青岛版九年级上册 第三章 对圆的进一步认识 章节练习
青岛版九年级数学上册 第三章 対圆的进一步认识 单元评估检测试题(解析版)
青岛版九年级数学上册 第三章 対圆的进一步认识 单元评估检测试卷一、单选题1.一个扇形的圆心角为60°,弧长为2π厘米,则这个扇形的半径为( )A. 6厘米B. 12厘米C. 23 厘米D. 6厘米 【答案】A【解析】l=180n R π⨯, 由题意得,2π=60180R π⨯, 解得:R=6cm .故选A .故选A .【点睛】运用了弧长的计算公式,属于基础题,熟练掌握弧长的计算公式是关键.2. 半径为6,圆心角为120°的扇形的面积是( )A. 3πB. 6πC. 9πD. 12π【答案】D【解析】 试题分析:S=21206360π⨯=12π,故选D . 考点:扇形面积的计算.3.如图,四边形ABCD 内接于⊙O ,若∠A=62°,则∠BCE 等于( )A. 28°B. 31°C. 62°D. 118°【答案】C【解析】【分析】 根据圆内接四边形的任意一个外角等于它的内对角解答即可.【详解】解:由题意得∠BCE=∠A=62°. 故选择C.【点睛】本题考查了圆的内接四边形性质.4.如图,AB 是⊙O 的直径,弦CD ⊥AB 于点E ,5,8OC cm CD cm ==,则AE =( )A. 8cmB. 5cmC. 3cmD. 2cm【答案】A【解析】【分析】 根据垂径定理可得出CE 的长度,在Rt △OCE 中,利用勾股定理可得出OE 的长度,再利用AE=AO+OE 即可得出AE 的长度.【详解】∵弦CD ⊥AB 于点E ,CD=8cm ,∴CE=12CD=4cm . 在Rt △OCE 中,OC=5cm ,CE=4cm ,∴22OC CE -=3cm ,∴AE=AO+OE=5+3=8cm .故选A .【点睛】本题考查了垂径定理以及勾股定理,利用垂径定理结合勾股定理求出OE 的长度是解题的关键. 5.已知A 为⊙O 上的点,⊙O 的半径为1,该平面上另有一点P ,3那么点P 与⊙O 的位置关系是( )A. 点P 在⊙O 内B. 点P 在⊙O 上C. 点P 在⊙O 外D. 无法确定【答案】D【解析】∵⊙O 的半径为1,∴⊙O 的直径为2,∵32<,且点A 在⊙O 上,∴点P 的位置有三种情况:①在圆外,②在圆上,③在圆内.故选D.6.下列命题中的假命题是()A. 三点确定一个圆 B. 三角形的内心到三角形各边的距离都相等C. 同圆中,同弧或等弧所对的圆周角相等 D. 同圆中,相等的弧所对的弦相等【答案】A【解析】【分析】根据确定圆的条件,三角形内心性质,以及圆心角、弧、弦的关系,对各选项分析判断后利用排除法求解.【详解】A、应为不在同一直线上的三点确定一个圆,故本选项错误;B、三角形的内心到三角形各边的距离都相等,是三角形的内心的性质,故本选项正确;C、同圆中,同弧或等弧所对的圆周角相等,正确;D、同圆中,相等的弧所对的弦相等,正确.故选A.【点睛】本题主要考查了确定圆的条件,一定要注意是不在同一直线上的三点确定一个圆,还考查了圆心角、弧、弦的关系,需要熟练掌握.7.如图,四边形ABCD是⊙O的内接四边形,⊙O的半径为4,∠B=135°,则劣弧AC的长()A. 82B. 42C. 2πD. π【答案】C【解析】连接OA、OC,如图:∵∠B=135°,∴∠D=180°−135°=45°,∴∠AOC=90°,则弧AC的长=904 180π⨯=2π.故选C.8.如图,AB是⊙O的直径,弦CD交AB于点P,AP=2,BP=6,∠APC=30°,则CD的长为()A. 15B. 25C. 215D. 8【答案】C【解析】【分析】作OH⊥CD于H,连结OC,如图,根据垂径定理由OH⊥CD得到HC=HD,再利用AP=2,BP=6可计算出半径OA=4,则OP=OA-AP=2,接着在Rt△OPH中根据含30°的直角三角形的性质计算出OH=12OP=1,然后在Rt△OHC中利用勾股定理计算出CH=15,所以CD=2CH=215.【详解】作OH⊥CD于H,连结OC,如图,∵OH⊥CD,∴HC=HD,∵AP=2,BP=6,∴AB=8,∴OA=4,∴OP=OA﹣AP=2,在Rt△OPH中,∵∠OPH=30°,∴∠POH=30°,∴OH=12OP=1,在Rt△OHC中,∵OC=4,OH=1,∴CH=22=15OC OH ,∴CD=2CH=215.故选C .【点睛】本题主要考查圆中的计算问题,熟练掌握垂径定理、含30°的直角三角形的性质以及勾股定理等知识点,掌握数形结合的思想是解答的关键9.如图,⊙O 的半径为5,AB 为弦,点C 为AB 的中点,若∠ABC=30°,则弦AB 的长为( )A. 12B. 5C. 53D. 53【答案】D【解析】【分析】连接OC 、OA ,利用圆周角定理得出∠AOC=60°,再利用垂径定理得出AB 即可.【详解】连接OC 、OA ,∵∠ABC=30°, ∴∠AOC=60°, ∵AB 为弦,点C 为AB 的中点,∴OC ⊥AB ,在Rt △OAE 中,53 ∴AB=53,故选D .【点睛】此题考查圆周角定理,关键是利用圆周角定理得出∠AOC=60°.10.已知:如图,在⊙O的内接四边形ABCD中,AB是直径,∠BCD=130°,过D点的切线PD与直线AB 交于P点,则∠ADP的度数为()A. 45°B. 40°C. 50°D. 65°【答案】B【解析】连接BD,由圆内接四边形的对角互补,AB是直径知∠DAB=180°-∠C=50°,∠ADB=90°,所以可求∠ABD=40°;再根据PD是切线,弦切角定理知,∠ADP=∠B=40°.解:连接BD,∵∠DAB=180°-∠C=50°,AB是直径,∴∠ADB=90°,∠ABD=90°-∠DAB=40°,∵PD是切线,∴∠ADP=∠B=40°.故选B.点评:本题利用了圆内接四边形的性质,直径对圆周角等于直角,弦切角定理,弦切角等于它所夹的弧对的圆周角求解.二、填空题11.如图,已知∠BPC=50°,则∠BAC= 【答案】50°【解析】试题分析:在同圆中,同弧所对的圆周角度数相等,本题中圆周角∠BPC和圆周角∠BAC所对弧都是弧BC,则说明两个角的度数相等.考点:圆周角的度数.12.已知,如图,半径为1的⊙M经过直角坐标系的原点O,且与x轴、y轴分别交于点A、B,点A的坐标为( 3, 0 ),⊙M的切线OC与直线AB交于点C.则∠ACO=________.【答案】30°【解析】∵AB=2,3,∴cos∠BAO=OAAB3,∴∠OAB=30°,∠OBA=60°;∵OC是⊙M的切线,∴∠BOC=∠BAO=30°,∴∠ACO=∠OBA-∠BOC=30°.故答案是:30°.13.圆锥的底面半径为3,母线长为5,该圆锥的侧面积为_______.【答案】15π【解析】试题分析:利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式求解.圆锥的侧面积=12•2π•3•5=15π.故答案为15π.考点:圆锥的计算.14.正八边形的中心角为______度.【答案】45°【解析】【分析】运用正n边形的中心角的计算公式360n︒计算即可.【详解】解:由正n边形的中心角的计算公式可得其中心角为360458︒=︒,故答案为45°.【点睛】本题考查了正n边形中心角的计算.15.已知AB,AC是半径为R的圆O中两条弦,AB=3R,AC=2R ,则∠BAC的度数为.【答案】75°或15°.【解析】试题分析:如图(1)(2),根据题意cos∠OAE=332RR=,则∠OAE=30°;cos∠OAD=222RR=,∠OAD=45°,由图(1)∠BAC的度数为30°+45°=75°;由图(2)∠BAC的度数为45°﹣30°=15°.故答案为75°或15°.考点:1.垂径定理;2.解直角三角形.16.直角三角形两直角边长分别为3和4,这个三角形内切圆的半径为_________.【答案】1【解析】试题分析:(1)当3,4都是直角边时,斜边==5,∴r===1.(2)当3为直角边,4为斜边时,直角边==,∴r===.故答案为1或=.考点:1.三角形的内切圆与内心;2.勾股定理;3.分类讨论.17.△ABC中,∠ACB=120°,AC=BC=3,点D为平面内一点,满足∠ADB=60°,若CD的长度为整数,则所有满足题意的CD 的长度的可能值为 .【答案】3、4、5、6【解析】试题分析:分类讨论:由于∠ACB=120°,∠ADB=60°,当点D 在△ABC 的外接圆上,且点D 在优弧AB 上,可计算出圆的直径得到3<CD 长度≤6;当点D 在以C 为圆心、CA 为半径的圆上,则CD=3. 解:∵∠AOB=120°,∠ACB=60°,当点D 在△ABC 的外接圆上,且点D 在优弧AB 上,∴3<OC 长度≤6;当点D′在以O 为圆心、CA 为半径的圆上,则CD′=3,∴CD 长度的可能值为3、4、5、6.故答案为3、4、5、6.考点:三角形的外接圆与外心.18.如图,在半径为5cm 的⊙O 中,弦6cm AB =,OC AB ⊥于点C ,则OC =_______.【答案】4【解析】连接OA ,先利用垂径定理得出AC 的长,再由勾股定理得出OC 的长即可解答.本题解析: 如图:连接OA ,∵AB=6cm,OC⊥AB 于点C , ∴AC=12AB=12×6=3cm, ∵O 的半径为5cm ,∴OC=22OA AC + =2253-=4cm ,故选B.19.如图,四边形ABCD 内接于⊙O ,OC ∥AD ,∠DAB =60°,∠ADC =106°,则∠OCB =_____°.【答案】46°【解析】【分析】根据平行线的性质求出∠OCD ,根据圆内接四边形的性质求出∠BCD ,计算即可.【详解】解:∵OC ∥AD ,∴∠OCD=180°-∠ADC=74°,∵四边形ABCD 内接于⊙O ,∴∠BCD=180°-∠DAB=120°,∴∠OCB=∠BCD-∠OCD=46°,故答案为:46. 【点睛】本题考查了圆内接四边形的性质、平行线的性质,掌握圆内接四边形的对角互补是解题的关键. 20.如图,点A 、B 在直线l 上,AB=10cm ,⊙B 的半径为1cm ,点C 在直线l 上,过点C 作直线CD 且∠DCB=30°,直线CD 从A 点出发以每秒4cm 的速度自左向右平行运动,与此同时,⊙B 的半径也不断增大,其半径r (cm )与时间t (秒)之间的关系式为r=1+t (t≥0),当直线CD 出发 ________秒直线CD 恰好与⊙B 相切.