用二分法求函数零点近似值的步骤
数值计算二分法
数值计算二分法
数值计算中的二分法,是一种基于区间不断缩小,最终求出函数零点的数学方法。
常用于解决各种数值计算问题,如求解非线性方程、寻找函数极值等。
二分法的基本思想就是将求解区间划分成两个子区间,通过确定零点所在的子区间,将求解区间不断缩小,最终得到精度要求的近似解。
具体算法如下:
1. 初始化区间:选择初始区间[a,b],其中a<b,且f(a)和f(b)异号(即f(a)和
f(b)符号不同)。
2. 迭代过程:
- 求取区间中点c=(a+b)/2;
- 计算函数值f(c);
- 若f(c)=0,则c为函数的零点,算法结束;
- 若f(c)与f(a)符号相同,则零点在[c,b]间,将a=c ;
- 若f(c)与f(b)符号相同,则零点在[a,c]间,将b=c;
- 反复迭代,缩小求解区间,直到满足预定的精度要求为止;
3. 输出结果:输出近似零点和算法的收敛性。
二分法的优点是简单易实现,只要函数在初始区间上连续且满足不同符号的条件,
即可确定解的存在性,并得到一个相对较为精确的解。
但其缺点也非常明显,比如收敛速度慢,对初值选取较为敏感等。
总之,二分法作为数值计算中的基础方法,既有其独特的优点,也有其明显的不足。
在实际应用中,应根据问题的具体情况,选择相应的数值计算方法,并进行优化,以优化算法效率和精度,提高解决问题的效果。
用二分法求方程的近似解(带练习)
4.5.2用二分法求方程的近似解1.二分法的概念对于在区间[a,b]上图象连续不断且f(a)f(b)<0的函数y=f(x),通过不断地把它的零点所在区间一分为二,使所得区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫做二分法.2.用二分法求函数零点近似值的步骤给定精确度ε,用二分法求函数y=f(x)零点x0的近似值的一般步骤如下:(1)确定零点x0的初始区间[a,b],验证f(a)f(b)<0.(2)求区间(a,b)的中点__c__.(3)计算f(c),并进一步确定零点所在的区间:①若f(c)=0(此时x0=c),则__c__就是函数的零点;②若f(a)f(c)<0(此时x0∈(a,c)),则令b=c;③若f(c)f(b)<0(此时零点x0∈(c,b)),则令a=c.(4)判断是否达到精确度ε:若|a-b|<ε,则得到零点近似值a(或b);否则重复步骤(2)~(4).以上步骤可借助口诀记忆:定区间,找中点,中值计算两边看;同号去,异号算,零点落在异号间;周而复始怎么办?精确度上来判断.1.已知函数f(x)的图象如图,其中零点的个数与可以用二分法求解的零点的个数分别为()A.4,4 B.3,4C.5,4 D.4,3D解析:图象与x轴有4个交点,所以零点的个数为4;左右函数值异号的零点有3个,所以可以用二分法求解的零点个数为3,故选D.2.若函数f(x)在(1,2)内有1个零点,要使零点的近似值满足精确度为0.01,则对区间(1,2)至少二等分( )A .5次B .6次C .7次D .8次C 解析:设对区间(1,2)至少二等分n 次,初始区间长为1. 第1次二等分后区间长为12;第2次二等分后区间长为122;第3次二等分后区间长为123;…第n 次二等分后区间长为12n .根据题意,得12n <0.01,∴n >log 2100. ∵6<log 2100<7, ∴n ≥7.故对区间(1,2)至少二等分7次.【例1】下面关于二分法的叙述中,正确的是( ) A .用二分法可求所有函数零点的近似值B .用二分法求方程的近似解时,可以精确到小数点后的任一位C .二分法无规律可循,无法在计算机上完成D .只能用二分法求函数的零点B 解析:用二分法求函数零点的近似值,需要有端点函数值符号相反的区间,故选项A 错误;二分法是一种程序化的运算,可以在计算机上完成,故选项C 错误;求函数的零点的方法还有方程法、函数图象法等,故选项D 错误.故选B.运用二分法求函数的零点应具备的条件(1)函数图象在零点附近连续不断.(2)在该零点左右函数值异号.只有满足上述两个条件,才可用二分法求函数的零点.1.下列关于函数f(x),x∈[a,b]的命题中,正确的是()A.若x0∈[a,b]且满足f(x0)=0,则x0是f(x)的一个零点B.若x0是f(x)在[a,b]上的零点,则可以用二分法求x0的近似值C.函数f(x)的零点是方程f(x)=0的根,但f(x)=0的根不一定是函数f(x)的零点D.用二分法求方程的根时,得到的都是近似解A解析:使用二分法必须满足二分法的使用条件,B不正确;f(x)=0的根也一定是函数f(x)的零点,C不正确;用二分法求方程的根时,得到的也可能是精确解,D不正确,只有A正确.2.已知下列四个函数图象,其中能用二分法求出函数零点的是()A解析:由二分法的定义与原理知A选项正确.【例2】利用二分法求方程x2-x-1=0的近似解(精确度为0.3).解:令f(x)=x2-x-1,由于f(0)=-1<0,f(1)=-1<0,f(2)=1>0,故可取区间(1,2)作为计算的初始区间.用二分法逐次计算,列表如下:零点所在区间中点的值中点函数值(1,2) 1.5 -0.25(1.5,2) 1.75 0.312 5(1.5,1.75) 1.625 0.015 625∵|1.75-1.5|=0.25<0.3,∴方程x2-x-1=0的近似解可取1.5或1.75.二分法的步骤证明函数f(x)=2x+3x-6在区间(1,2)内有唯一一个零点,并求出这个零点.(精确度为0.1)证明:∵函数f(x)=2x+3x-6,∴f(1)=-1<0,f(2)=4>0.∴f(x)在区间(1,2)内有零点.又∵f(x)是增函数,∴函数f(x)=2x+3x-6在区间(1,2)内有唯一的零点.设该零点为x0,则x0∈(1,2),取x1=1.5,f(1.5)≈1.33>0,f(1)·f(1.5)<0,∴x0∈(1,1.5).取x2=1.25,f(1.25)≈0.128>0,f(1)·f(1.25)<0,∴x0∈(1,1.25).取x3=1.125,f(1.125)≈-0.44<0,f(1.125)·f(1.25)<0,∴x0∈(1.125,1.25).取x4=1.187 5,f(1.187 5)≈-0.16<0,f(1.187 5)·f(1.25)<0,∴x0∈(1.187 5,1.25).∵|1.25-1.187 5|=0.062 5<0.1,∴可取x0=1.25,则该函数的零点近似解为1.25.探究题1某方程在区间D=(2,4)内有一无理根,若用二分法求此根的近似值,要使所得的近似值的精确度达到0.1,则应将区间D等分的次数至少是________次.5解析:第一次等分,则根在区间(2,3)内或(3,4)内,此时精确度ε>0.1;不妨设根在(2,3)内,第二次等分,则根在区间(2,2.5)内或(2.5,3)内,此时精确度ε>0.1;不妨设根在(2,2.5)内,第三次等分,则根在区间(2,2.25)内或(2.25,2.5)内,此时精确度ε>0.1;不妨设根在(2,2.25)内,第四次等分,则根在区间(2,2.125)内或(2.125,2.25)内,此时精确度ε>0.1;不妨设根在(2,2.125)内,第五次等分,则根在区间(2,2.062 5)内或(2.062 5,2.125)内,此时精确度ε<0.1.满足题目要求,故至少要等分5次.探究题2在用二分法求函数f(x)的一个正实数零点时,经计算,f(0.64)<0,f(0.72)>0,f(0.68)<0,则函数的一个精确到0.1的正实数零点的近似值为()A.0.68 B.0.72 C.0.7 D.0.6C解析:已知f(0.64)<0,f(0.72)>0,则函数f(x)的零点的初始区间为[0.64,0.72],又0.68=12×(0.64+0.72),且f(0.68)<0,所以零点在区间[0.68,0.72],且该区间的左、右端点精确到0.1所取的近似值都是0.7.因此,0.7就是所求函数的一个正实数零点的近似值.1.根据函数的零点与相应方程的解的关系,求函数的零点与求相应方程的解是等价的.求方程f(x)=0的近似解,即按照用二分法求函数零点近似值的步骤求解.2.区分好“精确度”与“精确到”.3.现实生活中,有很多问题可以用二分法来解决,例如线路断路、地下管道的堵塞、水管的泄漏等.在26枚崭新的金币中,有一枚外表与真金币完全相同的假币(质量轻一点),现在只有一台天平,应用适当的方法最多称几次就可以发现这枚假币?将26枚金币平均分成两份,放在天平上,假币在轻的那13枚金币里面;将这13枚金币拿出1枚,将剩下的12枚平均分成两份,若天平平衡,则假币一定是拿出的那一枚,若不平衡,则假币一定在轻的那6枚金币里面;将这6枚金币平均分成两份,则假币一定在轻的那3枚金币里面;将这3枚金币任意拿出2枚放在天平上,若平衡,则剩下的那一枚是假币,若不平衡,则轻的那一枚是假币.依据上述分析,最多称4次就可以发现这枚假币.用二分法求方程的近似解练习(30分钟60分)1.(5分)定义在R上的函数f(x)的图象是连续不断的曲线,已知函数f(x)在区间(a,b)上有一个零点x0,且f(a)f(b)<0,用二分法求x0时,当fa+b2=0时,函数f(x)的零点是() A.(a,b)外的点B.a+b2C.区间a,a+b2或a+b2,b内的任意一个实数D.x=a或bB解析:由fa+b2=0知a+b2是零点,且在(a,b)内.2.(5分)为了求函数f(x)=2x+3x-7的一个零点,某同学利用计算器得到自变量x和函数f(x)的部分对应值,如表所示.x 1.25 1.312 5 1.375 1.437 5 1.51.562 5f(x) -0.871 6 -0.578 8 -0.281 30.021 01 0.328 43 0.641 15则方程2x+3x=7的近似解(精确到0.1)可取为()A.1.32 B.1.39 C.1.4 D.1.3C解析:由题意可知f(x)为增函数.由f(1.375)•f(1.437 5)<0,可知方程2x+3x=7的近似解可取为1.4.故选C.3.(5分)若函数f(x)=x3+x2-2x-2的一个正数零点附近的函数值用二分法计算,其参考数据如下.f(1)≈-2 f(1.5)≈0.625 f(1.25)≈-0.984f(1.375)≈-0.260 f(1.437 5)≈0.162 f(1.406 25)≈-0.054那么方程x3+x2-2x-2=0的一个近似根(精确度为0.05)可以是()A.1.25 B.1.375 C.1.42 D.1.5C解析:由表格可得,函数f(x)=x3+x2-2x-2的零点在(1.406 25,1.437 5)之间,且1.437 5-1.406 25<0.05.结合选项可知,方程x3+x2-2x-2=0的一个近似根(精确度为0.05)可以是1.42.故选C.4.(5分)用二分法求方程ln x-2+x=0在区间[1,2]上零点的近似值时,先取区间中点c=32,则下一个含根的区间是32,2.5.(5分)某同学在借助计算器求“方程lg x=2-x的近似解(精确到0.1)”时,设f(x)=lg x+x-2,算得f(1)<0,f(2)>0;在后面的过程中,他用二分法又取了4个x的值,计算了其函数值的正负,并得出判断,方程的近似解是x≈1.8.