隧道变形监测方案-新

合集下载

水利工程隧道安全监测方案

水利工程隧道安全监测方案

水利工程隧道安全监测方案一、水利工程隧道安全监测的目的水利工程隧道安全监测的主要目的是保障隧道结构的安全稳定、排除隧道运行风险、提高隧道使用寿命。

通过隧道变形、应力、温度、水压等参数的监测,及时发现隧道结构的变化趋势,确保隧道的安全运行,为水利工程的可靠运行提供技术支持。

二、水利工程隧道安全监测的内容水利工程隧道安全监测内容主要包括隧道结构变形、应力、温度、水压等参数的监测。

1、隧道结构变形监测隧道结构的变形是隧道安全运行的重要指标,隧道内部的变形情况直接影响到隧道的安全稳定。

因此,对隧道的变形情况进行实时监测是非常重要的。

变形监测主要包括对隧道轴线位置的监测、对隧道轴线的位置偏移和变形情况进行监测。

通过变形监测,可以及时发现隧道结构的变形趋势,做出相应的预警和处理措施。

2、应力监测隧道结构的应力是指在外部作用力下,隧道结构内部产生的应力状态。

应力监测是指对隧道内部的应力情况进行实时监测。

通过对隧道结构的应力进行监测,可以及时发现应力的变化情况,预测潜在的应力超载风险,为隧道结构的安全稳定提供参考依据。

3、温度监测隧道内部的温度变化是隧道安全运行的重要参数之一。

隧道内部的温度会影响到隧道材料的力学性能和结构变形。

因此,对隧道内部的温度变化进行监测是非常必要的。

通过温度监测,可以及时发现隧道内部温度的变化情况,做出相应的预警和措施,为隧道结构的安全运行提供技术支持。

4、水压监测隧道内部的水压情况直接影响到隧道结构的稳定性和安全运行。

因此,对隧道内部水压情况进行实时监测非常重要。

通过水压监测,可以及时发现隧道内部水压的变化情况,做出相应的预警和处理措施,确保隧道的安全运行。

以上是水利工程隧道安全监测的主要内容,通过科学合理的监测手段和方法,可以对隧道结构的变形、应力、温度、水压等参数进行实时监测,及时发现隧道安全隐患,确保隧道的安全运行。

三、水利工程隧道安全监测的方法和手段水利工程隧道安全监测的方法和手段主要包括传感器监测技术、遥感监测技术、无损检测技术、数据采集技术等。

隧道监测方案

隧道监测方案

隧道监测方案隧道监测方案隧道是一种地下建筑工程,由于其特殊的地理环境和使用条件,隧道的安全监测尤为重要。

隧道监测方案是为了及时掌握隧道工程的变形、变化及其他相关信息,以确保隧道的安全使用和正常运营。

下面是一个隧道监测方案的示例,旨在为隧道监测工作提供一些建议和指导。

一、监测目标和内容1. 监测目标:隧道结构的变形及其他相关信息。

2. 监测内容:地表下沉量、隧道内部位移、支撑结构变形、地下水位变化等。

二、监测设备和技术1. 监测设备:选择高精度的监测仪器,包括全站仪、位移传感器、倾斜仪、应变计等。

2. 监测技术:采用远程监测技术,将监测数据实时传输到监测中心,以便实时分析和处理。

三、监测点的选择和布置1. 监测点的选择:根据隧道结构的特点和变形的可能性,选择合适的监测点。

2. 监测点的布置:监测点应均匀分布在隧道结构上,包括入口、出口、墙板、顶板、地基等位置。

四、监测频率和周期1. 监测频率:根据具体情况确定监测频率,一般为每天、每周或每月进行一次。

2. 监测周期:监测周期一般为整个工程周期,从隧道开工到竣工。

五、数据处理和分析1. 数据处理:采集到的监测数据应进行整理和归档,并进行数据质量检查,确保数据的准确性和可靠性。

2. 数据分析:对监测数据进行分析和解读,判断隧道工程的变形和变化情况,提出相应的安全措施和建议。

六、应急响应和措施1. 应急响应:制定隧道监测的应急预案,一旦发生异常情况,能够及时响应和处理。

2. 安全措施:根据监测数据和分析结果,采取相应的安全措施,包括加固支撑结构、降低地下水位、减少车辆通行等。

隧道监测方案是隧道工程中不可或缺的一部分,它能够帮助工程师对隧道的运行状况进行实时监测和及时处理。

在隧道监测方案中,选择合适的监测设备和技术、布置合理的监测点、确定适当的监测频率和周期,以及进行数据处理和分析,都是保障隧道安全和正常运营的重要环节。

此外,制定应急响应和安全措施,能够在发生异常情况时及时采取措施,保护人员和设备的安全。

隧道工程监测方案

隧道工程监测方案

隧道工程监测方案一、前言隧道工程是一项复杂的工程,涉及到许多因素,如地质条件、水文条件、施工工艺等。

为了确保隧道工程的安全和质量,监测是必不可少的一项工作。

通过监测,可以及时发现隧道工程中存在的问题,及时采取措施进行修复,避免事故的发生,确保隧道工程的顺利进行。

二、隧道工程监测的目的1.保隧道工程的安全通过监测,可以及时发现隧道工程中存在的问题,如地质变化、水文情况变化等,及时采取措施进行修复,避免隧道工程发生事故,确保工程安全。