【答案】43或6 【解析】【分析】根据直线与圆相切和勾股定理,圆的半径与BC的关系,注意有2种情况解答即可.【详解】当直线与圆相切时,点C在圆的左侧,∵∠DCB=30°,直线CD与⊙B相切,∴2DB=BC,即2(1+t)=10-4t,解得:t=43,当直线与圆相切时,点C在圆的右侧,∵∠DCB=30°,直线CD与⊙B相切,∴2DB=BC,即2(1+t)=4t-10,解得:t=6,故答案为43或6.【点睛】本题考查了直线与圆的位置关系,关键是根据含30°的直角三角形中30°所对的边是斜边的一半进行分析.三、解答题21.如图,已知AB是⊙O的直径, CD⊥AB ,垂足为点E,如果BE=OE , AB=12,求△ACD的周长【答案】183【解析】试题分析:连接OC,利用垂径定理构造直角三角形分别求得三角形的三边长,然后相加即可得到△ACD的周长.试题解析:解:连接OC.∵AB是⊙O的直径,CD⊥AB,∴CE=DE=12 CD.∵AB=12cm,∴AO=BO=CO=6cm.∵BE=OE,∴BE=OE=3cm,AE=9cm.在Rt△COE中,∵CD⊥AB,∴OE2+CE2=OC2,∴CE=22=33,∴CD=2CE=63cm.63同理可AC=AD=63cm,∴△ACD的周长为183cm.点睛:本题考查了垂径定理及勾股定理,解题的关键是利用垂径定理构造直角三角形并利用勾股定理解之.22.已知在以点O为圆心的两个同心圆中,大圆的弦AB交小圆于点C,D(如图).求证:AC=BD.【答案】证明见解析.【解析】【分析】过圆心O作OE⊥AB于点E,根据垂径定理得到AE=BE,同理得到CE=DE,又因为AE-CE=BE-DE,进而求证出AC=BD.【详解】过O作OE⊥AB于点E,则CE=DE,AE=BE,∴BE-DE=AE-CE.即AC=BD.【点睛】本题考查垂径定理的实际应用.23.如图,在半径为13的⊙O中,OC垂直弦AB于点D,交⊙O于点C,AB=24,求CD的长.【答案】.【解析】 试题分析:由题意可知,已知了弦,半径的长,可由垂径定理,求出的长,进而可求出的长.试题解析:连接, ∵,, ∴, 在中, ∵,, ∴, ∴. 考点:1.垂径定理的应用;2.勾股定理.24.如图,四边形ABCD 是菱形,∠A=60°,AB=2,扇形BEF 的半径为2,圆心角为60°,求图中阴影部分的面积.【答案】233π【解析】 试题解析:如图,连接BD .∵四边形ABCD 是菱形,∠A=60°,∴∠ADC=120°,∴∠1=∠2=60°,∴△DAB 是等边三角形,∵AB=2,∴△ABD 的高为3, ∵扇形BEF 的半径为2,圆心角为60°,∴∠4+∠5=60°,∠3+∠5=60°,∴∠3=∠4,设AD 、BE 相交于点G ,设BF 、DC 相交于点H ,在△ABG 和△DBH 中,2{34A AB BD ∠=∠=∠=∠,∴△ABG ≌△DBH (ASA ),∴四边形GBHD 的面积等于△ABD 的面积,∴图中阴影部分的面积是:S 扇形EBF -S △ABD =26021233602π⨯-⨯⨯=233π-. 考点:1.扇形面积的计算;2.全等三角形的判定与性质;3.菱形的性质.25.如图,已知AB 是半圆O 的直径,∠BAC=32°,D 是弧AC 的中点,求∠DAC 的度数.【答案】29°.【解析】【分析】连接BC,根据圆周角定理及等边对等角求解即可.【详解】连接BC,∵AB是半圆O的直径,∠BAC=32°,∴∠ACB=90°,∠B=90°﹣32°=58°,∴∠D=180°﹣∠B=122°(圆内接四边形对角互补),∵D是弧的中点,∴∠DAC=∠DCA=(180°﹣∠D)÷2=29°,即∠DAC的度数是29°.【点睛】本题利用了圆内接四边形的性质,直径对的圆周角是直角求解.26. 如图:AB是半圆的直径,O是圆心,C是半圆上一点,E是弧AC的中点,OE交弦AC于D,若AC=8cm,DE=2cm,求OD的长.【答案】3cm【解析】试题分析:由E是弧AC的中点,可得:OE⊥AC.根据垂径定理得:AD=12AC,又OD=OE﹣DE,故在Rt△OAD中,运用勾股定理可将OA的长求出.试题解析:∵E为弧AC的中点,∴OE⊥AC,∴AD=12AC=4cm,∵OD=OE﹣DE=(OE﹣2)cm,OA=OE,∴在Rt△OAD中,222OA OD AD=+,即222OA OE24=+(﹣),又知0A=OE,解得:OE=5,∴OD=OE﹣DE=3cm.考点:垂径定理;勾股定理.27.如图,AB是⊙O的弦,AC与⊙O相切于点A,且∠BAC=52°.(1)求∠OBA的度数;(2)求∠D的度数.【答案】(1)38°;(2)52°.【解析】【分析】(1)连接OA,由切线的性质可得∠OAC=90°,再由已知条件可求出∠OAB的度数,由圆的性质可得△OAB 是等腰三角形,根据等边对等角即可求出∠OBA的度数;(2)由(1)可知△OAB是等腰三角形,所以∠AOB的度数可求,再由圆周角定理即可求出∠D度数.【详解】(1)连接OA,∵AC与⊙O相切于点A,∴OA⊥AC,∴∠OAC=90°,∵∠BAC=52°,∴∠OAB=38°,∵OA=OB,∴∠OBA=∠OAB=38°;(2)∵∠OBA=∠OAB=38°,∴∠AOB=180°﹣2×38°=104°,∴∠D=12∠AOB=52°.【点睛】此题考查了切线的性质,圆周角定理以及等腰三角形的判定和性质,熟练掌握切线的性质是解本题的关键.28. 已知直线l与⊙O,AB是⊙O的直径,AD⊥l于点D.(1)如图①,当直线l与⊙O相切于点C时,若∠DAC=30°,求∠BAC的大小;(2)如图②,当直线l与⊙O相交于点E、F时,若∠DAE=18°,求∠BAF的大小.【答案】解:(1)如图①,连接OC,∵直线l与⊙O相切于点C,∴OC⊥l.∵AD⊥l,∴OC∥AD.∴∠OCA=∠DAC.∵OA=OC,∴∠BAC=∠OCA.∴∠BAC=∠DAC=30°.(2)如图②,连接BF,∵AB是⊙O的直径,∴∠AFB=90°.∴∠BAF=90°-∠B.∴∠AEF=∠ADE+∠DAE=90°+18°=108°.在⊙O中,四边形ABFE是圆的内接四边形,∴∠AEF+∠B=180°.∴∠B=180°-108°=72°.∴∠BAF=90°-∠B=180°-72°=18°.【解析】试题分析:(1)如图①,首先连接OC,根据当直线l与⊙O相切于点C,AD⊥l于点D.易证得OC∥AD,继而可求得∠BAC=∠DAC=30°.(2)如图②,连接BF,由AB是⊙O的直径,根据直径所对的圆周角是直角,可得∠AFB=90°,由三角形外角的性质,可求得∠AEF的度数,又由圆的内接四边形的性质,求得∠B的度数,继而求得答案.。
青岛版九年级上册数学 第3章 对圆的进一步认识 章末练习题(无答案)
第3章对圆的进一步认识一、选择题1.如图,在半径为4的⊙O中,弦AB∥OC,∠BOC=30°,则AB的长为()A. 2B.C. 4D.2.如图,是的外接圆,已知∠ABO=50°,则的大小为()A. B. C. D.3. 若正方形的外接圆半径为2,则其内切圆半径为()A. B. 2 C. D. 14.已知:如图, ⊙O的两条弦AE,BC相交于点D,连结AC,BE.若∠ACB=60°,则下列结论中正确的是( )A. ∠AOB=60°B. ∠ADB=60°C. ∠AEB=60°D. ∠AEB=30°5.如图,在△ABC中,∠ACB=90°,AC=1,AB=2,以A为圆心,AC长为半径画弧,交AB于D,则扇形CAD 的周长是(结果保留π)()A.1+πB.2+C.1D.2+6.我们将能完全覆盖某平面图形的最小圆称为该平面图形的最小覆盖圆.例如线段AB的最小覆盖圆就是以线段AB为直径的圆.若在△ABC中,AB=AC,BC=6,∠BAC=120°,则△ABC的最小覆盖圆的半径是()A. 3B.C. 2D.7.如图,点A,B分别在x轴、y轴上(OA>OB),以AB为直径的圆经过原点O,C是的中点,连结AC,BC.下列结论:①AC=BC;②若OA=4,OB=2,则△ABC的面积等于5;③若OA﹣OB=4,则点C 的坐标是(2,﹣2).其中正确的结论有()A. 3个B. 2个C. 1个D. 0个8.如图,在平面直角坐标系xOy中,直线AB经过点A(-4,0)、B(0,4),⊙O的半径为1(O为坐标原点),点P在直线AB上,过点P作⊙O的一条切线PQ,Q为切点,则切线长PQ的最小值为()A. B. C. 2 D. 39.如图,一扇形纸扇完全打开后,外侧两竹条AB、AC的夹角为120°,AB长为30cm,贴纸部分BD长为20cm,贴纸部分的面积为()cm2.A. B. C. 800π D. 500π10. 如图,AB为⊙O的直径,C为⊙O上一点,弦AD平分∠BAC,交BC于点E,AB=6,AD=5,则AE的长为()A. 2.5B. 2.8C. 3D. 3.211. 如图,已知AB是⊙O的直径,AD切⊙O于点A,.则下列结论中不一定正确的是()A. BA⊥DAB. OC∥AEC. ∠COE=2∠CAED. OD⊥AC12.如图,A,B,C,D为⊙O的四等分点,动点P从圆心O出发,沿O﹣C﹣D﹣O路线作匀速运动,设运动时间为t(秒).∠APB=y(度),则下列图象中表示y与t之间函数关系最恰当的是()A. B. C. D.二、填空题13.已知扇形的半径为8 cm,圆心角为45°,则此扇形的弧长是________cm.14.如图,⊙O的直径AB与弦CD相交于点E,AB=5,AC=3,则tan∠ADC =________.15.如图,AB是⊙O的直径,CD是⊙O的弦,∠ABD=58°,则∠BCD的度数为________.16.如图,已知点A(0,1),B(0,﹣1),以点A为圆心,AB为半径作圆,交x轴的正半轴于点C,则∠BAC等于________ 度.17.如图,⊙O的半径为2,弦AB=2,E为弧AB的中点,OE交AB于点F,则EF的长为________.18.如图,已知⊙O的直径AB=6,E、F为AB的三等分点,M、N为上两点,且∠MEB=∠NFB=60°,则EM+FN=________.19.用半径为10cm,圆心角为216°的扇形作一个圆锥的侧面,则这个圆锥的高是________ cm.20. 