 .(5分)用长度相等的小棒按下面方式搭图形(3)(1)图(1),图(2),图(3)的小棒根数分别是多少根 ? (2)第n 个图形需要多少根小棒 ?参考答案(2)后的余额n (元)如下表: 次数m 一、 填空题 1. -4, 500, 0 ; 4. ±0.9-48.五棱柱 圆柱 二、选择题-4; 5~2.425. — 63--3—6;63. << > < 6. 6 327. 16241010. 18011.a+d=b+c 12. 2n4. (1)盈利 (2) 37 (元)5. (1) n= 50-0.8m(2) 39. 6 (元) (3) 62 (次)6 .图(1) 12根 图(2) 22根 图(3) 42根7 5(2n-1)5 CBCAA 6解答题10 DCCCB1 . (1) — 12(2)32(3)—11,、-,一、.2._(7) 3xy (8) 4a —4a -3 2 .-71 3 .,、1 , 、 15,、4 4) — (5) ——(6) —18.8(主视七年级第一学期期中考试数学试题一、填空题:(每题3分,共30分)2 .................. 2 一 ,一,,一 2 ....... ..1. -1-的倒数是,-1-的相反数是,-1-的绝对值是。

北师大版七年级上册数学期末考试试卷及答案

北师大版七年级上册数学期末考试试卷及答案

北师大版七年级上册数学期末考试试题一、单选题1.-2的倒数是()A .-2B .12-C .12D .22.下列调查中适合采用普查方式的是()A .了解一大批炮弹的杀伤半径B .调查全国初中学生的上网情况C .旅客登机前的安检D .了解成都市中小学生环保意识3.用一个平面去截下列的几何体,可以得到长方形截面的几何体有()A .1个B .2个C .3个D .4个4.如图所示,由A 到B 有①、②、③三条路线,最短的路线选①的理由是()A .两点确定一条直线B .两点间距离的定义C .两点之间,线段最短D .因为它直5.数据42600用科学记数法表示为()A .4.26×103B .4.26×104C .42.6×103D .0.426×1056.解一元一次方程11(1)123x x +=-时,去分母正确的是()A .3(1)12x x+=-B .2(1)13x x +=-C .2(1)63x x +=-D .3(1)62x x +=-7.如图,已知点D 在点O 的北偏西30°方向,点E 在点O 的北偏东50︒方向,那么DOE ∠的度数为()A .30°B .50︒C .80︒D .100︒8.甲车队有汽车100辆,乙车队有汽车68辆,根据情况需要甲车队的汽车是乙车队的汽车的两倍,则需要从乙队调x 辆汽车到甲队,由此可列方程为()A .100﹣x =2(68+x)B .2(100﹣x)=68+xC .100+x =2(68﹣x)D .2(100+x)=68﹣x 9.某校七年级开展“阳光体育”活动,对爱好排球、足球、篮球、羽毛球的学生人数进行统计,得到如图所示的扇形统计图.爱好排球的人数是21人,爱好足球的人数是爱好羽毛球的人数的4倍,则下列正确的是()A .喜欢篮球的人数为16人B .喜欢足球的人数为28人C .喜欢羽毛球的人数为10人D .被调查的学生人数为80人10.如图所示,直线,AB CD 相交于点O ,“阿基米德曲线”从点O 开始生成,如果将该曲线与每条射线的交点依次标记为1,2,3,4,5,6---….那么标记为“2021”的点在()A .射线OA 上B .射线OB 上C .射线OC 上D .射线OD 上11.如图,把一张长方形纸片沿对角线BD 折叠,25CBD ∠=︒,则ABF ∠的度数是()A .25︒B .30°C .40︒D .50︒12.如图所示的运算程序中,如果开始输入的x 值为48-,我们发现第1次输出的结果为24-,第2次输出的结果为12-,…,第2021次输出的结果为()A .6-B .3-C .24-D .12-二、填空题13.如图所示在数轴上的点A 对应的数为a ,B 对应的数为b ,则a ,b 与0的大小关系为_____<0<_____.14.方程260x +=的解是______.15.如图,D 是AC 的中点,CB =4cm ,DB =7cm ,则AB 的长为___________cm .16.某地制作一年来每个月平均气温变化统计图,请你帮忙选择最恰当的统计图是_________.(从条形统计图、折线统计图、扇形统计图中选一个)17.已知A =2x 2+x+1,B =mx+1,若关于x 的多项式A+B 不含一次项,则常数m =_____.18.如图,是一个正方体的六个面的展开图形,则“力”所对的面是_____.19.如果代数式x+2y 的值是3,则代数式2x+4y+5的值是___________.三、解答题20.计算:(1)()211713-+--(2)214(3)()()39⎡⎤-⨯-+-⎢⎥⎣⎦.21.如图所示,已知线段AB ,点P 是线段AB 外一点.按要求画图,保留作图痕迹;(1)作射线PA ,作直线PB ;(2)延长线段AB 至点C ,使得AC=2AB .22.化简并求值:2(2a -3b)-(3a+2b+1),其中a=2,b=12-.23.解方程:(1)6234y y +=-(2)151136x x +--=24.如图,∠AOC 和∠BOD 都是直角.(1)如果∠DOC =35°,则∠AOB =;(2)找出图中一组相等的锐角为:;(3)选择,若∠DOC 变小,∠AOB 将变;(A .大B .小C .不变)25.某商店购进A 、B 两种商品共100件,花费3100元,其进价和售价如表:(元/件)售价(元/件)进价A2530B3545(1)B两种商品分别购进多少件?(2)两种商品售完后共获取利润多少元?26.如图,已知在数轴上有三个点A、B、C,O是原点,满足OA=AB=BC=20cm,动点P从点O出发向右以每秒2cm的速度匀速运动;同时,动点Q从点C出发,在数轴上向左匀速运动,速度为v(v>1);运动时间为t.(1)求:点P从点O运动到点C时,运动时间t的值.(2)若Q的速度v为每秒3cm,则经过多长时间P,Q两点相距30cm?此时|QB﹣QC|是多少?27.某校想了解学生每周的课外阅读时间情况,随机调查了部分学生,对学生每周的课外阅读时间x(单位:小时)进行分组整理,并绘制了如图所示的不完整的频数分布直方图和扇形统计图:根据图中提供的信息,解答下列问题:(1)m=_____,E组对应的圆心角度数为______︒;(2)补全频数分布直方图;参考答案1.B 【分析】根据倒数的定义(两个非零数相乘积为1,则说它们互为倒数,其中一个数是另一个数的倒数)求解.【详解】解:-2的倒数是-12,故选:B .【点睛】本题难度较低,主要考查学生对倒数等知识点的掌握.2.C 【分析】根据全面调查与抽样调查的特点对四个选项进行判断.【详解】解:A 、具有破坏性,必须抽查,故选项错误;B 、人数多,不容易调查,适合抽查,故选项错误;C 、事关重大,是精确度要求高的调查,需全面调查,故本选项正确;D 、人数多,不容易调查,适合抽查,故选项错误;故选C.【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.3.B 【分析】根据球、圆柱、圆锥、三棱柱的形状判断即可,可用排除法.【详解】解:球、圆锥不可能得到长方形截面,故能得到长方形截面的几何体有:圆柱、三棱柱,一共有2个.故选:B .【点睛】本题考查几何体的截面,关键要理解面与面相交得到线,注意:截面的形状既与被截的几何体有关,还与截面的角度和方向有关.4.C 【分析】根据基本事实:两点之间,线段最短,直接作答即可.【详解】解:由A 到B 有①、②、③三条路线,最短的路线选①的理由是:两点之间,线段最短.故选C【点睛】本题考查的是两点之间,线段最短的实际应用,掌握“几何基本事实或图形的性质在生活中的应用”是解本题的关键.5.B 【分析】用科学记数法表示较大的数时,一般形式为10n a⨯,其中11|0|a ≤<,n 为整数.【详解】解:44.264260010=⨯.故选B .6.D 【分析】根据等式的基本性质将方程两边都乘以6可得答案.【详解】解:方程两边都乘以6,得:3(x+1)=6﹣2x ,故选:D .【点睛】本题主要考查解一元一次方程,解题的关键是掌握解一元一次方程的步骤和等式的基本性质.7.C 【分析】利用方向角的定义求解即可.【详解】解:∵D 在点O 的北偏西30°方向,点E 在点O 的北偏东50°方向,∴∠DOE=30°+50°=80°,故选:C .【点睛】本题主要考查了方向角,解题的关键是理解方向角的定义:方向角是表示方向的角;以正北,正南方向为基准,来描述物体所处的方向.8.C 【分析】由题意得到题中存在的等量关系为:2(乙队原来的车辆-调出的车辆)=甲队原来的车辆+调入的车辆,根据此等式列方程即可.【详解】设需要从乙队调x 辆汽车到甲队,由题意得100+x =2(68﹣x),故选C .【点睛】本题考查了由实际问题抽象出一元一次方程,表示出抽调后两车队的汽车辆数是解题的关键.9.B 【分析】先求出被调查的学生的人数,可求得喜欢篮球的人数,从而得到喜欢足球的和喜欢羽毛球的人数之和,根据爱好足球的人数是爱好羽毛球的人数的4倍,可求出喜欢足球的人数,喜欢羽毛球的人数,即可求解.【详解】解:根据题意得:被调查的学生的人数:2130%70÷=(人),故D 错误;∴喜欢篮球的人数为:7020%14⨯=(人),故A 错误;∴喜欢足球的和喜欢羽毛球的人数之和为:70211435--=,∵爱好足球的人数是爱好羽毛球的人数的4倍,∴喜欢羽毛球的人数为()35417÷+=(人),故C 错误;∴喜欢足球的人数为35728-=(人),故B正确;故选:B.【点睛】本题主要考查了扇形统计图,解题的关键是从扇形统计图中获取准确的信息.10.A【分析】由图可观察出奇数项在OA或OB射线上,根据每四条射线为一组,即可得出答案.【详解】解:观察图形的变化可知:奇数项:1、3、5、7,…,2n-1(n为正整数),偶数项:-2、-4、-6、-8,…,-2n(n为正整数),∵2021是奇数项,∴2n-1=2021,∴n=1011,∵每四条射线为一组,始边为OC,∴1011÷4=252...3,∴标记为“2021”的点在射线OA上,故选:A.【点睛】本题考查了规律型图形的变化类,解决本题的关键是观察图形的变化寻找规律.11.C【分析】利用折叠的特性可得:∠CBD=∠EBD=25°,再利用长方形的性质∠ABC =90°,则∠ABE=90°−∠EBC,结论可得.【详解】解:由折叠可得:∠CBD=∠EBD=25°,则∠EBC=∠CBD+∠EBD=50°,∵四边形ABCD是长方形,∴∠ABC=90°,∴∠ABF=90°−∠EBC=40°,故C正确.故选:C.【点睛】本题主要考查了角的计算,折叠的性质,利用折叠得出:∠CBD=∠EBD是解题的关键.12.A【分析】根据程序得出一般性规律,确定出第2021次输出结果即可.【详解】解:把x=-48代入得:12×(-48)=-24;把x=-24代入得:12×(-24)=-12;把x=-12代入得:12×(-12)=-6;把x=-6代入得:12×(-6)=-3;把x=-3代入得:-3-3=-6,依此类推,从第3次输出结果开始,以-6,-3循环,∵(2021-2)÷2=1009…1,∴第2021次输出的结果为-6,故选:A .【点睛】此题考查了代数式求值,理解题意,根据程序得出一般性规律是解本题的关键.13.a b 【分析】根据数轴上点的位置进行判断,0的右边大于0,0的左边小于0,据此分析即可【详解】解:∵在数轴上的点A 对应的数为a ,B 对应的数为b ,A 点在原点的左侧,B 点在原点的右侧,正数大于负数,∴0a b<<故答案为:,a b【点睛】本题考查了根据数轴判断有理数的大小,数形结合是解题的关键.14.x =−3【分析】方程移项,把x 系数化为1,即可求出解.【详解】解:2x +6=0,移项得:2x =−6,解得:x =−3.故答案为:x =−3.【点睛】此题考查了解一元一次方程,熟练掌握方程的解法是解本题的关键.15.10【分析】根据线段中点的性质可得AD DC =,由DC DB CB =-求得AD ,根据AB AD DB =+求解即可.【详解】解:∵743cm DC DB CB =-=-=,点D 为AC 的中点,∴3cmAD DC ==∴AB AD DB =+3710cm=+=故答案为:10【点睛】本题考查了线段中点的性质,线段和差的计算,数形结合是解题的关键.16.折线统计图【分析】首先要清楚每一种统计图的特点:频数直方图能够显示各组频数分布的情况;条形统计图能很容易看出数量的多少;折线统计图不仅容易看出数量的多少,而且能反映数量的增减变化情况;扇形统计图能反映部分与整体的关系;由此根据情况选择即可.【详解】制作一年来每个月平均气温变化统计图,选择折线统计图合适.故答案为:折线统计图【点睛】本题考查统计图的选择,解答此题要熟练掌握统计图的特点,根据实际情况灵活选择.17.1-【分析】先计算A B +,合并同类项之后,根据题意令一次项系数为0,即可求得m 的值.【详解】A B +222112(1)2x x mx x m x ++++=+++=,若关于x 的多项式A+B 不含一次项,10m ∴+=,解得1m =-.故答案为:1-.【点睛】本题考查了整式的加减,熟练掌握运算法则是解题的关键.18.我【分析】正方体的平面展开图中,相对面的特点是之间一定相隔一个正方形,据此作答.【详解】解:∵正方体的平面展开图中,相对面的特点是之间一定相隔一个正方形,∴在此正方体上与“力”字相对的面上的汉字是“我”.故答案为:我【点睛】本题考查了正方体的展开图形,解题关键是从相对面入手进行分析及解答问题.19.11【分析】观察看出,所求的代数式是已知代数式变形得到的,利用代入法求得代数式的值即可.【详解】∵x+2y=3,∴代数式两边分别乘以2得:2x+4y=6,代入2x+4y+5,得:原式=6+5=11.故本题答案为:11.【点睛】考查代数式的变形及代入法的运用.注意整体思想的应用.20.(1)9(2)-7【解析】(1)()211713-+--413=-+9=(2)214(3)(()39⎡⎤-⨯-+-⎢⎥⎣⎦149939⎛⎫⎛⎫=⨯-+⨯- ⎪ ⎪⎝⎭⎝⎭34=--7=-21.(1)见解析(2)见解析【分析】(1)根据题意作射线PA ,作直线PB ;(2)以B 为圆心AB 的长为半径画弧,交AB 的延长线于点C ,连接BC ,则AC=2AB(1)如图所示,射线PA ,直线PB 即为所求作;(2)如图所示,延长线段AB 至点C ,使得AC=2AB22.a -8b -1;5【分析】根据去括号的法则去括号,然后合并同类项,然后代入求值即可.【详解】2(2a -3b )-(3a +2b +1)=4a -6b -3a -2b -1=a -8b -1.当a =2,b =-12,代入原式=2-8×(-12)-1=5考点:整式的化简求值23.(1)2y =-(2)1x =-【解析】(1)原方程可化为:6342y y -=--36y =-2y =-(2)原方程可化为:()21651x x +-=-2451x x -=-33x -=1x =-24.(1)145°(2)∠AOD 与∠BOC(3)A【分析】(1)根据题意可得90AOD DOC ∠=︒-∠,进而根据AOB AOD DOB ∠=∠+∠即可求解;(2)根据DOC ∠的余角相等求解即可;(3)由(1)可知AOB ∠180DOC =︒-∠,进而即可求得答案.(1)∠AOC 和∠BOD 都是直角∴90AOD DOC ∠=︒-∠,AOB AOD DOB ∠=∠+∠9090DOC =︒-∠+︒180DOC =︒-∠ ∠DOC =35°,∴AOB ∠=145°故答案为:145°(2)∠AOC 和∠BOD 都是直角∴90AOD AOC DOC DOC ∠=∠-∠=︒-∠,90BOC DOB DOC DOC ∠=∠-∠=︒-∠∴AOD ∠=BOC∠故答案为:AOD ∠与BOC∠(3)由(1)可知AOB ∠180DOC=︒-∠若∠DOC 变小,∠AOB 将变大故答案为:A【点睛】本题考查了几何图形中角度的计算,同角的余角相等,数形结合是解题的关键.25.(1)A 、B 两种商品分别购进40件、60件;(2)两种商品售完后共获取利润800元【分析】(1)设购进A 种商品a 件,则购进B 种商品(100a -)件,然后根据题意和表格中的数据即可列出相应的方程,从而可以求得A 、B 两种商品分别购进多少件;(2)根据(1)中的结果和表格中的数据可以计算出两种商品售完后共获取利润多少元.【详解】(1)设购进A 种商品a 件,则购进B 种商品(100a -)件,()25351003100a a +-=,解得,40a =,则10060a -=,答:A 、B 两种商品分别购进40件、60件;(2)()()302540453560-⨯+-⨯5401060=⨯+⨯200600800=+=(元),答:两种商品售完后共获取利润800元.【点睛】本题考查了一元一次方程的应用,解答本题的关键是明确题意,列出相应的方程,利用方程的知识解答.26.(1)30秒(2)经过6秒或18秒P ,Q 两点相距30cm ,此时|QB ﹣QC|是16cm 或20cm【分析】(1)根据题意求得OC 的长,进而根据时间等于路程除以速度列算式求解即可;(2)根据题意,分相遇前和相遇后相距30cm ,两种情形列一元一次方程求解即可.(1)由题意知:OC=OA+AB+BC=20+20+20=60(cm),∴当P运动到点C时,t=60÷2=30(秒);(2)①当点P、Q还没有相遇时,2t+3t=60﹣30,解得:t=6,此时,QC=3×6=18(cm),QB=BC﹣QC=20﹣18=2(cm),∴|QB﹣QC|=|2﹣18|=16(cm),②当点P、Q相遇后,2t+3t=60+30,解得:t=18,此时,QC=3×18=54(cm),QB=QC﹣BC=54﹣20=34(cm),∴|QB﹣QC|=|34﹣54|=20(cm),综上所述,经过6秒或18秒P,Q两点相距30cm,此时|QB﹣QC|是16cm或20cm【点睛】本题考查了数轴上的动点问题,一元一次方程的应用,数形结合以及分类讨论是解题的关键.27.(1)40;14.4(2)见解析【分析】(1)由B组有21人和B组占抽查学生总数的21%可计算出被抽查学生的总数,根据C组人数为40人,即可计算出C组占总数的百分比,从而得到:“m”的值;由E组人数4除以总人数再乘以360°即可得到扇形统计图中E组所对应的圆心角度数;(2)根据(1)计算出的被抽查学生的总数,由总数减去A、B、C、E各组的人数可得D 组的人数,即可补全频数直方图.(1)由题意可得:被抽查的总人数为:21÷21%=100(人),C组占总人数的百分比为:40100%=40% 100⨯,∴m=40;“E”组对应的圆心角度数为:4360=14.4 100⨯︒︒;故答案为:40;14.4.(2)D组的频数为:100-10-21-40-4=25(人),频数分布直方图补充完整如下:。

2024-2025学年初中七年级上学期数学第一次月考卷及答案(北师大版)

2024-2025学年初中七年级上学期数学第一次月考卷及答案(北师大版)