2.保隧道工程的质量通过监测,可以对隧道工程的施工过程进行监控,及时发现施工质量不达标的情况,及时进行整改,保隧道工程的质量。

三、隧道工程监测方案1.监测内容隧道工程监测内容应包括地质条件监测、水文条件监测、结构变形监测、环境监测等。

地质条件监测:包括地质勘察、地质雷达探测、地下水位监测等。

水文条件监测:包括地下水位监测、地下水压力监测、隧道渗水监测等。

结构变形监测:包括隧道内部变形监测、隧道支护结构变形监测等。

环境监测:包括隧道周边环境监测、隧道施工对周边环境的影响监测等。

2.监测方法地质条件监测:可采用地质雷达、地下水位监测仪等设备,对隧道的地质情况进行监测。

水文条件监测:可采用压力传感器、测井仪等设备,对隧道的水文情况进行监测。

结构变形监测:可采用位移传感器、应变计等设备,对隧道的结构变形情况进行监测。

环境监测:可采用环境监测站、气象站等设备,对隧道周边的环境情况进行监测。

3.监测频率地质条件监测和水文条件监测应每日进行,结构变形监测应每周进行,环境监测应每月进行。

4.报告和处理监测数据应及时整理成报告,并交由工程负责人进行审阅。

如发现问题,应及时采取措施进行处理,并将处理结果整理成报告。

四、结语隧道工程的监测是对工程安全和质量的保障,是一项重要的工作。

通过科学合理的监测方案,可以及时发现工程中存在的问题,并及时进行处理,从而确保隧道工程的安全和质量。

希望每一位工程从业者都能够重视隧道工程的监测工作,做好监测工作,确保工程的安全和质量。

关于隧道拱顶沉降变形监测测量的方法

关于隧道拱顶沉降变形监测测量的方法

关于隧道拱顶沉降变形监测测量的方法摘要:为了保障隧道的安全施工,及时掌握隧道整体的稳定情况,需要进行隧道拱顶下沉监测,它是保证不出现塌方事故的一个重要手段。

变形监测方法也在不断的改进和优化,这里就介绍下一种新的方法和完整的隧道拱顶沉降的流程。

关键词:隧道变形监测点一、点位的布设点位分为基准点和监测点两种:1、基准点的布设一般基准点布设2个以上,方便日后复测检查。

1)基准点的选址起算点的稳定性直接关系到沉降测量的成果,在监测工作中,施工及运营期间对这些基准点进行保护,作为本工程长期变形监测的基准。

水准基准点位置的选择应符合下列规定:基准点应避开交通干道主路、地下管线、河岸、滑坡地段以及其它可能使标志易遭腐蚀和破坏的地方,应选设在变形影响范围以外且稳定、易于长期保存的地方。

2)基准点的埋设首先在选址的位置挖孔,孔深约0.5米,在孔内埋设Φ20mm长钢筋,,用混凝土浇筑加固,并刻画点号。

2、监测点的布设一般情况下,观测隧道断面监测点的布设应符合下列规定:(1)隧道内一般地段沉降观测面的布设根据地质围岩级别确定,一般情况下Ⅲ级围岩每400m、Ⅳ级围岩每300m、Ⅴ级围岩每200m布设一个观测断面。

地应力较大、断层破碎带等不良和复杂地质区段适当加密布设;(2)洞门明洞交界处、明暗交界处、围岩变化段及变形缝位置应至少布设两个观测断面,观测断面分别位于洞门明洞交界处、明暗交界处、围岩变化段及变形缝位置5m;(3)隧道内地段观测断面的布设应根据地质级别确定;(4)隧道洞口若有基础换填段落,该段落内至少布设一个观测断面;(5)隧道工程完工后,每个观测断面在相应于两侧边墙处设一对沉降观测点;(6)隧道的进出口进行地基处理的地段,从洞口每25米布设一个断面。

常规隧道沉降变形监测的方法是,降水准尺倒立于监测点上进行测量,但这样存在以下问题:1)隧道里环境较差、光线较暗,因此观测时间较长,效率低;2)监测点易损坏,人员必须用力过猛顶住水准尺,可能会造成监测点松动,从而影响精度;3)立尺员不能保证水准尺处于垂直稳定状态。

地铁施工变形监测专项施工方案

地铁施工变形监测专项施工方案

地铁施工变形监测专项施工方案一、方案背景与目的地铁工程建设一般都会伴随着地表地下土体的变形与沉降,这些变形和沉降对地铁工程的安全运营和城市建设都有很大影响。

因此,进行地铁施工变形监测是必不可少的工作。

该方案旨在制定详细的地铁施工变形监测方案,以确保地铁工程的安全运营和城市建设的顺利进行。

二、监测目标与内容1.监测目标:(1)地铁隧道施工引起的地表沉降;(2)地铁施工对周围房屋、道路等的影响;(3)地铁施工对邻近地铁线路以及地下设施的影响。

2.监测内容:(1)地表沉降监测;(2)结构物位移监测;(3)环境振动监测;(4)隧道内部和周边地下水位监测;(5)地下管线移动监测。

三、监测方法与技术1.地表沉降监测方法:(1)使用测量仪器和测量数据处理软件,进行地表沉降点的定位与测量;(2)定期测量地表沉降变化;(3)将测量数据与设计要求进行比对,判断是否超过了允许的变形限值。

2.结构物位移监测方法:(1)使用位移传感器,在施工前后对结构物进行定位与测量;(2)定期测量结构物位移变化;(3)将测量数据与设计要求进行比对,判断是否超过了允许的变形限值。

3.环境振动监测方法:(1)在施工现场周边设置振动传感器,监测施工引起的振动情况;(2)定期测量振动变化;(3)将测量数据与环境振动标准进行比对,判断是否超过了允许的振动限值。