那么他再取的x的4个值依次是________.1.5,1.75,1.875,1.812 5解析:第一次用二分法计算得区间(1.5,2),第二次得区间(1.75,2),第三次得区间(1.75,1.875),第四次得区间(1.75,1.812 5).6.(5分)利用计算器,列出部分自变量和函数值的对应值如表:x -1.6 -1.4 -1.2 -1 -0.8 -0.6 -0.4 -0.2 0y=2x 0.329 9 0.378 9 0.435 3 0.5 0.574 30.659 8 0.757 9 0.870 6 1y=x2 2.56 1.96 1.44 1 0.64 0.36 0.16 0.04 0 若方程2x=x2有一个根位于区间(a,a+0.4)(a在表格中第一行里的数据中取值),则a 的值为________.-1或-0.8解析:令f(x)=2x-x2,由表中的数据可得f(-1)<0,f(-0.6)>0,f(-0.8)<0, f(-0.4)>0,∴方程的根在区间(-1,-0.6)与(-0.8,-0.4)内.∴a=-1或a=-0.8.7.(5分)用二分法求方程x2=2的正实根的近似解(精确度为0.001)时,如果选取初始区间是[1.4,1.5],则达到精确度要求至少需要计算________次.7解析:设至少需要计算n次,则n满足0.12n<0.001,即2n>100,因为n∈N*,且27=128,故要达到精确度要求至少需要计算7次.8.(12分)以下是用二分法求方程x3+3x-5=0的一个近似解(精确度为0.1)的不完整的过程,请补充完整,并写出结论.设函数f(x)=x3+3x-5,其图象在(-∞,+∞)上是连续不断的一条曲线.先求值,f(0)=________,f(1)=________,f(2)=________,f(3)=________.所以f(x)在区间________内存在零点x0,填表:区间中点m f(m)的符号区间长度解:f(0)=-5,f(1)=-1,f(2)=9,f(3)=31,f(x)在区间(1,2)内存在零点x0,填表为区间中点m f(m)的符号区间长度(1,2) 1.5 + 1(1,1.5) 1.25 +0.5(1,1.25) 1.125 -0.25(1,125,1.25) 1.187 5 +0.125(1.125,1.187 5) 0.062 5因为|1.187 5-1.125|=0.062 5<0.1,所以原方程的近似解可取为1.187 5.9.(13分)求方程x2-2x-1=0的一个大于零的近似解(精确度为0.1).解:设f(x)=x2-2x-1,先画出函数图象的草图,如图所示.因为f(2)=-1<0,f(3)=2>0,所以在区间(2,3)上,方程x2-2x-1=0有一解,记为x1,取2和3的中间数2.5,因为f(2.5)=0.25>0,所以x1∈(2,2.5),再取2与2.5的中间数2.25,因为f(2.25)=-0.437 5<0,所以x1∈(2.25,2.5),如此继续下去,得f(2.375)<0,f(2.437 5)>0,则x1∈(2.375,2.4375),因为|2.437 5-2.375|=0.062 5<0.1.所以此方程大于零的近似解为2.437 5.。
高中数学:2.4.2求函数零点近似解的一种计算方法——二分法
2.4.2求函数零点近似解的一种计算方法——二分法1.了解变号零点与不变号零点的概念.2.理解函数零点的性质.3.会用二分法求近似值.1.函数零点的性质如果函数y=f(x) 在区间[a,b]上的图象是不间断的曲线,并且在它的两个端点处的函数值异号,即f(a)·f(b)<0,那么这个函数在这个区间上至少有一个零点,即存在一点x0∈(a,b),使f(x0)=0,若函数图象通过零点时穿过x轴,这样的零点称为变号零点,如果没有穿过x轴,则称为不变号零点.2.二分法对于在区间[a,b]上连续不断,且f(a)·f(b)<0的函数y=f(x),通过不断地把函数f(x)的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点的近似值的方法叫做二分法.3.用二分法求函数 f (x ) 零点近似值的步骤 给定精确度(1)确定区间[a ,b ],验证f (a )·f (b )<0; (2)求区间(a ,b )的中点 x 1;(3)计算 f (x 1);①若f (x 1)=0,则 x 1 就是函数的零点;②若f (a )·f (x 1)<0,则令 b =x 1 (此时零点 x 0∈(a ,x 1));③若f (x 1)·f (b )<0,则令a =x 1(此时零点 x 0∈(x 1,b )).(4)判断是否达到精确度,即若|a -b |<,则得到零点近似值 a (或 b );否则重复 (2)~(4).1.函数f (x )=x 3-2x 2+3x -6在区间[-2,4]上的零点必属于区间( ) A .[-2,1] B .⎣⎡⎦⎤52,4 C .⎣⎡⎦⎤1,74 D .⎣⎡⎦⎤74,52解析:选D .由于f (-2)<0, f (4)>0,f (-2+42)=f (1)<0,f (1+42)=f (52)>0, f (1+522)=f (74)<0, 所以零点在区间⎣⎡⎦⎤74,52内.2.用二分法研究函数f (x )=x 2+3x -1的零点时,第一次经计算f (0)<0,f (0.5)>0,可得其中一个零点x 0∈________,第二次计算________.以上横线应填的内容分别是( )A .(0,0.5) f (0.25)B .(0,1) f (0.25)C .(0.5,1) f (0.75)D .(0,0.5) f (0.125)解析:选A .因为f (0)<0,f (0.5)>0, 所以函数f (x )的一个零点x 0∈(0,0.5), 第二次计算f ⎝⎛⎭⎫0+0.52=f (0.25).3.函数的零点都能用“二分法”求吗?解:不一定.例如:函数y =x 2的零点为x =0,但不能用二分法求解.判断函数在某个区间内是否有零点(1)指出方程 x 5-x -1=0 的根所在的大致区间;(2)求证:方程x3-3x+1=0 的根一个在区间(-2,-1)内,一个在区间(0,1)内,另一个在区间(1,2)内.【解】(1)方程x5-x-1=0,即x5=x+1,令F(x)=x5-x-1,y=f(x)=x5,y=g(x)=x+1.在同一平面直角坐标系中,函数f(x)与g(x)的图象如图,显然它们只有1 个交点.两函数图象交点的横坐标就是方程的解.又F(1)=-1<0,F(2)=29>0,所以方程x5-x-1=0 的根在区间(1,2)内.(2)证明:令F(x)=x3-3x+1,它的图象一定是不间断的,又F(-2)=-8+6+1=-1<0,F(-1)=-1+3+1=3>0,所以方程x3-3x+1=0 的一根在区间(-2,-1)内.同理可以验证F(0)·F(1)=1×(-1)=-1<0,F(1)·F(2)=(-1)×3=-3<0,所以方程的另两根分别在区间(0,1)和(1,2)内.本题考查的是如何判断方程的根所在的大致区间问题,它是用二分法求方程近似解的前提.对于连续的函数可以多次验证某些点处的函数值的符号是否异号;若异号,则方程的解在以这两数为端点的区间内,这种方法需多次尝试,比较麻烦.另外在这个区间内也不一定只有一个解.已知f(x) 为偶函数,且当x≥0 时,f(x)=(x-1)2-1,求函数f(x)的零点,并判断哪些零点是变号零点,哪些零点是不变号零点.解:因为x≥0 时,f(x)=(x-1)2-1,而当x<0 时,-x>0,所以f(-x)=(-x-1)2-1,而f(x) 为偶函数,则f(-x)=f(x),所以 f (x ) =⎩⎪⎨⎪⎧(x -1)2-1(x ≥0),(x +1)2-1(x <0).解方程 (x -1)2-1=0, 得 x 1=0,x 2=2. 解方程 (x +1)2-1=0, 得 x 1=0,x 2=-2,故函数 f (x ) 共有 3 个零点为 -2,0,2,如图所示,可知函数 f (x )的变号零点为 -2,2,不变号零点为 0.用二分法求方程近似解用二分法求函数f(x)=x3-x-2的一个正实数零点(精确到0.1).【解】由f(1)=-2<0,f(2)=4>0,可以确定区间[1,2]作为计算的初始区间,用二分法逐步计算,具体如表.1.5,所以1.5可作为所求函数的一个正实数零点的近似值.用二分法求函数零点的近似值,首先要选好计算的初始区间,这个区间既要符合条件,又要使其长度尽量小,其次要依据条件给定的精确度及时检验计算所得到的区间是否满足这一精确度,以决定是停止计算还是继续计算.借助计算器,用二分法求方程(x+1)(x -2)(x-3)=1在区间(-1,0)内的近似解(精确到0.1).解:令f(x)=(x+1)(x-2)(x-3)-1,由于f(-1)=-1<0,f(0)=5>0,可取区间[-1,0]作为计算的初始区间.用二分法逐次计算,列表如下:5-0.9即为区间(-1,0)内的近似解.1.函数零点判定定理的应用判断一个函数是否有零点,首先看函数f(x) 在区间[a,b]上的图象是否连续,并且是否存在f(a)·f(b)<0,若存在,那么函数y=f(x) 在区间(a,b)内必有零点.对于函数f(x),若满足f(a)·f(b)<0,则f(x) 在区间[a,b]内不一定有零点,反之,f(x) 在区间[a,b]内有零点也不一定有f(a)·f(b)<0,如图所示.即此方法只适合变号零点的判断,不适合不变号零点.2.二分法的使用条件和范围(1)二分法的理论依据:如果函数y=f(x)是连续的,且f(a)与f(b)的符号相反(a<b),那么方程f(x)=0至少存在一个根在(a,b)之间.(2)用二分法求函数零点近似值的方法仅对函数的变号零点适合,对函数的不变号零点不适合.(3)每一次二分有根区间(a,b)为两个小区间,区间的长度都是原来区间长度的一半.用零点存在性定理判断函数的零点时,两个条件是缺一不可的.因此,在判断已知函数在区间上的零点是否存在时,应首先确定图象是不间断的.1.下列函数中能用二分法求零点的是()解析:选C.由二分法的定义知.2.设f(x)在区间[a,b]上是单调函数,且f(a)·f(b)<0,则方程f(x)=0在闭区间[a,b]内() A.至少有一实根B.至多有一实根C.没有实根D.必有唯一实根答案:D3.下面关于二分法的叙述,正确的是________.①用二分法可求所有函数零点的近似值;②用二分法求方程的近似解时,可以精确到小数点后的任一位;③二分法无规律可循,无法在计算机上完成;④只有在求函数零点时才用二分法. 答案:②4.设函数y =f (x )在区间[a ,b ]上的图象是连续不间断曲线,且f (a )·f (b )<0,取x 0=a +b2,若f (a )·f (x 0)<0,则利用二分法求方程根时取有根区间为________.解析:利用二分法求方程根时,根据求方程的近似解的一般步骤,由于f (a )·f (x 0)<0, 则[a ,x 0]为新的区间. 答案:[a ,x 0][A 基础达标]1.函数f (x )=x 3-3x -3有零点的区间是( ) A .(-1,0) B .(0,1) C .(1,2)D .(2,3)解析:选D .