2024-2025学年北师大新课标七年级上册数学第一次月考测试卷(一)一、选择题:本题共10小题,每小题3分,共30分.每小题给出的选项中,只有一项是符合题目要求的.1. 在下列各数中,最小的数是( )A. 1.5−B. 3−C. 1−D. 5−2. 若数据3150000000用科学记数法表示为10n a ×,则a 和n 值分别是( )A. 3.15,8B. 3.15,9C. 3.15,10D. 0.315,10 3. 不透明袋子中装有一个几何体模型,两位同学摸该模型并描述它的特征.甲同学:它有4个面是三角形;乙同学:它有8条棱.该模型的形状对应的立体图形可能是( )A. 三棱柱B. 四棱柱C. 三棱锥D. 四棱锥 4. 如图,四个有理数在数轴上分别对应点M ,P ,N ,Q ,若点M ,N 表示的有理数互为相反数,则图中表示绝对值最大的数的点是( )A 点M B. 点N C. 点P D. 点Q5. 下列运算中,错误的是( ) A. ()()15555÷−=×− B. ()()()15522 −÷−=−×−C. ()18484 ÷−=×−D. 080÷=6. 下列判断正确的是( )A. 一个有理数不是正数就是负数B. 绝对值等于它本身的数是正数C. 若两个有理数的和为0,则它们必定互为相反数D. 倒数是它本身的数只有17. 下列各组数中,互为相反数的一组是( )A. 2(3) 与23−B. 23−与23C. 213 − 与213D. 23−−与23− 8. 如图,一个正方体纸盒的六个面上分别印有1,2,3,4,5,6,并且相对面上的两数之和为7,它的表的.面展开图可能是( )A. B. C. D. 9. 有理数,a b 在数轴上的位置如图所示,则化简a b a −+的结果为( )A. bB. b −C. 2a b −−D. 2a b −10. a 是不为1的有理数,我们把11a−称为a 的差倒数,如:2的差倒数是1112=−−,1−的差倒数是()11112=−−,已知13a =,2a 是1a 的差倒数,3a 是2a 的差倒数,4a 是3a 的差倒数……以此类推,则2024a =( )A 3 B. 23 C. 12− D. 无法确定二、填空题:本题共5小题,每小题3分,共15分.11. 硬币在桌面上快速地转动时,看上去像球,这说明了_________.12. 在桌上摆着一个由若干个相同正方体组成的几何体,从正面看和从左面看得到的形状如图所示,设组成这个几何体的小正方体的个数为n ,则n 的最小值为__________.13. 数学家发明了一个魔术盒,当任意 “数对 ” (,)a b 进入其中时,会得到一个新的数:21a b −+,例如把(3,2)−放入其中,就会得到23(2)112−−+=,现将 “数对”(3,2)−−放入其中后,得到的数是__________.14. 已知:2x =,3y =,且0xy <,0x y +<,则x y −=____________.15. 如图,在数轴上点A 表示的数是a ,点B 表示的数是b ,且a ,b 满足|2||1|0a b +++=,点C表示.的数是17的倒数.若将数轴折叠,使得点A 与点C 重合,则与点B 重合的点表示的数是______.三、计算题:本大题共2小题,共30分.16. 计算:(1)()()2832+−×−;(2)()()22100223 ÷−−−÷−; (3)()()3434⎛⎫ ⎪-÷-⨯- ⎪⎝⎭; (4)231114332 −÷−−×−. 17. 计算: (1)1564358−÷×; (2)35344 +−−−−; (3)()()0.350.60.25 5.4+−++−;(4)()457369612 −×−+− ; (5)18991819−×; (6)22218134333 ×−+×−×. 四、解答题:本题共6小题,共45分.解答应写出文字说明,证明过程或演算步骤. 18. (1)指出图中数轴上A B C D E ,,,,各点分别表示的有理数,并用“<”将它们连接起来;(2)在数轴上把下列各数表示出来,并比较它们的大小:447 3.5053−−,,,,.19. 计算6÷(﹣1123+),方方同学的计算过程如下,原式=6÷(-12)+6÷13=﹣12+18=6.请你判断方方的计算过程是否正确,若不正确,请你写出正确的计算过程.20. 用棱长为1的小正方体按照如图所示的摆放规律,逐个排成若干个无缝隙的几何体,第1个几何体的表面积为6,第2个几何体的表面积为18.(1)求第3个几何体的表面积;(2)求第10个几何体的表面积.21 如图,一辆货车从超市出发,向东走了3 km 到达小彬家,继续走了1.5 km 到达小颖家,然后向西走了9.5 km 到达小明家,最后回到超市.(1)小明家在超市什么方向,距超市多远?以超市为原点,以向东的方向为正方向.用1个单位长度表示1 km ,你能在数轴上表示出小明家、小彬家和小颖家的位置吗?(2)小明家距小彬家多远?(3)货车一共行驶了多少千米?22. 小明在学习《展开与折叠》这一课后,明白了正方体能展开成多种平面图形.课后,小明用剪刀将一个正方体纸盒剪开,一不小心多剪了一条棱,把纸盒剪成了两部分,即图中的(1)和(2),根据你所学的知识解答:(1)小明想把剪断的(2)重新粘贴到(1)上去,而且经过折叠后,仍然可以还原成一个正方体纸盒,你认为他应该将剪断的纸盒粘贴到(1)中的什么位置?请在图(1)的备用图上补全(画出所有可能的情.的况);(2)小明将若干个同样大小的正方体纸盒搭建成一个几何体,该几何体的三视图如下:①请你观察:小明用了多少个正方体盒子组成这个几何体?②若正方体纸盒的棱长为10cm ,求出小明所搭的几何体的表面积(包括底面).23. 已知有理数a ,b ,c 在数轴上的位置如图所示且||||a b =,(1)求值:a b +=__________; (2)分别判断以下式子的符号(填“>”或“<”或“=”):b c +__________0;a c −__________0;ac __________0;(3)化简:|2|||||||c b c a b c −+−+−+−.2024-2025学年北师大新课标七年级上册数学第一次月考测试卷(一)一、选择题:本题共10小题,每小题3分,共30分.每小题给出的选项中,只有一项是符合题目要求的.1. 在下列各数中,最小的数是( )A. 1.5−B. 3−C. 1−D. 5−【答案】D【解析】【分析】根据正数大于0,0大于负数,两个负数比较,绝对值大的反而小,进行比较判断即可. 【详解】解:53 1.51−>−>−>− 53 1.51∴−<−<−<−故选D .【点睛】本题考查了有理数比较大小,解决本题的关键是掌握有理数间的大小比较方法. 2. 若数据3150000000用科学记数法表示为10n a ×,则a 和n 的值分别是( )A. 3.15,8B. 3.15,9C. 3.15,10D. 0.315,10 【答案】B【解析】【分析】本题考查了绝对值大于1的科学记数法的表示,解题的关键在于确定a n ,的值. 根据绝对值大于1的数,用科学记数法表示为10n a ×,其中110a ≤<,n 的值为整数位数少1,即可得出结果.【详解】解:3150000000大于1,用科学记数法表示为10n a ×,其中 3.15a =,9n =, 故选:B .3. 不透明袋子中装有一个几何体模型,两位同学摸该模型并描述它的特征.甲同学:它有4个面是三角形;乙同学:它有8条棱.该模型的形状对应的立体图形可能是( )A. 三棱柱B. 四棱柱C. 三棱锥D. 四棱锥【答案】D【解析】【详解】解:根据有四个三角形的面,且有8条棱,可知是四棱锥,而三棱柱有两个三角形的面,四棱柱没有三角形的面,三棱锥有四个三角形的面,但是只有6条棱.4. 如图,四个有理数在数轴上分别对应点M ,P ,N ,Q ,若点M ,N 表示的有理数互为相反数,则图中表示绝对值最大的数的点是( )A. 点MB. 点NC. 点PD. 点Q【答案】D【解析】【分析】本题考查了数轴、相反数以及绝对值的意义,解题的关键是确定原点的位置.由“点M ,N 表示的有理数互为相反数”可知原点在点M 与点N 的中点,再根据离原点越远,绝对值越大即可解答.【详解】 点M ,N 表示的有理数互为相反数, ∴原点在点M 与点N 的中点,根据数轴可知,点Q 到原点的距离最大,即点Q 的绝对值最大,故选:D5. 下列运算中,错误的是( )A ()()15555÷−=×− B. ()()()15522 −÷−=−×−C. ()18484 ÷−=×−D. 080÷=【答案】A【解析】 【分析】本题考查有理数的除法.掌握有理数的除法运算的法则是解题关键.根据有理数的除法运算法则逐项计算即可. 【详解】()1115555 ÷−=×−,故A 错误,符合题意; ()()()15522 −÷−=−×−,故B 正确,不符合题意; ()18484 ÷−=×−,故C 正确,不符合题意; 080÷=,故D 正确,不符合题意..6. 下列判断正确的是( )A. 一个有理数不是正数就是负数B. 绝对值等于它本身的数是正数C. 若两个有理数和为0,则它们必定互为相反数D. 倒数是它本身的数只有1【答案】C【解析】【分析】分别利用有理数的定义、绝对值的性质、有理数的加法法则、倒数的定义得出即可.【详解】解:A 、一个有理数可能是正数、0、负数,故此选项错误;B 、绝对值等于它本身的数是非负数,故此选项错误;C 、若两个有理数的和为0,则它们必定互为相反数,此选项正确;D 、倒数等于它本身的数有:±1,故此选项错误.故选:C .【点睛】此题主要考查了有理数的定义、绝对值的性质、有理数的加法、倒数,正确区分它们是解题关键.7. 下列各组数中,互为相反数的一组是( )A. 2(3) 与23−B. 23−与23C. 213 − 与213D. 23−−与23− 【答案】A【解析】【分析】本题考查了相反数的定义,有理数的乘方以及化简绝对值,先分别算出每个选项的值,再结合相反数的定义进行逐个比较分析,即可作答.【详解】解:A 、229(33)9, ,它们是互为相反数,符合题意,故该选项是正确的; B 、223939−==,,它们不是互为相反数,不符合题意,故该选项是错误的; C 、2211113939−== ,,它们不是互为相反数,不符合题意,故该选项是错误的; D 、223939−−=−−=−,,它们不是互为相反数,不符合题意,故该选项是错误的;故选:A .8. 如图,一个正方体纸盒的六个面上分别印有1,2,3,4,5,6,并且相对面上的两数之和为7,它的表的面展开图可能是()A. B. C. D.【答案】D【解析】【分析】正方体的空间图形,从相对面入手,分析及解答问题.【详解】正方体的表面展开图,相对的面之间一定相隔一个正方形,∵相对面上的两数之和为7,∴3与4相对,5与2相对,6与1相对观察选项,只有选项D符合题意.故选D.【点睛】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.9. 有理数,a b在数轴上的位置如图所示,则化简a b a−+的结果为()A. bB. b−C. 2a b−− D. 2a b−【答案】A【解析】【分析】根据数轴上点的位置判断出绝对值里式子的正负,利用绝对值的代数意义化简,计算即可得到结果.【详解】由数轴得:0a b<<,即0a b−<则原式b a a b=−+=故选:A【点睛】本题考查了数轴和绝对值,解答此题的关键是明确绝对值里的数值是正是负,然后根据绝对值的性质进行化简.10. a 是不为1的有理数,我们把11a−称为a 的差倒数,如:2的差倒数是1121=−−,1−的差倒数是()11112=−−,已知13a =,2a 是1a 的差倒数,3a 是2a 的差倒数,4a 是3a 的差倒数……以此类推,则2024a =( )A. 3B. 23C. 12−D. 无法确定 【答案】C【解析】【分析】此题主要考查学生对倒数和数字变化类知识点的理解和掌握,解答此题的关键是依次计算出2a 、3a 、4a ,找出数字变化的规律.根据规则计算出2a 、3a 、4a ,即可发现每3个数为一个循环,然后用2024除以3,即可得出答案.【详解】解:由题意可得,13a =,211213a =−=−, 3121312a == −−, 413213a ==−, …,由上可得,每三个数一个循环,202436742÷=⋅⋅⋅,∴202412a =−. 故选:C . 二、填空题:本题共5小题,每小题3分,共15分.11. 硬币在桌面上快速地转动时,看上去像球,这说明了_________.【答案】面动成体【解析】分析】根据点动成面、面动成体原理即可解答.【详解】解:硬币桌面上快速地转动时,看上去像球,这说明了面动成体.【在故答案为:面动成体.【点睛】本题主要考查了面动成体,这是面动成体的原理在现实中的具体表现.12. 在桌上摆着一个由若干个相同正方体组成的几何体,从正面看和从左面看得到的形状如图所示,设组成这个几何体的小正方体的个数为n ,则n 的最小值为__________.【答案】7【解析】【分析】本题主要考查了从不同方向看几何体,从正面看和从左面看可得此几何体底层正方体最少有5个小正方体,第二层最少有2个正方体,得出组成这个几何体的小正方体的个数最少有7个.【详解】解:从正面看和从左面看可得此几何体底层正方体最少有5个小正方体,第二层最少有2个正方体,∴组成这个几何体的小正方体的个数最少有7个,∴n 的最小值为7,故答案为:7.13. 数学家发明了一个魔术盒,当任意 “数对 ” (,)a b 进入其中时,会得到一个新的数:21a b −+,例如把(3,2)−放入其中,就会得到23(2)112−−+=,现将 “数对”(3,2)−−放入其中后,得到的数是__________.【答案】12【解析】【分析】根据题中“数对”的新定义,求出所求即可.【详解】解:根据题中的新定义得:(-3)2+2+1=9+2+1=12,故答案为:12.【点睛】此题考查了有理数的混合运算,弄清题中的新定义是解本题的关键.14. 已知:2x =,3y =,且0xy <,0x y +<,则x y −=____________.【答案】5【解析】【分析】根据绝对值的意义和正负数的意义,求出x 和y 的值然后求解即可. 【详解】∵2x =, 3y =,∴xx =2或-2,3y =或-3,∵0xy <,∴x 和y 异号,又∵0x y +<,∴xx =2,3y =−,∴()235x y −=−−=,故答案为:5.【点睛】本题考查了绝对值和正负数的意义,解决本题的关键是正确理解题意,熟练掌握绝对值的意义.15. 如图,在数轴上点A 表示的数是a ,点B 表示的数是b ,且a ,b 满足|2||1|0a b +++=,点C 表示的数是17的倒数.若将数轴折叠,使得点A 与点C 重合,则与点B 重合的点表示的数是______.【答案】6【解析】【分析】先由|2||1|0a b +++=,根据绝对值的非负性,得出a 和b 的值,根据倒数的定义,得出点C 表示的数,再根据对折的要求,得出对折点,从而根据对折的性质得出与点B 重合的点表示的数.【详解】解:∵|2||1|0a b +++=,|2|0a +≥,|1|0b +≥, ∴20a +=,10b +=, ∴2a =−,1b =−,∵点C 表示的数是17的倒数, ∴点C 表示的数是7,∵7(2)9−−=, 将数轴折叠,使得点A 与点C 重合, ∴对折点表示的数为:97 2.52−=, ∴[]2.5(2.5(1) 2.5 3.56+−−=+=.【点睛】本题考查了绝对值非负性、倒数的定义,对折的性质等基础知识,根据题意正确地用数学语言表示相关概念,是解题的关键.三、计算题:本大题共2小题,共30分.16. 计算:(1)()()2832+−×−;(2)()()22100223 ÷−−−÷−; (3)()()3434⎛⎫ ⎪-÷-⨯- ⎪⎝⎭; (4)231114332 −÷−−×−. 【答案】(1)10−(2)22(3)16−(4)52− 【解析】(1)先计算乘方,再计算乘法,最后计算加法即可;(2)先计算乘方,再计算除法,最后计算减法即可;(3)先计算除法,再计算乘法即可;(4)先计算乘方,再计算乘除法,最后计算减法即可.【小问1详解】解:()()2832+−×− ()892=+×−818=−10=−;【小问2详解】解:()()22100223 ÷−−−÷−的()1004232=÷−−×−25322=;【小问3详解】解:()()3434⎛⎫⎪-÷-⨯- ⎪⎝⎭()()4433=−×−×−16=−;【小问4详解】 解:231114332−÷−−×−1811394=−÷−×−132=−+52=−.17. 计算:(1)1564358−÷×;(2)35344+−−−− ;(3)()()0.350.60.25 5.4+−++−;(4)()457369612−×−+− ;(5)18991819−×;(6)22218134333×−+×−× .【答案】(1)252−(2)1−(3) 5.4−(4)7(5)1179919− (6)6−【解析】【分析】本题考查了有理数的混合运算,乘法运算律,绝对值等知识.熟练掌握有理数的混合运算,乘法运算律,绝对值是解题的关键.(1)先进行除法运算,然后进行乘法运算即可;(2)先去括号,计算绝对值,然后进行加减运算即可;(3)利用乘法运算律计算求解即可;(4)利用乘法运算律计算求解即可;(5)利用乘法运算律计算求解即可;(6)利用乘法运算律计算求解即可.【小问1详解】 解:1564358−÷× 5564168=−×× 252=−; 【小问2详解】 解:35344 +−−−− 35344=+− 23=−1=−;【小问3详解】解:()()0.350.60.25 5.4+−++−0.350.60.25 5.4−+−()0.350.250.6 5.4=+−−5.4=−;【小问4详解】解:()457369612 −×−+−()()()4573636369612 =−×−+−×−−×163021=−+7=;【小问5详解】 解:18991819−× 11001819 =−−×1100181819=−×+× 18180019=−+ 1179919=−; 【小问6详解】 解:22218134333 ×−+×−× ()2181343=×−+− ()293=×− 6=−四、解答题:本题共6小题,共45分.解答应写出文字说明,证明过程或演算步骤. 18. (1)指出图中数轴上A B C D E ,,,,各点分别表示的有理数,并用“<”将它们连接起来;(2)在数轴上把下列各数表示出来,并比较它们的大小:447 3.5053−−,,,,. 【答案】(1)3−,3.5,2, 0,0.5;300.52 3.5−<<<<(2)见详解,443.50753−<−<<< 【解析】【分析】本题考查了有理数大小比较,数轴,准确熟练地进行计算是解题的关键.(1)先根据数轴得出各点代表的有理数,然后根据数轴比较有理数的大小即可.(2)先在数轴上把各数表示出来,然后根据数轴比较有理数的大小即可.【详解】解:(1)点A 表示的有理数为:3−,点B 表示的有理数为:3.5,点C 表示的有理数为:2,点D 表示的有理数为:0,点E 表示的有理数为:0.5,用<将它们连接起来为:300.52 3.5−<<<<.(2)各数在数轴上的表示如图:大小如下:443.50753−<−<<< 19. 计算6÷(﹣1123+),方方同学的计算过程如下,原式=6÷(-12)+6÷13=﹣12+18=6.请你判断方方的计算过程是否正确,若不正确,请你写出正确的计算过程.【答案】-36【解析】【分析】根据有理数的混合运算顺序,先算括号里面的,再根据除法法则进行计算即可.【详解】解:方方的计算过程不正确,正确的计算过程是:原式=6÷(﹣12+26) =6÷(﹣16) =6×(﹣6)=﹣36【点睛】本题考查有理数的混合运算,解答本题的关键是掌握乘法分配律.20. 用棱长为1的小正方体按照如图所示的摆放规律,逐个排成若干个无缝隙的几何体,第1个几何体的表面积为6,第2个几何体的表面积为18.(1)求第3个几何体的表面积;(2)求第10个几何体的表面积.【答案】(1)36 (2)330【解析】【分析】本题主要考查了图形类的规律探索,根据已知图形的面积得出变化规律,第n 个几何体的表面积为:()31n n +是解题的关键.(1)只需要写出第3个几何体露在外面的小正方形面即可得到答案;(2)根据前3个几何体的表面积找到规律第n 个几何体的表面积为:()31n n +,在代入10n =进行求解即可.【小问1详解】解:由题意得,第3个几何体的表面积是66666636+++++=;【小问2详解】解:第1个几何体的表面积为()31116××+=, 第2个几何体的表面积为()322118××+=, 第3个几何体的表面积是()333136××+=, ......,以此类推,第n 个几何体的表面积是()31n n +,∴第10个几何体的表面积为()310101330××+=. 21. 如图,一辆货车从超市出发,向东走了3 km 到达小彬家,继续走了1.5 km 到达小颖家,然后向西走了9.5 km 到达小明家,最后回到超市.(1)小明家在超市的什么方向,距超市多远?以超市为原点,以向东的方向为正方向.用1个单位长度表示1 km,你能在数轴上表示出小明家、小彬家和小颖家的位置吗?(2)小明家距小彬家多远?(3)货车一共行驶了多少千米?【答案】(1)图详见解析,小明家在超市西边,距超市5km;(2)8km;(3)19km.【解析】【分析】(1)根据题意画出数轴,根据数轴信息即可知小明家在超市的方向;(2)根据题意列出算式,计算即可得到结果;(3)将行驶的路程相加即可得到结果.【详解】(1)如图,小明家在超市西边,距超市5km;(2)小明家距小李家3-(-5)=8(千米).答:小明家距小李家有8千米.(3)3+1.5+9.5+5=19(千米).答:货车一共行驶了19千米.【点睛】此题考查了有理数加减混合运算的应用,弄清题意是解本题的关键.22. 小明在学习《展开与折叠》这一课后,明白了正方体能展开成多种平面图形.课后,小明用剪刀将一个正方体纸盒剪开,一不小心多剪了一条棱,把纸盒剪成了两部分,即图中的(1)和(2),根据你所学的知识解答:(1)小明想把剪断的(2)重新粘贴到(1)上去,而且经过折叠后,仍然可以还原成一个正方体纸盒,你认为他应该将剪断的纸盒粘贴到(1)中的什么位置?请在图(1)的备用图上补全(画出所有可能的情况);(2)小明将若干个同样大小的正方体纸盒搭建成一个几何体,该几何体的三视图如下:①请你观察:小明用了多少个正方体盒子组成这个几何体?②若正方体纸盒的棱长为10cm,求出小明所搭的几何体的表面积(包括底面).【答案】(1)见解析(2)①10个;②表面积为3800平方厘米【解析】【分析】本题主要考查了正方体的展开图,求几何体的表面积:(1)根据正方体展开图“33型”有1种,“222型”有1种,“141型”有6种,“132型”有3种,结合已给图形进行求解即可;(2)①根据从不同方向看的图形分别确定每个位置小正方体的个数即可得到答案;②根据几何体表面积计算公式求解即可.【小问1详解】解:如图所示,即为所求;【小问2详解】解:①如图所示,每个位置的小立方体数如下所示:+++++=个正方体盒子组成这个几何体;∴小明用了23111210第16页/共17页 ②()()26662210103800cm ++×+××=,答:表面积为3800平方厘米. 23. 已知有理数a ,b ,c 在数轴上的位置如图所示且||||a b =,(1)求值:a b +=__________; (2)分别判断以下式子的符号(填“>”或“<”或“=”):b c +__________0;a c −__________0;ac __________0;(3)化简:|2|||||||c b c a b c −+−+−+−.【答案】(1)0 (2)<;>;<(3)a【解析】【分析】(1)根据相反数的意义,即可求解;(2)观察数轴得:0c b a <<<,且c b a >=,即可求解; (3)先根据绝对值的性质化简,再合并,即可求解.【小问1详解】解:∵||||a b =,且a ,b 所对应的点分别位于原点的两侧,∴a ,b 互为相反数,∴0a b +=;故答案为:0【小问2详解】解:观察数轴得:0c b a <<<,且c b a >=, ∴0b c +<;0a c −>;0ac <;故答案为:<;>;<【小问3详解】解:|2|||||||c b c a b c −+−+−+−()2c b a c b c =−−−+−+−2c b a c b c −+−+−a =.【点睛】本题主要考查了数轴,绝对值的性质,整式的加减,利用数形结合思想解答是解题的关键.。

北师大版七年级数学上册各章测试卷(共7套,含答案)

北师大版七年级数学上册各章测试卷(共7套,含答案)