已知△ABC的边BC=4cm,⊙O是其外接圆,且半径也为4cm,则∠A的度数是________.21.如图,AB是⊙O的直径,经过圆上点D的直线CD恰使∠ADC=∠B.过点A作直线AB的垂线交BD的延长线于点E,且AB= ,BD=2,则线段AE的长为________.22.如图,在矩形ABCD中,BC=5,AB=3,分别经过点B和点D的两个动圆均与AC相切,且与AB、BC、AD、DC分别交于点G、H、E、F,则EF+GH的最小值是________.三、解答题23.如图,点A、B在⊙O上,直线AC是⊙O的切线,OC⊥OB,连接AB交OC于点D.(1)求证:AC=CD;(2)如果OD=1,tan∠OCA=,求AC的长.24.如图,AB是☉O的直径,BC⊥AB,连结OC,弦AD∥OC,直线CD交BA的延长线于点E.(1)求证:直线CD是☉O的切线;(2)若DE=2BC,求AD∶OC的值.25.如图,⊙O与Rt△ABC的斜边AB相切于点D,与直角边AC相交于E,F两点,连结DE,已知∠B=30°,⊙O的半径为6,弧DE的长度为2π.(1)求证:DE∥BC;(2)若AF=CE,求线段BC的长度.26.如图,在△ABC中,AB=BC,D是AC中点,BE平分∠ABD交AC于点E,点O是AB上一点,⊙O过B、E两点,交BD于点G,交AB于点F.(1)判断直线AC与⊙O的位置关系,并说明理由;(2)当BD=6,AB=10时,求⊙O的半径.27. 在等腰△ABC中,AC=BC,以BC为直径的⊙O分别与AB,AC相交于点D,E,过点D作DF⊥AC,垂足为点F.(1)求证:DF是⊙O的切线;(2)分别延长CB,FD,相交于点G,∠A=60°,⊙O的半径为6,求阴影部分的面积.28.如图,AE切⊙O于点E,AT交⊙O于点M,N,线段OE交AT于点C,OB⊥AT于点B,已知∠EAT=30°,AE=3 ,MN=2 .(1)求∠COB的度数;(2)求⊙O的半径R;(3)点F在⊙O上(是劣弧),且EF=5,把△OBC经过平移、旋转和相似变换后,使它的两个顶点分别与点E,F重合.在EF的同一侧,这样的三角形共有多少个?你能在其中找出另一个顶点在⊙O上的三角形吗?请在图中画出这个三角形,并求出这个三角形与△OBC的周长之比.29. 已知AB是⊙O的直径,PB是⊙O的切线,C是⊙O上的点,AC∥OP,M是直径AB上的动点,A与直线CM上的点连线距离的最小值为d,B与直线CM上的点连线距离的最小值为f.(1)求证:PC是⊙O的切线;(2)设OP= AC,求∠CPO的正弦值;(3)设AC=9,AB=15,求d+f的取值范围.。
完整版青岛版九年级上册数学第3章 对圆的进一步认识含答案
青岛版九年级上册数学第3章对圆的进一步认识含答案一、单选题(共15题,共计45分)1、如图,点O为坐标原点,点A的坐标为(3,0),点B的坐标为(0,4),圆D过A,B,O三点,点C为弧OBA上的一点(不与O、A两点重合),连接OC,AC,则tanC的值为()A. B. C. D.2、如图,点A,B,C在⊙O上,∠ACB=30°,⊙O的半径为6,则的长等于()A.πB.2πC.3πD.4π3、如图,已知⊙ 为正三角形的内切圆,为切点,四边形是⊙ 的内接正方形,,则正三角形的边长为( ) A.4 B. C. D.4、如图,⊙O中,半径OC⊥弦AB于点D,点E在⊙O上,∠E=22.5°,AB=4,则半径OB等于()A. B.2 C.2 D.35、如图,AB是⊙O的弦,OD⊥AB于D,若AO=10 , OD=6,则AB的长为()A.8B.16C.18D.206、如图,AB为⊙O的直径,弦CD⊥AB,E为弧BC上一点,若∠CEA=28°,则∠ABD=()A.14°B.28°C.56°D.80°7、三角形外心具有的性质是()A.到三个顶点距离相等B.到三边距离相等C.外心必在三角形外 D.到顶点的距离等于它到对边中点的距离的两倍8、如图,四边形ABCD内接于⊙O,已知∠ADC=130°,则∠AOC的大小是()A.80°B.100°C.60°D.40°9、如图,一种电子游戏,电子屏幕上有一正六边形ABCDEF,点P沿直线AB从右向左移动,当出现:点P与正六边形六个顶点中的至少两个顶点构造成等腰三角形时,就会发出警报,则直线AB上会发出警报的点P有( )A.9个B.10个C.11个D.12个10、如图,、是的半径,是上一点,连接、.若,则的大小为()A.126°B.116°C.108°D.106°11、如图,已知AB是⊙O的直径,AD切⊙O于点A,点C是弧EB的中点,则下列结论不成立的是()A.OC//AEB.EC=BCC.∠DAE=∠ABED.AC⊥OE12、如图,扇形OAB是一个圆锥的侧面展开图,若小正方形方格的边长为1,则这个侧锥的底面半径为()A. B. C. D.213、如图,是的直径,为的弦,且于点,点为圆上一点,若,,,则的长为()A. B. C.4 D.514、下列命题是真命题的是( )A.在同圆或等圆中,等弧所对的圆周角相等B.平分弦的直径垂直于弦 C.在同圆或等圆中,等弦所对的圆周角相等 D.三角形外心是三条角平分线的交点15、下列命题中,正确的个数是()(1)三点确定一个圆;(2)平分弦的直径垂直于弦;(3)相等的圆心角所对的弧相等;(4)正五边形是轴对称图形.A.1个B.2个C.3个D.4个二、填空题(共10题,共计30分)16、已知圆锥的底面半径为,母线长为,则圆锥的侧面积为________ .17、扇形的半径为9,圆心角为120°,则它的弧长为________.18、如图,AD是△ABC的高,AE是△ABC的外接圆⊙O的直径,且AB=4,AC=5,AD=4,则⊙O的直径AE=________ .19、为了测量一个圆铁环的半径,某同学用了如下方法,将铁环平放在水平桌面上,用有一个角为30°的直角三角板和刻度尺按如图所示的方法得到相关数据,进而求出铁环半径,若测得PA=5cm,则铁环的半径是________cm.20、如图,、、、是上四个点,连接、,过作交圆周于点,连接,若,则的度数为________.21、如图,△ABC内接于⊙O,若∠OBC=25°,则∠A=________.22、如图,边长为6cm的正三角形内接于⊙O,则阴影部分的面积为(结果保留π)________.23、如图所示,在△ABC中,BC=4,以点A为圆心,2为半径的⊙A与BC相切于点D,交AB于点E,交AC于点F,且∠EAF=80°,则图中阴影部分的面积是________.24、如图,⊙O的直径CD过弦EF的中点G,∠EOD=40°,则∠DCF=________.25、如图,某下水道的横截面是圆形的,水面CD的宽度为2米,F是线段CD的中点,EF经过圆心O交⊙O于点E,EF=3米,则⊙O直径的长是________米.三、解答题(共5题,共计25分)26、现有一个圆心角为90°,半径为8cm的扇形纸片,用它恰好围成一个圆锥的侧面(接缝忽略不计)求该圆锥底面圆的半径.27、如图,在Rt△ABC中,∠C=90°,AC=6,BC=8.求△ABC的内切圆☉O的半径r.28、已知半径为6的扇形面积为,求此扇形圆心角的角度.29、问题探究(1)请在图(1)中作出两条直线,使它们将圆面积四等分,并写出作图过程;拓展应用(2)如图(2),M是正方形ABCD内一定点,G是对角线AC、BD的交点.连接GM并延长,分别交AD、BC于P、N.过G做直线EF⊥GM,分别交AB、CD于E、F.求证:PN、EF将正方形ABCD的面积四等分.30、如图是庐江中学某景点内的一个拱门,它是⊙O的一部分.已知拱门的地面宽度CD=2m,它的最大高度EM=3m,求构成该拱门的⊙O的半径.参考答案一、单选题(共15题,共计45分)2、B3、C4、C5、B6、B7、A8、B9、C10、B11、D12、B13、A14、A15、A二、填空题(共10题,共计30分)16、17、18、19、20、21、23、24、25、三、解答题(共5题,共计25分)26、27、28、30、。
青岛版九年级数学-第三章:对圆的进一步认识 -巩固练习题(含解析)
青岛版数学-九年级上册-第三章-对圆的进一步认识-巩固练习一、单选题1.在平面直角坐标系中,以点(3,-5)为圆心,r为半径的圆上有且仅有两点到x轴所在直线的距离等于1,则圆的半径r的取值范围是()A.r>4B.0<r<6C.4≤r<6D.4<r<62.如图,Rt△ABC中,∠ABC=90°,AB=BC=2,以BC为直径的圆交AC于点D,则图中阴影部分的面积为( )A.2B.1+C.1D.2-3.下列说法正确的是()A.任意三点可以确定一个圆B.平分弦的直径垂直于弦,并且平分该弦所对的弧C.同一平面内,点P到⊙O上一点的最小距离为2,最大距离为8,则该圆的半径为5D.同一平面内,点P到圆心O的距离为5,且圆的半径为10,则过点P且长度为整数的弦共有5条4.如图。