因为f (2)·f (3)=(8-6-3)·(27-9-3)=-15<0, 所以f (x )有零点的区间是(2,3).2.如图是函数f (x )的图象,它与x 轴有4个不同的公共点,给出下列四个区间中,存在不能用二分法求出的零点,则该零点所在的区间是( )A .[-2.1,-1]B .[1.9,2.3]C .[4.1,5]D .[5,6.1]解析:选B .由不变号零点的特征易判断该零点在[1.9,2.3]内. 3.方程2x 3-4x 2+7x -9=0在区间[-2,4]上的根必定属于区间( ) A .(-2,1) B .(52,4)C .(π4,1)D .(1,74)解析:选D .设f (x )=2x 3-4x 2+7x -9, 由f (1)·f (74)<0知选D .4.已知函数f (x )与g (x )满足的关系为f (x )-g (x )=-x -3,根据所给数表,判断f (x )的一个零点所在的区间为( )A .(-1,0) C .(1,2)D .(2,3)解析:选C .由列表可知f (1)=g (1)-1-3=2.72-4=-1.28,f (2)=g (2)-2-3=7.39-5=2.39,所以f (1)·f (2)<0.所以f (x )的一个零点所在的区间为(1,2).5.若函数f (x )=x 3+x 2-2x -2的一个正整零点附近的函数值用二分法计算,其参考数据如下:A .1.2B .1.3C .1.4D .1.5解析:选C .由零点的定义知,方程的根所在区间为[1.406 25,1.437 5],故精确到0.1的近似根为1.4.6.函数f (x )=x 2+ax +b 有零点,但不能用二分法求出,则a ,b 的关系是________. 解析:因为函数f (x )=x 2+ax +b 有零点,但不能用二分法,所以函数f (x )=x 2+ax +b 的图象与x 轴相切,所以Δ=a 2-4b =0,所以a 2=4b . 答案:a 2=4b7.方程x 3=2x 精确到0.1的一个近似解是________. 解析:令f (x )=x 3-2x ,f (1)=-1<0,f (2)=4>0,所以在区间[1,2]上求函数f (x )的零点,即为方程x 3=2x 的一个根,依照二分法求解得x =1.4.答案:1.48.某方程有一无理根在区间D =(1,3)内,若用二分法求此根的近似值,则将D 至少等分________次后,所得近似值的精确度为0.1.解析:由3-12n ≤0.1,得2n ≥20,n >4,故至少等分5次. 答案:59.分别求出下列函数的零点,并指出是变号零点还是不变号零点. (1)f (x )=3x -6; (2)f (x )=x 2-x -12; (3)f (x )=x 2-2x +1; (4)f (x )=(x -2)2(x +1)x . 解:(1)零点是2,是变号零点. (2)零点是-3和4,都是变号零点. (3)零点是1,是不变号零点.(4)零点是-1,0和2,其中变号零点是0和-1,不变号零点是2. 10.已知函数f (x )=13x 3-x 2+1(1)证明方程f (x )=0在区间(0,2)内有实数解;(2)使用二分法,取区间的中点三次,指出方程f (x )=0(x ∈[0,2])的实数解x 0在哪个较小的区间内.解:(1)证明:因为f (0)=1>0,f (2)=-13<0,所以f (0)·f (2)<0,由函数的零点存在性定理可得方程 f (x )=0在区间(0,2)内有实数解. (2)取x 1=12(0+2)=1,得f (1)=13>0,由此可得f (1)·f (2)<0,下一个有解区间为(1,2). 再取x 2=12(1+2)=32,得f ⎝⎛⎭⎫32=-18<0, 所以f (1)·f ⎝⎛⎭⎫32<0,下一个有解区间为⎝⎛⎭⎫1,32. 再取x 3=12⎝⎛⎭⎫1+32=54,得f ⎝⎛⎭⎫54=17192>0, 所以f ⎝⎛⎭⎫54·f ⎝⎛⎭⎫32<0,下一个有解区间为⎝⎛⎭⎫54,32. 综上所述,得所求的实数解x 0在区间⎝⎛⎭⎫54,32内.[B 能力提升]11.若函数f (x )的图象在R 上连续不断,且满足f (0)<0,f (1)>0,f (2)>0,则下列说法正确的是()A.f(x)在区间(0,1)上一定有零点,在区间(1,2)上一定没有零点B.f(x)在区间(0,1)上一定没有零点,在区间(1,2)上一定有零点C.f(x)在区间(0,1)上一定有零点,在区间(1,2)上可能有零点D.f(x)在区间(0,1)上可能有零点,在区间(1,2)上一定有零点解析:选C.根据零点存在性定理,由于f(0)·f(1)<0,f(1)·f(2)>0,所以f(x)在区间(0,1)上一定有零点,在区间(1,2)上无法确定,可能有,也可能没有,如图所示:12.已知定义在R上的函数f(x)的图象是连续不断的,且有如下部分对应值表:则f(x解析:由于f(2)>0,f(3)<0,f(4)>0,f(5)<0,所以f(2)·f(3)<0,f(3)·f(4)<0,f(4)·f(5)<0,故f(x)的零点个数至少有3个.答案:313.在一个风雨交加的夜里,从某水库闸房到防洪指挥部的电话线路发生了故障.这是一条10 km长的线路,如果沿着线路一小段一小段查找,困难很多.每查一个点要爬一次电线杆子,10 km长,大约有200多根电线杆子.则:(1)维修线路的工人师傅怎样工作最合理?(2)算一算要把故障可能发生的范围缩小到50 m~100 m 左右,即一两根电线杆附近,要查多少次?解:(1)如图,他首先从中点C查.用随身带的话机向两端测试时,发现AC段正常,断定故障在BC段,再到BC段中点D查,这次发现BD段正常,可见故障在CD段,再到CD中点E来查.(2)每查一次,可以把待查的线路长度缩减一半,因此只要7 次就够了.14.(选做题)求方程3x2-4x-1=0的根的近似值.解:令f(x)=3x2-4x-1,列出x,f(x)的一些对应值如下表:00若x0∈[-1,0],取区间[-1,0]的中点x1=-0.5,则f(-0.5)=1.75,因为f(-0.5)·f(0)<0,所以x0∈[-0.5,0].再取区间[-0.5,0]的中点x2=-0.25,则f(-0.25)=0.187 5,因为f(-0.25)·f(0)<0,所以x0∈[-0.25,0].同理,可得x0∈[-0.25,-0.125],x0∈[-0.25,-0.187 5],x0∈[-0.218 75,-0.187 5],区间[-0.218 75,-0.187 5]的左、右端点精确到0.1所取的近似值都是-0.2.所以把x0=-0.2作为方程3x2-4x-1=0的一个根的近似值.同理,若x0∈[1,2]时,方程的根的近似值为1.5.2±7综上,方程3x2-4x-1=0的根的精确值为x1,2=3,近似值为-0.2或1.5.。
人教A版数学必修一2.4.2求函数零点近似解的一种计算方法——二分法
三、教与学的方法
(一)本节课贯彻的教育理念和教学思想
1、新课标强调要为学生提供开阔的探索空 间及合作体验的机会,并且倡导积极主动、 勇于探索的学习方式。 2、提倡利用信息技术来实现以往教学中难 以呈现的课程内容。 3、学生在利用函数的性质求解函数零点近 似解的过程中,认识函数与方程的联系,能 初步感悟数值逼近中所蕴含的极限思想。
五、教学反思
谢谢!
灿若寒星整理制作
高中数学课件
人教版高中必修一数学全册(新课标)
学校:北京市首都师大附中 教师:数学科组
人教B版必修一
第二章函数
说课
2.4.2求函数零点近似解的一种计算
方法——二分法
a
b
一、教学内容 二、学情分析 三、教与学的方法 四、教学过程设计 五、教学反思
(二)本节内容的知识结构体系
函数与方程
三、教与学的方法
(三)教学媒体的选择和学案的设计
动画课堂、几何画板、动画
四、教学过程设计
(一)引入阶段:
猜一猜刻有中国文化名村 爨底下的“爨”字的一块瓦 片的市场价格。
中国历史文化名村
—爨底下
(二)由具体到一般的探究认知过程:
1、复习发现新问题阶段:
通过一组求解函数零点的问题,发现有 些高次函数不能分解因式,求不出零点 ,从而产生认知冲突,激起学生了解、 探究、获取新知的欲望。同时给学生展 示三次方程的求根公式,介绍解方程的 历史。
2、过程与方法目标:
体验二分法的形成过程,感受函数与 方程的内在联系,体会近似思想和逼 近思想的应用;
(三)本节课的教学目标、重点与难点分析
3、情感、态度与价值观目标:
通过二分法的学习培养归纳概括的能 力,了解有关解方程的历史;在探究 解决问题的过程中,培养学生与他人 合作的态度、表达与交流的意识;培 养认真、耐心、严谨的数学品质。
2.4.2 求函数零点近似解的一种计算方法——二分法
2.4.2求函数零点近似解的一种计算方法——二分法【学习目标】1.了解函数变号零点与不变号零点的概念,会判断函数变号零点的存在.2.会用二分法求函数变号零点的近似值,并能对二分法的过程作出程式化的步骤.【重点】了解函数变号零点与不变号零点的概念,会判断函数变号零点的存在.【难点】会用二分法求函数变号零点的近似值,并能对二分法的过程作出程式化的步骤.【基础自测】1.零点存在的判定方法条件:y=f(x)在[a,b]上的图象不间断,f(a)·f(b)<0.结论:y=f(x)在[a,b]上至少有一个零点,即存在x0∈(a,b)使f(x0)=0.2.零点的分类3.二分法(1)定义对于在区间[a,b]上连续不断且f(a)·f(b)<0的函数y=f(x),通过不断地把函数f(x)的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到函数零点的方法叫做二分法.(2)求函数零点的一般步骤已知函数y=f(x)定义在区间D上,求它在D上的一个零点x0的近似值x,使它满足给定的精确度.用二分法求此函数零点的一般步骤为:①在D内取一个闭区间[a0,b0]⊆D,使f(a0)与f(b0)异号,即f(a0)·f(b0)<0,零点位于区间[a0,b0]中.②取区间[a0,b0]的中点,则此中点对应的坐标为x0=a0+b02.计算f(x0)和f(a0),并判断:a.如果f(x0)=0,则x0就是f(x)的零点,计算终止.b.如果f(a0)·f(x0)<0,则零点位于区间[a0,x0]中,令a1=a0,b1=x0. c.如果f(a0)·f(x0)>0,则零点位于区间[x0,b0]中,令a1=x0,b1=b0.③取区间[a1,b1]的中点,则此中点对应的坐标为x1=a1+b12.计算f(x1)和f(a1),并判断:a.如果f(x1)=0,则x1就是f(x)的零点,计算终止.b.如果f(a1)·f(x1)<0,则零点位于区间[a1,x1]上,令a2=a1,b2=x1.c.如果f(a1)·f(x1)>0,则零点位于区间[x1,b1]上,令a2=x1,b2=b1.……继续实施上述步骤,直到区间[a n,b n],函数的零点总位于区间[a n,b n]上,当区间的长度b n-a n不大于给定的精确度时,这个区间[a n,b n]中的任何一个数都可以作为函数y=f(x)的近似零点,计算终止.思考:二分法需要注意的问题有哪些?[提示]用二分法求方程近似解应注意的问题为:①看清题目的精确度,它决定着二分法步骤的结束.