(新)北师大版七年级数学上册各章测试卷(共7套,含答案)第一章达标检测卷(120分,90分钟)题号一二三总分得分一、选择题(每题3分,共30分)1.生活中的“八宝粥”易拉罐同学们都很熟悉,你认为“八宝粥”易拉罐类似于( )A.棱柱B.圆柱C.圆锥D.长方体2.将图中的图形绕虚线旋转一周,形成的几何体是( )(第2题)3.如图是一个螺母的示意图,从上面看得到的图形是( )(第3题)4.一个无盖的正方体盒子的表面展开图可以是如图所示的( )(第4题)A.①B.①②C.②③D.①③5.下列说法正确的是( )A.有六条侧棱的棱柱的底面一定是三角形B.棱锥的侧面是三角形C.长方体和正方体不是棱柱D.柱体的上、下两底面可以大小不一样6.用一个平面去截下列几何体,所得截面与其他三个不同的是( )(第7题)7.如图为一个长方体截去两个角后的立体图形,如果照这样截去长方体的八个角,则所得新的立体图形的棱有( )A.26条B.30条C.36条D.42条8.能由如图所示的平面图形折叠而成的立体图形是( )(第8题)9.把一个棱长为3的正方体的每个面等分成9个小正方形,然后沿每个面正中心的一个正方形向里挖空(相当于挖去了7个小正方体),所得到的几何体的表面积是( ) A.78 B.72 C.54 D.4810.如图是由一些小立方块所搭的几何体从三个不同方向看到的图形,若在所搭的几何体的基础上(不改变原几何体中小立方块的位置),继续添加相同的小立方块,以搭成一个大正方体,至少还需要的小立方块个数是( )(第10题) A.50 B.51 C.54 D.60二、填空题(每题3分,共24分)11.快速旋转一枚竖立的硬币(假定旋转轴在原地不动),旋转形成的立体图形是________.12.一个棱柱有12个顶点,所有侧棱长的和是48 cm,则每条侧棱长是________.13.如图,将七个小正方形中的一个去掉,就能成为一个正方体的展开图,则去掉的小正方形的序号是______或______.(第13题)(第14题)(第15题)14.如图是从不同方向看一个立体图形得到的平面图形,则这个立体图形的侧面积是________.15.正方体木块的六个面分别标有数字1,2,3,4,5,6,如图是从不同方向观察这个正方体木块看到的数字情况,数字1对面的数字是______.16.如图,木工师傅把一根长为1.6 m的长方体木料锯成3段后,表面积比原来增加了80 cm2,那么这根木料原来的体积是________.(第16题)(第17题)(第18题)17.如图,长方形ABCD的长AB=4,宽BC=3,以AB所在的直线为轴,将长方形旋转一周后所得几何体从正面看到的形状图的面积是________.18.如图是由若干个大小相同的小正方体堆砌而成的几何体,那么该几何体从______面看到的形状图的面积最大.三、解答题(19~21题每题10分,其余每题12分,共66分)19.(1)如图是一些基本立体图形,在括号里写出它们的名称.(第19题)(2)将这些几何体分类,并写出分类的理由.20.如图①②都是几何体的表面展开图,先想一想,再折一折,然后说出图①②折叠后的几何体的名称、棱数与顶点数.(第20题)21.如图是一个立体图形从三个不同方向看所得到的形状图,请写出这个立体图形的名称,并计算这个立体图形的体积(结果保留π).(第21题)22.如图,在一次数学活动课上,张明用17个棱长为1的小正方体搭成了一个几何体,然后他请王亮用其他同样的小正方体在旁边再搭一个几何体,使王亮所搭几何体恰好可以和张明所搭几何体拼成一个无缝隙的大长方体(不改变张明所搭几何体的形状).(1)王亮至少需要多少个小正方体?(2)王亮所搭几何体的表面积是多少?(第22题)23.如图①,在正方体中,点P,Q,S分别是所在边的中点,将此正方体展开,请在展开图(图②)中标出点P,Q,S的位置,当正方体的棱长为a时,求出展开图中三角形PSQ 的面积.(第23题)24.如图①至③是将正方体截去一部分后得到的几何体.(第24题)(1)根据要求填写表格:图面数(f) 顶点数(v) 棱数(e)①②③(2)猜想f,v,e三个数量间有何关系;(3)根据猜想计算,若一个几何体有2 013个顶点,4 023条棱,试求出它的面数.答案一、1.B 2.B 3.B 4.D 5.B 6.D 7.C 8.D 9.B 10.C二、11.球 12.8 cm 13.6;7 14.18 cm 215.3 16.3 200 cm 317.24 18.正三、19.解:(1)球;圆柱;圆锥;长方体;三棱柱(2)第一类:球、圆柱、圆锥,几何体的面中含有曲面;第二类:长方体、三棱柱,几何体的面中不含有曲面.(答案不唯一)20.解:图①折叠后是长方体,有12条棱,8个顶点;图②折叠后是六棱柱,有18条棱,12个顶点.21.解:这个立体图形是圆柱,体积为π×⎝ ⎛⎭⎪⎫822×10=160π(cm 3). 22.解:(1)两人所搭成的几何体拼成一个大长方体,该大长方体的长、宽、高至少为3,3,4,所以它的体积为36,则它是由36个棱长为1的小正方体搭成的,那么王亮至少需要36-17=19(个)小正方体.(2)王亮所搭几何体的上面面积为8,右侧面积为7,左侧面积为7,后面面积为9,前面面积为9,底面面积为8,故表面积为48.23.解:如图所示.(第23题)S 所在位置有两种情况.如图,过点Q 作QT ⊥BC 交直线BC 于点T.S 三角形PSQ =52a ·a -12a ·52a ·12-12a ·32a ·12-a ·a ·12=a 2.由图可以看出三角形PS ′Q 和三角形PSQ 的面积相等,所以三角形PS ′Q 的面积也是a 2.24.解:(1)7;9;14;6;8;12;7;10;15 (2)f +v -e =2.(3)因为v =2 013,e =4 023,f +v -e =2,所以f +2 013-4 023=2,f =2 012,即它的面数是2 012.第二章达标检测卷(120分,90分钟)题 号 一 二 三 总 分得 分一、选择题(每题3分,共30分) 1.下列各数中是正数的是( )A .-12B .2C .0D .-0.22.2的相反数是( )A .2B .12C .-2D .-123.在-1,-2,0,1这四个数中最小的数是( )A .-1B .-2C .0D .14.下列计算正确的是( )A .-2-1=-1B .3÷⎝ ⎛⎭⎪⎫-13×3=-1C .(-3)2÷(-2)2=32D .0-7-2×5=-175.有理数a ,b 在数轴上对应的位置如图所示,则( )(第5题)A .a +b <0B .a +b >0C .a -b >0D .a b>06.移动互联网已经全面进入人们的日常生活.截至2015年3月,全国4G 用户总数达到1.62亿,其中1.62亿用科学记数法表示为( )A .1.62×104B .162×106C .1.62×108D .0.162×1097.已知|a|=5,|b|=2,且a <b ,则a +b 的值为( )A .3或7B .-3或-7C .-3D .-78.下列说法中正确的是( )A .一个有理数不是正数就是负数B .|a|一定是正数C .如果两个数的和是正数,那么这两个数中至少有一个正数D .两个数的差一定小于被减数9.如图的数轴被墨迹盖住一部分,被盖住的整数点有( )(第9题)A .7个B .8个C .9个D .10个10.如图,下面每个表格中的四个数都是按相同规律填写的:(第10题)根据此规律确定x 的值为( )A .135B .170C .209D .252二、填空题(每题3分,共24分)11.-25的绝对值是________,倒数是________.12.某项科学研究,以45 min 为1个时间单位,并记每天上午10时为0,10时以前记为负,10时以后记为正.例如9:15记为-1,10:45记为1,以此类推,上午7:45应记为________.13.某商店出售三种品牌的洗衣粉,袋上分别标有质量为(500±0.1) g ,(500±0.2)g ,(500±0.3) g 的字样,从中任意拿出两袋,它们最多相差________.14.比较一个正整数a ,其倒数1a,相反数-a 的大小:________________.15.若x ,y 为有理数,且(5-x)4+|y +5|=0,则⎝ ⎛⎭⎪⎫x y 2 016=________.16.已知在如图所示没有标明原点的数轴上有四个点,且它们表示的数分别为a ,b ,c ,d ,若|a -c|=10,|a -d|=12,|b -d|=9,则|b -c|=________.(第16题)(第17题)17.按如图所示的程序进行计算,如果第一次输入的数是20,而结果不大于100时,应把结果作为输入的数再进行第二次运算,直到符合要求为止,则最后输出的结果为________.18.一列数a 1,a 2,a 3,…,a n .其中a 1=-1,a 2=11-a 1,a 3=11-a 2,…,a n =11-a n -1,则a 1+a 2+a 3+…+a 2 017=________.三、解答题(21题6分,19,22,23题每题8分,其余每题12分,共66分) 19.把下列各数填在相应的集合中:15,-12,0.81,-3,227,-3.1,-4,171,0,3.14,π,1.6·正数集合{ …} 负分数集合{ …} 非负整数集合{ …} 有理数集合{ …} 20.计算:(1)-5-(-3)+(-4)-[-(-2)];(2)-14+⎝ ⎛⎭⎪⎫-112-38+712×(-24);(3)-62×⎝ ⎛⎭⎪⎫-1122-32÷⎝ ⎛⎭⎪⎫-1123×3;(4)⎪⎪⎪⎪⎪⎪-⎝ ⎛⎭⎪⎫-232+⎝ ⎛⎭⎪⎫-59-(-1)1 000-2.45×8+2.55×(-8).21.如果a ,b 互为相反数,c ,d 互为倒数,m 的绝对值为2,求a +b a +b +c +m 2-cd 的值.22.一辆货车从超市出发,向东走了1 km ,到达小明家,继续向东走了3 km 到达小兵家,然后向西走了10 km ,到达小华家,最后又向东走了6 km 结束行程.(1)如果以超市为原点,以向东为正方向,用1个单位长度表示1 km ,请你在如图所示的数轴上表示出小明家、小兵家和小华家的具体位置.(第22题)(2)请你通过计算说明货车最后回到什么地方?(3)如果货车行驶1 km 的用油量为0.25 L ,请你计算货车从出发到结束行程共耗油多少升?23.已知有理数a ,b 满足ab 2<0,a +b >0,且|a|=2,|b|=3,求⎪⎪⎪⎪⎪⎪a -13+(b -1)2的值.24.商人小周于上周日收购某农产品10 000 kg ,每千克2.3元,进入批发市场后共占5个摊位,每个摊位最多能容纳 2 000 kg 该农产品,每个摊位的市场管理价为每天20元.批发市场该农产品上周日的批发价为每千克 2.4元,下表为本周内该农产品每天的批发价格比前一天的涨跌情况.(涨记为正,跌记为负)星期一 二 三 四 五 与前一天相比价格的涨跌情况/元+0.3 -0.1 +0.25 +0.2 -0.5 当天的交易量/kg2 5002 0003 0001 5001 000(1)星期四该农产品价格为每千克多少元?(2)本周内该农产品的最高价格为每千克多少元?最低价格为每千克多少元? (3)小周在销售过程中采用逐步减少摊位个数的方法来降低成本,增加收益,这样他在本周的买卖中共赚了多少钱?请你帮他算一算.25.观察下列各式: -1×12=-1+12;-12×13=-12+13; -13×14=-13+14;… (1)你发现的规律是____________________;(用含n 的式子表示)(2)用以上规律计算:⎝ ⎛⎭⎪⎫-1×12+⎝ ⎛⎭⎪⎫-12×13+⎝ ⎛⎭⎪⎫-13×14+…+⎝ ⎛⎭⎪⎫-12 017×12 018.答案一、1.B 2.C 3.B 4.D 5.A 6.C 7.B 8.C 9.C10.C 点拨:首先根据图示,可得第n 个表格的左上角的数等于n ,左下角的数等于n +1;然后根据4-1=3,6-2=4,8-3=5,10-4=6,…,可得从第一个表格开始,右上角的数与左上角的数的差分别是3,4,5,…,n +2,据此求出a 的值是多少;最后根据每个表格中右下角的数等于左下角的数与右上角的数的积加上左上角的数,求出x 的值是多少即可.二、11.25;-5212.-3 13.0.6 g 14.-a <1a ≤a15.1 16.7 17.320 18.1 007三、19.解:正数集合{15,0.81,227,171,3.14,π,1.6·,…}负分数集合{-12,-3.1,…}非负整数集合{15,171,0,…}有理数集合{15,-12,0.81,-3,227,-3.1,-4,171,0,3.14,1.6·,…}20.解:(1)原式=-8. (2)原式=30. (3)原式=-73. (4)原式=-40.21.解:由题意,得a +b =0,cd =1, m =±2,所以m 2=4. 所以a +b a +b +c +m 2-cd=0+c+4-1 =0+4-1=3. 22.解:(1)略.(2)由题意得(+1)+(+3)+(-10)+(+6)=0(km ),因而货车最后回到超市. (3)由题意得,1+3+10+6=20(km ),货车从出发到结束行程共耗油0.25×20=5(L ).23.解:由ab 2<0,知a <0.因为a +b >0,所以b >0. 又因为|a|=2,|b|=3, 所以a =-2,b =3.所以⎪⎪⎪⎪⎪⎪a -13+(b -1)2=⎪⎪⎪⎪⎪⎪-2-13+(3-1)2=73+4 =613. 24.解:(1)2.4+0.3-0.1+0.25+0.2=3.05(元). 所以星期四该农产品价格为每千克3.05元. (2)星期一的价格是2.4+0.3=2.7(元); 星期二的价格是2.7-0.1=2.6(元); 星期三的价格是2.6+0.25=2.85(元); 星期四的价格是3.05元;星期五的价格是3.05-0.5=2.55(元).因而最高价格为每千克3.05元,最低价格为每千克2.55元.(3)(2 500×2.7-5×20)+(2 000×2.6-4×20)+(3 000×2.85-3×20)+(1 500×3.05-2×20)+(1 000×2.55-20)-10 000×2.3=6 650+5 120+8 490+4 535+2 530-23 000=27 325-23 000=4 325(元).所以他在本周的买卖中共赚了4 325元.25.解:(1)-1n ×1n +1=-1n +1n +1(n 为正整数)(2)原式=-1+12-12+13-13+14-…-12 017+12 018=-1+12 018=-2 0172 018.第三章达标检测卷(120分,90分钟)题 号 一 二 三 总 分得 分一、选择题(每题3分,共30分) 1.下列各式中,代数式的个数是( )①12; ②a +38; ③ab =ba ; ④1x +y ; ⑤2a -1; ⑥a ; ⑦12(a 2-b 2); ⑧5n +2.A .5B .6C .7D .82.单项式-π3a 2b 的系数和次数分别是( )A .π3,3 B .-π3,3 C .-13,4 D .13,43.下列各组是同类项的是( )A .xy 2与-12x 2y B .3x 2y 与-4x 2yz C .a 3与b 3 D .-2a 3b 与12ba 34.如果多项式(a -2)x 4-12x b +x 2-3是关于x 的三次多项式,那么( )A .a =0,b =3B .a =1,b =3C .a =2,b =3D .a =2,b =15.下列去括号正确的是( )A .a -(2b -3c)=a -2b -3cB .x 3-(3x 2+2x -1)=x 3-3x 2-2x -1C .2y 2+(-2y +1)=2y 2-2y +1D .-(2x -y)-(-x 2+y 2)=-2x +y +x 2+y 26.某校组织若干师生到活动基地进行社会实践活动.若学校租用45座的客车x 辆,则余下20人无座位;若租用60座的客车,则可少租用2辆,且最后一辆还没坐满,则乘坐最后一辆60座客车的人数是( )A .200-60xB .140-15xC .200-15xD .140-60x7.如图,阴影部分的面积是( )(第7题)A .112x yB .132xy C .6xy D .3xy8.已知-x +3y =5,则代数式5(x -3y)2-8(x -3y)-5的值为( )A .80B .-170C .160D .609.某同学计算一个多项式加上xy -3yz -2xz 时,误认为减去此式,计算出的错误结果为xy -2yz +3xz ,则正确答案是( )A .2xy -5yz +xzB .3xy -8yz -xzC .yz +5xzD .3xy -8yz +xz10.如图,小明用棋子摆放图形来研究数的规律.图①中棋子围成三角形,其颗数分别为3,6,9,….类似地,图②中棋子围成正方形,其颗数分别为4,8,12,….下列选项中既能围成三角形又能围成正方形的棋子颗数是( )(第10题)A .2 010B .2 012C .2 014D .2 016二、填空题(每题3分,共24分)11.用代数式表示“比a 的平方的一半小1的数”是____________. 12.已知15 m xn 和-29m 2n 是同类项,则|2-4x|+|4x -1|的值为________.13.已知有理数a ,b 在数轴上对应的点的位置如图所示,化简|a +b|-|b -a|的结果为________.(第13题)14.三角形三边的长分别为(2x +1) cm ,(x 2-2) cm 和(x 2-2x +1) cm ,则这个三角形的周长是________.15.若多项式2x 3-8x 2+x -1与多项式3x 3+2mx 2-5x +3的和不含二次项,则m 等于________.16.已知a 2-4ab =1,3ab +b 2=2,则整式3a 2+4b 2的值是________.17.随着通讯市场竞争的日益激烈,为了占领市场,甲公司推出的优惠措施是每分降低a 元后,再下调25%;乙公司推出的优惠措施是每分下调25%,再降低a 元.若甲、乙两公司原来每分的收费标准相同,则推出优惠措施后收费较便宜的是________公司.18.有一个正六面体骰子,放在桌面上,将骰子按如图所示的顺时针方向滚动,每滚动90°算一次,则滚动第2 017次后,骰子朝下一面的点数是________.(第18题)三、解答题(19,21,22题每题10分,其余每题12分,共66分) 19.先去括号,再合并同类项.(1)2a -(5a -3b)+(4a -b); (2)3(m 2n +mn)-4(mn -2m 2n)+mn.20.先化简,再求值:(1)-a 2+(-4a +3a 2)-(5a 2+2a -1),其中a =-23;(2)⎝ ⎛⎭⎪⎫32x 2-5xy +y 2-⎣⎢⎡⎦⎥⎤-3xy +2⎝ ⎛⎭⎪⎫14x 2-xy +23y 2,其中|x -1|+(y +2)2=0.21.已知A =y 2-ay -1,B =2by 2-4y -1,且2A -B 的值与字母y 的取值无关,求2(a 2b -1)-3a 2b +2的值.22.小刚在图书馆认识了新朋友小明,他想知道小明的年龄,于是说:“把你的年龄减去5,再乘2后减去结果的一半,再加11,把最后结果告诉我,我就能猜出你的年龄.”小明这样做后,小刚果然迅速猜到了小明的年龄.你能说出小刚是用了什么办法猜对的吗?23.A,B两家公司都准备向社会招聘人才,两家公司条件基本相同,只有工资待遇有如下差异:A公司年薪20万元,每年加工龄工资4 000元;B公司半年薪10万元,每半年加工龄工资2 000元.A,B两家公司第n年的年薪分别是多少?从经济角度考虑,选择哪家公司有利?24.如图是一个长方形娱乐场所的设计图.其中半圆形休息区和长方形游泳池以外的地方都是绿地.试解答下列问题:(1)游泳池和休息区的面积各是多少? (2)绿地的面积是多少?(3)如果这个娱乐场所的长是宽的1.5倍,要求绿地面积占整个面积的一半以上.小亮同学根据要求,设计的游泳池的长和宽分别是大长方形的长和宽的一半,你说他的设计符合要求吗?为什么?(第24题)答案一、1.C 2.B 3.D 4.C 5.C 6.C 7.A 8.C9.B 点拨:由题意可知原多项式为(xy -2yz +3xz)+(xy -3yz -2xz)=2xy -5yz +xz ,则正确的答案为(2xy -5yz +xz)+(xy -3yz -2xz)=3xy -8yz -xz.10.D 二、11.12a 2-112.13 点拨:因为15m xn 和-29m 2n 是同类项,所以x =2.所以|2-4x|+|4x -1|=6+7=13.13.-2b 14.2x 2cm 15.416.11 点拨:因为a 2-4ab =1,所以3a 2-12ab =3 ①.因为3ab +b 2=2,所以12ab +4b 2=8 ②.①+②得3a 2+4b 2=11.17.乙 点拨:设甲、乙两公司原来的收费为每分b(b >a)元,则推出优惠措施后,甲公司的收费为(b -a)×75%=0.75b -0.75a (元),乙公司的收费为(0.75b -a )元.因为0.75b -a <0.75b -0.75a ,所以乙公司收费较便宜.18.2三、19.解:(1)2a -(5a -3b)+(4a -b) =2a -5a +3b +4a -b =a +2b.(2)3(m 2n +mn)-4(mn -2m 2n)+mn =3m 2n +3mn -4mn +8m 2n +mn =11m 2n.20.解:(1)-a 2+(-4a +3a 2)-(5a 2+2a -1) =-a 2-4a +3a 2-5a 2-2a +1 =-3a 2-6a +1.当a =-23时,原式=-3×⎝ ⎛⎭⎪⎫-232-6×⎝ ⎛⎭⎪⎫-23+1=113.(2)⎝ ⎛⎭⎪⎫32x 2-5xy +y 2-[-3xy +2(14x 2-xy)+23y 2]=32x 2-5xy +y 2+3xy -12x 2+2xy -23y 2=x 2+13y 2. 因为|x -1|+(y +2)2=0, 所以x -1=0且y +2=0.所以x =1,y =-2.所以原式=12+13×(-2)2=73.21.解:2A -B =2(y 2-ay -1)-(2by 2-4y -1) =2y 2-2ay -2-2by 2+4y +1 =(2-2b)y 2+(4-2a)y -1. 由题意知2-2b =0,4-2a =0, 即a =2,b =1.2(a 2b -1)-3a 2b +2=2a 2b -2-3a 2b +2=-a 2b =-22×1=-4.22.解:设小明的年龄是x 岁,则2(x -5)-12×2(x -5)+11=x +6(小明说的这个数是x +6).所以只要小明说出这个数,小刚再把这个数减去6就能得知小明的年龄. 23.解:A 公司第n 年的年薪为200 000+4 000(n -1)=196 000+4 000n(元),B 公司第n 年的年薪为100 000×2+(2n -1)×2 000=198 000+4 000n(元). 因为n >0,所以196 000+4 000n <198 000+4 000n. 所以从经济角度考虑,选择B 公司有利. 24.解:(1)游泳池的面积为mn ; 休息区的面积为12×π×⎝ ⎛⎭⎪⎫n 22=18πn 2.(2)绿地的面积为ab -mn -18πn 2.(3)符合要求.理由如下:由已知得a =1.5b ,m =0.5a ,n =0.5b. 所以⎝ ⎛⎭⎪⎫ab -mn -18πn 2-12ab = 38b 2-π32b 2>0. 所以ab -mn -18πn 2>12ab ,即小亮设计的游泳池符合要求.第四章达标检测卷(120分,90分钟)题 号 一 二 三 总 分得 分一、选择题(每题3分,共30分)1.小辉同学画出了如下的四个图形,你认为是四边形的是( )2.在党中央、国务院“振兴中央苏区”的精神鼓舞下,老区人民掀起了建设家乡的热潮.某村把一条弯曲的公路改为直道以达到缩短路程的目的,其道理用数学知识解释应是( )A .两点之间线段最短B .两点确定一条直线C .线段可以比较大小D .线段有两个端点3.对于下列直线AB ,线段CD ,射线EF ,能相交的是( )4.如图,OB ,OC 都是∠AOD 内部的射线,如果∠AOB =∠COD ,那么( )A .∠AOC>∠BODB .∠AOC =∠BOD C .∠AOC<∠BOD D .以上均有可能(第4题)(第5题)5.如图,下列等式中错误的是( )A .AD -CD =AB +BC B .AC -BC =AD -BD C .AC -BC =AC +BD D .AD -AC =BD -BC6.晓敏早晨8:00出发,中午12:30到家,那么晓敏到家时时针和分针的夹角是( )A .160°B .165°C .120°D .125°7.下列说法正确的有( ) ①角的大小与所画边的长短无关;②比较角的大小就是比较它们的度数的大小;③从角的顶点出发的一条射线把这个角分成两个角,这条射线叫做这个角的平分线; ④如果∠AOC =12∠AOB ,那么OC 是∠AOB 的平分线.A .1个B .2个C .3个D .4个8.如图,射线OA 与正东方向所成的角是30°,射线OA 与射线OB 所成的角是100°,则射线OB 的方向为( )A .北偏西30°B .北偏西50°C .北偏西40°D .西偏北30°(第8题)(第9题)(第10题)9.如图,OC 是∠AOD 的平分线,OE 是∠BOD 的平分线.如果∠AOC =30°,∠BOD =80°,那么∠COE 的度数为( )A .50°B .60°C .65°D .70°10.如图,C ,D 为线段AB 上的两点,M 是AC 的中点,N 是BD 的中点,如果MN =a ,CD =b ,那么线段AB 的长为( )A .2(a -b)B .2a -bC .2a +2bD .2a +b二、填空题(每题3分,共24分)11.工人师傅在用地砖铺地时,常常打两个木桩然后沿着拉紧的线铺地,这样地砖就铺得整齐,这是根据________________________.12.如图,线段有________条,射线有________条.(第12题)13.时钟由2点30分到2点55分,时针走过的角度是________,分针走过的角度是________.14.如图,直径AC 与BD 互相垂直,则半径分别是______________________,扇形AOD 的圆心角是________,弧AD 可表示为________.(第14题)(第15题)(第16题)15.如图,已知线段AB ,延长AB 到C ,使BC =12AB ,D 为AC 的中点,DC =3 cm ,则DB=________.16.如图,∠AOB 是平角,∠AOC =30°,∠BOD =60°,OM ,ON 分别是∠AOC ,∠BOD 的平分线,则∠MON 等于________.17.如图,艺术节期间我班数学兴趣小组设计了一个长方形时钟作品,其中心为O ,数3,6,9,12标在各边中点处,数2在长方形顶点处,则数1应该标在________处(选填一个序号:①线段DE的中点;②∠DOE的平分线与DE的交点).(第17题)(第18题)18.点M,N在数轴上的位置如图所示,如果P是数轴上的另外一点,且3PM=MN,则点P对应的有理数是________.三、解答题(19题8分,20题6分,24题12分,其余每题10分,共66分)19.读句画图:如图,A,B,C,D四点在同一平面内.(1)过点A和点D画直线;(2)画射线CD;(3)画线段AB;(4)连接BC,并反向延长BC.(第19题)20.计算:(1)83°46′+52°39′16″;(2)96°-18°26′59″;(3)20°30′×8;(4)105°24′15″÷3.21.如图,由点O引出6条射线OA,OB,OC,OD,OE,OF,且∠AOB=90°,OF平分∠BOC,OE平分∠AOD.若∠EOF=170°,求∠COD的度数.(第21题)22.如图,在O点的观测站测得渔船A,B的方向分别为北偏东45°,南偏西30°,为了减少相互干扰并取得较好的捕鱼效益,渔船C恰好位于∠AOB的平分线上,求渔船C相对观测站的方向.(第22题)23.如图,已知A ,B ,C 三点在同一直线上,AB =24 cm ,BC =38AB ,E 是线段AC 的中点,D 是线段AB 的中点,求DE 的长.(第23题)24.如图,B 是线段AD 上一动点,沿A →D →A 以2 cm /s 的速度往返运动1次,C 是线段BD 的中点,AD =10 cm ,设点B 的运动时间为t s (0≤t ≤10).(1)当t =2时,①AB =________;②求线段CD 的长度. (2)用含t 的代数式表示运动过程中AB 的长.(3)在运动过程中,若AB 的中点为E ,则EC 的长是否发生变化?若不变,求出EC 的长;若发生变化,请说明理由.(第24题)25.如图,正方形ABCD 内部有若干个点,利用这些点以及正方形ABCD 的顶点A ,B ,C ,D 把原正方形分割成一些三角形(互相不重叠):(第25题)(1)填写下表:正方形ABCD 内点的个数 1 2 3 4 … n 分割成的三角形的个数46…(2)原正方形能否被分割成2 018个三角形?若能,求此时正方形ABCD 内部有多少个点;若不能,请说明理由.答案一、1.B 2.A 3.B 4.B 5.C 6.B 7.B 8.C 9.D 10.B 二、11.两点确定一条直线 12.6;813.12.5°;150°14.OA ,OB ,OC ,OD ;90°;AD ︵15.1 cm 16.135°17.② 点拨:根据钟表表盘的特征可得数1应该标在∠DOE 的平分线与DE 的交点处.故答案为②.18.-1或-5 点拨:因为3PM =MN ,所以PM =13×(3+3)=2.所以当点P 在点M 左侧时,点P 对应的有理数是-5;当点P 在点M 右侧时,点P 对应的有理数是-1.三、19.解:如图.(第19题)20.解:(1)83°46′+52°39′16″= 135°85′16″=136°25′16″.(2)96°-18°26′59 ″=95°59′60″-18°26′59″=77°33′1″. (3)20°30′×8=160°240′=164°. (4)105°24′15″÷3=35°8′5″.21.解:因为∠EOF =170°,∠AOB =90°,所以∠BOF +∠AOE =360°-∠EOF -∠AOB =360°-170°-90°=100°.又因为OF 平分∠BOC ,OE 平分∠AOD ,所以∠COF =∠BOF ,∠EOD =∠AOE. 所以∠COF +∠EOD =∠BOF +∠AOE =100°.所以∠COD =∠EOF -(∠COF +∠EOD)=170°-100°=70°.22.解:由题意可知∠AOB =180°-45°+30°=165°,165°÷2-30°=52.5°,所以渔船C 在观测站南偏东52.5°方向.23.解:因为AB =24 cm ,BC =38AB ,所以BC =38×24=9(cm ).所以AC =AB +BC =24+9=33(cm ). 因为E 是线段AC 的中点, 所以AE =12×33=16.5(cm ).因为D 是线段AB 的中点, 所以AD =12AB =12×24=12(cm ).所以DE =AE -AD =16.5-12=4.5(cm ). 24.解:(1)①4 cm②因为AD =10 cm ,AB =4 cm , 所以BD =10-4=6(cm ). 因为C 是线段BD 的中点, 所以CD =12BD =12×6=3(cm ).(2)因为B 是线段AD 上一动点,沿A →D →A 以2 cm /s 的速度往返运动,所以当0≤t ≤5时,AB =2t cm ;当5<t ≤10时,AB =10-(2t -10)=20-2t(cm ). (3)不变.因为AB 的中点为E ,C 是线段BD 的中点, 所以EC =12(AB +BD)=12AD =12×10=5(cm ).25.解:(1)填表如下: 正方形 ABCD 内点的个数,1,2,3,4,…,n 分割成的 三角形的个数,4,6,8,10,…,2n +2(2)能.当2n +2=2 018,即n =1 008时,原正方形被分割成2 018个三角形,此时正方形ABCD 内部有1 008个点.第五章达标检测卷(120分,90分钟)题 号 一 二 三 总 分得 分一、选择题(每题3分,共30分)1.下列方程中,是一元一次方程的是( )A .x =1B .2x+1=0 C .3x +y =2 D .x 2-1=5x2.下列等式变形正确的是( )A .若a =b ,则a -3=3-bB .若x =y ,则x a =y aC .若a =b ,则ac =bcD .若b a=d c,则b =d3.下列方程中,解是x =2的方程是( )A .23x =2B .-14x +12=0 C .3x +6=0 D .5-3x =14.下列解方程过程正确的是( )A .由47x =5-27x ,得4x =5-2xB .由30%x +40%(x +1)=5,得30x +40(x +1)=5C .由x0.2-1=x ,得5x -1=xD .由x -6=8,得x =25.若代数式4x -5与2x -12的值相等,则x 的值是( )A .1B .32C .23D .26.已知方程2x -3=m3+x 的解满足|x|-1=0,则m 的值是( )A .-6B .-12C .-6或-12D .任何数7.已知方程7x +2=3x -6与关于x 的方程x -1=k 的解相同,则3k 2-1的值为( )A .18B .20C .26D .-268.小明准备为希望工程捐款,他现在有20元,以后每月打算存10元,若设x 月后他能捐出100元,则下列方程中能正确计算出x 的是( )A .10x +20=100B .10x -20=100C .20-10x =100D .20x +10=1009.如图①,天平呈平衡状态,其中左侧秤盘中有一袋玻璃球,右侧秤盘中也有一袋玻璃球,还有2个各20 g 的砝码.现将左侧袋中一颗玻璃球移至右侧秤盘,并拿走右侧秤盘的一个砝码后,天平仍呈平衡状态,如图②,则被移动的玻璃球的质量为( )(第9题)A .10 gB .15 gC .20 gD .25 g10.学友书店推出售书优惠方案:①一次性购书不超过100元,不享受优惠;②一次性购书超过100元,但不超过200元,一律打九折;③一次性购书超过200元,一律打八折.如果小明同学一次性购书付款162元,那么他所购书的原价为( )A .180元B .202.5元C .180元或202.5元D .180元或200元二、填空题(每题3分,共24分) 11.方程2x -1=0的解是x =________. 12.已知关于x 的方程(a -3)x|2a -7|-5=0是一元一次方程,则a =________.13.若k 是方程3x +1=7的解,则4k +3=________.14.美术馆举办的一次画展中,展出的油画作品和国画作品共有100幅,其中油画作品数量比国画作品数量的2倍多7幅,则展出的油画作品有__________幅.15.一个两位数,个位上的数字是十位上的数字的2倍,如果把十位上与个位上的数字对调,那么所得的两位数比原两位数大27,求原两位数.若设原两位数个位上的数字为x ,则可列方程为____________________;若设原两位数十位上的数字为y ,则可列方程为______________________.16.甲、乙两个足球队连续进行对抗赛,规定胜一场得3分,平一场得1分,负一场得0分,共赛10场,甲队保持不败,得22分,甲队胜________场.(第18题)17.某商店一套服装的进价为200元,若按标价的80%销售可获利72元,则该服装的标价为________元.18.如图是一块在电脑屏幕上出现的长方形色块图,由6个不同颜色的正方形组成,已知中间最小的一个正方形的边长为1,那么这个长方形色块图的面积为________.三、解答题(20~22题每题10分,其余每题12分,共66分) 19.解下列方程:(1)5y -3=2y +6; (2)5x =3(x -4);(3)2x +13-5x -16=1; (4)x 0.7-0.17-0.2x 0.03=1.20.若x=5是方程ax-6=22+a的解.试求关于y的方程ay+5=a-3y的解.21.轮船在静水中的航行速度为20 km/h,水流速度为4 km/h,从甲码头顺流航行到乙码头,再返回甲码头,共用5 h(不计停留时间),求甲、乙两码头间的距离.22.某市为更有效地利用水资源,制定了居民用水收费标准:如果一户每月用水量不超过15 m3,按每立方米1.8元收费;如果超过15 m3,超过部分按每立方米2.3元收费,其余仍按每立方米1.8元收费.另外,每立方米加收污水处理费1元.若某户一月份共支付水费58.5元,求该户一月份的用水量.23.用一个长60 m的篱笆围成一个长方形鸡场(鸡场的一边靠墙,墙长为20 m).如图,若BC=2AB,求AB和BC的长,并检验是否符合要求;若不符合要求,提出改进意见,并求出改进后的AB,BC的长,使其仍满足BC=2AB.(1)一变:若不利用墙,使围成鸡场的长比宽多6 m,求鸡场的面积;(2)二变:不利用墙,若围成正方形、圆形,分别求出鸡场的面积,并猜想要使鸡场的面积更大一些,最好围成什么图形.(第23题)24.甲、乙两人想共同承包一项工程,甲单独做30天完成,乙单独做20天完成,合同规定15天完成,否则每超过一天罚款1 000元,甲、乙两人经商量后签了该合同.(1)正常情况下,甲、乙两人能否履行该合同?为什么?(2)现两人合做了这项工程的75%,因别处有急事,必须调走1人,问调走谁更合适?为什么?答案一、1.A 2.C 3.B 4.C 5.B 6.C 7.C 8.A 9.A 10.C 二、11.1212.4 点拨:由题意得|2a -7|=1且a -3≠0,解得a =4. 13.11 14.6915.10×x 2+x =10x +x2-27;10y +2y =10×2y +y -27 16.6 17.340 18.143 三、19.解:(1)y =3. (2)x =-6. (3)x =-3. (4)x =1417.20.解:把x =5代入方程ax -6=22+a ,得5a -6=22+a ,解得a =7, 把a =7代入关于y 的方程ay +5=a -3y ,得7y +5=7-3y , 解得y =15.21.解:设甲、乙两码头间的距离为x km ,由题意得x 20+4+x20-4=5.解这个方程得x=48.所以甲、乙两码头间的距离为48 km .22.解:若该户一月份的用水量为15 m 3,则需支付水费15×(1.8+1)=42(元),而42<58.5,所以该户一月份的用水量超过15 m 3.设该户一月份的用水量为x m 3,则列方程为42+(2.3+1)(x -15)=58.5,解得x =20. 所以该户一月份的用水量为20 m 3. 23.解:设AB =x m ,根据题意, 得x +x +2x =60,解得x =15, 所以BC =30 m >20 m . 所以不符合题意. 改进意见:墙AE 做鸡场一边AD 的一部分,如图,设AB =y m ,此时可得方程2(y +2y)-20=60,解得y =403,所以AB =403 m .AD =BC =803m >20 m ,符合题意.(第23题)(1)设宽为z m ,则长为(z +6) m . 由题意,得2(z +6+z)=60. 解得z =12,则长为12+6=18(m ),所以鸡场的面积为12×18=216(m 2). (2)若围成正方形, 则其边长为60÷4=15(m ), 所以面积为152=225(m 2);若围成圆形,则其半径为60÷2π=30π(m ),所以面积为π×⎝ ⎛⎭⎪⎫30π2=900π≈286.6(m 2).因为286.6>225,所以要使鸡场的面积更大一些,最好围成圆形. 24.解:(1)正常情况下,甲、乙两人能履行该合同.理由如下:设两人合做需x 天,由题意得x 30+x20=1,解得x =12,因为12<15,所以正常情况下,两人能履行该合同. (2)调走甲更合适.理由如下:完成这项工程的75%所用天数为34÷⎝ ⎛⎭⎪⎫130+120=9(天),若调走甲,设共需y 天完成,由题意得 34+y -920=1,解得y =14, 因为14<15,所以能履行该合同.若调走乙,设共需z 天完成,由题意得34+z -930=1,解得z =16.5,因为16.5>15,所以不能履行该合同.综上可知,调走甲更合适.第六章达标检测卷(120分,90分钟)题 号 一 二 三 总 分得 分一、选择题(每题3分,共30分)1.在下列调查中,适宜采用普查的是( )A .了解我省中学生的视力情况B .了解九(1)班学生校服的尺码情况C .检测一批电灯泡的使用寿命D .调查台州《600全民新闻》栏目的收视率2.为了了解某校1 500名学生的体重情况,从中抽取了100名学生的体重,就这个问题来说,下面说法正确的是( )A .1 500名学生的体重是总体B .1 500名学生是总体C .每名学生是个体D .100名学生是所抽取的一个样本3.PM 2.5指数是衡量空气污染程度的一个重要指标,在一年中最可靠的一种观测方法是( )A .随机选择5天进行观测B .选择某个月进行连续观测C .选择在春节7天期间连续观测D .每个月随机选中5天进行观测4.要反映北京市某周内每天最高气温的变化情况,采用的统计图比较合适的是( )A .条形统计图B .扇形统计图C .折线统计图D .上述三种统计图都可以5.如图是七年级(1)班参加课外兴趣小组人数的扇形统计图,则表示唱歌兴趣小组人数的扇形的圆心角的度数是( )A .36°B .72°C .108°D .180°。