已知点A,B,C在圆O上.若∠ACB=50°,则∠AOB的度数是()A.100°B.1050°C.110°D.130°5.如图,△ABC内接于⊙O,OD⊥BC于D,∠A =50°,则∠OCD的度数是()A.40°B.45°C.50°D.60°6.已知等腰△ABC内接于半径为5的⊙O,如果底边BC的长为6,则底角的正切值为()A.3B.或C.3或D.3或7.正六边形的外接圆的半径与内切圆的半径之比为()A.1:B.:2C.2:D.:18.如图,△ABC的三边分别切⊙O于D,E,F,若∠A=50°,则∠DEF=()A.65°B.50°C.130°D.80°9.如图所示,已知PA、PB切⊙O于A、B两点,C是上一动点,过C作⊙O的切线交PA 于点M,交PB于点N,已知∠P=56°,则∠MON=()A.56°B.60°C.62°D.不可求二、填空题10.如图,⊙O的半径为1,P是⊙O外一点,OP=2,Q是⊙O上的动点,线段PQ的中点为M,连接OP、OM,则线段OM的最小值是________.11.正九边形的中心角等于________°.12.如图,PA、PB分别切⊙O于点A、B,若∠P=70°,则∠C的大小为________(度).13.若直角三角形的两条直角边为5和12,则这个直角三角形的内切圆半径为________.14.一圆锥的底面半径为2,母线长为3,则这个圆锥的侧面积为________.15.如图,正五边形ABCDE为内接于⊙O的,则∠ABD=________.16.如图,以AD为直径的半圆O经过Rt△ABC的斜边AB的两个端点,交直角边AC于点E.B、E是半圆弧的三等分点,弧BE的长为,则图中阴影部分的面积为________.17.如图,AB是⊙O的直径,AD是⊙O的切线,点C在⊙O上,BC∥OD,AB=2,OD=3,则BC的长为________.三、解答题18.如图,圆中两条弦AB、CD相交于点E,且AB=CD,求证:EB=EC.19.如图,在梯形ABCD中,AD∥BC,∠C=90°,AD+BC=AB,以AB为直径作⊙O,求证:CD 是⊙O的切线.四、综合题20.一个水平放置的圆锥的主视图为底边长2cm、腰长4cm的等腰三角形.试求:(1)该圆锥的表面积.(2)圆锥的侧面展开图的扇形的圆心角度数.21.如图,AD是△ABC外角∠EAC的平分线,AD与△ABC的外接圆⊙O交于点D.(1)求证:DB=DC;(2)若∠CAB=30°,BC=4,求劣弧的长度.答案一、单选题1.【答案】D【解析】【分析】根据题意可知到x轴所在直线的距离等于1的点的集合分别是直线y=1和直线y=-1,若以点(3,-5)为圆心,r为半径的圆上有且仅有两点到x轴所在直线的距离等于1,那么该圆与直线y=-1必须是相交的关系,与直线y=1必须是相离的关系,所以r的取值范围是|-5|-|-1|<r<|-5|+1,即4<r<6.故选D.【点评】难度中等,关键在于理解半径的取值范围是通过利用圆与直线y=1和直线y=-1之间的位置关系来求得。
第3章 对圆的进一步认识数学九年级上册-单元测试卷-青岛版(含答案)
第3章对圆的进一步认识数学九年级上册-单元测试卷-青岛版(含答案)一、单选题(共15题,共计45分)1、如图,在半径为6cm的⊙O中,点A是劣弧的中点,点D是优弧上一点,且∠D=30°,下列四个结论:①OA⊥BC;②BC=3 cm;③扇形OCAB的面积为12π;④四边形ABOC是菱形.其中正确结论的序号是( )A.①③B.①②③④C.②③④D.①③④2、如图,AB是⊙O的直径,M、N是弧AB(异于A、B)上两点,C是弧MN上一动点,∠ACB的角平分线交⊙O于点D,∠BAC的平分线交CD于点E.当点C从点M运动到点N时,则C、E两点的运动路径长的比是()A. B. C. D.3、正三角形的外接圆的半径和高的比为()A.1:2B.2:3C.3:4D.1:4、如图,AB是⊙O的切线,B为切点,AC经过点O,与⊙O分别相交于点D,C.若∠ACB=30°,AB= ,则阴影部分的面积是()A. B. C. ﹣ D. ﹣5、如图,一个半径为r(r<1)的圆形纸片在边长为10的正六边形内任意运动,则在该六边形内,这个圆形纸片不能接触到的部分的面积是()A.πr 2B.C. r 2D. r 26、如图,将边长为1cm的等边三角形ABC沿直线l向右翻动(不滑动),点B从开始到结束,所经过路径的长度为A. B. C. D.7、下列图形的四个顶点在同一个圆上的是()A.矩形、平行四边形B.菱形、正方形C.正方形、直角梯形D.矩形、等腰梯形8、的半径为点到圆心的距离为则点与的位置关系是()A.在圆上B.在圆内C.在圆外D.不确定9、正六边形的外接圆半径为1,则它的内切圆半径为()A. B. C. D.110、如图,是的切线,A为切点,连接交于点C,点B在上,且,则等于()A. B. C. D.11、圆锥的侧面展开图是一个弧长为12π的扇形,则这个圆锥底面积的半径是()A.24B.12C.6D.312、一个圆锥的主视图是边长为6cm的正三角形,则这个圆锥的侧面积等于()A.36 πcm 2B.24πcm 2C.18πcm 2D.12 πcm 213、如图,由等边三角形、正方形、圆组成的轴对称图案中,等边三角形与三个正方形的面积和的比值为()A. B.1 C. D.14、如图,直径AB为6的半圆,绕A点逆时针旋转60°,此时点B到了点B′,则图中阴影部分的面积是()A.6πB.5πC.4πD.3π15、用一个半径为3,面积为6π的扇形铁皮,制作一个无底的圆锥(不计损耗),则圆锥的底面半径为( )A.πB.2πC.2D.1二、填空题(共10题,共计30分)16、如图,圆锥的底面半径为3cm,高为4cm,那么这个圆锥的侧面积是________cm2.17、已知扇形的圆心角为,面积为,则扇形的半径是________.18、圆心角为120º的扇形的面积为12π,则扇形的弧长为________.19、如图,的半径垂直于弦,过点A作的切线交的延长线于点P,连结,若,则等于________度.20、如图,边长为2 cm的正六边形螺帽,中心为点O,OA垂直平分边CD,垂足为B,AB=17cm,用扳手拧动螺帽旋转90°,则点A在该过程中所经过的路径长为________cm.21、已知扇形的半径是12cm,弧长为20πcm,则此扇形的圆心角度数为________.22、如图,在Rt△ABC中,∠BAC=30°,以直角边AB为直径作半圆交AC于点D,以AD为边作等边△ADE,延长ED交BC于点F,BC=2 ,则图中阴影部分的面积为________.(结果不取近似值)23、如图,将△ABC绕点C旋转60°得到△A′B′C′,已知AC=6,BC=4,则线段AB扫过图形(阴影部分)的面积为________.(结果保留π)24、如图,在平面直角坐标系中,已知点A(,0),点B在第一象限,且AB与直线l:y=x平行,AB长为4,若点P是直线l上的动点,则△PAB的内切圆面积的最大值为________.25、将长为8cm的铁丝首尾相接围成半径为2cm的扇形,则S扇形=________cm2.三、解答题(共5题,共计25分)26、如图,A、B、C、D均为⊙O上的点,其中A、B两点的连线经过圆心O,线段AB、CD 的延长线交于点E,已知AB=2DE,∠E=18°,求∠AOC的度数.27、如图,AB为⊙O的直径,CD切⊙O于点C,与BA的延长线交于点D,OE⊥AB交⊙O于点E,连接CA、CE、CB,CE交AB于点G,过点A作AF⊥CE于点F,延长AF交BC于点P.(Ⅰ)求∠CPA的度数;(Ⅱ)连接OF,若AC= ,∠D=30°,求线段OF的长.28、如图,⊙O的半径OC=10cm,直线l⊥CO,垂足为H,交⊙O于A,B两点,AB=16cm,直线l平移多少厘米时能与⊙O相切29、如图,⊙ 是△ 的外接圆,为直径,弦,交的延长线于点,求证:(Ⅰ);(Ⅱ)是⊙ 的切线.30、如图,在⊙O中,=2 ,AD⊥OC于D.求证:AB=2AD.参考答案一、单选题(共15题,共计45分)1、D2、A3、B4、C5、C6、D7、D8、C9、B10、B11、C12、C13、A14、A15、C二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)28、29、30、。
初中数学青岛版九年级上册第3章 对圆的进一步认识3.3 圆周角-章节测试习题(7)
章节测试题1.【答题】如图,量角器外边缘上有A、P、Q三点,它们所表示的读数分别是180°,70°,30°,则∠PA Q的大小为()A. 10°B. 20°C. 30°D. 40°【答案】B【分析】根据圆周角定理解答即可.【解答】解:设圆心是O,连接OP,OQ.∵P、Q所表示的读数分别是70°,30°,∴∠POQ=40°.∵∠PAQ与∠POQ是同弧所对的圆心角与圆周角,∴∠PAQ=∠POQ=20°.选B.2.【答题】如图,△ABC为⊙O的内接三角形,∠BOC=80°,则∠A等于()A. 80B. 60C. 50D. 40【答案】D【分析】根据圆周角定理解答即可.【解答】解:由圆周角定理得,选D.3.【答题】如图所示,AB为⊙O的直径,P、Q、R、S为圆上相异四点,下列叙述正确的是()A. ∠APB为锐角B. ∠AQB为直角C. ∠ARB为钝角D. ∠ASB<∠ARB【答案】B【分析】根据圆周角定理解答即可.【解答】AB为直径,根据直径所对的圆周角是直角,所以∠APB、∠AQB、∠ARB、∠ASB都是直角,由于四个角都是直角,所以∠ASB=∠ARB=90°.4.【答题】如图,已知CD为⊙O的直径,过点D的弦DE平行于半径OA,若∠D的度数是50°,则∠C的度数是()A. 25°B. 40°C. 30°D. 50°【答案】A【分析】根据圆周角定理和平行线的性质解答即可.【解答】解:根据平行线的性质可知:∠AOD=∠D=50°,根据同弧所对的圆周角等于圆心角度数的一半可得:∠C=50°÷2=25°,故选择A.5.【答题】如图,∠1、∠2、∠3、∠4的大小关系是()A. ∠4<∠1<∠2<∠3B. ∠4<∠1=∠3<∠2C. ∠4<∠1<∠3∠2D. ∠4<∠1<∠3=∠2【答案】B【分析】根据圆周角定理解答即可.【解答】∵∠1与∠3的顶点在圆周上且所对的弧相等,∴∠1=∠3;∵∠2的顶点在圆内,∴∠2>∠1;∵∠4的顶点在圆外,∴∠4<∠1;∴∠4<∠1=∠3<∠2.选B.6.【答题】如图,A、D是⊙O上的两点,BC是直径,若∠D=35°,则∠OCA的度数是()A. 35°B. 55°C. 65°D. 70°【答案】B【分析】根据圆周角定理解答即可.【解答】解:∵∠AOC=2∠D,∠D=35°,∴∠AOC=2∠D=2×35°=70°,在等腰△OAC中,∵OA=OC,∠AOC=70°,∴∠OCA==55°.选B.7.【答题】如图,A、B、C是⊙O上的三点,∠ACB=30°,则∠AOB等于()A. 75°B. 60°C. 45°D. 30°【答案】B【分析】根据圆周角定理解答即可.【解答】解:根据同弧所对的圆心角等于圆周角度数的2倍可得:∠AOB=2∠ACB=60°,故选择B.8.【答题】如图,把一个量角器放在∠BAC的上面,请你根据量角器的读数判断∠BAC的度数是()A. 30°B. 60°C. 15°D. 20°【答案】C【分析】根据圆周角定理解答即可.【解答】解:根据图示可得:∠BOC=30°,根据同弧所对的圆周角等于圆心角度数的一半可得:∠BAC=30°÷2=15°,故选择C.9.【答题】如图,AB是⊙O的直径,CD是弦,且AB∥CD,若AB=8,∠ABC=30°,则弦AD的长为()A.B.C.D. 8【答案】B【分析】根据圆周角定理解答即可. 