②在没有公式可用来求方程根时,可联系相关函数,用二分法求零点,用二分法求出的零点一般是零点的近似解,如求f(x)=g(x)的根,实际上是求函数y=f(x)-g(x)的零点,即求曲线y=f(x)与y=g(x)交点的横坐标.③并不是所有函数都可用二分法求零点,必须满足在区间[a,b]上连续不断,且f(a)·f(b)<0这样条件的函数才能用二分法求得零点的近似值.一、二分法的概念(1)已知函数f(x)的图象如图2-4-2所示,其中零点的个数与可以用二分法求解的个数分别为()A.4,4B.3,4C.5,4 D.4,3(2)用二分法求方程x3-2x-5=0在区间[1,3]内的根,取区间的中点为x0=2,那么下一个有根的区间是________.图2-4-2[规律方法] 二分法求函数零点的依据:其图象在零点附近是连续不断的,且该零点为变号零点,因此,用二分法求函数零点近似值的方法仅对函数的变号零点适用,对函数的不变号零点不适用.[跟踪训练] 1.下面关于二分法的叙述,正确的是( ) A .用二分法可求所有函数零点的近似值B .用二分法求方程的近似解时,可以精确到小数点后的任一位C .二分法无规律可循D .只有在求函数零点时才用二分法 二、函数零点类型的判定判断下列函数是否有变号零点:(1)y =x 2-5x -14; (2)y =x 2+x +1;(3)y =-x 4+x 3+10x 2-x +5; (4)y =x 4-18x 2+81.[规律方法] 图象连续不间断的函数f (x )在[a ,b]上,若f (a )·f (b )<0,则函数f (x )在该区间上至少有一个变号零点,也就是可能有多个变号零点,还可能有不变号零点,但至少有一个变号零点是肯定的.这一结论可直接应用于函数变号零点判定之中提醒:1当fa ·f b>0时,不要轻率地判定f x 在a ,b 上没有零点,如fx =x 2-2x +12,有f0·f 2=14>0,但x =1±22∈0,2是fx的两个变号零点2初始区间的选定一般在两个整数间,如3选的是0和5.[跟踪训练] 2.对于函数f (x )=x 2+mx +n ,若f (a )>0,f (b )>0,则函数f (x )在区间(a ,b )内( )A .一定有零点B .一定没有零点C .可能有两个零点D .至多有一个零点三、用二分法求方程的近似解 [探究问题]1.函数y=f(x)的零点与方程f(x)=0的解有何关系?提示:函数y=f(x)的零点就是方程f(x)=0的解.2.如何把求方程的近似解转化为求函数零点的近似解?提示:设方程为f(x)=g(x),构造函数F(x)=f(x)-g(x),求方程f(x)=g(x)的近似解问题就可转化为求函数F(x)=f(x)-g(x)零点的近似解问题.用二分法求方程2x3+3x-3=0的一个正实数近似解(精确度为0.1).[规律方法] 1.根据函数的零点与相应方程的解的关系,求函数的零点与求相应方程的解是等价的.求方程f(x)=0的近似解,即按照用二分法求函数零点近似值的步骤求解.2.对于求形如f(x)=g(x)的方程的近似解,可以通过移项转化成求形如F(x)=f(x)-g(x)=0的方程的近似解,然后按照用二分法求函数零点近似值的步骤求解.[跟踪训练] 3.用二分法求函数f(x)=x3+5的零点可以取的初始区间是() A.[-2,1] B.[-1,0] C.[0,1] D.[1,2]1.下列函数中能用二分法求零点的是()2.用二分法求函数f(x)在(a,b)内的唯一零点时,精确度为0.001,则结束计算的条件是()A.|a-b|<0.1B.|a-b|<0.001C.|a-b|>0.001 D.|a-b|=0.0013.图象连续不间断的函数f(x)的部分对应值如表所示4.若函数f(x)=x3+x2-2x-2的一个正数零点附近的函数值用二分法计算,参考数据如下:5.指出方程x3-2x-1=0的正根所在的大致区间;一、选择题1.用“二分法”可求近似解,对于精确度ε说法正确的是()A.ε越大,零点的精确度越高B.ε越大,零点的精确度越低C.重复计算次数就是εD.重复计算次数与ε无关2.已知连续函数f(x)的部分对应值如下表:则函数f(x)在区间[1,9]上的零点至少有() 【导学号:60462178】A.2个B.3个C.4个D.5个3.函数f(x)=x3-2x2+3x-6在区间[-2,4]上的零点必定属于()A.[-2,1] B.[2.5,4] C.[1,1.75] D.[1.75,2.5]4.在用二分法求函数f(x)的一个正实数零点时,经计算,f(0.64)<0,f(0.72)>0,f(0.68)<0,则函数的一个精确到0.1的正实数零点的近似值为() A.0.68 B.0.72 C.0.7 D.0.65.若a<b<c,则函数f(x)=(x-a)(x-b)+(x-b)(x-c)+(x-c)(x-a)两个零点分别位于区间()A.(a,b)和(b,c)内B.(-∞,a)和(a,b)内C.(b,c)和(c,+∞)内D.(-∞,a)和(c,+∞)内二、填空题6.若函数f(x)的图象是连续不间断的,根据下面的表格,可以断定f(x)的零点所在的区间为________.(只填序号) 【导学号:60462179】①(-∞,1]②[1,2]③[2,3]④[3,4]⑤[4,5]⑥[5,6]⑦[6,+∞)8.已知函数f(x)的图象是连续不断的,且有如下的对应值表:①函数f(x)在区间(-1,0)内有零点;②函数f(x)在区间(2,3)内有零点;③函数f(x)在区间(5,6)内有零点;④函数f(x)在区间(-1,7)内有三个零点.三、解答题9.已知函数f(x)=x2+x+a(a<0)在区间(0,1)上有零点,求实数a的取值范围.10.用二分法求方程x2-5=0的一个近似正解(精确度为0.1)[冲A挑战练]一、选择题1.若函数y=f(x)在区间(-2,2)上的图象是连续的,且方程f(x)=0在(-2,2)上仅有一实根0,则f(-1)·f(1)的值()A.大于0B.小于0 C.等于0 D.无法判断2.下列关于函数y=f(x),x∈[a,b]的叙述中,正确的个数为()①若x0∈[a,b]且满足f(x0)=0,则(x0,0)是f(x)的一个零点;②若x0是f(x)在[a,b]上的零点,则可用二分法求x0的近似值;③函数f(x)的零点是方程f(x)=0的根,但f(x)=0的根不一定是函数f(x)的零点;④用二分法求方程的根时,得到的都是近似值.A.0 B.1 C.3 D.4二、填空题3.下面是连续函数f(x)在[1,2]上的一些函数值,如表:4.已知f(x)的一个零点x0∈(2,3),用二分法求精确度为0.01的x0近似值时,判断各区间中点的函数值的符号最多需要的次数为________.三、解答题5.已知函数f(x)=3ax2+2bx+c,a+b+c=0,f(0)>0,f(1)>0,证明a>0,并利用二分法证明方程f(x)=0在[0,1]内有两个实根.。
二分法求函数零点教案(可编辑修改word版)
1、二分法的概念用二分法求方程的近似解对于在区间[a, b]上连续不断且 f (a ) · f (b ) < 0 的函数 y = f (x ) , 通过不断把函数f (x ) 的零点所在的区间一分为二, 使区间的两个端点逐步逼近零点,进而得到零点的近似值的方法叫二分法。
2、用二分法求函数 f (x ) 的零点的近似值的步骤:(1)确定区间[a, b], 验证: f (a ) · f (b ) < 0,确定精确度(2)求区间(a , b)的中点 x 1(3)计算 f (x 1 )若 f (x 1 ) =0, 则就 x 1 是函数的零点若 f (a ) · f (x 1 ) <0,则令 b = x 1 (此时零点 x 0∈(a,x 1 ))若 f (x 1 ) · f (b ) <0,则令 a = x 1 (此时零点 x 0∈( x 1 , b)) (4)判断是否达到精确度即若 | a – b | <, 则得到零点的近似值为 a (或 b ),否则重复(2)~(4) 3、用二分法求函数零点的条件:若函数零点左右两侧函数值符号相反,则此零点为函数的变号零点,从图象来看,若图象穿过零点,则此零点为变号零点。
否则为不变号零点。
二分法只能求函数的变号零点。
例题讲解:例 1:下列函数图象与 x 轴均有交点,其中不能用二分法求图中函数零点的是( )解:应选 B ,利用二分法求函数零点必须满足零点两侧函数值异号。
1 例 2、 利用二分法求方程 x= 3 - x 的一个近似解(精确到 0.1)。
解:设 f (x ) = 1 + x - 3 ,则求方程 1= 3 - x 的一个近似解,即求函数 f (x ) 的一个近似零x x点。
∵ f (2) = - 1 < 0 , f (3) = 1> 0 ,∴取区间[2,3]作为计算的初始区间。
4.5.2 用二分法求方程的近似解-【题型分类归纳】2022-2023学年高一数学上学期同步讲与练(
4.5.2 用二分法求方程的近似解一、二分法1、二分法的定义:对于区间[],a b 上图象连续不断且()()0⋅<f a f b 的函数()f x ,通过不断把它的零点所在区间一分为二,使所得区间的两个端点逐渐逼近零点,进而得到近似值的方法。
2、注意点:(1)二分法的求解原理是函数零点存在定理;(2)函数图象在零点附近连续不断;(3)用二分法只能求变号零点,即零点在左右两侧的函数值的符号相反,比如2=y x ,该函数有零点0,但不能用二分法求解。
二、用二分法求函数零点1、给定精确度ε,用二分法求函数()=y f x 零点0x 的近似值的步骤(1)确定零点0x 的初始区间[],a b ,验证()()0⋅<f a f b ;(2)求区间(),a b 的中点c ;(3)计算()f c ,进一步确定零点所在的区间:①若()0=f c (此时0=x c ),则c 就是函数的零点;②若()()0⋅<f a f c (此时()0,∈x a c ),则令=b c ;③若()()0⋅<f c f b (此时()0,∈x c b ),则令=a c .(4)判断是否达到精确度ε:若-<a b ε,则得到零点近似值a (或b );否则重复(2)~(4)【注意】初始区间的确定要包含函数的变号零点;2、关于精确度(1)“精确度”与“精确到”不是一回事,这里的“精确度”是指区间的长度达到某个确定的数值ε,即-<a b ε; “精确到”是指某讴歌数的数位达到某个规定的数位,如计算2-,精确到0.01,即0.3313(2)精确度ε表示当区间的长度小于ε时停止二分;此时除可用区间的端点代替近似值外,还可选用该区间内的任意一个数值作零点近似值。