北师大版七年级数学上册期末考试试卷(附带答案)

北师大版七年级数学上册期末考试试卷(附带答案)

北师大版七年级数学上册期末考试试卷(附带答案)学校:___________班级:___________姓名:___________考号:___________一、单选题(共10小题,满分40分)1.∠A =60°,则∠A 的补角是A .160°B .120°C .60°D .30° 2.点M 是线段AB 上一点,下面的四个等式中,不能判定M 一定是AB 中点的是( )A .12MB AB = B .AM MB = C .AM MB AB += D .2AM AB =3.若∠A =36°,则∠A 的余角等于( ) A .144° B .64° C .54° D .44°4.单项式224a b 的系数是( )A .2B .3C .4D .55.如图是一个正方体的平面展开图,每个面分别标有相应的字母,字母E 所对的面所标的字母应该是()A .LB .OC .VD .Y6.近似数4.50所示的数值a 的取值范围是( )A .4.495 4.505a ≤<B .4.040 4.60a ≤<C .4.495 4.505a ≤≤D .4.500 4.5056a ≤≤7.在数1,2,3,4,…,405前分别加“+”或“-”,使所得数字之和为非负数,则所得非负数最小为( )A .0B .1C .2D .38.如图,直线AB 、CD 相交于点O ,90AOE ∠=︒则EOC ∠和AOD ∠的关系( )A .相等B .互补C .互余D .以上三种都有可能9.小马虎在下面的计算中,只做对了一道题,他做对的题目是( )A .-(a -1)=a -1B .a 4+a 4=a 8C .6a 2b -6ab 2=0D .2ab -2ba =0A.4个B.3个C.2个D.1个二、填空题(共8小题,满分32分)14.如图,图形都是由同样大小的小圆圈按一定规律所组成的,其中第1个形中一共有4个小圆圈,第2个图形中一共有10个小圆圈,第3个图形中一有19个小圆圈,…,按此规律排列,则第n个图形中小圆圈的个数.15.已知点C在直线AB上,若AC=6cm,BC=8cm,E,F分别是线段AC,BC的中点,则线段EF的长是cm.16.据统计,韶关1月份的历史最低温是零下4℃,用数表示这个温度是℃.17.在迎来了中国共产党成立一百周年的重要时刻,我国脱贫攻坚战取得了全面胜利,现行标准下,12800个贫困村全部出列.将数据12800用科学记数法表示应为 .18.如图,长方形ABCD 中,E 是AB 的中点,F 是BC 上的一点,且13CF BC =,则长方形ABCD 的面积是阴影部分面积的 倍.三、解答题(共6小题,每题8分,满分48分)19.如图,直线,,AB CD EF 相交于点O ,且OG CD ⊥.(1)已知3812'AOC ∠=︒,求BOG ∠的度数;(2)如果OC 是AOE ∠的平分线,那么OG 是EOB ∠的平分线吗?说明理由.20.阅读材料:我们知道,4x+2x -x=(4+2-1)x=5x ,类似地,我们把(a+b )看成一个整体,则4(a+b )+2(a+b )-(a+b )-(4+2-1)(a+b )=5(a+b ).“整体思想”是中学教学解题中的一种重要的思想方法,它在多项式的化简与求值中应用极为广泛.尝试应用:(1)BC=______;(2)若以B为原点,写出点A,C,D所对应的数,并求出它们所对应数的和;(3)若点C所对应的数为10-,求出点A,B,D所对应数的和.24.计算(1)149 0.52335⎛⎫-⨯+÷-⨯⎪⎝⎭;(2)2222153(5)933⎛⎫⎛⎫-⨯-+--÷⎪ ⎪⎝⎭⎝⎭.参考答案:1.B2.C3.C4.C5.B6.A7.B8.C9.D 10.C 11.7.78×104 12.5 13.1920.14.()212n nn++15.7或116.4-17.41.2810⨯18.319.(1) 51°48′,(2). OG是EOB∠的平分线20.(1)-2(a-b)2;(2)1812;(3)16.21.(1)66;98(2)()0.6150a a ≤ ()0.830150a a ->(3)小张家这个月用电180度.22.(1)前5个台阶上的数的和为-1.(2)答:第6个台阶上的数x 为-3,从下往上前2022个台阶上的数的和为-409.(3)第51k -次出现标“1”所在的台阶数.23.(1)2 (2)点A ,C ,D 分别对应-2,2,4,和为4 (3)-34 24.(1)1- (2)10-。

北师大版七年级数学上册各章节测试题含答案全

北师大版七年级数学上册各章节测试题含答案全

第一章 丰富的图形世界一、精心选一选,慧眼识金! (每小题4分,共10小题,共40分) 1 .如图,四个几何体分别为长方体、圆柱体、 球体和 三棱柱,这四个几何体中有三个的某一种形状图都是 同一种几何图形,则另一个几何体是 ( ) A.长方体 B .圆柱体 C.球体 D .三棱柱2 .如图是每个面上都有一个汉字的正方体的一种展开图,那么在正方体的表面,与“迎” 相对的面上的汉字是 ( )A.文B.明C.奥D.运法3 .如图所示的几何体的从上面看到的形状图是(4 .下面形状的四张纸板,按图中线经过折叠可以围成一下直三棱柱的是 ()5 .将如左下图所示的 Rt △曲C 绕直角边工C 旋转一周,所得几何体的从正面看到的形状 图是()6 .如图是由若干个小正方形所搭成的几何体及从上面看这个几何体所看到的图形,那么从 左边看这个几何体时,所看到的几何图形是()文 明 迎 奥从左面看cm第6题图第1题图匹第2题图M 正面看第2页共33页7 .某几何体的三种形状图如下所示,则该几何体可以是 ( )mmi从正面看从左面看从上面看8 . 一个无盖的正方体盒子的平面展开图可以是下列图形中的 ( )9 .如图是一个由若干个相同的小正方体组成的几何体的三种形状图,则组成这个几何体的小正体的个数是()A7个10 .如图表示一个由相同小立方块搭成的几何体的从上面看到的形状图俯视图,小正方形中 的数字表示该位置上小立方块的个数,那么该几何体的从正面看到的形状图为二、耐心填一填,一锤定音! (每小题4分,共5小题,共20分) 11 .快速旋转一枚竖立的硬币 (假定旋转轴在原地不动 ),旋转形成的立体图形是12 .把边长为lcm 的正方体表面展开要剪开 条棱,展开成的平面图形的周长为cm.13 .如果一个六棱柱的一条侧棱长为 5cm,那么所有侧棱之和为 ^14 .一个n 边形,从一个顶点出发的对角线有 条,这些对角线将n 边形分成了 个三角形. 15 .如图,木工师傅把一个长为 1.6米的长方体木料锯成 3段后,表面积比原来增加了 80 cm2,那么这根木料本来的体积是 cm 3.B,图工1、图总舌.兄理①U 上■注1.6米三、用心做一做,马到成功! (每小题12分,共5小题,共60分)16.将图中剪去一个正方形,使剩余的部分恰好能折成一个正方体,问应剪去几号小正方形?说出所有可能的情况.第16题图17.由一些大小相同的小正方体组成的简单几何体的从正面、从上面看到的形状图(如图)⑴若组成这个几何体的小正方体的块数为n,则n⑵请你画出这个几何体所有可能的从左面看到的形状图18.如图是一个几何体的两种形状图,求该几何体的体积(刀取3.14).19.如图所示的几何体是由若干个相同的小正方体搭建而成的(第一层,1个;第二层3个; 第3层,6个),小正方体的一个侧面的面积为1cm.今要用红颜色给这个几何体的表面着色(但底部不着色),要着色的面积是多少第19题图20.若已知两点之间的所有连线中,线段最短,那么你能否试着解决下面的问题呢?问题:已知正方体的顶点A处有一只蜘蛛,B处有一只小虫,如图所示,请你在图上作出一种由A至IJB的最短路径,使得这只小蜘蛛能在最短时间内捉住这只小虫子.第20题图单元测试题1.C 2,A 3.D 4.C 5.A 6.B 7.A 8.D 9.C 10.C 11. 球体 12.7 , 6 13.30 cm 14.n-3,n-215.32 16.1 号、2 号 17.⑴8 或9 ⑵图略 18.40048cm 319.18cm 220.略第二章有理数及其运算一、耐心填一填:(每题3分,共30分), 2… 2 ______ 2 …一1、-一的绝对值是 ,—-的相反数是 ,—-的倒数是.5 5 52、某水库的水位下降1米,记作—1米,那么+1.2米表示.3、数轴上表示有理数一3.5与4.5两点的距离是 .一 2 20034、已知|a —3| + (b+4 =0,则(a + b)=.5、已知p是数轴上白^一点-4,把p点向左移动3个单位后再向右移1个单位长度,那么p点表木的数是。