【解答】连接BD,∵AB∥CD,∴∠BAD=∠ADC,∵∠ADC=∠ABC,∠ABC=30°,∴∠ADC=30°,∴∠BAD=30°,∵AB是⊙O的直径,AB=8,∴∠ADB=90°,∴BD=AB=4,∴ AD==4,选B.10.【答题】如图,圆心角∠AOB=60°,则圆周角∠ACB的度数是()A. 120°B. 60°C. 30°D. 20°【答案】C【分析】根据圆周角定理解答即可.【解答】解:选C.11.【答题】已知A、C、B是⊙O上三点,若∠AOC=40°,则∠ABC的度数是()A. 10°B. 20°C. 40°D. 80°【答案】B【分析】根据圆周角定理解答即可.【解答】根据圆周角定理,得∠ABC=∠AOC=20°.选B.12.【答题】如图,AB是⊙O的直径,C,D,E都是⊙O上的点,则∠ACE+∠BDE等于()A. 60°B. 75°C. 90°D. 120°【答案】C【分析】根据圆周角定理解答即可.【解答】连接AD,则有∠ADE=∠ACE,∵AB是直径,∴∠ADB=90°,即∠ADE+∠BDE=90°,∴∠ADE+∠BDE=90°,选C.13.【答题】如图,⊙O是△ABC的外接圆,已知∠ABO=30°,则∠ACB的大小为()A. 60°B. 30°C. 45°D. 50°【答案】A【分析】根据圆周角定理解答即可.【解答】∵∠ABO=30°,OA=OB,∴∠BAO=∠ABO=30°,∴∠AOB=180°-30°-30°=120°.∵∠AOB与∠ACB对这相同的弧AB,∴∠ACB=.选A.14.【答题】如图,△ABC为⊙O的内接三角形,AB=2,∠C=30,则⊙O的半径为()A. 1B. 2C. 3D. 4【答案】B【分析】根据圆周角定理解答即可.【解答】连接OA、OB,则∠AOB=2∠C=60°,又∵OA=OB,∴△OAB是等边三角形,∴OA=AB=2,选B.15.【答题】如图,点A、C、B在⊙O上,已知∠AOB=∠ACB=,则的值为()A. 135°B. 100°C. 110°D. 120°【答案】D【分析】根据圆周角定理解答即可.【解答】∵∠ACB=∴优弧所对的圆心角为2∴2+=360°∴=120°.选D.16.【答题】如图,⊙O是△ABC的外接圆,∠OCB=40°,则∠A的度数是()A. 40°B. 50°C. 60°D. 100°【答案】B【分析】根据圆周角定理解答即可.【解答】解:∵OB=OC,选B.17.【答题】如图,AB是⊙O的直径,C、D、E是⊙O上的点,则∠1+∠2等于()A. 90°B. 45°C. 180°D. 60°【答案】A【分析】根据圆周角定理解答即可.【解答】因为AB是⊙O的直径,所以∠AOB=180°,由圆周角定理得:∠1+∠2=∠AOB=90°,选A.18.【答题】如图,A,B,C是⊙O上三点,∠ACB=25°,则∠BAO的度数是()A. 50°B. 55°C. 60°D. 65°【答案】D【分析】根据圆周角定理解答即可.【解答】连接OB,因为∠ACB=25°,根据同弧所对的圆周角是圆心角的一半,得:∠AOB=50°,在三角形AOB中,选D.19.【答题】如图,在⊙O中,AC为⊙O直径,B为圆上一点,若∠OBC=26°,则∠AOB 的度数为()A. 26°B. 52°C. 54°D. 56°【答案】B【分析】根据圆周角定理解答即可.【解答】解:∵OB=OC,∴∠OBC=∠OCB=26°,∴∠AOB=2∠OCB=52°.选B.20.【答题】如图,有一圆通过△ABC的三个顶点,与BC边的中垂线相交于D 点,若∠B=74°,∠ACB=46°,则∠ACD的度数为()A. 14°B. 26°C. 30°D. 44°【答案】A【分析】连接BD,根据DE是线段BC的垂直平分线可知BD=CD,故弧BD=弧CD,再根据∠B=74°,∠ACB=46°得出弧AC及弧AB的度数,进而可得弧AD的度数,即可得到结论.【解答】解:连接BD.∵DE是线段BC的垂直平分线,∴BD=CD,∴=.∵∠B=74°,∠ACB=46°,∴=74°,=46°,∴2=﹣=74°﹣46°=28°,∴=14°,∴∠ACD=14°.选A.。
青岛版九年级数学上册第3章对圆的进一步认识单元测试(A4扩B4印刷版)
青岛版九年级数学上册第3章对圆的进一步认识单元测试一.选择题(共20小题)1.(2014•重庆)如图,△ABC的顶点A、B、C均在⊙O上,若∠ABC+∠AOC=90°,则∠AOC的大小是()A.30°B.45°C.60°D.70°2.(2014•温州)如图,已知A,B,C在⊙O 上,为优弧,下列选项中与∠AOB相等的是()A.2∠C B.4∠B C.4∠A D.∠B+∠C 3.(2014•牡丹江)如图,⊙O的直径AB=2,弦AC=1,点D在⊙O上,则∠D的度数是()A.30°B.45°C.60°D.75°4.(2014•益阳)如图,在平面直角坐标系xOy中,半径为2的⊙P的圆心P的坐标为(﹣3,0),将⊙P沿x轴正方向平移,使⊙P与y轴相切,则平移的距离为()A.1B.1或5 C.3D.55.(2014•泸州)如图,在平面直角坐标系中,⊙P的圆心坐标是(3,a)(a>3),半径为3,函数y=x的图象被⊙P 截得的弦AB 的长为,则a的值是()A.4B.C.D.6.(2014•乌鲁木齐)如图,半径为3的⊙O内有一点A,OA=,点P在⊙O上,当∠OPA最大时,PA的长等于()A.B.C.3D.27.(2014•孝感)如图,在半径为6cm的⊙O中,点A 是劣弧的中点,点D 是优弧上一点,且∠D=30°,下列四个结论:①OA⊥BC;②BC=6;③sin∠AOB=;④四边形ABOC是菱形.其中正确结论的序号是()A.①③B.①②③④C.②③④D.①③④8.(2014•仙桃)如图,B,C,D是半径为6的⊙O上的三点,已知的长为2π,且OD∥BC,则BD的长为()A.3B.6C.6D.129.(2014•济南)如图,⊙O的半径为1,△ABC是⊙O的内接等边三角形,点D、E在圆上,四边形BCDE为矩形,这个矩形的面积是()A.2B.C.3/2 D.10.(2014•自贡)如图,在半径为1的⊙O中,∠AOB=45°,则sinC的值为()A.B.C.D.11.(2014•长春)如图,在⊙O中,AB是直径,BC是弦,点P 是上任意一点.若AB=5,BC=3,则AP的长不可能为()A.3B.4C.9/2 D.512.(2014•台湾)如图,O为△ABC的外心,△OCP为正三角形,OP与AC相交于D点,连接OA.若∠BAC=70°,AB=AC,则∠ADP的度数为何?()A.85 B.90 C.95 D.11013.(2014•眉山)如图,AB、AC是⊙O的两条弦,∠BAC=25°,过点C的切线与OB的延长线交于点D,则∠D 的度数为()A.25°B.30°C.35°D.40°14.(2011•烟台)如图是油路管道的一部分,延伸外围的支路恰好构成一个直角三角形,两直角边分别为6m和8m.按照输油中心O到三条支路的距离相等来连接管道,则O到三条支路的管道总长(计算时视管道为线,中心O为点)是()A.2m B.3m C.6m D.9m15.(2014•日照)如图,正六边形ABCDEF是边长为2cm的螺母,点P是FA延长线上的点,在A、P之间拉一条长为12cm的无伸缩性细线,一端固定在点A,握住另一端点P拉直细线,把它全部紧紧缠绕在螺母上(缠绕时螺母不动),则点P运动的路径长为()A.13πcm B.14πcm C.15πcm D.16πcm 16.(2014•莱芜)如图,在正五边形ABCDE中,连接AC、AD、CE,CE交AD于点F,连接BF,下列说法不正确的是()A.△CDF的周长等于AD+CD B.F C平分∠BFDC.A C2+BF2=4CD2D.D E2=EF•CE17.(2014•玉林)蜂巢的构造非常美丽、科学,如图是由7个形状、大小完全相同的正六边形组成的网络,正六边形的顶点称为格点,△ABC的顶点都在格点上.设定AB边如图所示,则△ABC是直角三角形的个数有()A.4个B.6个C.8个D.10个18.(2014•南宁)在直径为200cm的圆柱形油槽内装入一些油以后,截面如图.若油面的宽AB=160cm,则油的最大深度为()A.40cm B.60cm C.80cm D.100cm 19.(2014•宜昌)如图,点A,B,C,D都在⊙O上,AC,BD相交于点E,则∠ABD=()A.∠ACD B.∠ADB C.∠AED D.∠ACB 20.(2014•潍坊)如图,▱ABCD的顶点A、B、D在⊙O上,顶点C在⊙O的直径BE上,连接AE,∠E=36°,则∠ADC的度数是()A.44°B.54°C.72°D.53°二.填空题(共4小题)21.(2014•呼和浩特)一个底面直径是80cm,母线长为90cm 的圆锥的侧面展开图的圆心角的度数为____.22.(2014•张家界)如图,AB、CD 是半径为5的⊙O 的两条弦,AB=8,CD=6,MN是直径,AB⊥MN于点E,CD⊥MN于点F,P为EF上的任意一点,则PA+PC的最小值为___.23.(2014•南京)如图,在⊙O中,CD是直径,弦AB⊥CD,垂足为E,连接BC,若AB=2cm,∠BCD=22°30′,则⊙O的半径为_________cm.24.(2013•宁夏)如图,将半径为2cm的圆形纸片折叠后,圆弧恰好经过圆心O,则折痕AB的长为_________cm.三.解答题(共6小题)25.(2013•潍坊)如图,四边形ABCD是平行四边形,以对角线BD为直径作⊙O,分别与BC,AD相交于点E,F.(1)求证:四边形BEDF为矩形;(2)BD2=BE•BC,试判断直线CD与⊙O的位置关系,并说明理由.26.(2014•宜昌)已知:如图,四边形ABCD为平行四边形,以CD为直径作⊙O,⊙O与边BC相交于点F,⊙O 的切线DE与边AB相交于点E,且AE=3EB.(1)求证:△ADE∽△CDF;(2)当CF:FB=1:2时,求⊙O与▱ABCD的面积之比.27.(2014•枣庄)如图,A为⊙O外一点,AB切⊙O于点B,AO交⊙O于C,CD⊥OB于E,交⊙O于点D,连接OD.若AB=12,AC=8.(1)求OD的长;(2)求CD的长.28.(2014•黄冈)如图,在Rt△ABC中,∠ACB=90°,以AC为直径的⊙O与AB边交于点D,过点D作⊙O的切线,交BC于点E.(1)求证:EB=EC;(2)若以点O、D、E、C为顶点的四边形是正方形,试判断△ABC的形状,并说明理由.29.(2014•济南)(1)如图1,四边形ABCD是矩形,点E是边AD的中点,求证:EB=EC.(2)如图2,AB与⊙O相切于点C,∠A=∠B,⊙O的半径为6,AB=16,求OA的长.30.(2014•潍坊)如图,在梯形ABCD中,AD∥BC,∠B=90°,以AB为直径作⊙O,恰与另一腰CD相切于点E,连接OD、OC、BE.(1)求证:OD∥BE;(2)若梯形ABCD的面积是48,设OD=x,OC=y,且x+y=14,求CD的长.。