题型一二分法的概念理解【例1】下列关于二分法的叙述,正确的是()A.用二分法可求所有函数零点的近似值B.用二分法求方程的近似解时,可以精确到小数点后的任一位C.二分法无规律可循,无法在计算机上完成D.只有求函数零点时才用二分法【答案】B【解析】根据二分法的概念可知,只有函数的图象在零点附近是连续不断且在该零点左右两侧函数值异号,才可以用二分法求函数的零点的近似值,故A错;用二分法求方程的近似解时,可以精确到小数点后的任一位,故B正确;二分法有规律可循,可以通过计算机来进行,故C 错;求方程的近似解也可以用二分法,故D 错.故选:B.【变式1-1】用二分法求函数()lg 2f x x x =+-的零点,可以取的初始区间是( ) A .()0,1 B .()1,2 C .()2,3 D .()3,4【答案】B【解析】因为,lg y x y x ==是单调增函数,故()f x 是单调增函数,其零点至多有一个;又()()11,2lg20f f =-=>,故用二分法求其零点,可以取得初始区间是()1,2.故选:B.【变式1-2】观察下列函数的图象,判断能用二分法求其零点的是( ) A . B . C .D .【答案】A【解析】由图象可知,BD 选项中函数无零点,AC 选项中函数有零点,C 选项中函数零点两侧函数值符号相同,A 选项中函数零点两侧函数值符号相反,故A 选项中函数零点可以用二分法求近似值,C 选项不能用二分法求零点.故选:A【变式1-3】下列函数图象中,不能用二分法求零点的是( )A .B .C .D .【答案】B【解析】观察图象与x 轴的交点,若交点附近的函数图象连续,且在交点两侧的函数值符号相异,则可用二分法求零点,故B 不能用二分法求零点.故选:B.【变式1-4】下列函数中不能用二分法求零点的是( )A .()43f x x =-B .()ln 28f x x x =+-C .()sin 1f x x =+D .()231=-+f x x x【答案】C【解析】选项C sin 10y x =+≥恒成立,不存在区间(),a b 使()()0f a f b ⋅<,所以sin 1y x =+不能用二分法求零点.故选:C题型二 用二分法求方程的近似解【例2】方程322360x x x -+-=在区间[]2,4-上的根必定在( )A .[]2,1-上B .5,42⎡⎤⎢⎥⎣⎦上C .71,4⎡⎤⎢⎥⎣⎦上D .75,42⎡⎤⎢⎥⎣⎦上 【答案】D【解析】设32()236f x x x x =-+-, 则(2)8866280f -=----=-<,(4)6432126380f =-+-=>,因为2412且(1)123640f =-+-=-<,所以函数()f x 在[]1,4上必有零点. 又因为14522+=且5125251537()6028228f =-+-=>,所以函数()f x 在51,2⎡⎤⎢⎥⎣⎦上必有零点.又因为517224+=且32777797()()2()360444464f =-⨯+⨯-=-<,所以函数()f x 在75,42⎡⎤⎢⎥⎣⎦上必有零点. 即方程的根必在75,42⎡⎤⎢⎥⎣⎦上.故选:D【变式2-1】若函数()31f x xx =--在区间[1,1.5]内的一个零点附近函数值用二分法逐次计算,列表如下: x 1 1.5 1.25 1.375 1.3125 f (x ) -1 0.875 -0.2969 0.2246 -0.05151310x x --=的一个近似根(精确度为0.1)可以为( )A .1.3B .1.32C .1.4375D .1.25【答案】B【解析】由()1.31250f <,()1.3750f >,且()f x 为连续函数,由零点存在性定理知:区间()1.3125,1.375内存在零点,故方程310x x --=的一个近似根可以为1.32,B 选项正确,其他选项均不可.故选:B【变式2-2】若函数32()22f x x x x =+--的一个正零点附近的函数值用二分法计算,其参考数据如下: (1)2f =- (1.5)0.625f = (1.25)0.984f =-(1.375)0.260f =- (1.4375)0.162f = (1.40625)0.054f =-那么方程32220x x x +--=的一个近似根(精确度0.1)为( ).A .1.2B .1.4C .1.3D .1.5【答案】B【解析】因为(1)0,(1.5)0f f <>,所以(1)(1.5)0f f <,所以函数在(1,1.5)内有零点,因为1.510.50.1-=>,所以不满足精确度0.1;因为(1.25)0f <,所以(1.25)(1.5)0f f <,所以函数在(1.25,1.5)内有零点,因为1.5 1.250.250.1-=>,所以不满足精确度0.1;因为(1.375)0f <,所以(1.375)(1.5)0f f <,所以函数在(1.375,1.5)内有零点,因为1.5 1.3750.1250.1-=>,所以不满足精确度0.1;因为(1.4375)0f >,所以(1.4375)(1.375)0f f <,所以函数在(1.375,1.4375)内有零点,因为1.4375 1.3750.06250.1-=<,所以满足精确度0.1;所以方程32220x x x +--=的一个近似根(精确度0.05)是区间(1.375,1.4375)内的任意一个值(包括端点值),根据四个选项可知选B .【变式2-3】求方程221x x =+的一个近似解(精确度0.1)【答案】2.4375【解析】设2()21f x x x =--.因为(2)10,(3)20f f =-<=>()f x 在区间()2,3内单调递增,所以在区间()2,3内,方程2210x x --=有唯一的实数根为0x 取2与3的平均数2.5因为(2.5)0.250f =>,所以02 2.5x <<,再取2与2.5的平均数2.25,因为(2.25)0.43750f =-<,所以02.25 2.5x <<;如此继续下去,有(2.375)0,(2.5)0f f <>,所以()0 2.375,2.5x ∈;(2.375)0,(2.4375)0f f <>,所以()0 2.375,2.4375x ∈;因为|2.375 2.4375|0.06250.1-=<,所以方程221x x =+的一个精确度为0.1的近似解可取为2.4375题型三 用二分法求函数的零点【例3】用二分法研究函数()5381f x x x =+-的零点时,第一次经过计算得()00f <,()0.50f >,则其中一个零点所在区间和第二次应计算的函数值分别为( ) A .()0,0.5,()0.125f B .()0,0.5,()0.375fC .()0.5,1,()0.75fD .()0,0.5,()0.25f【答案】D【解析】因为(0)(0.5)0f f <,由零点存在性知:零点()00,0.5x ∈,根据二分法,第二次应计算00.52f +⎛⎫⎪⎝⎭,即()0.25f ,故选:D.【变式3-1】已知函数()22log 6f x x x =--,用二分法求()f x 的零点时,则其中一个零点的初始区间可以为( )A .()1,2B .()2,2.5C .()2.5,3D .()3,3.5【答案】C【解析】因为函数()22log 6f x x x =--在()0,∞+上显然是连续函数,2y x 和2log 6y x =+在()0,∞+上都是增函数,当()1,2x ∈时,2222246log 16log 6x x <=<=+<+,所以()22log 60f x x x =--<在()1,2x ∈上恒成立;当()2,2.5x ∈时,22222.5 6.257log 26log 6x x <=<=+<+,所以()22log 60f x x x =--<在()2,2.5x ∈上也恒成立;当()3,3.5x ∈时,222239log 3.56log 6x x >=>+>+,所以()22log 60f x x x =-->在()3,3.5x ∈上恒成立,又22(2.5) 2.5log 2.560f =--<,2(3)9log 360f =-->,根据函数零点存在性定理,可得()f x 的其中一个零点的初始区间可为()2.5,3.故选:C.【变式3-2】已知函数()329f x x x =+-在()1,2内有一个零点,且求得()f x 的部分函数值数据如下表所示: x 1 2 1.5 1.75 1.7656 1.7578 1.7617()f x -6 3 -2.625 -0.14063 0.035181 -0.05304 -0.0088要使()零点的近似值精确度为,则对区间()的最少等分次数和近似解分别为( )A .6次1.75B .6次1.76C .7次1.75D .7次1.76【答案】D【解析】由表格数据,零点区间变化如下:(1,2)→(1.5,2)→(1.75,2)→(1.75,1.875)→(1.75,1.8125)→(1.75,1.78125)→(1.75,1.7656)→(1.7578,1.7656),此时区间长度小于0.01,在此区间内取近似值,等分了7次,近似解取1.76.故选:D .【变式3-3】用二分法求函数()ln(1)1f x x x =++-在区间[]0,1上的零点,要求精确度为0.01时,所需二分区间的次数最少为( )A .5B .6C .7D .8【答案】C【解析】开区间()0,1的长度等于1 ,每经过一次操作,区间长度变为原来的一半,经过n 此操作后,区间长度变为12n, 用二分法求函数()()ln 11f x x x =++-在区间()0,1上近似解,要求精确度为0.01,10.012n∴≤,解得7n ≥,故选:C.【变式3-4】用二分法求函数()f x 的一个正实数零点时,经计算,()0.540f <,()0.720f >,()0.680f <,则函数的一个精确到0.1的正实数零点的近似值为( ) A .0.68 B .0.72 C .0.7 D .0.6【答案】C【解析】由题意根据函数零点的判定定理可得,函数零点所在的区间为()0.68,0.72,则函数的一个精确度为0.1的正实数零点的近似值可以为0.7,故选:C .。
求函数零点近似解的一种计算方法----二分法_优质PPT课件
依题意得方程x2+(a-1)x+2=0有两个 相异的正数根,
则
(a 1)2
,
1 a 0
得a∈(-∞,1 2 2).
7
bx 5.已知函数f(x)= 2 3x .若方程f(x) +2x=0有两个相等的实数根,则f(x)= .
由 bx +2x=0,得6x2-(b+4) 2 3x
x=0. 4x
11
题型1 函数零点存在性判断
(1)求函数y=x3-2x2-x+2的零点;
(2)判断函数f(x)=log2x+ 1 x+2的零
点的个数.
2
12
( 1 ) 由 y=x3-2x2-x+2=x2 ( x-2 ) (x-2)=(x-2)(x2-1)
=(x-2)(x-1)(x+1). 令 ( x-2 ) ( x-1 ) ( x+1 ) =0 , 解 得 x=2 或 x=1或x=-1. 所以函数y=x3-2x2-x+2的零点为-1,1,2.
基本初等函数(Ⅰ)
函数与方程
1
1.函数的零点 函数y=f(x)的零点是一个 实数,而不是 一个 点,它是函数的图象与x轴交点的横坐标. 2.二分法 用二分法求函数y=f(x)的 零点近似值的 步骤是:
2
第一步,确定区间[a,b],验
证 f(a)、f(b)的正负
,给定精确度ε;
第二步,求区间[a,b]的中点x1; 第三步,计算 f(x1);若 f(x1)=0 , 则x1就是函数的零点;若 f(x1)f(b)<0 , 则令b=x1;若 f(a)f(x1)<0 ,则令a=x1;
第四步,判断是否达到精确度ε,即若 |a-b|<ε,则得到零点近似值a(或b);否则 重复第二、三、四步.
高中数学人教b版必修一_2.4.2 求函数零点近似解的一种计算方法——二分法
求函数零点的近似值,所选取的起始区间可以不同,最后结果也不尽相
同,但相同精确度、取相同位数的近似值一定__相__同____.