七年级上册北师大版数学试卷

七年级上册北师大版数学试卷

七年级上册北师大版数学试卷
一、下列哪个数是有理数?
A. √2
B. π
C. -3/4
D. e
(答案)C
二、若a和b互为相反数,则下列等式成立的是?
A. a + b = 1
B. a - b = 0
C. ab = 1
D. a/b = -1
(答案)B(注意:当a和b都不为0时,D选项也正确,但此处考虑更一般的情况,即a、b可为0,故选B)
三、下列哪个图形是轴对称的?
A. 等边三角形
B. 平行四边形
C. 梯形
D. 不规则四边形
(答案)A
四、下列哪个式子是代数式?
A. 2x + 3y = 5
B. x2 > 4
C. (a + b)/2
D. 3 + 4 = 7
(答案)C
五、若m、n为自然数,且m + n = 5,则下列哪一组数(m, n)是可能的?
A. (6, -1)
B. (4, 2)
C. (3, 3)
D. (0, 6)
(答案)C
六、下列哪个数是绝对值等于它本身的数?
A. -3
B. 1/2
C. -1
D. 0
(答案)B和D(题目要求单选,若必须选一个最全面的答案,可选B或D中的任意一个,
考虑到0的特殊性,这里选D作为代表)
七、下列哪个式子是单项式?
A. 2x + 3
B. xy2
C. x2 - y2
D. 1/x
(答案)B
八、若a、b、c为实数,且a > b,c ≠0,则下列不等式成立的是?
A. ac > bc
B. ac < bc
C. ac = bc
D. 无法确定
(答案)D。

2024-2025学年新北师大版(2024年新教材)七年级上册数学期末达标测试卷含解析

2024-2025学年新北师大版(2024年新教材)七年级上册数学期末达标测试卷含解析

北师大版(2024年新教材)七年级上册数学期末达标测试卷一.选择题(共10小题,满分30分,每小题3分)1.(3分)﹣的绝对值是()A.B.C.﹣D.﹣2.(3分)今年春节电影《热辣滚烫》《飞驰人生2》《熊出没•逆转时空》《第二十条》在网络上持续引发热议,根据国家电影局2月18日发布数据,我国2024年春节档电影票房达80.16亿元,创造了新的春节档票房纪录.其中数据80.16亿用科学记数法表示为()A.80.16×108B.8.016×109C.0.8016×1010D.80.16×10103.(3分)下列水平放置的几何体中,主视图是圆形的是()A.B.C.D.4.(3分)下列调查中,最适合抽样调查的是()A.调查某校七年级一班学生的课余体育运动情况B.调查某班学生早餐是否有喝牛奶的习惯C.调查某种面包的合格率D.调查某校足球队员的身高5.(3分)若单项式﹣3x2y的系数是m,次数是n,则mn的值为()A.9B.3C.﹣3D.﹣96.(3分)下列不属于一元一次方程的是()A.2x+3=1B.2x+3x=5C.+6=0D.=07.(3分)一个正方体的平面展开图如图所示,则原正方体中与“洗”字所在面相对的面上的汉字是()A.手B.戴C.口D.罩8.(3分)已知线段AB和点P,如果P A+PB=AB,那么()A.点P为AB中点B.点P在线段AB上C.点P在线段AB外D.点P在线段AB的延长线上9.(3分)中国古代人民很早就在生产生活中发现了许多有趣的数学问题,《孙子算经》中有这样一个问题:今有三人共车,二车空;二人共车,九人步,问人与车各几何.这道题的意思是:今有若干人乘车,每三人共乘一辆车,则剩余两辆车是空的;每两人共乘一辆车,则剩余九个人无车可乘,问车和人各多少.若我们设有x辆车,则可列方程()A.3(x﹣2)=2x+9B.3(x+2)=2x﹣9C.+2=D.﹣2=10.(3分)幻方的历史悠久,传说最早出现在夏禹时代的“洛书”,把洛书用今天的数学符号翻译出来,就是一个三阶幻方.三阶幻方的每行、每列、每条对角线上的三个数之和相等,如图是另一个三阶幻方,则a﹣b的值为()A.3B.4C.5D.7二.填空题(共5小题,满分15分,每小题3分)11.(3分)我国“奋斗者”号载人潜水器在马里亚纳海沟成功下潜,最大下潜深度为10909米.高于马里亚纳海沟所在海域的海平面100米的某地高度记为+100米,那么最大下潜深度10909米可记为米.12.(3分)定义一种新运算:a*b=a2﹣b+ab.例如:(﹣1)*3=(﹣1)2﹣3+(﹣1)×3=﹣5,则4*[2*(﹣3)]=.13.(3分)已知a,b为实数,且关于x的方程x﹣ax=b的解为x=6,则关于y的方程(y﹣1)﹣a(y﹣1)=b的解为y=.14.(3分)如图,点A在点O的北偏西80°方向上,点B在点O的南偏东20°的方向上,则∠AOB =°.15.(3分)我们知道分数写为小数即0.,反之,无限循环小数0.写成分数即,一般地,任何一个无限循环小数都可以写成分数形式.现在就以0.为例进行讨论:设0.=x,由0.=0.4444…,得:x=0.4444…,10x=4.444…,于是10x﹣x=(4.44…)﹣(0.444…)=4,即:10x﹣x=4,解方程得:,于是得0.=,则无限循环小数0.化成分数为.三.解答题(共7小题,满分55分)16.(8分)计算(1)()×(﹣36);(2)﹣14﹣(1﹣0.5)×|1﹣(﹣5)2|.17.(6分)先化简,再求值:,其中.18.(8分)解方程:(1)2(x﹣1)=2﹣5(x+2);(2).19.(7分)为了解本市的空气质量情况,小王从环境监测网随机抽取了若干天的空气质量情况作为样本进行统计,绘制了如图所示的条形统计图和扇形统计图.请你根据以上信息解答下列问题:(1)本次调查活动采取了调查方式,样本容量是;(2)补全图1的条形统计图,并求出扇形统计图中表示“轻度污染”的扇形的圆心角度数;(3)请估计2024年(366天)本币空气质量达到“优”和“良”的总天数.20.(8分)已知点O为直线AB上一点,将直角三角板MON如图所示放置,且直角顶点在O处,在∠MON 内部作射线OC,且OC恰好平分∠MOB.(1)若∠CON=20°,求∠AOM的度数;(2)若∠BON=2∠NOC,求∠AOM的度数.21.(8分)现在,红旗商场进行促销活动,出售一种优惠购物卡(注:此卡只作为购物优惠凭证不能顶替货款),花300元买这种卡后,凭卡可在这家商场按标价的8折购物.(1)小张要买一台标价为3500元的冰箱,如何购买合算?小张能节省多少元钱?(2)小张按合算的方案,把这台冰箱买下,如果红旗商场还能盈利25%,这台冰箱的进价是多少元?22.(10分)将两个直角三角形如图1摆放,已知∠CDE=∠ACB=90°,∠E=45°,∠B=30°,射线CM平分∠BCE.(1)如图1,当D、A、C三点共线时,∠ACM的度数为°.(2)如图2,将△DCE绕点C从图1的位置开始顺时针旋转,旋转速度为每秒6°,设时间为t s,作射线CN平分∠ACD.①若0<t<,∠MCN的度数是否改变?若改变,请用含t的代数式表示;若不变,请说明理由并求出值.②若<t<30,当t为何值时,∠BCN=2∠DCM?请直接写出t的值.参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.(3分)﹣的绝对值是()A.B.C.﹣D.﹣【答案】A2.(3分)今年春节电影《热辣滚烫》《飞驰人生2》《熊出没•逆转时空》《第二十条》在网络上持续引发热议,根据国家电影局2月18日发布数据,我国2024年春节档电影票房达80.16亿元,创造了新的春节档票房纪录.其中数据80.16亿用科学记数法表示为()A.80.16×108B.8.016×109C.0.8016×1010D.80.16×1010【答案】B3.(3分)下列水平放置的几何体中,主视图是圆形的是()A.B.C.D.【答案】C4.(3分)下列调查中,最适合抽样调查的是()A.调查某校七年级一班学生的课余体育运动情况B.调查某班学生早餐是否有喝牛奶的习惯C.调查某种面包的合格率D.调查某校足球队员的身高【答案】C5.(3分)若单项式﹣3x2y的系数是m,次数是n,则mn的值为()A.9B.3C.﹣3D.﹣9【答案】D6.(3分)下列不属于一元一次方程的是()A.2x+3=1B.2x+3x=5C.+6=0D.=0【答案】C7.(3分)一个正方体的平面展开图如图所示,则原正方体中与“洗”字所在面相对的面上的汉字是()A.手B.戴C.口D.罩【答案】D8.(3分)已知线段AB和点P,如果P A+PB=AB,那么()A.点P为AB中点B.点P在线段AB上C.点P在线段AB外D.点P在线段AB的延长线上【答案】B9.(3分)中国古代人民很早就在生产生活中发现了许多有趣的数学问题,《孙子算经》中有这样一个问题:今有三人共车,二车空;二人共车,九人步,问人与车各几何.这道题的意思是:今有若干人乘车,每三人共乘一辆车,则剩余两辆车是空的;每两人共乘一辆车,则剩余九个人无车可乘,问车和人各多少.若我们设有x辆车,则可列方程()A.3(x﹣2)=2x+9B.3(x+2)=2x﹣9C.+2=D.﹣2=【答案】A10.(3分)幻方的历史悠久,传说最早出现在夏禹时代的“洛书”,把洛书用今天的数学符号翻译出来,就是一个三阶幻方.三阶幻方的每行、每列、每条对角线上的三个数之和相等,如图是另一个三阶幻方,则a﹣b的值为()A.3B.4C.5D.7【答案】D二.填空题(共5小题,满分15分,每小题3分)11.(3分)我国“奋斗者”号载人潜水器在马里亚纳海沟成功下潜,最大下潜深度为10909米.高于马里亚纳海沟所在海域的海平面100米的某地高度记为+100米,那么最大下潜深度10909米可记为米.【答案】见试题解答内容12.(3分)定义一种新运算:a*b=a2﹣b+ab.例如:(﹣1)*3=(﹣1)2﹣3+(﹣1)×3=﹣5,则4*[2*(﹣3)]=.【答案】19.13.(3分)已知a,b为实数,且关于x的方程x﹣ax=b的解为x=6,则关于y的方程(y﹣1)﹣a(y﹣1)=b的解为y=.【答案】7.14.(3分)如图,点A在点O的北偏西80°方向上,点B在点O的南偏东20°的方向上,则∠AOB =°.【答案】120°.15.(3分)我们知道分数写为小数即0.,反之,无限循环小数0.写成分数即,一般地,任何一个无限循环小数都可以写成分数形式.现在就以0.为例进行讨论:设0.=x,由0.=0.4444…,得:x=0.4444…,10x=4.444…,于是10x﹣x=(4.44…)﹣(0.444…)=4,即:10x﹣x=4,解方程得:,于是得0.=,则无限循环小数0.化成分数为.【答案】.三.解答题(共7小题,满分55分)16.(8分)计算(1)()×(﹣36);(2)﹣14﹣(1﹣0.5)×|1﹣(﹣5)2|.【答案】(1)25;(2)﹣5.17.(6分)先化简,再求值:,其中.【答案】见试题解答内容18.(8分)解方程:(1)2(x﹣1)=2﹣5(x+2);(2).【答案】见试题解答内容19.(7分)为了解本市的空气质量情况,小王从环境监测网随机抽取了若干天的空气质量情况作为样本进行统计,绘制了如图所示的条形统计图和扇形统计图.请你根据以上信息解答下列问题:(1)本次调查活动采取了调查方式,样本容量是;(2)补全图1的条形统计图,并求出扇形统计图中表示“轻度污染”的扇形的圆心角度数;(3)请估计2024年(366天)本币空气质量达到“优”和“良”的总天数.【答案】(1)抽样调查,60;(2)18°;(3)305.20.(8分)已知点O为直线AB上一点,将直角三角板MON如图所示放置,且直角顶点在O处,在∠MON 内部作射线OC,且OC恰好平分∠MOB.(1)若∠CON=20°,求∠AOM的度数;(2)若∠BON=2∠NOC,求∠AOM的度数.【答案】(1)40°;(2)45°.21.(8分)现在,红旗商场进行促销活动,出售一种优惠购物卡(注:此卡只作为购物优惠凭证不能顶替货款),花300元买这种卡后,凭卡可在这家商场按标价的8折购物.(1)小张要买一台标价为3500元的冰箱,如何购买合算?小张能节省多少元钱?(2)小张按合算的方案,把这台冰箱买下,如果红旗商场还能盈利25%,这台冰箱的进价是多少元?【答案】(1)买卡合算,小张能节省400元;(2)这台冰箱的进价是2480元.22.(10分)将两个直角三角形如图1摆放,已知∠CDE=∠ACB=90°,∠E=45°,∠B=30°,射线CM平分∠BCE.(1)如图1,当D、A、C三点共线时,∠ACM的度数为°.(2)如图2,将△DCE绕点C从图1的位置开始顺时针旋转,旋转速度为每秒6°,设时间为t s,作射线CN平分∠ACD.①若0<t<,∠MCN的度数是否改变?若改变,请用含t的代数式表示;若不变,请说明理由并求出值.②若<t<30,当t为何值时,∠BCN=2∠DCM?请直接写出t的值.【答案】(1)67.5°;(2)①∠MCN的度数不改变,∠MCN的度数为67.5°.理由见解析;②t=15或25.。

2024-2025学年北师大版初一上学期期末数学试题与参考答案

2024-2025学年北师大版初一上学期期末数学试题与参考答案

2024-2025学年北师大版数学初一上学期期末复习试题(答案在后面)一、选择题(本大题有10小题,每小题3分,共30分)1、下列数中,最大的负数是()A、-3B、-2C、-1D、02、一个长方形的长是8厘米,宽是5厘米,那么这个长方形的面积是()平方厘米。

A、40B、15C、32D、393、下列哪个数是负数?A、-3B、3C、0D、-54、在数轴上,点A表示的数是-2,点B表示的数是5,那么点A和点B之间的距离是多少?A、3B、7C、5D、-35、已知一个长方形的长是6cm,宽是3cm,求这个长方形的面积。

A. 15cm²B. 18cm²C. 24cm²D. 36cm²6、在直角坐标系中,点A的坐标为(2,-3),点B的坐标为(-4,5),求线段AB 的长度。

A. 5B. 7C. 10D. 137、(1)若(x2−5x+6=0),则(x)的值是:A. 2 或 3B. 1 或 6C. 2 或 -3D. 1 或 -68、(2)若(a2=b2),且(a≠b),则(a)和(b)的关系是:A.(a=b)B.(a=−b)C.(a)和(b)互为相反数D.(a)和(b)互为倒数9、(1)下列数中,是负数的是:A. -5B. 3C. 0D. -3.5 10、(2)一个长方形的长是5厘米,宽是3厘米,那么这个长方形的周长是:A. 14厘米B. 15厘米C. 16厘米D. 18厘米二、填空题(本大题有5小题,每小题3分,共15分)1、一个长方形的长是6厘米,宽是宽的3/4。

这个长方形的面积是________ 平方厘米。

2、如果a、b、c是等差数列的前三项,且a+b+c=18,a-b+c=12,那么b的值为________ 。

3、在等腰三角形ABC中,底边BC的长度为8cm,腰AB的长度为10cm,则底边上的高AD的长度为 ____cm。

4、已知一元二次方程x^2 - 4x + 3 = 0,则该方程的解为 ______ 。

期末测试卷(含答案) 2024-2025学年数学北师大版(2024)七年级上册

期末测试卷(含答案) 2024-2025学年数学北师大版(2024)七年级上册

期末测试卷时间:90分钟 满分:120分考试范围:上册全部内容题序一二三评卷人总分得分一、选择题(本大题共10小题,每小题3分,共30分)1.我国是最早使用负数的国家,东汉初,我国著名的数学著作《九章算术》明确提出了“正负术”.如果盈利100元记作+100元,那么亏损200元记作( )A.-200元B.200元C.300元D.-300元2.为了解甲、乙、丙、丁四所学校学生对“122交通安全专题”相关知识的掌握情况,小明计划进行抽样调查,以下方案中,最合理的是( )A.抽取甲校七年级学生进行调查B.在四个学校随机抽取200名老师进行调查C.在乙校随机抽取200名学生进行调查D.在四个学校各随机抽取200名学生进行调查3.袁隆平院士是世界上在杂交水稻研究方面的顶尖科学家,他研究出来的高产量杂交水稻让世界上近20亿人免于挨饿,20亿用科学记数法可表示为( )A.20×108B.2×109C.2×108D.0.2×10104.若代数式3x+2的值与2互为相反数,则x的值为( )A.2B.-2C.0D.-4 35.如图,图中的几何体是由5个相同的小立方块搭成的,则从上面观察这个几何体,得到的图形是( )6.七年级(1)班一次数学考试成绩的频数直方图如图所示,则下列说法错误的是( )A.得分在70~80分的人数最多B.该班的总人数为40C.人数最少的得分段的频数为2D.及格(大于或等于60分)的有12人7.已知6y-x=-5,则(x+2y)-2(x-2y)的值为( )A.-5B.5C.3D.28.如图,将一副三角板按照如图所示的位置放置,其中两个直角三角板的一个顶点重合,则∠CAE与∠DAB的大小关系是( )A.∠CAE>∠DABB.∠CAE=∠DABC.∠CAE<∠DABD.无法确定9.某市出租车的起步价是5元(3千米及3千米以内为起步价),以后每千米收费1.6元,不足1千米按1千米收费.小明乘出租车到达目的地时计价器显示为11.4元,则该出租车行驶的路程可能为( ) A.5.5千米 B.6.9千米C.7.5千米D.8.1千米10.如图所示的图形都是由同样大小的黑色圆点按照一定规律所组成的,其中第1个图形中一共有5个黑色圆点,第2个图形中一共有14个黑色圆点,第3个图形中一共有27个黑色圆点……按此规律排列下去,第6个图形中黑色圆点的个数为( )A.65B.78C.90D.91二、填空题(本大题共6小题,每小题3分,共18分)11.六棱柱有 个侧面.12.某家用电器商城销售一款每台进价为a元的空调,标价比进价提高了30%,因商城销售方向调整,决定打九折降价销售,则每台空调的实际售价为 元.13.把某班所有学生上学方式的调查结果绘制成如图所示的扇形统计图,已知骑车上学的学生有26人,乘公交车上学所对应的扇形圆心角的度数是144°,则乘公交车上学的学生人数为 .14.一架飞机的无风速度为a km/h,若风速为25 km/h,则该飞机顺风飞行5小时的路程比逆风飞行4小时的路程多 km .15.如图,∠AOB 是平角,OC 是射线,OD ,OE 分别是∠AOC ,∠BOC 的平分线,若∠COE=28°,则∠AOD 的度数为 .16.已知一组数a 1,a 2,a 3,…,a n ,其中a 1=1,对任意的正整数n ,a n+1a n +a n+1-a n =0,通过计算a 2,a 3,a 4的值,可以猜想a n = .三、解答题(本大题共9小题,共72分)17.(6分)计算:-34×|-19|+-152÷(-1)202418.(6分)化简:5a 2-[4ab-2(a 2-3b 2)+3(ab-4b 2)].19.(6分)解方程:5x -76+1=3x -14.20.(6分)如图,已知点C ,D 在线段AB 上,点D 是线段AB 的中点,AC=13AB ,CD=2.求线段AB 的长.21.(8分)如图,点O是直线AB上一点,∠COD是直角,OE平分∠BOC.(1)如图1,若∠AOC=40°,求∠DOE的度数;(2)如图2,若∠COE=∠DOB,求∠AOC的度数.22.(8分)如图,这是一个用硬纸板制作的长方体包装盒的展开图,已知长方体的底面形状是正方形,高为12厘米.(1)制作一个这样的包装盒需要多少平方厘米的硬纸板?(2)若1平方米硬纸板的价格为5元,则制作10个这样的包装盒需花费多少钱?(不考虑边角损耗)23.(10分)为了了解某校九年级学生开展“综合与实践”活动的情况,抽样调查了该校m名九年级学生上学期参加“综合与实践”活动的天数,并根据调查所得的数据绘制了如下尚不完整的两幅统计图.根据图表信息,解答下列问题:(1)m= ,n= ;(2)补全条形统计图;(3)根据抽样调查的结果,请你估计该校九年级2000名学生中上学期参加“综合与实践”活动4天及以上的人数.24.(10分)某商场投入13800元资金购进甲、乙两种矿泉水共500箱,矿泉水的成本价和销售价如下表所示:类别成本价/(元/箱)销售价/(元/箱)甲2436乙3348(1)该商场购进甲、乙两种矿泉水各多少箱?(2)全部售完这500箱矿泉水,该商场共获得利润多少元?25.(12分)如图,线段AB=24,动点P从A出发,以2个单位长度/秒的速度沿射线AB运动,M为AP的中点.(1)点P出发多少秒后,PB=2AM?(2)当点P在线段AB上运动时,试说明2BM-BP为定值.(3)若点P在AB的延长线上运动,N为BP的中点,给出下列两个结论:①MN的长度不变;②MN+PN的值不变.请选出正确的结论,并求其值.参考答案一、选择题12345678910A DB D B D AC B C1.A 【解析】盈利100元记作+100元,那么亏损200元记作-200元.2.D 【解析】为了解甲、乙、丙、丁四所学校学生对“122交通安全专题”相关知识的掌握情况,在四个学校各随机抽取200名学生进行调查最具有广泛性和代表性.3.B 【解析】20亿=2000000000=2×109..4.D 【解析】列方程得3x+2+2=0,解得x=-435.B6.D 【解析】由频数直方图可得,得分在70~80分的人数最多;该班的总人数为4+12+14+8+2=40;人数最少的得分段的频数为2;及格(大于或等于60分)的有12+14+8+2=36(人),故选项D错误.7.A 【解析】(x+2y)-2(x-2y)=x+2y-2x+4y=6y-x.因为6y-x=-5,所以原式=-5.8.C 【解析】因为∠CAE=60°-∠EAB,∠BAD=90°-∠EAB,所以∠CAE<∠DAB.要点回顾 比较角的大小的方法有:(1)估测法:当角的大小相差较大时,用观察或估测法很容易比较大小.(2)度量法:用量角器分别量出角的度数,然后比较它们的大小.(3)叠合法:把两个角的一边共顶点重合,另一边放同侧进行比较.(4)推理法:本题可采用这种方法,因为∠EAD=90°,∠CAB=60°,所以∠EAD>∠CAB,所以∠EAD-∠BAE>∠CAB-∠BAE,所以∠DAB>∠CAE.9.B 【解析】设该出租车行驶的路程为x千米,根据题意列方程得5+1.6(x-3)=11.4,解得x=7.由于不足1千米按1千米收费,故路程可能为6.9千米.10.C 【解析】第1个图形中的黑色圆点的个数=3+1×2=5;第2个图形中的黑色圆点的个数=3+5+2×3=14;第3个图形中的黑色圆点的个数=3+5+7+3×4=27……可得,第n个图形中的黑色圆点的个数=3+5+…+(2n+1)+n(n+1),当n=6时,3+5+7+9+11+13+6×7=90.二、填空题11.六12.1.17a 【解析】根据题意得90%×(1+30%)a=1.17a.13.20 【解析】全班总人数是26÷52%=50,其中乘公交车上学的学生人数为50×144°360°=20.14.(a+225) 【解析】两个路程的差为5(a+25)-4(a-25)=5a+125-4a+100=(a+225) km .15.62° 【解析】 因为OE 平分∠BOC ,所以∠BOC=2∠COE=56°,所以∠AOC=180°-∠BOC=124°.因为OD 平分∠AOC ,所以∠AOD=∠COD=12∠AOC=62°.16.1n 【解析】因为a n+1a n +a n+1-a n =0,a 1=1,所以a 2·a 1+a 2-a 1=0,即a 2+a 2-1=0,解得a 2=12.当n=2时,a 3·a 2+a 3-a 2=0,即12a 3+a 3-12=0,解得a 3=13;当n=3时,a 4·a 3+a 4-a 3=0,即13a 4+a 4-13=0,解得a 4=14……由此可以猜想a n =1n .三、解答题17.解:原式=-81×19+125÷1=-9+125=-82425................................................................................................(6分)18.解:原式=5a 2-(4ab-2a 2+6b 2+3ab-12b 2)...........................................................................................(3分)=5a 2-4ab+2a 2-6b 2-3ab+12b 2 ..................................................................................................................(4分)=7a 2-7ab+6b 2. ............................................................................................................................................(6分)19.解:去分母,得2(5x-7)+12=3(3x-1),..................................................................................................(2分)去括号,得10x-14+12=9x-3,移项,得10x-9x=14-12-3,合并同类项,得x=-1..................................................................................................................................(6分)20.解:因为D 是线段AB 的中点,所以AD=12AB. .............................................................................(2分)因为AC=13AB ,CD=2,所以CD=AD-AC=12AB-13AB=16AB=2,..........................................................(5分)所以AB=12. ...............................................................................................................................................(6分)21.解:(1)因为∠AOC=40°,∠AOC+∠BOC=180°,所以∠BOC=180°-∠AOC=180°-40°=140°,因为OE 平分∠BOC ,所以∠COE=12∠BOC=12×140°=70°,因为∠COD 是直角,所以∠COE+∠DOE=90°,所以∠DOE=90°-∠COE=90°-70°=20°;................................................................................................(4分)(2)因为OE平分∠BOC,所以∠COE=∠BOE,因为∠COE=∠BOD,所以∠COE=∠BOE=∠DOB,因为∠COD=90°,×90°=30°,所以∠COE=∠BOE=13所以∠AOC=180°-30°-30°=120°............................................................................................................(8分) 22.解:(1)由题意得2×(12×6+12×6+6×6)=360(平方厘米),答:制作一个这样的包装盒需要360平方厘米的硬纸板...............................................................(4分) (2)360÷10000×5×10=1.8(元).答:制作10个这样的包装盒需花费1.8元钱....................................................................................(8分) 23.解:(1)200 30........................................................................................................................................(2分)×100%=30%,所以n=30.提示:m=10÷5%=200,n%=60200(2)参加“综合与实践”活动天数为3天的学生人数为200×15%=30.........................................(4分)补全的条形图如图所示:..........................................................................................................................(6分)(3)2000×(1-5%-15%)=1600....................................................................................................................(9分)答:估计该校九年级2000名学生中上学期参加“综合与实践”活动4天及以上的人数为1600.(10分)24.解:(1)设购进甲种矿泉水x箱,则购进乙种矿泉水(500-x)箱,根据题意,列方程得24x+33(500-x)=13800,解得x=300.500-300=200(箱).答:该商场购进甲种矿泉水300箱,乙种矿泉水200箱..................................................................(5分) (2)由题意,得300×(36-24)+200×(48-33)=6600(元).答:该商场共获得利润6600元............................................................................................................(10分) 25.解:(1)设点P出发x秒后,PB=2AM.当点P在点B左边时,PA=2x,PB=24-2x,AM=x,由题意得24-2x=2x,解得x=6;当点P在点B右边时,PA=2x,PB=2x-24,AM=x,由题意得2x-24=2x,方程无解.综上所述,点P出发6秒后,PB=2AM..................................................................................................(4分) (2)当点P在线段AB上运动时,AM=x,BM=24-x,PB=24-2x,则2BM-BP=2(24-x)-(24-2x)=24,显然,2BM-BP为定值24............................................................(8分) (3)①正确.PB=x-12,理由:因为PA=2x,AM=PM=x,PB=2x-24,PN=12所以MN=PM-PN=x-(x-12)=12(定值),所以①正确. .......................................................................................................................................................................(12分)。