九年级数学上册第3章《对圆的进一步认识》单元测试2(青岛版)
第3章 《对圆的进一步认识》单元测试一、选择题:(每小题4分,共20分)1.⊙O 的直径是15cm ,CD 经过圆心O ,与⊙O 交于C 、D 两点,垂直弦AB 于M ,且OM :OC=3 :5,则AB=( )A .24cmB .12cmC .6cmD .3cm2.⊙O 的直径是3,直线与⊙O 相交,圆心O 到直线的距离是d ,则d 应满足( ) A .d>3 B .1.5<d<3 C .0≤d<1.5 D .0<d<33.已知两圆的半径分别为R ,r (R>r ),圆心距为d,且R 2+d 2-r 2=2Rd,则这两圆的位置关系是( )A .内含B .相切C .相交D .相离4.若直径为4cm ,6cm 的两个圆相外切,那么与这两个圆都相切且半径为5cm 的圆的个数是( )A .5个B .4个C .3个D .2个5.圆内接正方形与该圆的内接正六边形的周长比为( ) A .2:3 B.C:2 D .:3 二、填空题:(每小题4分,共20分)6.过⊙O 内一点P 的最长的弦是10cm ,最短的弦是8cm ,则OP 和长为 cm 。
7.如图弦AC ,BD 相交于E ,并且»»»AB BCCD ==,∠BEC=110°,则∠ACD 的度数是 。
8.若三角形的周长为P ,面积为S ,其内切圆的半径为r,则r :S= 。
9.已知∠AOB=30°,M 为OB 边上一点,以M 为圆心,2cm 为半径作⊙M 与OA 相切,切点为N ,则△MON 的面积为 。
B第7题10.如图①是半径为1的圆,在其中挖去2个半径为12的圆得到图②,挖去22个半径为(12)2的圆得到图③……,则第n(n>1)个图形阴影部分的面积是 。
……三、解答题:(每小题8分,共40分)11.如图,AB 是⊙O 的直径,CF ⊥AB 交⊙O 于E 、F ,连结AC 交⊙O 于D 。
初中数学青岛版九年级上册第3章 对圆的进一步认识3.3 圆周角-章节测试习题(1)
章节测试题1.【答题】如图,点A、B把⊙O分成两条弧,则∠AOB=______.【答案】80°【分析】根据弧、弦、圆心角之间的关系解答即可.【解答】解:∠AOB=360°×=80°.故答案为:80°.2.【答题】在半径为R的⊙O中,有一条弦等于半径,则弦所对的圆心角为______.【答案】60°【分析】根据弧、弦、圆心角之间的关系解答即可.【解答】解:如图, AB=OA=OB,所以△ABC为等边三角形,所以∠AOB=60°.故答案为60°.3.【答题】下列说法:①等弧对等弦;②等弦对等弧;③等弦所对的圆心角相等;④相等的圆心角所对的弧相等;⑤等弧所对的圆心角相等.其中正确的个数为()A. 1B. 2C. 3D. 4【答案】B【分析】根据“在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.”,判断即可.【解答】解:①两个相等的弧一定是在同圆或等圆中,故此时等弧对等弦,①正确;②两个相等的弦不一定在同圆或等圆中,故②错误;③两个相等的弦不一定在同圆或等圆中,故③错误;④两个相等的圆心角不一定在同圆或等圆中,故④错误;⑤两个相等的弧一定是在同圆或等圆中,故此时等弧所对的圆心角相等,⑤正确.综上①⑤正确.选B.4.【答题】如图,点A、B、C在⊙O上,∠AOC=70°,则∠ABC的度数为()A. 10°B. 20°C. 35°D. 55°【答案】C【分析】根据圆周角定理解答即可.【解答】∵∠AOC=70°,∴∠ABC=∠AOC=35°.选C.5.【答题】如图,已知A、B、C、D是⊙O上的点,∠1=∠2,则下列结论中正确的有()①;②;③AC=BD;④∠BOD=∠AOC.A. 1个B. 2个C. 3个D. 4个【答案】D【分析】根据弧、弦、圆心角之间的关系解答即可.【解答】①中,∵∠1=∠2,∴,故①正确;②中,∵∠1=∠2,∴∠1+∠COB=∠2+∠COB,即∠BOD=∠AOC,∴,故②正确;③中,由上得∠BOD=∠AOC,∴BD=AC,故③正确;④中,由上证得∠BOD=∠AOC,故④正确.则4个选项都正确,选D.6.【答题】如图,在⊙O中,,则下列结论正确的是()A. AB>2CDB. AB=2CDC. AB<2CDD. 以上都不正确【答案】C【分析】首先取的中点E,连接AE,BE,由在⊙O中,,可证得==,即可得AE=BE=CD,然后由三角形的三边关系,求得答案.【解答】解:取的中点E,连接AE,BE,∵在⊙O中,=2,∴==,∴AE=BE=CD,∵在△ABE中,AE+BE>AB,∴2CD>AB.选C.7.【答题】下列图形中表示的角是圆心角的是()A. AB. BC. CD. D【答案】A【分析】根据圆心角的定义解答即可.【解答】解:根据圆心角的定义:顶点在圆心的角是圆心角可知,B,C,D项图形中的顶点都不在圆心上,所以它们都不是圆心角.选A.8.【答题】如图,扇形OAB的圆心角为90°,点C、D是的三等分点,半径OC、OD分别与弦AB交于点E、F,下列说法错误的是()A. AE=EF=FBB. AC=CD=DBC. EC=FDD. ∠DFB=75°【答案】A【分析】利用点C,D是的三等分点,得出AC=CD=DB,∠AOC=∠COD=∠BOD=∠AOB=30°,再求出∠OBA的度数,利用外角求出∠BFD的度数,通过证△AOE≌△BOF,得出OE=OF,则EC=FD. 连接AC,在△ACE中,求证AE=AC,则可证CD=AE=BF,再根据CD>EF得AE、EF、FB关系.【解答】解:∵点C,D是的三等分点,∴AC=CD=DB,∠AOC=∠COD=∠BOD=∠AOB=30°,∴选项B正确;∵OA=OB,∠AOB=90°,∴∠OAB=∠OBA=45°,∴∠AEC=∠OAB+∠AOC=45°+30°=75°,同理∠DFB=75°,故选项D正确.∴∠AEO=∠BFO,在△AOE和△BOF中,∠AEO=∠BFO,∠AOC=∠BOD,AO=BO,∴△AOE≌△BOF,∴OE=OF,∴EC=FD,故选项C正确.在△AOC中,∵OA=OC,∴∠ACO=∠CAO=(180°-30°)=75°,∴∠ACO=∠AEC,∴AC=AE,同理BF=BD,又∵AC=CD=BD,∴CD=AE=BF,∵在△OCD中,OE=OF,OC=OD,∴EF<CD,∴CD=AE=BF>EF,故A错误.选A.9.【答题】如果两个圆心角相等,那么()A. 这两个圆心角所对的弦相等B. 这两个圆心角所对的弧相等C. 这两个圆心角所对的弦的弦心距相等D. 以上说法都不对【答案】D【分析】根据弧、弦、圆心角之间的关系解答即可.【解答】因为在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦以及弦心距相等,本题中题设中缺少”同圆或等圆”这一条件,选D.10.【答题】下列命题错误的是()A. 经过三个点一定可以作圆B. 同圆或等圆中,相等的圆心角所对的弧相等C. 三角形的外心到三角形各顶点的距离相等D. 经过切点且垂直于切线的直线必经过圆心【答案】A【分析】根据圆的确定条件、弧、弦、圆心角之间的关系等解答即可.【解答】A.三个点不能在一条直线上,则A错误;B.同圆或等圆中,相等的圆心角所对的弧相等,正确;C.三角形的外心到三角形各顶点的距离相等,正确;D.经过切点且垂直于切线的直线必经过圆心,正确,选A.11.【答题】如图,圆心角∠AOB=25°,将弧AB旋转n°得到弧CD,则∠COD等于()A. 25°B. 25°+n°C. 50°D. 50°+n°【答案】A【分析】根据弧、弦、圆心角之间的关系解答即可.【解答】解:∵将旋转n°得到,∴,∴∠DOC=∠AOB=25°选A.12.【答题】已知AB与A′B′分别是☉O与☉O′的两条弦,AB=A′B′,那么∠AOB与∠A′O′B′的大小关系是()A. ∠AOB=∠A′O′B′B. ∠AOB>∠A′O′B′C. ∠AOB<∠A′O′B′D. 不能确定【答案】D【分析】根据弧、弦、圆心角之间的关系解答即可.【解答】解:由弦相等推弦所对的圆心角相等,必须保证在同圆或等圆中.此题没有限制,所以不能确定∠AOB和∠A′O′B′的大小关系.13.【答题】如图,AB和CD是⊙O的两条直径,弦DE∥AB,若∠DOE=40°的弧,则∠BOC=()A. 110°B. 80°C. 40°D. 70°【答案】A【分析】根据弧、弦、圆心角之间的关系解答即可.【解答】连接OE,如图所示:∵弧DE为40°的弧,∴∠DOE=40°.∵OD=OE,∴∠ODE= =70°.∵弦DE∥AB,∴∠AOC=∠ODE=70°,∴∠BOC=180°-∠AOC=180°-70°=110°.选A.14.【答题】如图,AB是⊙O的直径,,∠COD=38°,则∠AEO的度数是()A. 52°B. 57°C. 66°D. 78°【答案】B【分析】根据弧、弦、圆心角之间的关系解答即可.【解答】∵,∴∠BOC=∠DOE=∠COD=38°,∴∠BOE=∠BOC+∠DOE+∠COD=114°,∴∠AOE=180°-∠BOE=66°,∵OA=OE,∴∠AEO=(180°-∠AOE)÷2=57°,选B.15.【答题】下列命题正确是()A. 点(1,3)关于x轴的对称点是,.B. 函数中,y随x的增大而增大.C. 若一组数据3,x,4,5,6的众数是3,则中位数是3.D. 同圆中的两条平行弦所夹的弧相等.【答案】D【分析】各选项依次分析解答即可.【解答】解: A. 点(1,3)关于x轴的对称点是(1,-3),故该选项错误;B. 函数y=-2x+3中,由于k=-2<0,故y随x的增大而减小,故该选项错误;C. 若一组数据3,x,4,5,6的众数是3,则中位数是4,故该选项错误;D. 同圆中的两条平行弦所夹的弧相等,故该选项正确.选D.16.【答题】下列说法正确的是()A. 