4.隧道内部和周边地下水位监测方法:(1)在施工现场设置水位监测井或压力计,监测地下水位;(2)定期测量地下水位变化;(3)将测量数据与设计要求进行比对,判断是否超过了允许的水位限值。

5.地下管线移动监测方法:(1)通过地下管线的管内摄像机或声纳仪器进行监测;(2)定期检查管线的移动情况;(3)将监测数据与设计要求进行比对,判断是否超过了允许的限值。

四、监测方案的实施1.在施工前进行基准测量,记录基准数据。

2.在施工期间定期进行监测,记录监测数据。

3.对监测数据进行分析、比对和整理,及时发现异常情况。

运营隧道变形监测方案

运营隧道变形监测方案

运营隧道变形监测方案一、隧道变形监测的意义和重要性隧道作为地下交通工程,长期受到地质变化、水文条件、地震等多种因素的影响,因此隧道结构的变形是难以避免的。

隧道变形可能表现为地表下沉、结构裂缝、开裂变形等问题,一旦发生,可能会对隧道结构安全和运营带来严重的影响。

因此,隧道变形监测的意义和重要性主要体现在以下几个方面:1. 保障隧道安全运营。

通过隧道变形监测,可以及时发现隧道结构的变形情况,对隧道结构的安全运营进行保障。

2. 提高隧道结构的稳定性。

通过监测隧道变形情况,可以了解隧道结构的稳定性,根据监测数据进行安全评估和分析,有效提高隧道结构的稳定性。

3. 减少隧道事故风险。

通过监测隧道结构的变形情况,可以及时发现隧道存在的安全隐患,并采取相应的预防措施,降低隧道发生事故的风险。

二、隧道变形监测的技术手段隧道变形监测主要依靠先进的监测技术手段,包括地面监测、地下监测和遥感监测等多种技术手段。

具体包括地面测量、地面雷达、遥感监测、GPS监测、地下水位监测等多种技术手段,通过这些技术手段可以全面、准确地监测隧道结构的变形情况。

1. 地面测量。

地面测量技术是最为常见和常用的隧道变形监测技术手段,主要通过使用现代化的测量仪器和设备进行隧道结构的变形监测。

地面测量主要包括全站仪、测距仪、测角仪等测量设备,通过这些测量设备可以对隧道结构的变形情况进行全面、准确的监测。

2. 地面雷达。

地面雷达技术是一种应用广泛的隧道变形监测技术,主要通过利用雷达波对隧道结构进行无损检测。

地面雷达可以识别隧道结构的变形情况,并能够实现对地下空间的高分辨率成像,对隧道结构的变形情况进行准确监测。

3. 遥感监测。

遥感监测是一种先进的隧道变形监测技术手段,主要通过卫星、航空等遥感平台获取隧道结构的变形信息。

遥感监测可以通过数据处理和分析得到隧道结构的变形情况,实现对隧道结构的远程监测和预警。

4. GPS监测。

GPS监测是一种利用全球卫星导航系统进行隧道变形监测的技术手段,主要通过安装在隧道结构内的GPS接收器对结构的变形情况进行实时监测。

XX路隧道结构健康状态实时监测方案

XX路隧道结构健康状态实时监测方案

XX路隧道结构健康状态实时监测方案隧道是现代城市交通系统中不可或缺的组成部分,不仅可提高交通效率,还可以减少交通拥堵和环境污染。

因此,隧道的安全性和健康状态监测至关重要。

在现代科技的帮助下,隧道结构的健康状态可以通过各种传感器和监测设备进行实时监测。

一、监测方案的设计1.确定监测目标:首先要确定需要监测的隧道结构,包括隧道的墙壁、顶板、地基等结构部件,以及隧道内部的空气质量、水位等参数。

2.选择监测设备:根据监测目标确定所需的监测设备,例如倾斜仪、位移传感器、应变计、温湿度传感器等。

3.确定监测频率:根据隧道的使用情况和建筑结构特点确定监测频率,以保证及时发现问题并进行处理。

4.数据处理与分析:监测设备采集到的数据需要进行处理和分析,识别结构的健康状态,并预测可能的隐患。

5.报警处理:一旦监测到结构异常,需要及时触发报警系统,通知相关责任人员进行处理。

二、监测设备的选择1.倾斜仪:用于监测隧道结构的倾斜情况,及时发现隧道墙壁和顶板的倾斜现象。

2.位移传感器:用于监测结构的位移变化,发现结构变形情况。

3.应变计:用于监测结构内部的应变情况,发现结构的受力情况。

4.温湿度传感器:用于监测隧道内部的温度和湿度情况,为后续的结构健康状况提供参考。

5.水位传感器:用于监测隧道内部的水位情况,防止水灾事件的发生。

6.空气质量监测仪:用于监测隧道内部的空气质量情况,及时发现有毒气体的存在。

三、数据处理与分析监测设备采集到的数据需要进行处理和分析,可以采用数据融合和数据挖掘技术,识别结构的健康状态。