北师大版七年级上学期期末考试数学试卷(含答案)一

北师大版七年级上学期期末考试数学试卷(含答案)一

北师大版七年级数学第一学期期末考试试题及答案本试题分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷共2页,满分为48分;第Ⅱ卷共4页,满分为102分.本试题共6页,满分为150分.考试时间为120分钟.答卷前,考生务必用0.5毫米黑色墨水签字笔将自己的考点、姓名、准考证号、座号填写在答题卡上和试卷规定的位置上.考试结束后,将本试卷和答题卡一并交回.本考试不允许使用计算器.第I 卷(选择题共48分)注意事项:第Ⅰ卷为选择题,每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号.答案写在试卷上无效.一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.﹣12的相反数是( )A .12B .121C .121-D .﹣12 2.下列各图中,表示“射线CD ”的是( )A .B .C .D .3.下列图形中,不是正方体表面展开图的是( )A .B .C .D .4.小明投掷一枚硬币100次,出现“正面朝上”51次,则“正面朝上”的频率为( )A .49B .51C .0.49D .0.515.由5个相同的小正方体组成的几何体如图所示,从正面看该几何体得到的平面图形是( )A .B .C .D .6.世界文化遗产﹣﹣长城的总长约为2100000m ,数据2100000用科学记数法可表示为( )A .0.21×107B .2.1×105C .2.1×106D .21×1057.下列各选项中不是同类项的是( )A .﹣3与13B .2a 与2bC .5x 2y 与﹣2x 2yD .﹣xy 与2yx8.下列调查中最适合采用全面调查的是( )A .调查七(1)班学生定制校服的尺寸B .调查市场上奶制品的质量情况C .调查黄河水质情况D .调查全市《习语近人》节目的观看情况9.若x =1是关于x 的方程2x +a =0的解,则a 的值为( )A .﹣1B .﹣2C .1D .210.一幢房子一面墙的形状由一个长方形和一个三角形组成(如图),若把该墙面设计成长方形形状,面积保持不变,且底边长仍为a ,则这面墙的高度应该为( )A .2b +hB .h b 21C .b +2hD .b +h 11.如图,在正方形ABCD 中,E 为DC 边上一点,沿线段BE 对折后,若∠ABF 比∠EBF 大15°,则∠EBC 的度数是( )A .15°B .20°C .25°D .30°第11题图 第12题图 12.“格子乘法”作为两个数相乘的一种计算方法,最早在15世纪由意大利数学家帕乔利提出,在明代的《算法统宗》一书中被称为“铺地锦”.如图1,计算47×51,将乘数47计入上行,乘数51计入右行,然后以乘数47的每位数字乘以乘数51的每位数字,将结果计入相应的格子中,最后按斜行加起来,得2397.如图2,用“格子乘法”表示两个两位数相乘,则a 的值为( )A .2B .3C .4D .5第Ⅱ卷(非选择题共102分)注意事项:1.第II 卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.2.填空题请直接填写答案,解答题应写出文字说明、证明过程或演算步骤.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.﹣23= .14.五边形的对角线一共有 条.15.在空气的成分中,氮气约占78%,氧气约占21%,其他微量气体约占1%.若要表示以上信息,最合适的统计图是 .16.如图是一个生日蛋糕盒,这个盒子棱数一共有 条.17.下面的框图表示了小明解方程3(x +5)+x =﹣5的流程:其中,步骤“③”的依据是 .18.已知1<x <a ,写一个符合条件的x (用含a 的代数式表示): .三、解答题:(本大题共9个小题,共78分.解答应写出文字说明、证明过程或演算步骤.)19.(本题4分)计算:(﹣3.2)+12.5+(﹣16.8)﹣(﹣2.5).20.(本题4分)化简:(x +2)﹣(3﹣2x ).21.(本题4分)解方程:3x ﹣2=4+x .22.(本题5分)根据下列语句,画出图形.如图,已知四点A ,B ,C ,D .①画直线AB ;②连接AC 、BD ,相交于点O ;③画射线AD ,BC ,交于点P .23.(本题5分)解方程:36231=+--x x24.(本题6分)如图,是由6个大小相同的小立方体块搭建的几何体,其中每个小正方体的棱长为1厘米.请按要求在方格内分别画出从这个几何体的三个不同方向看到的形状图.25.(本题6分)先化简,再求值:xy +2y 2+2(x 2﹣y 2)﹣2(x 2﹣xy ),其中x =﹣3,y =2.26.(本题6分)有8筐白菜,以每筐25千克为标准,超过的千克数记作正数,不足的千克数记作负数,称后的记录如下:(1)与标准重量比较,8筐白菜总计超过或不足多少千克?(2)若白菜每千克售价2元,则出售这8筐白菜可卖多少元?27.(本题8分)某学校计划在八年级开设“折扇”“刺绣”“剪纸”“陶艺”四门校本课程,要求每人必须参加,并且只能选择其中一门课程,为了解学生对这四门课程的选择情况,学校从八年级全体学生中随机抽取部分学生进行问卷调查,并根据调查结果绘制成如图所示的条形统计图和扇形统计图.(部分信息未给出)请你根据以上信息解决下列问题:(1)参加问卷调查的学生人数为名,补全条形统计图(画图并标注相应数据);(2)“陶艺”课程所对应的扇形圆心角的度数是°?(3)若该校八年级一共有1000名学生,试估计选择“刺绣”课程的学生有多少名?28.(本题8分)某校七年级(1)班想买一些运动器材供班上同学大课间活动使用,班主任安排班长去商店买篮球和排球,下面是班长与售货员的对话:班长:阿姨,您好!售货员:同学,你好,想买点什么?根据这段对话,请你求出篮球和排球的单价各是多少元?29.(本题10分)阅读下面材料:数学课上,老师给出了如下问题如图1,∠AOB=80°,OC平分∠AOB,若∠BOD=20°,请你补全图形,并求∠COD的度数.以下是小明的解答过程:解:如图2,因为OC平分∠AOB,∠AOB=80°,所以∠BOC=∠AOB=°.因为∠BOD=20°,所以∠COD=∠BOC + =°.小静说:“我觉得这个题有两种情况,小明考虑的是OD在∠AOB外部的情况,事实上,OD还可能在∠AOB的内部”.完成以下问题:(1)请你将小明的解答过程补充完整;(2)根据小静的想法,请你在图3中画出另一种情况对应的图形,并求出此时∠COD的度数.30.(本题12分)在数学综合实践活动课上,小亮同学借助于两根小木棒m、n研究数学问题:如图,他把两根木棒放在数轴上,木棒的端点A、B、C、D在数轴上对应的数分别为a、b、c、d,已知|a+5|+(b+1)2=0,c=3,d=8.(1)求m和n的长度;(2)小亮把木棒m、n同时沿x轴正方向移动,m、n的速度分别为4个单位/s和3个单位/s,设平移时间为t (s)①若在平移过程中原点O恰好是木棒m的中点,则t=(s);②在平移过程中,当木棒m、n重叠部分的长为2个单位长度时,求t的值.。

2023-2024学年七年级上册数学期末试卷及答案北师大版

2023-2024学年七年级上册数学期末试卷及答案北师大版

2023-2024学年七年级上册数学期末试卷及答案北师大版一、单选题1.计算314 +(–2 35 )+5 34 +(–8 25 )时,运算律用得最为恰当的是( )A .[3 14 +(–2 35 )]+[5 34 +(–8 25 )]B .(3 14 +5 34 )+[–2 35 +(–8 25 )]C .[3 14 +(–8 25 )]+(–2 35 +5 34 )D .(–2 35 +5 34 )+[3 14 +(–8 25)]2.以下调查中,适宜全面调查的是( )A .调查某批次汽车的抗撞击能力B .调查某市居民日平均用水量C .调查全国春节联欢晚会的收视率D .调查某班学生的身高情况3.把一条弯曲的高速路改为直道,可以缩短路程,其道理用几何知识解释为( ) A .两点之间,线段最短B .点到直线上所有点的连线中,垂线段最短C .两点确定一条直线D .平面内过一有且只有一条直与已知直线垂直4.下列计算,结果正确的是( ) A .4a 2b ﹣5ab 2=﹣a 2﹣b B .5a 2+3a 2=8a 4C .2x+3y =5xyD .3xy ﹣5yx =﹣2xy5.下列运算中,正确的是( )A .3x+2y=5xyB .4x-3x=1C .2ab-ab=abD .2a+a=2a 26.某同学解方程 513x x -=+ 时,把“ ”处的系数看错了,解得 4x =- ,他把“ ”处的系数看成了( ) A .4B .9-C .6D .6-7.如图,点A ,B 在数轴上,点O 为原点,OA OB =.按如图所示方法用圆规在数轴上截取BC AB =,若点A 表示的数是a ,则点C 表示的数是( )A .2aB .3a -C .3aD .2a-8.用火柴棒按右面的方式拼图形,①中有7根火柴棒,②中有12根火柴棒,③中有17根火柴棒……,则图形⑩中火柴棒的根数是( )A .42B .47C .52D .579.下列运用等式的性质对等式进行的变形中,错误的是( ) A .若m =n ,则mp =npB .若a (|x|+1)=b (|x|+1),则a =bC .若a =b ,则a b c c=D .若x =y ,则x ﹣2=y ﹣210.已知有理数a ≠1,我们把11a - 称为a 的差倒数,如:2的差倒数是 112- =-1,-1的差倒数 11(1)-- = 12.如果a 1=-2,a 2是a 1的差倒数,a 3是a 2的差倒数,a 4是a 3的差倒数……依此类推,那么a 1+a 2+……+a 100的值是( ) A .7.35B .-7.5C .5.5D .-5.5二、填空题11.若a 2b 10++-=,则3b 2a -的值是 .12.如图,点O 在直线 AB 上, OD OE ⊥ ,垂足为O , OC 是 DOB ∠ 的平分线,若 70AOD ∠=︒ ,则 COE ∠= 度.13.已知点C 是直线AB 上一点,且AC :BC =7:3,若AB =10,则AC = .14.下列图形均是用长度相同的火柴棒按一定的规律搭成,搭第1个图形需要4根火柴棒,搭第2个图形需要10根火柴棒,…,依此规律,搭第10个图形需要 根火柴棒.15.如图,点B 1在直线l :y =12x 上,点B 1的横坐标为2,过点B 1作B 1A 1⊥l ,交x 轴于点A 1,以A 1B 1为边,向右作正方形A 1B 1B 2C 1,延长B 2C 1交x 轴于点A 2;以A 2B 2为边,向右作正方形A 2B 2B 3C 2,延长B 3C 2交x 轴于点A 3;以A 3B 3为边,向右作正方形A 3B 3B 4C 3,延长B 4C 3交x 轴于点A 4;…;照这个规律进行下去,则第n 个正方形A n B n B n+1∁n 的边长为 (结果用含正整数n 的代数式表示).三、计算题16.计算: (1)()45834⎛⎫-⨯-⨯ ⎪⎝⎭(2)()412637921⎛⎫-+⨯- ⎪⎝⎭17.已知x+y= 15 ,xy=﹣ 12.求代数式(x+3y ﹣3xy )﹣2(xy ﹣2x ﹣y )的值. 四、解答题18.出租车司机小王某天上午的营运全是在东西方向的大道上运行的,若规定向东为正,向西为负,他这天上午的行车里程如下:10,-3,2,-1,8,-6,-2,12,3,-4(单位:km ).(1)将最后一位乘客送到目的地时,小王离最开始的出发点有多远?在出发点的哪个方向?(2)若汽车的耗油量是每千米耗油0.75(L ),这天上午小王共耗油多少升?19.把下列各数填入相应的横线上:4,122-,12-,3.14159,0,25负数:{ };非负数:{ };整数:{ };分数:{ }。