等弧所对的圆心角相等B. 三角形的外心到这个三角形的三边距离相等C. 经过三点可以作一个圆D. 相等的圆心角所对的弧相等【答案】A【分析】根据弧、弦、圆心角之间的关系解答即可.【解答】解:等弧所对的圆心角相等,A正确;三角形的外心到这个三角形的三个顶点的距离相等,B错误;经过不在同一直线上的三点可以作一个圆,C错误;相等的圆心角所对的弧不一定相等,选A.17.【答题】以下命题:①直径相等的圆是等圆;②长度相等弧是等弧;③相等的弦所对的弧也相等;④圆的对称轴是直径;⑤相等的圆周角所对的弧相等;其中正确的个数是()A. 4B. 3C. 2【答案】D【分析】根据弧、弦、圆心角之间的关系解答即可.【解答】以下命题:①直径相等的圆是等圆,正确;②长度相等弧是等弧,错误,只有在同圆或等圆中长度相等的弧是等弧;③相等的弦所对的弧也相等,错误;④圆的对称轴是直径,错误,应该是直径所在的直线;⑤相等的圆周角所对的弧相等,错误;所以正确的只有1个,选D.18.【答题】在同圆中,下列四个命题:(1)圆心角是顶点在圆心的角;(2)两个圆心角相等,它们所对的弦也相等;(3)两条弦相等,它们所对的弧也相等;(4)等弧所对的圆心角相等.其中真命题有()A. 4个B. 3个C. 2个D. 1个【答案】B【分析】利用圆的有关性质及定义对各个题目进行判断后即可确定正确的答案.【解答】解:圆心角是顶点在圆心的角,所以①正确,为真命题;在同圆中,两个圆心角相等,它们所对的弦也相等,所以②正确,为真命题;在同圆中,两条弦相等,所对的劣弧也相等,所以③错误,为假命题;等弧所对的圆心角相等,所以④正确,为真命题.19.【答题】下列说法正确的是().A. 半圆是弧,弧也是半圆B. 三点确定一个圆C. 平分弦的直径垂直于弦D. 直径是同一圆中最长的弦【答案】D【分析】根据圆的有关概念解答即可.【解答】解:A、半圆是弧,但弧不一定是半圆,故本选项错误;B、不在同一直线上的三点确定一个圆,故本选项错误;C、当被平分的弦为直径时,两直径不一定垂直,故本选项错误;D、直径是同一圆中最长的弦,故本选项正确,选D.20.【答题】下列说法正确的是()A. 弦是直径B. 弧是半圆C. 半圆是弧D. 通过圆心的线段是直径【答案】C【分析】根据圆的有关概念解答即可.【解答】解:A、弦是连接圆上任意两点的线段,只有经过圆心的弦才是直径,不是所有的弦都是直径.故本选项错误;B、弧是圆上任意两点间的部分,只有直径的两个端点把圆分成的两条弧是半圆,不是所有的弧都是半圆.故本选项错误;C、圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆.所以半圆是弧是正确的.D、过圆心的弦才是直径,不是所有过圆心的线段都是直径,故本选项错误.选C.。
青岛版九年级上册数学第3章 对圆的进一步认识含答案(精练)
青岛版九年级上册数学第3章对圆的进一步认识含答案一、单选题(共15题,共计45分)1、如图,△ABC中,下面说法正确的个数是()①若O是△ABC的外心,∠A=50°,则∠BOC=100°;②若O是△ABC的内心,∠A=50°,则∠BOC=115°;③若BC=6,AB+AC=10,则△ABC的面积的最大值是12;④△ABC的面积是12,周长是16,则其内切圆的半径是1.A.1个B.2个C.3个D.4个2、下列命题错误的是()A.垂直于弦的直径必平分于弦B.在同圆或等圆中,等弧所对的弦相等 C.线段垂直平分上的点到线段的两端点的距离相等 D.梯形的中位线将梯形分成面积相等的两部分3、已知⊙O的直径CD=10cm,AB是⊙O的弦,AB=8cm,且AB⊥CD,垂足为M,则AC的长为()A.2 cmB.4 cmC.2 cm或4 cmD.2 cm或4 cm4、一个圆的内接正六边形的边长为 2,则该圆的内接正方形的边长为()A. B.2 C.2 D.45、下列图形中,是正多边形的是()A.直角三角形B.等腰三角形C.长方形D.正方形6、⊙O与直线l有两个交点,且圆的半径为3,则圆心O到直线l的距离不可能是()A.0B.1C.2D.37、如图,在△ABC中,AB=BC=2,以AB为直径的⊙O与BC相切于点B,则AC 等于()A. B. C.2 D.28、如图,AB为圆O的直径,弦CD⊥AB,垂足为点E,连接OC,若OC=5,CD=8,则AE=( ).A.8cmB.5cmC.3cmD.2cm9、如图,在平面直角坐标系中,过格点A,B,C作一圆弧,点B与下列格点的连线中,能够与该圆弧相切的是()A.点(0,3)B.点(2,3)C.点(5,1)D.点(6,1)10、某几何体三视图及相关数据如图所示,则该几何体的侧面积是()A. B. C. D.11、如图,AB是半圆的直径,AB=2r,C、D为半圆的三等分点,则图中阴影部分的面积是()。
青岛版九年级数学上册《第三章对圆的进一步认识》单元测试卷-附答案
青岛版九年级数学上册《第三章对圆的进一步认识》单元测试卷-附答案学校:___________班级:___________姓名:___________考号:___________(满分100分,限时60分钟)一、选择题(每小题3分,共30分)1.用反证法证明命题“钝角三角形中必有一个内角小于45°”时,首先应该假设这个三角形中()A.有一个内角小于45°B.每一个内角都小于45°C.有一个内角大于或等于45°D.每一个内角都大于或等于45°2.已知☉O的半径为3,直线l上有一点P满足PO=3,则直线l与☉O的位置关系是()A.相切B.相离C.相离或相切D.相切或相交3.(2023浙江绍兴新昌期中)已知扇形的弧长为6π cm,圆心角为120°,则扇形的面积为()A.27π cm2B.13.5π cm2C.54π cm2D.36π cm24.如图,四边形ABCD是☉O的内接四边形,连接AO,OC∠OCD=40°,AO∥CD,则∠ADC=()A.110°B.105°C.100°D.96°5.如图,AB是☉O的直径,点E在☉O上,点D、C是BE的三等分点,∠COD=34°,则∠AOE的度数是()A.78°B.68°C.58°D.56°6.【数学文化】斐波那契螺旋线,也称“黄金螺旋线”,自然界中存在许多包含斐波那契螺旋线的图案(如图1).图2是根据斐波那契数列1,1,2,3,5,……画出来的螺旋曲线,阴影部分内部是边长为1的正方形,黑色曲线就是斐波那契螺旋线,它是依次在以1,2,3,5为边长的正方形中画一个圆心角为90°的扇形,将其圆弧连接起来得到的.那么这一段斐波那契螺旋线的弧长为()A.92π B.5π C.112π D.6π7.如图,正五边形ABCDE内接于☉O,点P为AEC上一点,则∠APC的度数为()A.36°B.45.5°C.67.5°D.72°8.【新情境·光盘与直尺】下图是用直尺、含60°角的直角三角板和光盘摆放而成,点A为60°角的顶点,点B为光盘与直尺的唯一交点,点O为光盘的圆心,点C为光盘与直角三角板的唯一交点,若AB=3,则光盘的直径是()A.6√3B.3√3C.6D.39.如图,AB是☉O的直径,OD垂直于弦AC于点D,DO的延长线交☉O于点E.若AC=4√2,DE=4,则BC的长是()A.1B.√2C.2D.410.如图,以△ABC的边AB为直径作☉O经过点C,分别过点B,C作☉O的两条切线相交于点D,OD 交☉O于点E,AE的延长线交BD于点F.下面结论中,错误的是()A.BC⊥ODB.AC∥ODC.FD=FED.点E为△BCD的内心二、填空题(每小题3分,共18分)11、如图,AB是☉O的直径,弦CD交AB于点E,连接AC,AD.若∠BAC=28°,则∠D=。
青岛版九年级上册数学 第3章 对圆的进一步认识 单元达标测试题(含答案)
第3章对圆的进一步认识一、选择题1.如图,圆心角∠AOB=80°,则∠ACB的度数为()A. 80°B. 40°C. 60°D. 45°2.下列说法中,正确的是()A. 90°的圆周角所对的弦是直径B. 平分弦的直径垂直于弦,并且平分弦所对的两条弧C. 经过半径的端点并且垂直于这条半径的直线是这个圆的切线D. 长度相等的弧是等弧3.如图,点A,B,C在⊙O上,若∠BOC=72º,则∠BAC的度数是()A. 18°B. 36°C. 54°D. 72°4.如图,线段是的直径,弦,,则等于()A. 160°B. 150°C. 140°D. 120°5.如图,在△ABC中,BC=4,以点A为圆心,2为半径的⊙A与BC相切于点D,交AB于点E,交AC于点F,点P是⊙A上的一点,且∠EPF=45°,则图中阴影部分的面积为()A. 4﹣πB. 4﹣2πC. 8+πD. 8﹣2π6.如图,在平面直角坐标系中,⊙A与y轴相切于原点O,平行于x轴的直线交⊙A于M、N两点,若点M的坐标是(-4,-2),则点N的坐标为()A. (1,-2)B. (-1,-2)C. (-1.5,-2)D. (1.5,-2)7.如图,点O是△ABC的内心,∠A=62°,则∠BOC=()A. 59°B. 31°C. 124°D. 121°8.一个空间几何体的主视图和左视图都是边长为4的正三角形,俯视图是一个半径为2的圆,那么这个几何体的全面积是 ( )A. 8πcm2B. 10πcm2C. 12πcm2D. 16πcm29.如图,AB是⊙O的弦,半径OC⊥AB于点D,且AB=6 cm,OD=4 cm.则DC的长为()cm.A. 5B. 2.5C. 2D. 110.如图,是一圆锥的左视图,根据图中所标数据,圆锥侧面展开图的扇形圆心角的大小为()A. 90°B. 120°C. 135°D. 150°11.已知圆锥的母线长为4,底面半径为2,则圆锥的侧面积等于()A. 11πB. 10πC. 9πD. 8π12.如图,A,B,C三点在已知的圆上,在△ABC中,∠ABC=70°,∠ACB=30°,D是的中点,连接DB,DC,则∠DBC的度数为()A. 30°B. 45°C. 50°D. 70°二、填空题13.已知⊙O的直径等于12cm,圆心O到直线l的距离为5cm,则直线l与⊙O的交点个数为________.14.已知直线l与⊙O相切,若圆心O到直线l的距离是5,则⊙O的半径为________.15.在平面直角坐标系中,⊙P的圆心是(2,a)(a>2),半径为2,函数y=x的图象被⊙P截得的弦AB的长为,则a的值是________.16.如图,AB为⊙O的直径,弦CD⊥AB于点E,已知CD=6,EB=1,则⊙O的半径为________.17.如图,⊙O的半径为R,以圆内接正方形ABCD的顶点B为圆心,AB为半径.画弧AC,则阴影部分的面积是________.18.圆锥的底面半径为14 cm,母线长为21 cm,则该圆锥的侧面展开图的圆心角为________度.19.如图,半径为的⊙O是△ABC的外接圆,∠CAB=60°,则BC=________ .20.如图,圆锥的底面直径是10cm,高为12cm,则它的侧面展开图的面积是________cm2。