数据处理主要包括数据清洗、数据融合、数据分析和报告生成等步骤。

1.数据清洗:对采集到的监测数据进行预处理,包括去除异常值、填补缺失值等。

2.数据融合:将不同监测设备采集到的数据进行整合,形成完整的监测数据。

3.数据分析:对监测数据进行分析,识别结构的健康状态,并预测可能的隐患。

4.报告生成:根据数据分析的结果生成监测报告,以供相关责任人员参考。

地铁工程变形监测方案

地铁工程变形监测方案

地铁工程变形监测方案一、项目概述地铁工程建设是城市交通发展的重要组成部分,也是大型公共基础设施建设的关键项目。

在地铁建设和运营过程中,地铁隧道、车站和地下结构的变形监测是一项十分重要的工作。

通过对地铁工程的变形进行定期监测和分析,可以及时发现和处理潜在的安全隐患,保障地铁工程运营的安全和稳定。

本文将就地铁工程变形监测的方案进行详细介绍,包括监测的对象、监测的内容、监测的方法和技术手段等方面,旨在为地铁工程建设和运营提供科学、可靠的变形监测方案。

二、监测对象地铁工程的变形监测对象主要包括地铁隧道、车站和地下结构。

地铁隧道是地铁线路的主要组成部分,其稳定性直接关系到地铁运行的安全和顺畅。

地铁车站是地铁线路的重要节点,其安全稳定性对地铁的客流量和运营效率有着重要的影响。

地下结构主要包括隧道周边的地基土体和基础设施,其变形状态直接关系到地铁工程的整体安全。

三、监测内容地铁工程的变形监测内容主要包括地表沉降、隧道变形、地下水位变化、地铁结构振动等多个方面。

其中,地表沉降是地铁工程建设过程中常见的问题,其变形监测能够及时发现并处理地表沉降造成的安全隐患。

隧道变形是地铁工程变形监测的重点内容,主要包括隧道的收敛变形、开挖变形、压裂变形等多种形式。

地下水位变化是地铁工程变形监测的重要内容之一,其变形监测能够及时发现并处理地下水位引发的地铁工程漏水等安全隐患。

地铁结构振动是地铁运营期间的变形监测内容,主要包括地铁列车行驶和乘客运营等因素引发的地铁结构振动。

四、监测方法地铁工程变形监测的方法主要包括传统监测方法和新兴监测技术两种。

传统监测方法主要包括地表测点监测、隧道地表沉降观测、地下水位监测等。

新兴监测技术主要包括遥感监测、激光测量、地面雷达等技术手段,这些技术手段能够较好地实现地铁工程变形的实时监测和分析。

五、监测技术手段地铁工程变形监测的技术手段主要包括监测系统、传感器设备、数据处理软件等多个方面。

监测系统是地铁工程变形监测的基础设施,其能够通过监测点布设和数据采集实现对不同变形内容的监测。

运营隧道结构监测方案

运营隧道结构监测方案

运营隧道结构监测方案一、背景介绍隧道是一种用于交通、水利、城市基础设施建设等领域的重要工程结构,它具有贯穿地下、长期使用、易受地质力学影响等特点。

为了保障隧道的安全运营,监测隧道结构的变化和状态至关重要。

因此,制定一套科学合理的隧道结构监测方案对于隧道的安全运营和管理具有重要意义。

二、隧道结构监测的意义1. 保障运营安全:隧道结构长期承受地下水压、地质变动、交通负荷等力的作用,可能出现变形、开裂、沉降等情况,通过监测隧道结构可以及时发现隧道变化,对结构进行维护和加固,保障隧道的安全运营。

2. 优化隧道管理:了解隧道结构的变化和状态,有助于对隧道进行科学合理的管理,延长隧道的使用寿命,减少维护成本。

3. 紧急应对灾害:在地震、洪水等灾害发生时,监测数据可以有效指导应急抢险工作,保障隧道和隧道使用者的安全。

三、隧道结构监测方案的制定1. 监测目标确定在制定隧道结构监测方案时,首先要确定监测的目标,包括监测的对象、监测的参数和监测的频率。

隧道的结构监测对象主要包括隧道洞身、支护结构、排水系统、通风系统等部分,监测参数包括变形、应力、温度、水位等,监测频率通常根据隧道的使用状况和地质情况来确定,有些隧道甚至需要24小时实时监测。

2. 监测方法选择隧道结构的监测方法通常包括现场测量、遥感监测、无损检测、传感器监测等多种方法。

在选择监测方法时,需要考虑监测的目标、监测的范围、监测的精度和监测的成本,为了综合利用各种监测手段,可以采用多种方法相结合的方式进行监测。

3. 监测系统建设建设隧道结构监测系统是保障监测工作顺利进行的基础,隧道结构监测系统主要包括监测设备、数据传输网络、数据处理系统和应急预警系统等部分,这些系统需要满足不同监测方法的需求,并保证监测数据的准确性、可靠性和及时性。