北师大版七年级数学上册全册综合测试试题【有答案】

北师大版七年级数学上册全册综合测试试题【有答案】

七年级数学上册全册综合测试试题一.选择题(共12小题,满分36分,每小题3分)1.如图,下列选项中不是正六棱柱三视图的是()A.B.C.D.2.截止到2019年9月3日,电影《哪吒之魔童降世》的累计票房达到了47.24亿,47.24亿用科学记数法表示为()A.47.24×109B.4.724×109C.4.724×105D.472.4×105 3.下列说法正确的是()A.的系数是﹣5B.单项式x的系数为1,次数为0C.xy+x﹣1是二次三项式D.﹣22xyz2的次数是64.按图1~图4的步骤作图,下列结论错误的是()A.∠AOB=∠AOP B.∠AOP=∠BOPC.2∠BOP=∠AOB D.∠BOP=2∠AOP5.2019年是大家公认的5G商用元年,移动通讯行业人员想了解5G手机的使用情况,在某高校随机对500位大学生进行了问卷调查,下列说法正确的是()A.该调查方式是普查B.该调查中的个体是每一位大学生C.该调查中的样本是被随机调查的500位大学生5G手机的使用情况D.该调查中的样本容量是500位大学生6.点A,B,C在同一直线上,已知AB=3cm,BC=1cm,则线段AC的长是()A.2cm B.3cm C.4cm D.2cm或4cm7.计算(﹣2)3﹣(﹣2)2的结果是()A.﹣4B.4C.12D.﹣128.α,β都是钝角,有四名同学分别计算(α+β),却得到了四个不同的结果,分别为26°,50°,72°,90°,老师判作业时发现其中有正确的结果,那么计算正确的结果是()A.26°B.50°C.72°D.90°9.右图是“大润发”超市中“飘柔”洗发水的价格标签,一服务员不小心将墨水滴在标签上,使得原价看不清楚,请你帮忙算一算,该洗发水的原价为()A.22元B.23元C.24元D.26元10.“某幼儿园给小朋友分苹果,若每个小朋友分3个则剩1个;若每个小朋友分4个则少2个,问苹果有多少个?”若设共有x个苹果,则列出的方程是()A.3x+1=4x﹣2B.3x﹣1=4x+2C.D.11.如图,AB∥CD,AC⊥BC,CE⊥AB于点E.则图中与∠1互余的角的个数是()A.2B.3C.4D.612.如图,△ABC的面积为1.分别倍长(延长一倍)AB,BC,CA得到△A1B1C1.再分别倍长A1B1,B1C1,C1A1得到△A2B2C2.……按此规律,倍长2018次后得到的△A2018B2018C2018的面积为()A.62017B.62018C.72018D.82018二.填空题(共4小题,满分12分,每小题3分)13.如图是一个正方体的表面展开图,若正方体中相对的面上的数互为相反数,则2x﹣y的值为.14.若7a x b2与﹣a3b y的和为单项式,则y x=.15.如图,直线l∥m,将含有45°角的三角板ABC的直角顶点C放在直线m上,则∠1+∠2的度数为.16.轮船沿江从A港顺流行驶到B港,比从B港返回A港少用3小时,若船速为26千米/小时,水速为2千米/时,则A港和B港相距千米.三.解答题(共7小题)17.设x、y是任意两个有理数,规定x与y之间的一种运算“⊕”为:x⊕y=(1)求1⊕(﹣1)的值;(2)若(m﹣2)⊕(m+3)=2,求m的值.18.先化简再求值:2(x2y﹣xy2﹣1)﹣(3x2y﹣3xy2﹣3),其中x=1,y=﹣219.我市正在努力创建“全国文明城市”,为进一步营造“创文”氛围,我市某学校组织了一次“创文知识竞赛”,竞赛题共10题.竞赛活动结束后,学校团委随机抽查部分考生的考卷,对考生答题情况进行分析统计,发现所抽査的考卷中答对题量最少为6题,并且绘制了如下两幅不完整的统计图.请根据统计图提供的信息解答以下问题:(1)本次抽查的样本容量是;(2)在扇形统计图中,m=,n=.(3)补全条形统计图.20.如图,已知∠BOC=2∠AOC,OD平分∠AOB,且∠COD=20°,求∠AOB的度数.21.如图,一条直线分别与直线BE、直线CE、直线CF、直线BF相交于点A,G,D,H 且∠1=∠2,∠B=∠C(1)找出图中相互平行的线,说说它们之间为什么是平行的;(2)证明:∠A=∠D.22.问题一:如图①,已知AC=160km,甲,乙两人分别从相距30km的A,B两地同时出发到C地.若甲的速度为80km/h,乙的速度为60km/h,设乙行驶时间为x(h),两车之间距离为y(km)(1)当甲追上乙时,x=.(2)请用x的代数式表示y.问题二:如图②,若将上述线段AC弯曲后视作钟表外围的一部分,线段AB正好对应钟表上的弧AB(1小时的间隔),易知∠AOB=30°.(1)分针OD指向圆周上的点的速度为每分钟转动km,时针OE指向圆周上的点的速度为每分钟转动°;(2)若从2:00起计时,求几分钟后分针与时针第一次重合?23.如图,线段AB=10,动点P从点A出发,以每秒1个单位的速度,沿线段AB向终点B运动,同时,另一个动点Q从点B出发,以每秒3个单位的速度在线段AB上来回运动(从点B向点A运动,到达点A后,立即原速返回,再次到达B点后立即调头向点A 运动.)当点P到达B点时,P,Q两点都停止运动.设点P的运动时间为x.(1)当x=3时,线段PQ的长为.(2)当P,Q两点第一次重合时,求线段BQ的长.(3)是否存在某一时刻,使点Q恰好落在线段AP的中点上?若存在,请求出所有满足条件的x的值;若不存在,请说明理由.参考答案一.选择题(共12小题,满分36分,每小题3分)1.解:正六棱柱三视图分别为:三个左右相邻的矩形,两个左右相邻的矩形,正六边形.故选:A.2.解:47.24亿=4724 000 000=4.724×109.故选:B.3.解:A的系数是﹣,故A错误;B单项式x的系数为1,次数为1,故B错误;C xy+x﹣1是二次三项式,故C正确;D﹣22xyz2的次数是4,故D错误;故选:C.4.解:∵OP是∠AOB的平分线,∴∠AOB=2∠AOP=2∠BOP,∠AOP=∠BOP=∠AOB,∴选项A、B、C均正确,选项D错误.故选:D.5.解:A、该调查方式是普查,说法错误,应为抽样调查;B、该调查中的个体是每一位大学生,说法错误,该调查中的个体是每一位大学生5G手机的使用情况;C、该调查中的样本是被随机调查的500位大学生5G手机的使用情况,说法正确;D、该调查中的样本容量是500位大学生,说法错误,应为该调查中的样本容量是500;故选:C.6.解:本题有两种情形:(1)当点C在线段AB上时,如图,AC=AB﹣BC,又∵AB=3cm,BC=1cm,∴AC=3﹣1=2cm;(2)当点C在线段AB的延长线上时,如图,AC=AB+BC,又∵AB=3cm,BC=1cm,∴AC=3+1=4cm.故线段AC=2cm或4cm.故选:D.7.解:原式=﹣8﹣4=﹣12.故选:D.8.解:∵α、β都是钝角,∴90°<α<180°,90°<β<180°,∴180°<α+β<360°,∴30°<(α+β)<60°,∴计算正确的结果是50°.故选:B.9.解:设洗发水的原价为x元,由题意得:0.8x=19.2,解得:x=24.故选:C.10.解:∵设共有x个苹果,∴每个小朋友分3个则剩1个时,小朋友的人数是:,若每个小朋友分4个则少2个时,小朋友的人数是:,∴,故选:C.11.解:如图所示:∵AB∥CD,∴∠1=∠2,又∵EC⊥AB,∴EC⊥CD,∴∠2+∠ACE=90°,∴∠1+∠ACE=90°,∴∠1与∠ACE互余;又∵AC⊥BC,∴∠ACB=90°,∴∠CAB+∠B=90°,又∵∠1=∠CAB,∴∠1+∠B=90°,∴∠1与∠B互余;又∵AB∥CD,∴∠B=∠3,∴∠1+∠3=90°,∴∠1与∠3互余,综合所述,图中与∠1互余的角的个数为3,故选:B.12.解:连接AB1、BC1、CA1,根据等底等高的三角形面积相等,△A1BC、△A1B1C、△AB1C、△AB1C1、△ABC1、△A1BC1、△ABC的面积都相等,所以,S△A1B1C1=7S△ABC,同理S△A2B2C2=7S△A1B1C1,=72S△ABC,依此类推,S△A2018B2018C2018=72018S△ABC,∵△ABC的面积为1,∴S△A2018B2018C2018=72018.故选:C.二.填空题(共4小题,满分12分,每小题3分)13.解:∵“5”与“2x﹣3”是对面,“x”与“y”是对面,∴2x﹣3=﹣5,y=﹣x,解得x=﹣1,y=1,∴2x﹣y=﹣2﹣1=﹣3.故答案为:﹣3.14.解:∵7a x b2与﹣a3b y的和为单项式,∴7a x b2与﹣a3b y是同类项,∴x=3,y=2,∴y x=23=8.故答案为:8.15.解:过点B作BD∥l,∵直线l∥m,∴BD∥l∥m,∴∠4=∠1,∠2=∠3,∴∠1+∠2=∠3+∠4=∠ABC,∵∠ABC=45°,∴∠1+∠2=45°.故答案为:45°.16.解:设A港和B港相距x千米.根据题意,得,解之得x=504.故填504.三.解答题(共7小题)17.解:(1)根据题中的新定义得:原式=3×1+4×(﹣1)﹣5=3﹣4﹣5=﹣6;(2)显然m﹣2<m+3,利用题中的新定义化简已知等式得:4(m﹣2)+3(m+3)﹣5=2,去括号得:4m﹣8+3m+9﹣5=2,移项合并得:7m=6,解得:m=.18.解:原式=2x2y﹣2xy2﹣2﹣3x2y+3xy2+3=﹣x2y+xy2+1,当x=1,y=﹣2时,原式=2+4+1=7.19.解:(1)本次抽查的样本容量是5÷10%=50,故答案为50;(2)×100=16,即m=16,1﹣10%﹣16%﹣24%﹣20%=30%,即n=30,故答案为16,30;(3)答对9题的人数:50×30%=15(人),答对10题的人数:50×20%=10(人).条形统计图补充如下:20.解:设∠AOC=x,则∠BOC=2x.∴∠AOB=3x.又OD平分∠AOB,∴∠AOD=1.5x.∴∠COD=∠AOD﹣∠AOC=1.5x﹣x=20°.∴x=40°∴∠AOB=120°.21.解:(1)CE∥BF,AB∥CD.理由:∵∠1=∠2,∴CE∥FB,∴∠C=∠BFD,∵∠B=∠C,∴∠B=∠BFD,∴AB∥CD;(2)由(1)可得AB∥CD,∴∠A=∠D.22.解:问题一:(1)根据题意得:(80﹣60)x=30,解得:x=1.5.故答案为:1.5h.(2)当0≤x≤1.5时,y=30﹣(80﹣60)x=﹣20x+30;当1.5<x≤2时,y=80x﹣(60x+30)=20x﹣30;当2<x≤时,y=160﹣60x﹣30=﹣60x+130.∴两车之间的距离y=.问题二:(1)30÷5=6(km),30÷60=0.5(km).故答案为:6;0.5.(2)设经历t分钟后分针和时针第一次重合,根据题意得:6t﹣0.5t=30×2,解得:t=.答:从2:00起计时,分钟后分针与时针第一次重合.23.解:(1)根据题意,当x=3时,P、Q位置如下图所示:此时:AP=3,BQ=3×3=9,AQ=AB﹣BQ=10﹣9=1,∴PQ=AP﹣AQ=2;(2)设x秒后P,Q第一次重合,得:x+3x=10解得:x=2.5,∴BQ=3x=7.5;(3)设x秒后,点Q恰好落在线段AP的中点上,根据题意,①当点Q从点B出发未到点A时,即0<x<时,有x=2(10﹣3x),解得;②当点Q到达点A后,从A到B时,即<x<时,有x=2(3x﹣10),解得x=4;③当点Q第一次返回到B后,从B到A时,即<x<10时,有x=2(30﹣3x),解得;综上所述:当x=或x=4或x=时,点Q恰好落在线段AP的中点上.故答案为:(1)2.。

《第四章 基本平面图形》试卷及答案_初中数学七年级上册_北师大版_2024-2025学年

《第四章 基本平面图形》试卷及答案_初中数学七年级上册_北师大版_2024-2025学年

《第四章基本平面图形》试卷(答案在后面)一、选择题(本大题有10小题,每小题3分,共30分)1、在下列图形中,哪一个不是由线段构成的?A. 正方形B. 圆形C. 三角形D. 矩形2、如果两条直线相交形成四个角,其中一个角是直角,那么其余三个角分别是:A. 一个锐角和两个钝角B. 三个直角C. 一个直角和两个锐角D. 一个钝角和两个锐角3、下列图形中,不属于平行四边形的是()A. 矩形 B、菱形 C、梯形 D、正方形4、已知平行四边形ABCD,对角线AC与BD相交于点O,若OA=5cm,OB=7cm,则OD 的长度为()A. 5cm B、7cm C、10cm D、14cm5、在以下选项中,哪一项正确描述了两条直线在同一平面上的关系?A. 平行B. 相交C. 重合D. 平行或相交或重合6、下列哪一个图形不是由线段组成的?A. 正方形B. 圆形C. 三角形D. 矩形7、在下列图形中,是轴对称图形的是()A. 等边三角形B. 等腰梯形C. 矩形D. 正五边形8、已知等腰三角形ABC中,底边BC=6cm,腰AB=AC=8cm,那么三角形ABC的周长是()A. 22cmB. 24cmC. 26cmD. 28cm9、在下列选项中,哪一项正确描述了线段、射线和直线之间的区别?A. 线段有两个端点;射线有一个端点,无限延伸;直线没有端点,双向无限延伸。

B. 线段和射线都有两个端点;直线没有端点,但只向一个方向无限延伸。

C. 线段有一个端点;射线有两个端点;直线没有端点,双向无限延伸。

D. 线段、射线和直线都没有端点,它们都向两个方向无限延伸。

10、给定平面上不重合的三个点A、B、C,如果通过这三个点中的任意两个可以画一条直线,那么最多能画出多少条不同的直线?A. 1B. 2C. 3D. 无数二、计算题(本大题有3小题,每小题5分,共15分)第一题:在直角坐标系中,点A(2,3)关于x轴的对称点为A’,关于y轴的对称点为B,关于原点的对称点为C。

北师大版(完整版)七年级数学上册期末试卷及答案

北师大版(完整版)七年级数学上册期末试卷及答案

北师大版(完整版)七年级数学上册期末试卷及答案一、选择题1.若式子()222mx 2x 83x nx -+--的值与x 无关,n m 是( )A .49B .32C .54D .942.已知整数1a 、2a 、3a 、4a 、…满足下列条件:11a =-,212a a =-+,323a a =-+,434a a =-+,…,11n n a a n +=-++(n 为正整数)依此类推,则2020a 的值为()A .-1009B .-2019C .-1010D .-20203.下列图形是由同样大小的小圆圈组成的“小雨伞”,其中第1个图形中一共有6个小圆圈,第2个图形中一共有11个小圆圈,第3个图形中一共有16个小圆圈,按照此规律下去,则第100个图形中小圆圈的个数是( )A .500个B .501个C .602个D .603个4.下列图形都是由同样大小的黑色正方形纸片组成,其中第1个图中有3张黑色正方形纸片,第2个图中有5张黑色正方形纸片,第3个图中有7张黑色正方形纸片,…,按此规律排列下去第n 个图中黑色正方形纸片的张数为( ) ….A .4n+1B .3n+1C .3nD .2n+15.下列说法中正确的是( ) A .0不是单项式 B .316X π的系数为16C .27ah的次数为2 D .365x y +-不是多项式6.如图表示的是用火柴棒搭成的一个个图形,第1个图形用了5根火柴,第2个图形用了8根火柴,…,照此规律,用295根火柴搭成的图形是( )A .第80个图形B .第82个图形C .第84个图形D .第86个图形7.下列四个选项中,不是正方体展开图形的是( )A .B .C .D .8.计算22221111 (11223320152015)++++++++的结果为( ) A .1B .20142015C .20152016D .201620159. 已知:如图,C 是线段AB 的中点,D 是线段BC 的中点,AB =20 cm ,那么线段AD 等于( )A .15 cmB .16 cmC .10 cmD .5 cm10.下列方程为一元一次方程的是( ) A .x+2y =3B .y+3=0C .x 2﹣2x =0D .1y+y =0 11.有理数,a b 在数轴上的位置如图所示,则下列结论正确的是( )A .0a b +>B .0a b -<C .b a >D .0ab <12.下列计算正确的是( )A .b ﹣3b =﹣2B .3m +n =4mnC .2a 4+4a 2=6a 6D .﹣2a 2b +5a 2b =3a 2b 13.一组数据的最小值为6,最大值为29,若取组距为5,则分成的组数应为( )A .4B .5C .6D .714.如图,在1000个“○”中依次填入一列数字1231000,,,m m m m 使得其中任意四个相邻“○”中所填数字之和都等于10-,已知251m x =-,9992m x =-,则x 的值为( )A .1B .1-C .2D .2-15.已知线段AB ,C 是直线AB 上的一点,AB=8,BC=4,点M 是线段AC 的中点,则线段AM 的长为( ) A .2cm B .4cmC .2cm 或6cmD .4cm 或6cm16.如图所示的四个几何体中,从正面、上面、左面看得到的平面图形都相同的有( )A .1个B .2个C .3个D .4个17.已知线段AB=m ,BC=n ,且m 2﹣mn=28,mn ﹣n 2=12,则m 2﹣2mn+n 2等于( )A .49B .40C .16D .918.把方程13124x x -+=-去分母,得( ) A .2(1)1(3)x x -=-+ B .2(1)4(3)x x -=++C .2(1)43x x -=-+D .2(1)4(3)x x -=-+19.求1+2+22+23+…+22019的值,可令S =1+2+22+23+…+22019,则2S =2+22+23+…+22019+22020因此2S -S =22020-1.仿照以上推理,计算出1+5+52+53+…+52019的值为( ) A .52019-1B .52020-1C .2020514-D .2019514-20.若m 5=,n 3=,且m n 0+<,则m n -的值是( ) A .8-或2-B .8±或2±C .8- 或2D .8或221.甲、乙两人分别从A B 、两地同时骑自行车相向而行,2小时后在途中相遇,相遇后,甲、乙骑自行车的速度都提高了1千米/小时,当甲到达地后立刻以原路和提高后的速度向地返行,乙到达A 地后也立刻以原路和提高后的速度向B 地返行.甲、乙两人在开始 出发后的5小时36分钟又再次相遇,则A B 、两地的距离是( ) A .24千米B .30千米C .32千米D .36千米22.在数轴上,a ,b 所表示的数如图所示,下列结论正确的是( )A .a +b >0B .|b |<|a |C .a ﹣b >0D .a •b >023.如图1是一个正方体的展开图,该正方体按如图2所示的位置摆放,此时这个正方体朝下的一面的字是( )A .中B .国C .梦D .强24.一辆客车和一辆卡车同时从A 地出发沿同一公路同向行驶,客车的行驶速度是70km /h ,卡车的行驶速度是60km /h ,客车经过x 小时到达B 地,卡车比客车晚到1h .根据题意列出关于x 的方程,正确的是( ) A .16070x x -= B .106070x x+-= C .70x =60x+60 D .60x =70x-7025.“比a 的3倍大5的数”用代数式表示为( ) A .35a +B .3(5)a +C .35a -D .3(5)a -26.如图,王老师将某班近三个月跳跃类项目的训练情况做了统计,并绘制了折线统计图,则根据图中信息以下判断错误的是( )A .男女生5月份的平均成绩一样B .4月到6月,女生平均成绩一直在进步C .4月到5月,女生平均成绩的增长率约为8.5%D .5月到6月女生平均成绩比4月到5月的平均成绩增长快 27.方程114xx --=-去分母正确的是( ). A .x-1-x=-1B .4x-1-x=-4C .4x-1+x=-4D .4x-1+x=-128.下列说法错误的是( ) A .25mn -的系数是25-,次数是2 B .数字0是单项式 C .14ab 是二次单项式D .23xy π的系数是13,次数是4 29.已知如图,数轴上的A 、B 两点分别表示数a 、b ,则下列说法正确的是( ).A .a b >-B .22a b <C .0ab >D .a b b a -=-30.观察下列算式:122=,224=,328=,4216=,5232=,6264=,72128=,82256=,…….根据上述算式中的规律,你认为20192的个位数字是( ) A .2 B .4 C .6 D .8【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】 【分析】直接利用去括号法则化简,再利用合并同类项法则计算得出答案. 【详解】解:∵式子2mx 2-2x+8-(3x 2-nx )的值与x 无关, ∴2m-3=0,-2+n=0, 解得:m=32,n=2, 故m n =(32)2= 94. 故选D . 【点睛】此题主要考查了合并同类项,去括号,正确得出m ,n 的值是解题关键.2.C解析:C 【解析】 【分析】依次计算1a 、2a 、3a 、4a 、…,得到规律性答案,即可得到2020a 的值. 【详解】11a =-,212a a =-+=-1, 323a a =-+=-2, 434a a =-+=-2, 5453a a =-+=-,6563a a =-+=-,,由此可得:每两个数的答案是相同的,结果为-2n(n 为偶数), ∴202010102=, ∴2020a 的值为-1010, 故选:C. 【点睛】此题考查代数式规律探究,计算此类题的关键是依次计算得出答案的规律并总结出答案与序数间的关系式,由此来解答问题.3.B解析:B 【解析】 【分析】观察图形可知,第1个图形有3316+⨯=个小圆圈,第2个图形有53211+⨯=个小圆圈,第3个图形有73316+⨯=个小圆圈,……,可以推测,第n 个图形有21351n n n ++=+个小圆圈. 【详解】解:∵第1个图形有3316+⨯=个小圆圈, 第2个图形有53211+⨯=个小圆圈, 第3个图形有73316+⨯=个小圆圈, …∴第n 个图形有21351n n n ++=+个小圆圈.∴第100个图形中小圆圈的个数是:51001501⨯+=. 故选:B . 【点睛】本题考查的知识点是规律型-图形的变化类,解题的关键是找出图形各部分的变化规律后直接利用规律求解,要善于用联想来解决此类问题.4.D解析:D 【解析】 【分析】根据图形的规律可知,从第二个图形开始,每个图形中的黑色正方形纸片数比前一个图形多2个,由此可推出结果. 【详解】第1个图中有3张黑色正方形纸片, 第2个图中有5张黑色正方形纸片,第3个图中有7张黑色正方形纸片,…,依次类推,第n个图中黑色正方形纸片的张数为2n+1,故选:D.【点睛】本题考查了图形的规律,代数式表示图形的个数,掌握图形的规律是解题的关键.5.C解析:C【解析】【分析】根据单项式与多项式的概念即可求出答案.【详解】解:(A)0是单项式,故A错误;(B)πx3的系数为,故B错误;(D)3x+6y-5是多项式,故D错误;故选C.【点睛】本题考查单项式与多项式,解题的关键是熟练运用单项式与多项式的概念,本题属于基础题型.6.C解析:C【解析】【分析】根据图形可以看出第1个图形有5根火柴棒,第2个图形有8根火柴棒,第3个图形有12根火柴棒,第4个图形有15根火柴棒,不难看出奇数个图形的火柴棒个数为5+7(n-1)×12,偶数个图形的火柴棒个数,8+7(n-2)×12,由此可解决问题.【详解】解:根据图形可以看出第1个图形有5根火柴棒,第2个图形有8根火柴棒,第3个图形有12根火柴棒,第4个图形有15根火柴棒,不难看出奇数个图形的火柴棒个数为5+7(n-1)×12,偶数个图形的火柴棒个数,8+7(n-2)×12,若5+7(n-1)×12=295,没有整数解,若8+7(n-2)×12=295,解得n=84,即用295根火柴搭成的图形是第84个图形, 故选:C . 【点睛】本题考查了根据图象探索规律问题,从简单的情形考虑,发现规律解决问题.7.A解析:A 【解析】 【分析】根据平面图形的折叠及正方体的展开图解答,中间四联方,上下各一个,可以围成正方体. 【详解】正方体共有11种表面展开图, B 、C 、D 能围成正方体;A 、不能,折叠后有两个面重合,不能折成正方体. 故选:A . 【点睛】本题考查的是学生的立体思维能力.解题时勿忘记四棱柱的特征及正方体展开图的各种情形.8.C解析:C 【解析】 【分析】根据数字的变化寻找规律,再根据有理数的混合运算即可求解. 【详解】解:22221111···11223320152015++++++++ =21111261220152015+++++ =111111112233420152016-+-+-++-= 112016-=20152016 故选:C . 【点睛】本题考查了数字的变化规律、有理数的混合运算,解决本题的关键是寻找数字的变化规律.9.A解析:A 【解析】【分析】根据C点为线段AB的中点,D点为BC的中点,可知AC=CB=12AB,CD=12CB,AD=AC+CD,又AB=4cm,继而即可求出答案.【详解】∵点C是线段AB的中点,AB=20cm,∴BC=12AB=12×20cm=10cm,∵点D是线段BC的中点,∴BD=12BC=12×10cm=5cm,∴AD=AB-BD=20cm-5cm=15cm.故选A.【点睛】本题考查了两点间的距离的知识,注意理解线段的中点的概念.利用中点性质转化线段之间的倍分关系是解题的关键.10.B解析:B【解析】【分析】根据一元一次方程的定义即可求出答案.【详解】解:只含有一个未知数,且未知数的高次数是1,等号两面都是整式,这样的方程叫做一元一次方程,A. x+2y=3,两个未知数;B. y+3=0,符合;C. x2﹣2x=0,指数是2;D. 1y+y=0,不是整式方程.故选:B.【点睛】考核知识点:一元一次方程.理解定义是关键.11.B解析:B【解析】【分析】先根据点在数轴上的位置,判断出a、b的正负,然后再比较出a、b的大小,最后结合选项进行判断即可. 【详解】解:由点在数轴上的位置可知:a <0,b <0,|a|>|b|, A 、∵a <0,b <0,∴a+b <0,故A 错误; B 、∵a <b ,∴a-b <0,故B 正确; C 、|a|>|b|,故C 错误; D 、ab >0,故D 错误. 故选:B . 【点睛】本题主要考查的是绝对值、数轴、有理数的加法、减法、乘法运算,掌握运算法则是解题的关键.12.D解析:D 【解析】 【分析】根据合并同类项的法则即可求出答案. 【详解】A. b ﹣3b =﹣2b ,故原选项计算错误;B. 3m +n 不能计算,故原选项错误;C. 2a 4+4a 2不能计算,故原选项错误;D.﹣2a 2b +5a 2b =3a 2b 计算正确. 故选D . 【点睛】本题考查合并同类项的法则,解题的关键是熟练运用合并同类项的法则,本题属于基础题型.13.B解析:B 【解析】 【分析】用极差除以组距,如果商是整数,组数=这个整数加1,如果商不是整数,用进一法,确定组数; 【详解】∵296234.655-==, ∴分成的组数是5组. 故答案选B . 【点睛】本题主要考查了频数分布直方图,准确计算是解题的关键.14.C【解析】【分析】由于任意四个相邻数之和都是-10得到a1+a2+a3+a4=a2+a3+a4+a5,a5+a6+a7+a8=a6+a7+a8+a9,…,则a1=a5=a9=…=,利用同样的方法可得到a1=a5=a9=…=x-1,a2=a6=a10=…-7,a3=a7=a11=…=-2x,a4=a8=a12=…=0,所以已知a999=a3=-2x,a25=a1=x-1,由此联立方程求得x即可.【详解】∵a1+a2+a3+a4=a2+a3+a4+a5,a5+a6+a7+a8=a6+a7+a8+a9,…,∴a1=a5=a9=…=x-1,同理可得a2=a6=a10=…=-7,a3=a7=a11=…=-2x,a4=a8=a12= 0∵a1+a2+a3+a4=-10,∴x-1-7-2x+0=-10,解得:x=2.故答案为:2.【点睛】本题考查数字的变化规律,通过从一些特殊的数字变化中发现不变的因素或按规律变化的因素,然后推广到一般情况.15.C解析:C【解析】【分析】分类讨论:点C在线段AB上,点C在线段BC的延长线上,根据线段的和差,可得AC的长,根据线段中点的性质,可得AM的长.【详解】解:①当点C在线段AB上时,由线段的和差,得AC=AB-BC=8-4=4(cm),由线段中点的定义,得AM=12AC=12×4=2(cm);②点C在线段BC的延长线上,由线段的和差,得AC=AB+BC=8+4=12(cm),由线段中点的定义,得AM=12AC=12×12=6(cm);故选C.【点睛】本题考查两点间的距离,利用了线段的和差,线段中点的定义;解题关键是进行分类讨论.16.B解析:B【分析】分别找出每个图形从三个方向看所得到的图形即可得到答案.【详解】解:①正方体从上面、正面、左侧三个不同方向看到的形状都是正方形,故此选项正确; ②球从上面、正面、左侧三个不同方向看到的形状都是圆,故此选项正确;③圆锥,从左边看是三角形,从正面看是三角形,从上面看是圆,故此选项错误; ④圆柱从左面和正面看都是矩形,从上边看是圆,故此选项错误;故选B .【点睛】本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.17.C解析:C【解析】【分析】将两个式子相减后即可求解.【详解】两式相减得:m 2﹣mn-mn+ n 2=28-12,即 m 2﹣2mn+n 2=16,故选C.【点睛】本题考查了整式加减的应用,正确进行整式的加减是解题的关键..18.D解析:D【解析】【分析】根据解一元一次方程去分母的相关要求,结合等式的基本性质2,对等式两边同时乘以分数的最小公倍数4即可求解.【详解】等式两边同乘4得:2(1)4(3)x x -=-+,故选:D.【点睛】本题主要考查了一元一次方程求解中的去分母,熟练掌握使用等式的基本性质2进行去分母是解决本题的关键.19.C解析:C【解析】根据题目信息,设S=1+5+52+53+…+52019,表示出5S=5+52+53+…+52020,然后相减求出S即可.【详解】根据题意,设S=1+5+52+53+…52019,则5S=5+52+53+…52020,5S-S=(5+52+53+…52020)-(1+5+52+53+…52019),4S=52020-1,所以,1+5+52+53+…+52019 =2020 514故选C.【点睛】本题考查了有理数的乘方,读懂题目信息,理解等比数列的求和方法是解题的关键.20.A解析:A【解析】【分析】根据题意,利用绝对值的代数意义求出m与n的值,即可确定出原式的值.【详解】解:∵|m|=5,|n|=3,且m+n<0,∴m=−5,n=3或m=−5,n=−3,∴m−n=−8或m-n=-2故选A.【点睛】本题考查了有理数的加减法和绝对值的代数意义.21.D解析:D【解析】【分析】第一次相遇时,甲、乙的速度和为xkm/h,由第一次到第二次相遇的过程中,甲,乙的路程和是第一次相遇时甲,乙路程和的两倍.可列方程,即可求解.【详解】解:设第一次相遇时,甲、乙的速度和为xkm/h,5小时36分钟=535(小时)由题意可得:2×2x=(535-2)(x+2),解得:x=18,∴A、B两地的距离=2×18=36(km),【点睛】本题考查了一元一次方程的应用,理解题意,找到正确的等量关系是本题的关键.22.C解析:C【解析】【分析】先根据数轴判定a 、b 、a+b 、a-b 的正负,然后进行判定即可.【详解】解:由数轴可得,b <﹣2<0<a <2,∴a +b <0,故选项A 错误,|b |>|a |,故选项B 错误,a ﹣b >0,故选项C 正确,a •b <0,故选项D 错误,故答案为C .【点睛】本题考查了数轴的应用、绝对值、正数和负数的相关知识,解题的关键在于根据数轴判定字母和代数式的正负.23.B解析:B【解析】【分析】动手进行实验操作,或者在头脑中模拟(想象)折纸、翻转活动即可求解.【详解】解:由图1可得,“中”和第三行的“国”相对;第二行“国”和“强”相对;“梦”和“梦”相对;由图2可得,此时小正方体朝下面的字即为“中”的相对面对应的字,即为“国”. 故选:B .【点睛】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.24.C解析:C【解析】【分析】根据A 地到B 地的路程相等,可构造等量关系7060(1)x x =+,即可得出答案.【详解】解:根据题意,客车从A 地到B 地的路程为:70S x =卡车从A 地到B 地的路程为:60(1)S x =+则7060(1)x x =+故答案为:C .【点睛】本题考查一元一次方程路程的应用题,注意设未知数后等量关系构成的条件,属于一般题型.25.A解析:A【解析】【分析】根据题意可以用代数式表示比a 的3倍大5的数,本题得以解决.【详解】解:比a 的3倍大5的数”用代数式表示为:3a +5,故选A .【点睛】本题考查列代数式,解题的关键是明确题意,列出相应的代数式.26.C解析:C【解析】【分析】男女生5月份的平均成绩均为8.9,据此判断A 选项;4月到6月,女生平均成绩依次为8.8、8.9、9.2,据此可判断B 选项;根据增长率的概念,结合折线图的数据计算,从而判断C 选项;根据女生平均成绩两端折线的上升趋势可判断D 选项.【详解】解:A .男女生5月份的平均成绩一样,都是8.9,此选项正确,不符合题意; B .4月到6月,女生平均成绩依次为8.8、8.9、9.2,其平均成绩一直在进步,此选项正确,不符合题意;C .4月到5月,女生平均成绩的增长率为8.98.8100% 1.14%8.8-⨯≈,此选项错误,符合题意;D .5月到6月女生平均成绩比4月到5月的平均成绩增长快,此选项正确,不符合题意; 故选:C .【点睛】本题考查折线统计图的运用,折线统计图表示的是事物的变化情况,解题的关键是根据折线图得出解题所需的数据及增长率的概念. 27.C解析:C【解析】1144(1)4414x x x x x x --=---=--+=- 方程左右两边各项都要乘以4,故选C28.D解析:D【解析】【分析】根据单项式系数、次数的定义逐一判断即可得答案.【详解】 A.25mn -的系数是25-,次数是2,正确,故该选项不符合题意, B.数字0是单项式,正确,故该选项不符合题意, C.14ab 是二次单项式,正确,故该选项不符合题意, D.23xy π的系数是3π,次数是3,故该选项说法错误,符合题意, 故选:D .【点睛】本题考查单项式系数、次数的定义,单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.单独一个数字也是单项式.熟练掌握定义是解题关键.29.D解析:D【解析】【分析】根据有理数a 、b 在数轴上的位置可得0,0,a b a b <>>,进一步即可根据绝对值的意义、乘方的意义对各选项进行判断.【详解】 解:由题意得:0,0,a b a b <>>,所以a b <-,22a b >,0ab <,a b b a -=-;所以选项A 、B 、C 的说法是错误的,选项D 的说法是正确的;故选:D .【点睛】本题考查了数轴、绝对值以及有理数的乘方等知识,属于基础题型,熟练掌握基本知识是解题的关键.30.D解析:D【解析】【分析】根据上述等式,得到结果的末位以四个数(2,4,8,6)依次循环,而2019除以4商504余3,故得到所求式子的末位数字为8.【详解】解:根据上述等式,得到结果的末位以四个数(2,4,8,6)依次循环,∵2019÷4=504…3,∴22019的末位数字是8.故选:D【点睛】本题考查有理数的乘方运算,属于规律型试题,弄清本题的规律是解题关键.。