九年级数学上册第3章《对圆的进一步认识》单元测试3(青岛版)
第3章 《对圆的进一步认识》单元测试一、选择题(每小题4分,共40分)每小题只有一个正确答案,请将正确答案的番号填在括号内.1、平行四边形的四个顶点在同一圆上,则该平行四边形一定是( )A 、正方形B 、菱形C 、矩形D 、等腰梯形2、若⊙A 的半径为5,圆心A 的坐标是(3,4),点P 的坐标是(5,8),你认为点P 的位置为( )A 、在⊙A 内B 、在⊙A 上C 、在⊙A 外D 、不能确定3、下列所述图形中对称轴最多的是( )A 、圆B 、正方形C 、正三角形D 、线段4、下列四个命题中正确的是( )①与圆有公共点的直线是该圆的切线 ②垂直于圆的半径的直线是该圆的切线 ③到圆心的距离等于半径的直线是该圆的切线 ④过圆直径的端点,垂直于此直径的直线是该圆的切线A 、①②B 、②③C 、③④D 、①④5、过⊙O 外一点P 作⊙O 的两条切线P A 、PB ,切点为A 和B ,若AB =8,AB 的弦心距为3,则P A 的长为( )A 、5B 、320C 、325D 、86、如图1,P A 切⊙O 于A ,AB ⊥OP 于B ,若PO =8 cm ,BO =2 cm ,则P A 的长为( )A 、16 cmB 、48 cmC 、3 cmD 、43 cmA BO PO 1 O 2 B'C '图1 图2 图37、如图2,半径为1的四个圆两两相切,则图中阴影部分的面积为( )A 、4-πB 、8-πC 、(4-π)D 、4-2π8、如图3,一块边长为8 cm 的正三角形木板ABC ,在水平桌面上绕点B 按顺时针方向旋转至A ′BC ′的位置时,顶点C 从开始到结束所经过的路径长为(点A 、B 、C ′在同一直线上) ( )A 、16πB 、38πC 、364π D 、316π9、如图4,△ABC 是正三角形,曲线ABCDEF …叫做“正三角形的渐开线”,其中、 、、 、… 圆心依次按A 、B 、C 循环,它们依次相连接,如果AB =1,那么曲线CDEF 的长是( )A 、8πB 、6πC 、4πD 、2πA B C DE F AB C D E m n O OAB CD图4 图5 图6 图710、一个圆台形物体的上底面积是下底面积的41.如图5,放在桌面上,对桌面的压强是200 帕,翻过来放,对桌面的压强是( )A 、50帕B 、80帕C 、600帕D 、800帕二、填空题(每小题3分,共30分)11、如果⊙O 的半径为r ,点P 到圆心O 的距离为d ,那么:①点P 在⊙O 外,则______;②______ 则d =r ;③______则d <r .12、两个同心圆的直径分别为5 cm 和3 cm ,则圆环部分的宽度为_____ cm.13、如图6,已知⊙O ,AB 为直径,AB ⊥CD ,垂足为E ,由图你还能知道哪些正确的结论?请把它们一一写出来. .14、已知,⊙O 的直径为10 cm ,点O 到直线a 的距离为d :①若a 与⊙O 相切,则d =______;②若d =4 cm ,则a 与⊙O 有_____个交点;③若d =6 cm ,则a 与⊙O 的位置关系是_____.15、两个同心圆的半径分别为3 cm 和4 cm ,大圆的弦BC 与小圆相切,则DE EFBC=_____ cm.16、如图7,在△ABC中,AB=AC,∠C=72°,⊙O过AB两点且与BC切于B,与AC交于D,连结BD,若BC=5-1,则AC=_____.17、要修一段如图8所示的圆弧形弯道,它的半径是48 m,圆弧所对的圆心角是60°,那么这段弯道长_____________________m(保留π).图9 图1018、如图9,两个半圆中,长为6的弦CD与直径AB平行且与小半圆相切,那么图中阴影部分的面积等于_____________.19、要制造一个圆锥形的烟囱帽,如图10,使底面半径r与母线l的比r∶l=3∶4,那么在剪扇形铁皮时,圆心角应取_____.20、将一根长24 cm的筷子,置于底面直径为5 cm,高为12 cm的圆柱形水杯中(如图11).设筷子露在杯子外面的长为h cm,则h的取值范围是_____.三、解答题(每小题10分,共30分)21、(10分)如图12,小虎牵着小狗上街,小虎的手臂与绳长共为2.5 m(手臂与拉直的绳子在一条直线上)手臂肩部距地面1.5 m.当小虎站立不动时,小狗在平整的地面上活动的最大区域是多少?并画出平面图..5m小图1222、(10分)已知:三角形ABC 内接于⊙O ,过点A 作直线EF .(1)如图13,AB 为直径,要使得EF 是⊙O 的切线,只需保证∠CAE =∠_____,并证明之;(2)如图14,AB 为⊙O 非直径的弦,(1)中你所添出的条件仍成立的话,EF 还是⊙O 的切线吗?若是,写出证明过程;若不是,请说明理由并与同学交流.A BC E FOAE F 图1323、(10分)中华民族的科学文化历史悠久、灿烂辉煌,我们的祖先几千年前就能在生产实践中运用数学.1300多年前,我国隋代建筑的赵州石拱桥的桥拱是圆弧形(如图15).经测量,桥拱下的水面距拱顶6 m 时,水面宽34.64 m ,已知桥拱跨度是37.4 m ,运用你所学的知识计算出赵州桥的大致拱高.(运算时取37.4=147,34.64=203)图15参考答案一、选择题1、C ;2、A ;3、A ;4、C ;5、B ;6、D ;7、A ;8、D ;9、C ;10、D.二、填空题11、d >r 点P 在⊙O 上 点P 在⊙O 内;12、1;13、C E =ED ,»»¼¼,AC AD CmBDmB ==; 14、①5 cm ②两 ③外离;15、27;16、2;17、16π;18、29π; 19、270°;20、11≤h ≤12.三、解答题21、解:小狗在地平面上环绕跑圆的半径为225.15.2-=2.0(m). 小狗活动的区域是以2.0 m 为半径的圆,如右图.22、(1)ABC 证明:∵AB 为⊙O 直径, ∴∠ACB =90°.∴∠BAC +∠ABC =90°. 若∠CAE =∠ABC . ∴∠BAC +∠CAE =90°, 即∠BAE =90°,OA ⊥AE . ∴EF 为⊙O 的切线.(2)证明:连接AO 并延长交⊙O 于点D ,连接CD , ∴∠ADC =∠ABC . ∵AD 为⊙O 的直径, ∴∠DAC +∠ADC =90°.∵∠CAE =∠ABC =∠ADC , ∴∠DAC +∠CAE =90°. ∴∠DAE =90°, 即OA ⊥EF ,EF 为⊙O 的切线.23、解:如图,设圆弧所在圆的圆心为O ,AB =37.4=147 m, CD =34.6=203 m, GE =6 m.在Rt △OCE 中, OE =OC -6, CE =103.B∵OC 2=CE 2+OE 2, ∴OC 2=(103)2+(OC -6)2. ∴OC =28(m) . ∴OA =28.在Rt △OAF 中,AF =77, ∴)m (21)77(282222=-=-=AF OA OF . ∴拱高GF =28-21=7(m) .∴F A =FN +NM -AM =82+1.6-42=42+1.6≈7.26.S 四边形ADEF =21(AF +DE )·EN =21(7.26+1.6)×5.66≈25.07(m 2). V 体积=S 四边形ADEF ×96=25.07×96=2.4×103(m 3). 答:完成这一工程需2.4×103 m 3的土方.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
青岛版九年级第三章对圆的进一步认识章节练习
一、选择题(本大题共12小题,共36分)
1.以坐标原点为圆心,以2个单位为半径画,下面的点中,在上的是
A. B. C. D.
2.如图,的顶点均在上,若,则的度数为
A. B. C. D.
3.如图,在直角三角形中,,,将沿直线L从左向右翻转3次,则点B经过的路程等
于
A. B. C. D.
4.如图,等边三角形ABC的边长为8,以BC上一点O为
圆心的圆分别与边AB,AC相切,则的半径为
A.
B. 3
C. 4
D.
5.如图,的直径为10,弦AB的长为8,点P是弦AB上的一个动
点,使线段OP的长度为整数的点P有
A. 3个
B. 4个
C. 5个
D. 6个
6.如图,半径为R的的弦,且于E,连结AB、AD,若,则半
径R的长为
A. 1
B.
C.
D.
7.在正五边形的外接圆中,任一边所对的圆周角的度数为
A. B. C. D. 或
8.平面内,的半径为1,点P到O的距离为2,过点P可作的切线条数为
A. 0条
B. 1条
C. 2条
D. 无数条
9.半径为R的圆内接正三角形、正方形、正六边形的边心距分别为a,b,c,则a,b,
c的大小关系是
A. B. C. D.
10.如图,的直径AB,C,D是上的两点,若,则的度数为
A. B. C. D.
11.如图,的半径为6cm,四边形ABCD内接于,连结OB、OD,
若,则的长为
A. B. C. D.
12.如图,AD,BC是圆O的两条互相垂直的直径,点P从
点O出发,沿的路线匀速运动,设单位:度,那么y
关于点P运动的时间单位:秒的函数图象大致是
A. B.
C. D.
二、填空题(本大题共5小题,共15分)
13.如图,内接于,,的角平分线交于若,,则BC的长为______.
14.如图,AB是的直径,,点M是OA的中点,过点M的直
线与交于C,D两点.若,则弦CD的长为______.
15.如图,矩形ABCD中,,,以AD为直径的半圆O与BC
相切于点E,连接BD,则阴影部分的面积为______结果
保留
16.如图,AB是的直径,AC与相切,CO交于点若,则______。