4. 监测数据分析监测数据的分析是隧道结构监测工作的核心内容,通过对监测数据的分析可以了解隧道结构的变化和状态,及时发现问题,并做出正确的决策。

隧道变形监测技术的方法和原理

隧道变形监测技术的方法和原理

隧道变形监测技术的方法和原理隧道是现代城市基础设施中不可或缺的一部分,随着城市的不断扩大和交通网络的建设,隧道的数量也在不断增加。

然而,隧道的安全性与稳定性一直是人们关注的焦点。

为了解决隧道的变形问题,隧道变形监测技术应运而生。

本文将对隧道变形监测技术的方法和原理进行探讨,并介绍相关的监测设备和应用。

一、综述隧道变形监测技术是通过合理设置监测装置,实时监测隧道的变形并及时报警,从而保证隧道的安全运行。

主要方法包括全站仪法、位移传感器法、管线法等,下面将逐一进行介绍。

二、全站仪法全站仪是一种可以测量水平角、垂直角和距离的仪器,通过在固定位置测量隧道内部固定点的坐标,从而获得隧道的变形情况。

该方法具有高精度、实时性强的特点,但是对设备的要求较高。

三、位移传感器法位移传感器法是通过安装位移传感器在隧道内部的关键部位,通过测量传感器的位移,从而判断隧道的变形情况。

传感器可以采用光纤传感器、电阻应变片等,具有灵敏度高、精确度高的特点。

这种方法可以实时监测隧道的变形情况,并能够提供详细的数据分析,对隧道的安全性评估具有重要意义。

四、管线法管线法是通过在隧道内铺设一条管线,通过测量管线的变形来判断隧道的变形情况。

这种方法操作简便,成本相对较低,但是对于较长的隧道来说,精度相对较低。

因此,管线法主要适用于小型隧道的监测。

五、监测设备在实际应用中,隧道变形监测需要使用一些专门的设备。

常见的设备包括全站仪、测量仪器、数据采集器和计算机等。

这些设备能够提供高精度的监测数据,并能够将数据进行分析和处理。

六、应用隧道变形监测技术已经广泛应用于隧道建设和维护中。

通过实时监测隧道的变形情况,可以及时发现隧道存在的安全隐患,并采取相应的措施进行修复。

此外,还可以通过对监测数据的分析,对隧道的安全性进行评估,并制定相应的维护和管理方案。

七、挑战和前景隧道变形监测技术在应用中还存在一些挑战。

首先,设备的精度和可靠性需要不断提高,以满足隧道变形监测的需求。

隧道掘进时的变形监测技术与方法

隧道掘进时的变形监测技术与方法

隧道掘进时的变形监测技术与方法隧道掘进是基础建设中常见的工程项目之一,隧道的稳定性与安全性一直是工程师们关注的焦点。

变形监测技术与方法在隧道掘进工程中起着重要的作用,有助于及时发现和解决工程中的问题,保证隧道工程的质量和安全性。

一、激光测距法激光测距法是一种常用的变形监测技术,其原理是利用激光发射器发射出的激光束,通过接收器接收反射回来的激光,然后根据激光的时间传播来计算出测量目标的位置。

在隧道掘进过程中,可以通过在掘进机或者固定测点上安装激光测距器,监测隧道周边岩土的变形情况。

这种方法具有测量精度高、自动化程度高、实时性强的优点,可以为工程提供快速准确的测量数据。

二、位移监测法位移监测法通过在隧道壁面安装位移传感器,实时测量岩土的位移情况。

常用的位移传感器有测微孔、浸入式压力式传感器等。

在隧道掘进过程中,可以通过多点布置位移传感器,监测隧道周边岩土的位移变化。

位移监测法适用于长期隧道工程的变形监测,可以提供连续的位移数据,有助于及时发现工程变形情况。

三、应变测量法应变测量法通过在隧道周边岩土上布置应变计,测量岩土的应变变化来判断工程的变形情况。

常用的应变计有电阻式应变计、光纤式应变计等。

在隧道掘进过程中,可以通过合理布置应变计,监测隧道周边岩土的应变变化。

应变测量法可以提供精确的变形数据,有助于工程师了解岩土的受力和变形情况,为工程提供合理的设计和施工方案。

四、地面建筑物监测法地面建筑物监测法是通过监测地面建筑物的变形来判断隧道掘进工程对周边结构的影响。

在施工过程中,可以通过在地面建筑物上安装变形传感器,测量建筑物的形变情况。

这种方法适用于工程距离地面较近的情况,可以及时发现隧道施工对地面建筑物的影响,保证建筑物的安全性。

五、综合监测法综合监测法是将多种变形监测技术与方法综合应用于隧道掘进工程中。

通过在不同位置布置不同类型的监测设备,结合传感器测量到的数据,综合判断工程的变形情况,并及时采取相应的措施。

隧道施工期间的变形监测技术

隧道施工期间的变形监测技术

隧道施工期间的变形监测技术一、前言变形监测在工程施工中具有重要作用。

隧道施工不仅要重视工程运行期间的监测,也要重视施工期间的变形监测,同时还不能忽略临时监测的重要性和必要性。

施工期间变形监测的目的之一是监测永久性建筑物在施工期间的安全。

临时监测是为突发变形异常而提出的快速反应。

由于受岩石构造和岩土情况以及施工中的放炮震动带来的影响,为了确保施工安全,为施工提供准确及时的隧道变化情况信息,便于修正施工参数和施工技术工艺,确保工程质量,隧道开挖过程中必须开展变形监测。

施工期间变形监测的基本要求是:及时埋设监测基准点、工作基点和监测点,及时观测、整理分析资料。

拱顶监测和隧道收敛监测就是通过测量手段,来解决拱顶的平面位移和拱顶下沉情况,是隧道施工测量中的重要环节。

隧道施工期间变形监测的精度、观测仪器和观测周期变形监测的精度测量等级及精度取决于变形观测的目的、变形观测体的级别以及预计变形量的“必要精度”。

隧道施工期要求拱顶下沉的监测精度为1mm(相对于水准工作基点)收敛监测精度为2mm(一对监测点的相对精度)。

为了保证监测精度,整个作业期间不宜更换观测人员和主要观测的仪器,每次观测次序和行进路线也应尽一样。

二、测量仪器设备测量仪器设备的选择要在满足精度要求的前提下,力求先进和经济实用,要尽可能的采用快速高效的作业方法。

结合本工程的具体情况,拱顶下沉监测采用NA型精细水准仪观测和用卡TPS402全站仪开展测距、三角高程观测;隧道收敛监测用收敛监测仪器和三维位移观测相结合。

三维位移观测又可以分为绝对坐标观测法和相对位移观测法。

三、变形监测的周期变形监测周期应以能系统的反应观测变形体的变形过程且又不遗漏其变化时刻为原则,应根据单位时间内变形量的大小及外界因素的影响程度来确定。

当发现变形异常时,应及时增加观测次数。

根据工地实际情况,结合业主、监理的意见,在稳定地区,首次观测在每次放炮后距离掌子面25m处设点观测;获得根底数据后25~50m 处隔天监测一次,距离掌子面50m后的点每周监测一次,连续四周,然后改为每月一次。