数 学 必 修 ①
· 人 教 B 版
返回导航
第二章 函 数
1.如图所示,函数图象与 x 轴均有交点,其中不能用二分法求图中交点横坐 标的是 导学号 65164617 ( B )
[解析] f12=18+12-1=-83<0,f(1)=1+1-1=1>0,∴函数 f(x)=x3+x-1
数 学 必 修
的零点所在的区间是12,1.
①
·
人
教
B
版
返回导航
第二章 函 数
3.用二分法求方程 x3-2x-5=0 在区间[2,3]内的实根,取区间中点 2.5,那 么下一个有根区间是__[_2_,2_._5_] _. 导学号 65164619
则该中点对应的横坐标为 x0=a0+12(b0-a0)=21(a0+b0).
计算 f(x0)和 f(a0):
数
判断:①如果 f(x0)=0,则____x_0___就是 f(x)的零点,计算终止;
学
必 修 ①
②如果 f(a0)·f(x0)___<_____0,则零点位于区间[a0,x0]中,令 a1=a0,b1=x0;
·
人
教
B
版
返回导航
第二章 函 数
③如果 f(a0)·f(x0)____>____0,则零点位于区间[x0,b0]中,令 a1=x0,b1=b.
第三步:取区间[a1,b1]的中点,则该中点对应的横坐标为 x1=a1+12(b1-a1)
=12(a1+b1).
计算 f(x1)和 f(a1):
3.2 第二课时 零点的存在性及其近似值的求法
如果函数 y=f(x)在区间[a,b]上的图像是 连续不断 的,并且 _f_(a_)_·f_(_b_)<_0_(即在区间两个端点处的函数值_异__号),则函数 y=f(x) 在区间 (a,b)中 至少有一个 零点,即∃x0∈(a,b),f(x0)=0.
如此继续下去,得到方程的一个实数根所在的区间,如下表:
(a,b) (a,b)的中点 f(a)
f(b)
fa+2 b
(0.5,1)
0.75
f(0.5)<0 f(1)>0 f(0.75)<0
(0.75,1) 0.875 f(0.75)<0 f(1)>0 f(0.875)>0
因为|0.75-0.875|=0.125<0.2,所以方程 2x3-1=0 的一个近似
第二步 计算区间(a,b)的中点a+2 b对应的函数值,若 fa+2 b=0, 取 x1=a+2 b,计算结束;若 fa+2 b≠0,转到第三步.
第三步 若 f(a)fa+2 b<0,将a+2 b的值赋给 b用a+2 b→b表示,下同,
(2)判断:把所得的函数值相乘,并进行符号判断. (3)结论:若符号为正且函数在该区间内是单调函数,则在 该区间内无零点;若符号为负且函数连续,则在该区间内至少 有一个零点.
2.判断函数存在零点的 2 种方法 (1)方程法:若方程 f(x)=0 的解可求或能判断解的个数,可 通过方程的解来判断函数是否存在零点或判定零点的个数. (2)图像法:由 f(x)=g(x)-h(x)=0,得 g(x)=h(x),在同一 平面直角坐标系内作出 y1=g(x)和 y2=h(x)的图像,根据两个图 像交点的个数来判定函数零点的个数.
4.5.2用二分法求方程的近似解课件(人教版)
)
答案:×,×,×.
辨析2:用二分法研究函数() = 3 + 3 − 1的零点时,第一次经计算(0) <
0,(0.5) > 0,可得其中一个零点0 ∈________,第二次计算________,以上横线
上应填的内容为( ).
A.(0,0.5),(0.25)
B.(0,1),(0.25)
2.5390625
0.010
(2.53125,2.5390625) 2.53515625
0.001
新知探索
零点所在区间
中点的值
中点函数近似
值
(2,3)
2.5
−0.084
(2.5,3)
2.75
0.512
(2.5,2.75)
2.625
0.215
(2.5,2.625)
2.5625
0.066
(2.5,2.5625)
0,所以0 ∈ (1,1.5).
再取区间(1,1.5)的中点2 = 1.25,用信息技术算得(1.25) ≈ −0.87.因为
(1.25)(1.5) < 0,所以0 ∈ (1.25,1.5).
同理可得,0 ∈ (1.375,1.5),0 ∈ (1.375,1.4375).
由于|1.375 − 1.4375| = 0.0625 < 0.1,所以,原方程的近似解可取为1.375.
间中点的方法,逐步缩小零点所在的范围.
新知探索
取(2,3)的中点2.5,用计算工具算得(2.5) ≈ −0.084.因为(2.5)(3) < 0,所以零
点在区间(2.5,3)内.
再取区间(2.5,3)的中点2.75,用计算工具算得(2.75) ≈ 0.512.因为(2.5)(2.75) <
求函数零点近似解的一种计算方法二分法(共21张PPT)
在一个风雨交加的夜里,从某水库闸房到防洪指 挥部的电话线路发生了故障,在这条10 km长的线路
上,如何迅速查出故障所在?
:能够借助用二分法求给定方程的变号 零点的近似值;(重点) :体验求方程近似解的二分法的探究 过程,感受方程与函数之间的联系;(难点) :通过新旧知识的认识冲突,激发学生 的求知欲,通过合作学习,培养学生团结协作的品质.
则f(a)f(b)<0;方程在区间(a,b)内有偶数个解,
中点”的方法,运用“逼近”思想逐步缩小零点 由上表计算可知,区间[12 55作为所求函数的一个正实数零点的近似值.
用二分法求函数零点近似值的过程中,首先依据函数性质确定函数零点存在的一个区间,此区间选取应尽量小,并且易于计算,再不断取区间中 点,把区间的范围逐步缩小,使得在缩小的区间内存在一零点.当达到精确度时,这个区间内的任何一个值均可作为函数的零点.
【变式训练】
判断函数y=x3-x-1在区间[]内有无零点,如果有,求 出一个近似零点(精确到0.1). 分析:由题目可获取以下主要信息: ①判断函数在区间[]内有无零点,可用根的
存在性定理判断;
②精确到0.1.解答本题应判断出在[]内有
零点后可用二分法求解.
解:因为f(1)=-1<0,f(1.5)=0.875>0,且函数 y=x3-x-1的图象是连续的曲线,所以它在区间[]内有
在区间(2, 3)上穿过x轴一次,可得出方程在区间
近零点,进而得到零点(或对应方程的根)近似
用二分法求方程的近似解,实质上就是通过“取中点”的方法,运用“逼近”思想逐步缩小零点所在的区间。
用二分法求方程的近似解,实质上就是通过“取 A.[-2,1] B.[2.5,4]
用二分法求函数零点的步骤
<=>函数的图象与x轴有交点
<=>函数有零点
3. 函数零点存在的条件:
如果函数y=f(x)在区间[a,b]上的图 像是_连__续_不__断__的一条曲线,并且 __f(_a_)·_f_(b_)_<_,那么函数y=f(x)在区 间0[a,b]内_有__零__点___,即存在 _c_∈__(a_,_b_) ,使得_f_(c_)_=_0__,则_c_就 是方程f(x)=0的__根__。
• 取区间(1,2)中点x1=1.5,计算 f(1.5) ≈0.33
• 由f(1)·f(1.5)<0,零点x0在区间(1,1.5)内 • 再取区间(1,1.5)中点x2=1.25,计算
f(1.25) ≈-0.87
• 由f(1.25)·f(1.5)<0
• 函数零点x0在区间(1.25,1.5)内
• 重复以上步骤,可列出表格 • 由表格可见 • |1.375-1.4375|=0.0625<0.1 • 所以原方程的近似解是1.4375
重复以上步骤,得到如下表格:
区间
端点
中点 中点的函数值 区间距离
2
3
2.5 -0.083709268
1
2.5
3
2.75
0.511600912
0.5Βιβλιοθήκη 2.52.752.625 0.215080896 0.25
2.5
2.625
2.5625 0.065983344 0.125
2.5
2.5625 2.53125 -0.008786748 0.0625
练习2
• 用二分法求函数f(x)=x3-2在区间 (1,2)内的零点(=0.1)。
2018-2019版高中数学人教B版必修一课件:2.4.2 求函数零点近似解的一种计算方法——二分法
4
[预习导引] 1.二分法的概念
对于在区间[a, b]上连续不断且 f(a)f(b)<0 的函数y=f(x),
通过不断地把函数f(x)的零点所在的区间 一分为二,使区
间的两个端点 逐步逼近为零点 ,进而得到零点近似值的
方法叫做二分法.由函数的零点与相应的方程根的关系, 可用二分法来求 方程的近似解 .
①该函数有三个变号零点; ②所有零点之和为0; ③当x<-2 时,恰有一个零点; ④当0<x<1时,恰有一个零点. A.①② B.①②④ C.②③ D.①②③ 解析 函数y=f(x)的三个变号零点分别是-1,0,1.所以①②③正确.
2.4.2 求函数零点近似解的一种计算方法——二分法
13
1
要点二 二分法求函数零点近似解
f(x4)≈-0.561 8<0 [1.687 5,1.75]
2.4.2 求函数零点近似解的一种计算方法——二分法
15
1.687 5+1.75 x5 = = f(x5)≈-0.171<0 [1.718 75,1.75] 2 1.718 75 1.718 75+1.75 x6 = = f(x6)≈0.03>0 [1.718 75,1.734 375] 2 1.734 375
至此可以看出,区间[1.718 75,1.734 375]内的所有值精确到0.1
11
规律方法
函数的零点分为变号零点和不变号零点,
若函数零点左右两侧函数值符号相反,则此零点为函 数的变号零点;从图象来看,若图象穿过x轴,则此零
点为变号零点,否则为不变号零点 .二分法只能求函数
的变号零点.
2.4.2 求函数零点近似解的一种计算方法——二分法
用二分法求方程的近似解上
取区间
[0,4]
[2,4]
X1=(0+4)/2=2
X2=(2+4)/2=3
f(x1)=f(2)=-6<0
f(x2)=f(3)=0
由上式计算可知,x2=3就是所求函数的一个零点.
例2 求函数f(x)=x3+x2-2x-2的一个为正数的零点(误差不超过0.1)
解 由于f(0)=-2<0,f(1)=-2<0,f(2)=6>0,可以取区间[1,2]作为计算的初始区间.
通过取中点,不断把函数的区间一分为二,使区间的两个端点逐步逼近零点,进而得到函数的零点或零点的近似值,这样的方法叫做二分法.
o
x
y
a
b
c
d
e
例1求函数f(x)=x3-3x2+2x-6在区间[0,4]内的变号零点.
解 f(0)=-6<0 f(4)=18>0
端点(中点)坐标
0.063
由上表的计算可知,区间[1.375,1.5]的长度小于0.2,所以这个区间的中点x3=1.438可作为所求函数误差不超过0.1的一个正实数零点的近似值.