北师大版七年级上册数学期末试卷及答案完整版

北师大版七年级上册数学期末试卷及答案完整版

数 学 试 卷 北 师 大 版 七 年 级 上 册一、精心选一选(每小题3分,共30分) 1.-21的相反数是( )A .2B .-2C .21 D .-212.下列式子正确的是( )A .-0.1>-0.01B .—1>0C .21<31D .-5<3 3. 沿图1中虚线旋转一周,能围成的几何体是下面几何体中的 ( )ABC D 图1 4.多项式12++xy xy 是( )A .二次二项式B .二次三项式C .三次二项式D .三次三项式5.桌上放着一个茶壶,4个同学从各自的方向观察,请指出图3右边的四幅图,从左至右分别是由哪个同学看到的( )A .①②③④B .①③②④C .②④①③D .④③①②6.数a ,b 在数轴上的位置如图2所示,则b a +是( )A .正数B .零C .负数D .都有可能7. 每天供给地球光和热的太阳与我们的距离非常遥远,它距地球的距离约为15000000千米,将150000000千米用科学记数法表示为( )A .0.15×910千米 B .1.5×810千米 C .15×710千米 D .1.5×710千米 8.图5是某市一天的温度变化曲线图,通过该图可知,下列说法错误的是( ) A .这天15点时的温度最高B .这天3点时的温度最低C .这天最高温度与最低温度的差是13℃ 温度/℃383430 26 22 15 18 21 24 图3 图2D .这天21点时的温度是30℃9.一个正方体的侧面展开图如图4所示,用它围成的正方体只可能是( )10.已知4个矿泉水空瓶可以换矿泉水一瓶,现有16个矿泉水空瓶,若不交钱,最多可以喝矿泉水( )A .3瓶B .4瓶C .5瓶D .6瓶 二、细心填一填(每空3分,共30分)11.52xy -的系数是 。

12.某公园的成人单价是10元,儿童单价是4元。

某旅行团有a 名成人和b 名儿童;则旅行团的门票费用总和为 元。

北师大版初中数学七年级上册期末测试卷(标准难度)(含答案解析)

北师大版初中数学七年级上册期末测试卷(标准难度)(含答案解析)

北师大版初中数学七年级上册期末测试卷考试范围:全册;考试时间:120分钟;总分:120分学校:___________姓名:___________班级:___________考号:___________第I卷(选择题)一、选择题(本大题共12小题,共36.0分。

在每小题列出的选项中,选出符合题目的一项)1.一个无盖的正方体纸盒,将它展开成平面图形,可能的情形共有( )A. 11种B. 9种C. 8种D. 7种2.某车间原计划用13小时生产一批零件,实际每小时多生产了10件,用了12小时不但完成了任务,而且还多生产了60件,设原计划每小时生产x个零件,那么下列方程正确的是( )A. 13x=12(x+10)+60B. 12(x+10)=13x+60C. 113x=112(x+10)+60 D. 112(x+10)=113x+603.中国奇书《易经》中记载,远古时期,人们通过在绳子上打结来计数,即“结绳计数”.如图,一位母亲在从右到左依次排列的绳子上打结,满5进1,用来记录孩子自出生后的天数.由图可知,孩子自出生后的天数是( )A. 10B. 89C. 165D.2944.在我国远古时期,人们通过在绳子上打结来记录数量,即“结绳计数”,类似现在我们熟悉的“进位制”.如图所示是远古时期一位母亲记录孩子自出生后的天数,在从右向左依次排列的不同绳子上打结,满五进一,根据图示可知,孩子已经出生的天数是( )A. 27B. 42C. 55D. 2105.由襄阳东站到汉口站的某趟高铁,运行途中停靠的车站依次是:襄阳东站—枣阳—随州南—新安陆西—孝感东—汉口站,那么铁路运营公司要为这条线路制作的车票有( )A. 6种B. 12种C. 15种D. 30种6.按如图所示的运算程序,能使输出y值为1的是( )A. m=1,n=1B. m=1,n=0C. m=1,n=2D. m=2,n=17.一个两位数,个位上的数字是a,十位上的数字比个位的数字小1,则这个两位数可以表示为( )A. a(a−1)B. (a+1)aC. 10(a−1)+aD. 10a+(a−1)8.如图,C,D是线段AB上两点,M,N分别是线段AD,BC的中点,下列结论: ①若AD=BM,则AB=3BD; ②若AC=BD,则AM=BN; ③AC−BD=2(MC−DN); ④2MN=AB−CD.其中正确的结论是( )A. ① ② ③B. ③ ④C. ① ② ④D. ① ② ③ ④9.中国讲究五谷丰登,六畜兴旺,如图是一个正方体展开图,图中的六个正方形内分别标有六畜:“猪”、“牛”、“羊”、“马”、“鸡”、“狗”.将其围成一个正方体后,则与“牛”相对的是( )A. 羊B. 马C. 鸡D. 狗10.已知关于x的一元一次方程1x+3=2x+b的解为x=−3,那么关于y的一元一次方程20201(y+1)+3=2(y+1)+b的解为( )2020A. y=1B. y=−1C. y=−3D. y=−411.某市今年共有8万名学生参加了体育健康测试,为了了解这8万名考生的体育健康成绩,从中抽取了2000名学生的成绩进行统计分析.下列说法中正确的个数为( )①这种调查采用了抽样调查的方式;②8万名学生是总体;③2000名学生是总体的一个样本;④每名学生的体育健康成绩是个体.A. 2个B. 3个C. 4个D. 0个12.从1980年初次征战冬奥会,到1992年取得首枚冬奥会奖牌,再到2022年北京冬奥会金牌榜前三,中国的冰雪体育事业不断取得突破性成绩.历届冬奥会的比赛项目常被分成两大类:冰项目和雪项目.根据统计图提供的信息,有如下四个结论:①中国队在2022年北京冬奥会上获得的金牌数是参加冬奥会以来最多的一次;②中国队在2022年北京冬奥会上获得的奖牌数是参加冬奥会以来最多的一次;③中国队在冬奥会上的冰上项目奖牌数逐年提高;④中国队在冬奥会上的雪上项目奖牌数在2022年首次超越冰上项目奖牌数.上述结论中,正确的有( )A. 1个B. 2个C. 3个D. 4个第II卷(非选择题)二、填空题(本大题共4小题,共12.0分)13.如图,长方形的长为3cm,宽为2cm,以该长方形的一边所在直线为轴,将其旋转一周,形成圆柱,其体积为______ cm3.(结果保留π)14.单项式(−2)3x m y2z的次数8,则m的值是.15.如图,已知线段AB=8cm,M是AB的中点,P是线段MB上一点,N为PB的中点,NB=1.5cm,则线段MP=cm.16.当x=时,代数式x+3与2−5x的差是−5.三、解答题(本大题共9小题,共72.0分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

-七年级(上)数学试题 (考试时间1 , 满分150分) 题号一 二 三 四 五 六 总分 1~8 9~20 21 22 23 24 25 26 27 28 29得分 [卷首语:亲爱的同学,时间过得真快啊!升入中学已一学期了,你与新课程在一起成长了,相信你在小学原有的基础上又掌握了许多新的数学知识与能力,变得更加聪明了,更加懂得应用数学来解决实际问题了。

现在让我们一起走进考场,仔细思考,认真作答,成功将属于你——数学学习的主人。

]一、 精心选一选!(只有一个正确答案,每小题4分,计32分)1、下面几组数中,不相等的是 ( )A 、 -3和+(-3)B 、 -5和-(+5)C 、-7和-(-7)D 、+2和│-2│2、平面上有任意三点,过其中两点画直线,共可以画( )A 、1条B 、3条C 、1条或3条D 、无数条3、在数轴上表示a 、b 两数的点如图所示,则下列判断正确的是( )A 、a+b >0B 、a +b <0C 、ab >0D 、│a │>│b │4、下列图形中,哪一个是正方体的展开图( )5、11月23—29日在泉州销售8000万元即开型福利彩票(每张面额2元),特等奖100万元,结果中一百万元者有15名,假如你花10元买5张,下列说法正确的是写 ( )A 、中一百万元是必然事件B 、中一百万元是不可能事件C 、中一百万元是可能事件,但可能性很小D 、因为5÷15=1/3,所以中一百万元的可能性是33.3%6、计算(-1)1001÷(-1)所得的结果是( )A 、1/2B 、-1/2C 、1D 、-17、任何一个有理数的平方( )A 、一定是正数B 、一定不是负数C 、一定大于它本身D 、一定不大于它的绝对值8、如图,AOC ∠和BOD ∠都是直角,如果 AC B O D︒=∠150AOB ,那么=∠COD ( )A 、︒30B 、︒40C 、︒50D 、︒60二、认真填一填(每题3分,计36分)9、计算:0-1=___________。

10、据12月29日,中央气象台预报,下列四个地区的最低气温分别是:哈尔滨-10℃,杭州5℃,兰州-6℃,南沙26℃,请你把这四个气温按从高到低的顺序排列:_____________________。

11、人体中的红细胞个数约有25,000,000,000,000,用科学记数法表示这个数为:_____________ 。

12、俯视图为圆的立体图形可能是______________________。

13、某中学的校运动会需要为开幕式选拔仪仗队队员,规定每位同学的身高是165厘米,测量了4个同学的身高,超过规定身高的厘米数记作正数,不足规定身高的厘米数记作负数,检查四个同学的结果如右:哪一个同学的身高符合仪仗队队员的标准?为什么?_____________________。

14、对单项式“5x ”,我们可以这样来解释:某人以5千米/小时的速度走了x 小时,他一共走的路程是5x 千米,请你对“5x ”再给出另一个生活实际方面的解释: ___________________________________________________________。

15、把多项式:x 2-1+2x -3x 3按x 降幂排列:_________________________________。

16、下午2点整时,时针与分针所组成的角为_________度17、如图, OC 平分∠AOB ,∠BOC =则∠AOB =_______。

18、如图,如果AB ∥CD ,那么∠A 与∠C_______。

19、请你写出两个有理数,并把它们相加,使它们的和小于每一个加数___________。

凡在计算时发现,11×11=121,111×111=12321,1111×1111=1234321,他从中发现了一个规律。

你能根据他所发现的规律很快地写出 111111111×111111111= ?答案是___________________________。

三、好了,我们该做计算题了,相信你能通过认真细致的计算,顺利地做出这几道题的。

.......................................请注意符号问题,要求写出必要的演算步骤。

....................(.6.分+..8.分+..10..分,共...24..分)..21、计算:3×(-4)+(-28) ÷7 22、计算:4×(-3)2-15÷(-3)-50同学 甲 乙 丙 丁 身高 2-3 0 -523、求代数式(2a2-5a)-2(3a+5-2a2)的值,其中a=-1四、知我南安,爱我南安(8分)24、南安位于福建东南沿海,历史悠久,人杰地灵,全市总面积平方千米,截止12月,全市人口达1474928人。

1、把全市人口数1474928取近似值(精确到万位)≈____________,2、全市面积平方千米≈__________________________平方米(保留3个有效数字)3、计算全市人均占有土地面积(精确到1平方米)≈________m2≈________亩(保留1位小数)五、参观图形大观园25、(8分)如图,已知C点为线段AB的中点,D点为BC的中点,AB=10cm,求AD的长度26、(12分)如图,已知∠1=30°,∠B=60°,AB⊥AC(1)计算:∠DAB+∠B(2)AB与CD平行吗?AD与BC平行吗?27、(图形变换题):把如图所示的方格中的“机器人”图形向右平移2格,再向下平移3格,在方格中画出最后的图形(8分)六、学以致用28、(10分)国家统计局最近公布的《首次中国城市居民家庭财产调查总报告》显示,截止6月底,我国城市居民家庭财产总值户均达22.83万元。

其中户主文化程度为小学、初中、高中、大学毕业的户均财产数值如上图所示:1、户均财产最多的户主的文化程度是__________________________,2、户均财产最少的户主的文化程度是__________________________,3、从图中可发现:文化程度越高,家庭财产____________________,4、在平均线22.83万元以下的文化程度是__________________________。

29、(12分)某市的出租车因车型不同,收费标准也不同:A型车的起步价10元,3千米后每千米价为1.2元;B型车的起步价8元,3千米后每千米价为1.4元。

(1)如果你要乘坐出租车到处的地方,从节省费用的角度,你应该乘坐哪种型号的出租车?(2)请你计算乘坐A型与B型出租车x(x>3)千米的价差是多少元?友情提示:祝贺你,终于将考题做完了,请你再仔细的检查一遍,可要仔细点!...................................初一年数学期末测查参考试卷.............(.一.).参考答案:一、(每题4分)1、C,2、C,3、B,4、D,5、C,6、D,7、B,8、A二、(每题3分)9、-1,10、26℃>5℃>-6℃>-10℃,11、2.5×1013,12、球体、圆柱、圆锥,13、丙,14、略15、-3x3+x2+2x-1,16、60°,17、40°,18、互补,19、略,2345678987654321三、21、原式=-12+(-4)-------------------------------------4分=-16---------------------------------------------------6分22、原式=4×9-(-5)-50--------------------------------4分=36+5-50--------------------------------------------6分 =-9-----------------------------------------------------8分23、原式= 2a2-5a-(6a+10-4a2)---------------------------2分= 2a2-5a-6a-10+4a2---------------------------4分= 6 a2-11a-10--------------------------------------6分当a=-1时,原式= 6×(-1)2-11×(-1)-10----------------7分= 6+11-10---------------------------------------------9分= 7--------------------------------------------------------10分四、24,1、147万,2、2.04×109,3、1380,2.0五、25、点C是线段AB的中点AC= CB = 1/2AB = 5c m------------------------------------------3分点D是线段CB的中点CD = DB = 1/2 CB =2.5 c m--------------------------------------6分AD = AC+CD = 7.5 c m--------------------------------------------8分26、(1)AB⊥AC∠CAB = 90°-------------------------------------1分∠DAB+∠B = ∠1+∠CAB+∠B----------2分= 30°+90°+60°--------3分= 180°----------------------------4分(2)AB与DC平行,------------------------------6分因为内错角相等,两直线平行;---------------8分 AD与BC平行,------------------------------10分因为同旁内角互补,两直线平行。

-------------12分27、略六、28、(1)大学-------------------------------------3分(2)小学-------------------------------------6分(3)越多-------------------------------------9分(4)小学、初中、高中-------------------------12分29、(1)乘坐A型出租车费用= 10 +()×1.2--------------------------------------1分= 10 += 30.4 (元)--------------------------------------------------2分乘坐B型出租车费用= 8 +()×1.4-----------------------------------------3分= 8 +23.8= 31.8 (元)---------------------------------------------------4分因为30.4<31.8所以乘坐A型出租车费用较少。

相关文档
最新文档