隧道施工监测中的测绘技术与变形监测方法

隧道施工监测中的测绘技术与变形监测方法

隧道施工监测中的测绘技术与变形监测方法引言:隧道工程是指在地下开凿的管道或通道,用于交通运输、供水、能源输送等各个领域。

然而,由于地质条件、隐患等因素的存在,隧道施工过程中会面临诸多挑战。

其中之一就是需要进行准确的测绘技术和变形监测,以确保隧道的安全建设和运营。

本文将讨论隧道施工监测中的测绘技术与变形监测方法。

1. 隧道测绘技术隧道测绘技术是指通过精确测量和记录隧道的地理和几何特征,以便进行隧道设计和施工。

主要包括以下几种方法:1.1 高精度全站仪测量高精度全站仪是一种测绘工具,可以通过跟踪光束的方式来测量地面或物体的三维坐标。

在隧道施工监测中,高精度全站仪可以用来获取隧道入口和出口的坐标,以及隧道内部的几何形状和尺寸。

1.2 激光扫描测量激光扫描是一种非接触式的测量方法,可以快速而准确地获取物体的三维形状和表面信息。

隧道施工监测中,激光扫描可以用来收集隧道内部的地形、岩层和结构变化等信息,从而为施工过程中的排水、通风等工作提供基础数据。

1.3 摄影测量摄影测量是一种通过拍摄照片并分析照片中的特征和关系来确定地表或物体的几何参数的方法。

在隧道施工监测中,摄影测量可以通过无人机拍摄隧道建设过程中的照片,并利用图像处理技术来提取和分析隧道的几何信息。

2. 隧道变形监测方法隧道变形监测是指通过持续测量和记录隧道的形变、位移和应力等指标,以评估隧道结构的稳定性和安全性。

主要包括以下几种方法:2.1 基准点测量法基准点测量法是指在隧道建设前,在隧道及其周围设置一系列固定基准点,然后通过定期测量这些基准点的坐标变化,以确定隧道的形变情况。