用二分法求函数变号零点的一般步骤: 1.零点存在定理,求出初始区间
2.进行计算,确定下一区间 Nhomakorabea3.循环进行,达到精确要求
练习
端点(中点)坐标
中点的函数值
取区间
区间长度
[1,2]
[1,1.5]
[1.25,1.5]
[1.375,1.5]
1
0.5
0.25
0.125
X1=(1+2)/2=1.5
X2=1.25
X3=1.375
二分法求函数-零点
二分法的概念对于在区间[a,b]上连续不断且f(a)·f(b)<0的函数y=f(x),通过不断地把函数f(x)的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫做二分法.由函数的零点与相应方程根的关系,可用二分法来求方程的近似解.给定精确度,用二分法求函数零点近似值的步骤如下:(1)确定区间,,验证·<0,给定精确度;(2)求区间,的中点;(3)计算:1若=,则就是函数的零点;2若·<0,则令=(此时零点);3若·<0,则令=(此时零点);(4)判断是否达到精确度;即若<,则得到零点近似值(或);否则重复步骤2-4.结论:由函数的零点与相应方程根的关系,我们可用二分法来求方程的近似解.思考:为什么由<,便可判断零点的近似值为(或)?一、能用二分法求零点的条件例1下列函数中能用二分法求零点的是()判定一个函数能否用二分法求其零点的依据是:其图象在零点附近是连续不断的,且该零点为变号零点.因此,用二分法求函数的零点近似值的方法仅对函数的变号零点适用,对函数的不变号零点不适用.变式迁移1下列函数图象与x轴均有交点,但不宜用二分法求交点横坐标的是()二、求函数的零点例2判断函数y=x3-x-1在区间[1,1.5]内有无零点,如果有,求出一个近似零点(精确度0.1).分析由题目可获取以下主要信息:①判断函数在区间[1,1.5]内有无零点,可用根的存在性定理判断;②精确度0.1.解答本题在判断出在[1,1.5]内有零点后可用二分法求解.解因为f(1)=-1<0,f(1.5)=0.875>0,且函数y=x3-x-1的图象是连续的曲线,所以它在区间[1,1.5]内有零点,用二分法逐次计算,列表如下:区间中点值中点函数近似值(1,1.5) 1.25-0.3(1.25,1.5) 1.3750.22(1.25,1.375) 1.3125-0.05(1.3125,1.375) 1.343750.08由于|1.375-1.3125|=0.0625<0.1,所以函数的一个近似零点为1.3125.点评由于用二分法求函数零点的近似值步骤比较繁琐,因此用列表法往往能比较清晰地表达.事实上,还可用二分法继续算下去,进而得到这个零点精确度更高的近似值.变式迁移2求函数f(x)=x3+2x2-3x-6的一个正数零点(精确度0.1).解由于f(1)=-6<0,f(2)=4>0,可取区间(1,2)作为计算的初始区间,用二分法逐次计算,列表如下:区间中点中点函数值(1,2) 1.5-2.625(1.5,2) 1.750.2344(1.5,1.75) 1.625-1.3027(1.625,1.75) 1.6875-0.5618(1.6875,1.75) 1.71875-0.1707由于|1.75-1.6875|=0.0625<0.1,所以可将1.6875作为函数零点的近似值.三、二分法的综合运用例3证明方程6-3x =2x 在区间[1,2]内有唯一一个实数解,并求出这个实数解(精确度0.1).分析由题目可获取以下主要信息:①证明方程在[1,2]内有唯一实数解;②求出方程的解.解答本题可借助函数f (x )=2x +3x -6的单调性及根的存在性定理证明,进而用二分法求出这个解.证明设函数f (x )=2x +3x -6,∵f (1)=-1<0,f (2)=4>0,又∵f (x )是增函数,所以函数f (x )=2x +3x -6在区间[1,2]内有唯一的零点,则方程6-3x =2x 在区间[1,2]内有唯一一个实数解.设该解为x 0,则x 0∈[1,2],取x 1=1.5,f (1.5)=1.33>0,f (1)·f (1.5)<0,∴x 0∈(1,1.5),取x 2=1.25,f (1.25)=0.128>0,f (1)·f (1.25)<0,∴x 0∈(1,1.25),取x 3=1.125,f (1.125)=-0.445<0,f (1.125)·f (1.25)<0,∴x 0∈(1.125,1.25),取x 4=1.1875,f (1.1875)=-0.16<0,f (1.1875)·f (1.25)<0,∴x 0∈(1.1875,1.25).∵|1.25-1.1875|=0.0625<0.1,∴1.1875可以作为这个方程的实数解.点评用二分法解决实际问题时,应考虑两个方面,一是转化成函数的零点问题,二是逐步缩小考察范围,逼近问题的解.变式迁移3求32的近似解(精确度为0.01并将结果精确到0.01).解设x =32,则x 3-2=0.令f (x )=x 3-2,则函数f (x )的零点的近似值就是32的近似值,以下用二分法求其零点的近似值.由于f (1)=-1<0,f (2)=6>0,故可以取区间[1,2]为计算的初始区间.用二分法逐步计算,列表如下:区间中点中点函数值[1,2] 1.5 1.375[1,1.5] 1.25-0.0469[1.25,1.5] 1.3750.5996[1.25,1.375] 1.31250.2610[1.25,1.3125] 1.281250.1033[1.25,1.28125]1.2656250.0273[1.25,1.265625] 1.2578125-0.01[1.2578125,1.265625]1.261718750.0086由于|1.265625-1.2578125|=0.00781<0.01,所以函数f (x )零点的近似值是1.26,即32的近似值是1.26.四、总结1.能使用二分法求方程近似解的方法仅对函数的变号零点适用,对函数的不变号零点不适用.2.二分法实质是一种逼近思想的应用.区间长度为1时,使用“二分法”n 次后,精确度为12n .3.求函数零点的近似值时,所要求的精确度不同,得到的结果也不相同.精确度为ε,是指在计算过程中得到某个区间(a ,b )后,若其长度小于ε,即认为已达到所要求的精确度,可停止计算,否则应继续计算,直到|a -b |<ε为止.练习1.下列函数中不能用二分法求零点的是()A .f (x )=2x +3B .f (x )=ln x +2x -6C .f (x )=x 2-2x +1D .f (x )=2x -12.设f (x )=3x +3x -8,用二分法求方程3x +3x -8=0在x ∈(1,2)内近似解的过程中得f (1)<0,f (1.5)>0,f (1.25)<0,则方程的根落在区间()A .(1,1.25)B .(1.25,1.5)C .(1.5,2)D .不能确定3.函数f (x )=x 2-5的正零点的近似值(精确到0.1)是()A .2.0B .2.1C .2.2D .2.34.方程2x -1+x =5的解所在的区间是()A .(0,1)B .(1,2)C .(2,3)D .(3,4)5.用二分法研究函数f (x )=x 3+3x -1的零点时,第一次经计算f (0)<0,f (0.5)>0,可得其中一个零点x 0∈________,第二次应计算________.以上横线上应填的内容为()A .(0,0.5),f (0.25)B .(0,1),f (0.25)C .(0.5,1),f (0.25)D .(0,0.5),f (0.125)6.在用二分法求方程f (x )=0在[0,1]上的近似解时,经计算,f (0.625)<0,f (0.75)>0,f (0.6875)<0,即可得出方程的一个近似解为____________(精确度为0.1).7.用二分法求方程x 2-5=0在区间(2,3)的近似解经过________次二分后精确度能达到0.01.8.用二分法求函数的零点,函数的零点总位于区间[a n ,b n ](n ∈N )上,当|a n -b n |<m 时,函数的零点近似值x 0=a n +b n2与真实零点a 的误差最大不超过______.答案m 2。
高中数学同步学案 计算函数零点的二分法
2.4.2 计算函数零点的二分法二分法求函数零点的步骤限定时间内猜一品牌手机的价格,如果猜中,就把手机奖励给选手.手机价格在500~1 000元之间,你能设计出可行的猜价方案来帮助选手猜价吗?已知函数y =f(x)定义在区间D 上,求它在D 上的一个零点x 的近似值x,使它与零点的误差不超过正数ε,即使得|x -x 0|≤ε.下面我们分步写出,用二分法求函数零点的一般步骤.第一步 在D 内取一个闭区间[a,b]⊆D,使f(a)与f(b)异号,即f(a)·f(b)<0.令a 0=a,b 0=b. 第二步 取区间[a 0,b 0]的中点,则此中点对应的横坐标为x 0=a 0+12(b 0-a 0)=12(a 0+b 0).计算f(x 0)和f(a 0).判断:(1)如果f(x 0)=0,则x 0就是f(x)的零点,计算终止;(2)如果f(a 0)·f(x 0)<0,则零点位于区间[a 0,x 0]内,令a 1=a 0,b 1=x 0;(3)如果f(a 0)·f(x 0)>0,则零点位于区间[x 0,b 0]内,令a 1=x 0,b 1=b 0.第三步 对区间[a 1,b 1],按第二步中的方法,可以得到区间[a 2,b 2],且它的长度是区间[a 1,b 1]长度的一半.如此反复地二分下去,可以得到一系列有限区间[a 0,b 0],[a 1,b 1],[a 2,b 2],[a 3,b 3],…,其中每个区间的长度都是它前一个区间长度的一半.实施上述步骤,函数的零点总位于区间[a n ,b n ]上,当|a n -b n |<2ε时,区间[a n ,b n ]的中点x n =12(a n +b n )就是函数y =f(x)的近似零点,计算终止.这时函数y =f(x)的近似零点与真正零点的误差不超过ε.求函数y =3x 3-10x 2-12x +40的一个正的零点时,误差不超过0.08,由于f(3)=-5<0,f(4)=24>0,可取区间[3,4]作为计算的初始区间,用二分法逐次计算,列表如下:中点坐标中点函数值的符号取区间[3,4]x =3+42=3.5f(3.5)>0 [3,3.5] x 1=3+3.52=3.25f(3.25)<0 [3.25,3.5] x 2=3.25+3.52=3.375f(3.375)>0 [3.25,3.375] x 3=3.3125 f(3.3125)<0 [3.3125,3.375] x 4=3.34375f(3.34375)>0[3.3125,3.34375]观察上表可知该近似值为________.[提示] 利用二分法的求解原理可知,近似值为3.328.变号零点[例1] 判断下列函数是否有变号零点: (1)y =x 2-5x -14;(2)y =x 2+x +1.[思路点拨] 判断二次函数是否有变号零点,可结合图象进行. [解] (1)∵y =x 2-5x -14=(x +2)(x -7), ∴有两个零点-2,7.由二次函数的图象知,-2,7都是变号零点.(2)∵y =x 2+x +1=⎝ ⎛⎭⎪⎫x +122+34>0恒成立.∴此函数没有零点. 借题发挥 判断二次函数是否有变号零点,可观察图象是否穿过x 轴,若图象穿过x 轴,则函数有变号零点,否则没有变号零点.1.下图中的各函数图象与x 轴均有交点,但不宜用二分法求交点横坐标的是( )解析:选D ∵选项D 中不是变号零点, ∴它不宜用二分法求交点的横坐标.函数零点存在性的判断[例2] 求证:函数(1,2)上. [思路点拨] 由于f(x)=5x 2-7x -1的图象是不间断的,因此,只需再证明f(-1)f(0)<0,f(1)f(2)<0即可.[解] 设f(x)=5x 2-7x -1,则f(-1)·f(0)=11×(-1)=-11<0, f(1)·f(2)=(-3)×5=-15<0. 