这种方法可以提供较高的测量精度,但需要基准点的稳定性和定期的人工测量。

2.2 GNSS监测法GNSS(全球导航卫星系统)监测法是指利用卫星导航系统(如GPS、GLONASS等)来实时监测隧道的位置和变形情况。

通过安装在隧道内部或附近的GNSS接收器,可以实时获取隧道的三维位置和形变信息,以提供实时的监测和预警。

公路隧道监测实施方案

公路隧道监测实施方案

公路隧道监测实施方案一、前言。

随着交通运输的发展,公路隧道建设数量不断增加,隧道的安全性和稳定性成为人们关注的焦点。

为了及时发现隧道内部的安全隐患,保障隧道的正常运行,制定一套科学的隧道监测实施方案显得尤为重要。

二、监测目标。

1. 隧道结构监测,包括隧道内部的支护结构、衬砌、排水系统等的变形情况监测。

2. 地质环境监测,包括隧道周边地质构造、地下水位、地下水化学成分等的监测。

3. 环境监测,包括隧道内部的温度、湿度、气体成分等环境参数的监测。

三、监测方案。

1. 监测设备的选择,根据隧道的特点和监测目标,选择合适的监测设备,包括变形监测仪器、地质监测仪器、环境监测仪器等。

2. 监测点的设置,根据隧道的结构特点和监测目标,合理设置监测点,确保监测数据的全面性和代表性。

3. 监测频率的确定,根据隧道的使用情况和监测目标的要求,确定监测的频率,包括日常监测、定期监测和特殊情况下的临时监测。

4. 数据处理和分析,建立监测数据的数据库,对监测数据进行实时监测和分析,及时发现异常情况并采取相应的措施。

四、监测措施。

1. 监测报警机制,建立监测数据的报警机制,一旦监测数据超出预警值,立即触发报警,及时采取应急措施。

2. 监测数据的应用,监测数据不仅用于发现隧道内部的安全隐患,还可以为隧道的维护和管理提供重要参考。

3. 监测报告的编制,定期编制监测报告,对监测数据进行总结分析,提出改进措施和建议,为隧道的安全运行提供技术支持。

五、总结。

隧道监测实施方案的制定对于保障隧道的安全运行具有重要意义,只有科学合理的监测方案和有效的监测措施,才能及时发现隧道内部的安全隐患,保障隧道的安全稳定运行。

希望各相关部门和单位能够重视隧道监测工作,确保隧道的安全运行。

隧道沉降变形观测实施方案

隧道沉降变形观测实施方案

隧道沉降变形观测实施方案隧道工程是现代城市建设中重要的基础设施之一,而隧道沉降变形观测则是保障隧道工程安全运行的重要环节。

本文将介绍隧道沉降变形观测的实施方案,以期为相关工程提供可靠的技术支持。

一、观测目的。

隧道沉降变形观测的主要目的在于监测隧道周围土体的变形情况,及时发现并评估隧道工程可能存在的安全隐患,为工程安全运行提供可靠的数据支持。

二、观测方法。

1. 传感器布设,在隧道周围布设合适数量和类型的变形传感器,包括但不限于测斜仪、应变计、位移传感器等,以实现对土体变形的全面监测。

2. 数据采集,利用先进的数据采集设备,对传感器采集到的变形数据进行实时、连续的监测和记录,确保数据的准确性和完整性。

3. 数据分析,对采集到的数据进行专业的分析和处理,及时发现并评估土体变形的趋势和规律,为后续工程安全评估提供依据。

三、观测频次。

1. 初期观测,在隧道工程初期施工阶段,需加强对土体变形的观测,以及时发现并解决施工过程中可能存在的安全隐患。

2. 定期观测,隧道工程竣工后,需进行定期的土体变形观测,以监测隧道周围土体的长期变形情况,为工程的安全运行提供数据支持。

3. 事件观测,在自然灾害、地质灾害等特殊事件发生后,需立即对隧道周围土体进行变形观测,及时评估隧道工程的安全状况。

四、观测报告。

1. 观测报告应包括观测数据的详细记录和分析结果,对土体变形的趋势和规律进行科学、客观的评估。

2. 报告应及时提交给相关部门和工程管理方,为工程安全评估和决策提供可靠的依据。

3. 报告中还应包括对可能存在的安全隐患提出合理的建议和措施,以保障隧道工程的安全运行。

五、观测保障。

1. 观测设备的维护保养,定期对观测设备进行维护保养,确保设备的正常运行和数据的准确性。

2. 观测人员的培训和管理,对观测人员进行专业的培训和管理,提高其观测和数据处理的技术水平和工作质量。

3. 观测方案的优化和改进,根据实际观测情况,及时对观测方案进行优化和改进,提高观测的效率和准确性。

桥梁隧道监测方案

桥梁隧道监测方案

桥梁隧道监测方案一、引言为了确保桥梁和隧道的结构安全和运营可靠,需要进行定期的监测和检查。

本方案旨在制定一套科学、全面和有效的桥梁隧道监测方案,以确保其结构安全性、实时性和准确性。

二、监测设备1. 桥梁监测设备:(1) 应采用应变计、振动传感器和倾斜仪等传感器进行桥梁构件的监测;(2) 应使用高精度的位移传感器和测量仪器来测量桥梁的沉降和偏斜情况;(3) 应配备温湿度传感器,监测桥梁结构的温度和湿度变化。

2. 隧道监测设备:(1) 应采用应变计、位移传感器和压力传感器等传感器监测隧道结构的变形和应力变化;(2) 应配备烟感器和气体检测仪,监测隧道内的烟雾和有害气体浓度;(3) 应配置视频监控设备,实时监测隧道内的交通流量和安全状况。

三、监测内容1. 桥梁监测内容:(1) 桥梁结构的应力变化和变形情况;(2) 桥梁的振动和共振频率;(3) 桥梁的温度和湿度变化。

2. 隧道监测内容:(1) 隧道结构的变形和应力变化;(2) 隧道内部的烟雾和有害气体浓度;(3) 隧道内交通流量和安全状况。

四、监测频率1. 桥梁监测频率:(1) 桥梁结构的应力和变形情况应每月监测一次;(2) 桥梁的振动和共振频率应每季度监测一次;(3) 桥梁的温度和湿度变化应每天监测一次。

2. 隧道监测频率:(1) 隧道结构的变形和应力变化应每月监测一次;(2) 隧道内烟雾和有害气体浓度应每天监测一次;(3) 隧道内交通流量和安全状况应每小时监测一次。

五、监测报告1. 监测数据收集与分析:(1) 定期收集并整理监测数据;(2) 对监测数据进行分析和评估,及时发现异常情况。

2. 监测报告的编制:(1) 每季度编制桥梁和隧道监测报告,并将报告提交给相关管理部门;(2) 报告内容包括监测数据、分析结果和相应的建议措施。

六、紧急处置和维修1. 在监测过程中,如果发现桥梁或隧道存在危及安全的异常情况,应立即采取紧急处置措施,并报告相关部门。

2. 定期进行维护和修复工作,确保桥梁和隧道的正常运营和使用。

隧道预收敛变形自动监测方法

隧道预收敛变形自动监测方法

隧道预收敛变形自动监测方法一、固定测斜仪及自动监测系统固定测斜仪与数字采集单元联合使用,可以进行不间断观测。

固定测斜仪由多支传感器串联使用对某个区域进行变形观测。

每一支传感器分别有各自的信号电缆连接到集中器,集中器将接收到的信号通过无线传输到互联网服务器,技术人员可以随时通过网络查看、分析测量数据。

固定测斜仪分为垂直固定测斜仪和水平固定测斜仪:垂直固定测斜仪按间隔1m左右将传感器固定在打设好的垂直钻孔里,当垂直孔周围的土体发生变形时,传感器会感知由于土体变形而产生的倾角微小变化,从而确定垂直孔的变形曲线。

一般管内最底端相对静止,变形曲线可实时反应出上方土体的变形情况。

水平固定测斜仪可以按间隔1m串联起来,放置在特制塑料管或钢管里,固定在隧道拱部沿着隧道方向的水平孔中。

由于隧道的预收敛变形,在隧道开挖过程中随着掌子面的临近,一般掌子面前方拱部会产生越来越大的下沉变形。

水平固定测斜仪就是用来观测掌子面前方拱部或其他位置空间和时间变形情况,为掌子面前方的稳定性作定量的判断。

二、固定测斜仪变形监测方案隧道开挖前,在隧道拱部开挖轮廓线外350mm的弧线上布置若干个水平变形监测孔。

孔内安装特制塑料管或钢管,在管内每间隔1m安装一支传感器。

当隧道开挖前期,监测孔最前端测斜点距开挖断面较远,开挖时对其几乎没有影响,其角度参数也基本没有变化。

将最前端测斜点作为基准点,对所有角度参数绘制隧道拱部围岩变形曲线,分析拱部围岩变形情况,当围岩变形值达到预警值时,表明在隧道开挖过程中,围岩不稳定,需要采取加固措施。

当隧道开挖一定深度后,掌子面前方反应隧道预收敛变化,后方反应的是隧道收敛变形。

一般情况下隧道开挖时掌子面前方变形范围是隧道高度的2-3倍距离以内。

隧道开挖完成后,该传感器仍可反应隧道的变形情况。

变形监测孔布置断面图如下:三、光传感器测量方法采用摄像机镜头的光传感器测量方法的精度能比固定测斜仪的精度要高一个数量级。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

隧道变形监测方案
1、目的
为明确隧道内变形观测的作业内容,规范技术细节及作业程序,总结隧道结构变形规律,为隧道结构维修养护提供依据,指导津滨轻轨隧道变形观测工作进行,从而保证行车安全,特制订本预案。

2、适用范围
2.1适用于津滨轻轨隧道变形观测的相关工作;
2.2线桥室从事变形观测的相关工作人员须依据本方案开展各项变形观测工作。

3、职责分工
隧道变形工作由线桥室主任及安技主管进行监督指导,桥梁维修主管负责变形观测工作的全面管理与协调,桥梁检测工程师协同隧道工程师、桥梁维修工程师负责隧道变形观测的相关技术工作,并由桥隧检测工区负责具体实施。

4、参考依据
《建筑变形测量规程》
《地下铁道、轨道交通工程测量规范》
《地下铁道工程施工及验收规范》
5、变形观测工作内容
5.1隧道沉降观测
监测隧道结构的沉降,主要是监测隧道结构的底板沉降,实质上是对道床的监测,主要包括区间隧道的沉降监测以及隧道与地下车站交接处的沉降差异监测。

运营测量采用的坐标系统、高程系统、图式等与原施工测量相同。

5.1.1监测基准网
监测基准网是隧道沉降监测的参考系,由水准基点和工作基点构成,网形布设成附合水准路线或沿上、下行线隧道布设成结点水准路线形式,采用国家二等水准测量的观测标准进行。

水准基点采用隧道线路两端远离测区的国家II等水准点,在沿线车站内和联络通道处布设工作基点,每个车站布设4个工作基点,联络通道处布设2个工作基点,水准基点与车站内、联络通道处工作基点共同构成监测基准网,如图1所示。

基准网的高程值由国家水准点引入,每季度校核一
次,分析工作基点的稳定性;然后,再通过车站内两侧的工作基点,采用附合水准路线对每段隧道结构进行沉降观测。

图1 监测基准网示意图
5.1.2沉降监测点
津滨轻轨地下结构由明挖段和盾构组成,明挖段沉降监测点按施工浇筑段每段设4个点,分别布设在左右两侧墙上。

具体布置见图2。

图2 明挖段沉降监测点布置示意图
为方便以后长期的位移监测工作,隧道内沉降监测点布设在隧道中线的道床上,隧道直线段每隔30m设一个测点,曲线处根据曲线半径大小设置测点间距,半径为400m曲线处每隔12m设一个测点,半径为800m曲线处每隔18m设一个测点,半径为2000m曲线处每隔30m设一个测点。

具体布置见图3。

图3 隧道内沉降监测点布置示意图
5.1.3隧道与地下车站交接处得沉降差异监测
在隧道与地下车站交接缝两侧约1m处的道床上布设一对沉降监测点,如图4所示,用精密水准测量方法监测交接缝两侧点之间的高差变化,当高差变化量大于±3mm时应预警,变化量大于±5mm时则应报警。

图4 车站与隧道交接处沉降差异点布设示意图
5.2隧道横向位移变形监测
5.2.1横向位移监测点的布设
隧道横向位移监测点的布设与沉降监测断面距离相同,即位移监测点和沉降监测点设于同一断面上,并利用部分沉降点作为位移监测的坐标基点。

基点的坐标值由地上国家坐标点引入,每季度校核一次。

盾构区间每个断面布设四处点位,重要点位粘贴反射片,其余点位做好油漆标记;明挖区间每个断面监测2个点位,
重复使用沉降观测点作为位移测点使用。

点位布置详见图5。

图5 盾构区间位移监测点布设示意图
5.2.2位移监测的开展
由于位移基标点与沉降基标点共有一个,初期需要对各个基标点进行测量,以获取隧道中线初始数据,初始数据与设计隧道中线坐标进行对比。

待此项工作完成后,可将全站仪置于需要测量的断面所在的基标点上,任意其他基标作为后视点建立坐标系,依次对隧道断面进行位移监测,每次的监测数据与初始数据进行对比。

5.2.3监测标准
横向位移的监测标准定位警戒值±5mm,控制值±10mm。

5.3隧道变形监测周期
运营第一年每季度观测一次,第二年开始每半年至少观测一次,直至沉降量小于1mm/100d止,中远期可减至1次/年。

当隧道出现显著变形时,应缩短观测频率。

5.4特殊加密测量
5.4.1保护区内大型施工监测
保护区内出现大型施工时,应对结构进行加密监测。

加密措施包括点位密度及监测频率,测量范围应在施工范围内前后各延伸100m。

施工范围内的监测区域加密至直线12m一个断面,曲线5~10m一个断面,同时增加隧道拱顶及相应断面的地上监测点,监测频率视施工进度和内容确定。

各点位布置详见图6。

图6拱顶下沉和地表沉降观测点布设示意图
5.4.2变形异常地段的监测
在常规测量过程中,出现变形较为明显的地段,应加密测量。

加密措施包括增加拱顶及地上点位,同时将监测频率加密至2次/月。

5.5监测数据的分析
5.5.1累积沉降量曲线图
5.5.2沉降量速率曲线图。

相关文档
最新文档