而二次函数f(x)=5x 2-7x -1是连续的, ∴f(x)在(-1,0)和(1,2)上各有零点.即方程5x 2-7x -1=0的根一个在(-1,0)上,另一个在(1,2)上. 借题发挥判断一个函数是否有零点,首先看函数f(x)在区间[a,b]上的图象是否连续,并且是否存在f(a)f(b)<0,若存在,那么函数y =f(x)在区间(a,b)内必有零点,要确定函数有多少个零点,还必须结合函数的图象和性质(如单调性).2.设f(x)=3x+3x -8,用二分法求方程3x+3x -8=0在x ∈(1,2)内近似解的过程中得到f(1)<0,f(1.5)>0,f(1.25)<0,则方程的根落在区间( )A .(1,1.25)B .(1.25,1.5)C .(1.5,2)D .不能确定解析:选B ∵f(x)=3x+3x -8在(1,2)上的图象是连续不断的, 又∵f(1.25)<0,f(1.5)>0 ∴f(1.25)·f(1.5)<0, ∴f(x)在(1.25,1.5)内有零点.函数零点的近似解的求法[例3] 求方程2x 3[思路点拨] 首先确定初始区间,再使用二分法进行求解.[解] 考察函数f(x)=2x 3+3x -3,从一个两端函数值反号的区间开始,应用二分法逐步缩小方程实数解所在区间.经试算,f(0)=-3<0,f(1)=2>0,所以方程2x 3+3x -3=0在[0,1]内有解. 列表计算:N a n f(a n ) b n f(b n ) x n =a n +b n21 0 -3 12 0.5 2 0.5 -1.25 1 2 0.753 0.5 -1.25 0.75 0.093 75 0.6254 0.625 -0.636 718 75 0.75 0.093 75 0.687 5 5 0.687 5-0.287 597 6560.75 0.093 75 0.718 75 6 0.718 75 -0.101 135 253 0.75 0.093 75 0.734 375 70.734 375 -0.004 768 3720.750.093 750.742 187 58 0.734 375 -0.004 768 372 0.742 187 5 0.044 219 017 0.738 281 25 9 0.734 375 -0.004 768 372 0.738 281 250.019 657 7310.736 328 125 10 0.734 375 -0.004 768 372 0.736 328 125 0.007 427 827 0.735 351 563 110.734 375 -0.004 768 372 0.735 351 563 0.001 325 5230.734 863 315由于|b 11-a 11|<0.002=2ε,计算停止,取x =x 11=0.734 863 315≈0.735.借题发挥 用二分法求函数零点的近似值,首先要选好计算的初始区间,这个区间既要符合条件,又要使其长度尽量小,其次要依据条件给定的精确度及时检验计算所得到的区间是否满足这一精确度,以决定是停止计算还是继续计算.求函数零点的近似值时,由于所选取的起始区间不同,最后得到的结果可以不同,但它们都是符合所给定的精确度的.二分法仅适用于函数变号零点近似值的求解.3.用二分法求x 3-x -1=0在区间[1,1.5]的一个实根(误差不超过0.01). 解:设f(x)=x 3-x -1,∵f(1)=-1<0,f(1.5)=0.875>0, ∴在[1,1.5]内,f(x)=0有实数解.取[1,1.5]为初始运算区间,用二分法逐次计算列表如下: n a n b n b n -a n f(a n ) f(b n ) x n =a n +b n21 1 1.5 0.5 -1 0.875 1.252 1.25 1.5 0.25 -0.296 875 0.875 1.3753 1.25 1.375 0.125 -0.296 875 0.224 609 375 1.312 5 41.312 51.3750.062 5-0.051 513671 0.224 609 3751.343 755 1.312 5 1.343 75 0.031 25 -0.051 513671 0.082 611 083 1.328 1256 1.312 5 1.328 125 0.015 625 -0.051 513671 0.014 575 958 1.320 312 57 1.320 312 5 1.328 125 0.007 812 5 -0.018 7106130.014 575 958 1.324 218 75由于b n -a n <2ε,计算停止,取x =1.324 218 75≈1.324.1.用二分法求得的函数零点( ) A .一定是近似解 B .一定是准确解 C .一定是变号零点D .以上都不对解析:选C 由二分法的定义可知,用二分法求得的函数零点一定是变号零点. 2.若函数f(x)在[a,b]上连续,且同时满足f(a)f(b)<0,f(a)f ⎝⎛⎭⎪⎫a +b 2>0.则( )A .f(x)在⎣⎢⎡⎦⎥⎤a ,a +b 2上有零点B.f(x)在⎣⎢⎡⎦⎥⎤a +b 2,b 上有零点C .f(x)在⎣⎢⎡⎦⎥⎤a ,a +b 2上无零点 D .f(x)在⎣⎢⎡⎦⎥⎤a +b 2,b 上无零点解析:选B ∵f(a)f(b)<0,f(a)f ⎝ ⎛⎭⎪⎫a +b 2>0,∴f(b)f ⎝⎛⎭⎪⎫a +b 2<0,因此f(x)在⎣⎢⎡⎦⎥⎤a +b 2,b 上有零点.3.下列函数的图象与x 轴均有交点,其中能用二分法求图中交点横坐标的是( )解析:选B ∵只有变号零点才能用二分法求零点. ∴选B.4.用二分法研究函数f(x)=x 3+3x -1的零点时,第一次经计算f(0)<0,f(0.5)>0,可得其中一个零点x 0∈________,第二次应计算________.解析:∵f(x)=x 3+3x -1的图象是不间断地且f(0)f(0.5)<0 ∴x 0∈(0,0.5)依二分法可知,第二次应计算f(0.25). 答案:(0,0.5) f(0.25)5. 若函数f(x)唯一的零点在区间(1,3)或(1,4)或(1,5)内: ①函数f(x)的零点在(1,2)或(2,3)内; ②函数f(x)在(3,5)内无零点; ③函数f(x)在(2,5)内有零点; ④函数f(x)在(2,4)内不一定有零点;⑤函数f(x)的零点必在(1,5)内.以上说法错误的是________(将标号填在横线上).解析:由于函数有唯一零点,依题意必在(1,5)内.故①在(1,2)或(2,3)内不正确,而②在(3,5)内无零点,不正确;③在(2,5)内有零点也不正确,而④零点不一定在(2,4)上,正确;故①②③是错误的.答案:①②③6.为求函数f(x)=ln x +2x -6在(2,3)内的零点的近似值(误差不超过0.01),已得到数据如下表:次数 左端点 左端点函数值 右端点 右端点函数值 第1次 2 -1.306 9 3 1.098 6 第2次 2.5 -0.083 709 268 3 1.098 6 第3次 2.5 -0.083 709 268 2.75 0.511 600 912 第4次 2.5 -0.083 709 268 2.625 0.215 080 896 第5次 2.5-0.083 709 2682.562 5 0.065 983 344 第6次 2.531 25 -0.008 786 748 1272.562 50.065 983 344第7次2.531 25 -0.008 786 748 127 2.546 875 0.028 617 117根据以上数据确定f(x)取(2,3)内的近似零点. 解:由表中数据可得b 7-a 7=0.015 625<2ε, 计算停止,取x =a 7+b 72=2.539 062 5≈2.539.你对二分法求方程近似解是如何理解的?用二分法求方程近似解应注意什么问题?所谓二分法就是通过不断的把函数零点所在区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点近似值的方法,是数学算法的一种,它体现极限逼近的思想.(1)看清题目的精确度,它决定着二分法步骤的结束.(2)根据f(a 0)·f(b 0)<0确定初始区间,高次方程要先确定有几个解再确定初始区间.(3)取区间中点c 计算中点函数值f(c),确定新的零点区间.直至所取区间[a n ,b n ]中,a n 与b n 按精确要求取值相等.这个相等的近似值即为所求近似解.一、选择题1.已知函数y =f(x)是定义在R 上的连续函数,且f(1)·f(2)>0,则y =f(x)( ) A .在区间[1,2]上没有零点B .在区间[1,2]上有2个零点C .在区间[1,2]上零点个数为偶数个D .零点个数不确定解析:选D 画图象知,函数零点不确定. 2.方程log 2(x +4)=3x 的实根的个数是( ) A .0 B .1 C .2D .3解析:选C 在同一直角坐标系中, 画出y =log 2(x +4)与y =3x 的图象, 从图象上可以看出图象有两个交点, 即方程log 2(x +4)=3x 有两个实数根.3.已知函数f(x)的图象是连续不断的,有如下的x,f(x)对应值表:x 1 2 3 4 5 6 7 f(x)136.13615.552-3.9210.88-52.488-232.06411.238由表可知函数f(x)=0存在实数解的区间有( ) A .0个 B .1个 C .3个D .4个解析:选D ∵f(2)f(3)<0,∴(2,3)之间有一个零点, 同理可知(3,4),(4,5),(6,7)内各有一个零点.4.已知函数f(x)在区间(0,a)上有唯一的零点(a>0),在用二分法寻找零点的过程中,依次确定了零点所在的区间为⎝ ⎛⎭⎪⎫0,a 2,⎝ ⎛⎭⎪⎫0,a 4,⎝ ⎛⎭⎪⎫0,a 8,则下列说法中正确的是( ) A .函数f(x)在区间⎝ ⎛⎭⎪⎫0,a 16内一定有零点 B .函数f(x)在区间⎝ ⎛⎭⎪⎫0,a 16或⎝ ⎛⎭⎪⎫a 16,a 8内有零点 C .函数f(x)在区间⎝ ⎛⎭⎪⎫0,a 16内无零点 D .函数f(x)在区间⎝ ⎛⎭⎪⎫0,a 16或⎝ ⎛⎭⎪⎫a 16,a 8内有零点,或零点是a 16解析:选D 由二分法求函数零点的原理知,D 选项正确. 二、填空题5.在26枚崭新的金币中,混入了一枚外表与它们完全相同的假币(重量稍轻),现在只有一台天平,请问:最多需要称________次就可以发现这枚假币.解析:由二分法的原理可得,最多需要4次.答案:46.方程x3-2x-5=0在区间[2,3]内有实数根,取区间中点x0=2.5,那么下一个有根区间是________.解析:设f(x)=x3-2x-5,∵f(2)=23-2×2-5=-1<0,f(3)=33-2×3-5>0,f(x0)=f(2.5)=2.53-2×2.5-5>0,∴f(2)f(2.5)<0,故下一个有根区间为[2,2.5].答案:[2,2.5]三、解答题7.试证明方程x3-4x-2=0在区间[-2,-1],[-1,0],[2,3]内分别各有一根.证明:设f(x)=x3-4x-2,则f(x)的图象是连续曲线.又f(-2)=-2<0,f(-1)=1>0,f(0)=-2<0,f(2)=-2<0,f(3)=13>0,因此函数满足f(-2)f(-1)<0,f(-1)·f(0)<0,f(2)·f(3)<0.∴f(x)在[-2,-1],[-1,0],[2,3]内分别存在一个零点,即x3-4x-2=0.在区间[-2,-1],[-1,0],[2,3]内分别各有一根.8.用二分法求函数f(x)=x3-3的一个近似解(误差不超过0.01).解:由于f(1)=-2<0,f(2)=5>0,因此可取区间[1,2]作为计算的初始区间,用二分法逐次计算,见表如下:因为b10-a10=1.443 359 375-1.441 406 25=0.001 953 125<2ε,∴x=1.442 382 813≈1.442.。