空间数据的变换
空间数据的转换和处置

图4.19 数据格式转换工具
4.2 数据格式转换
基于文件旳空间数据类型涉及对多种GIS数据格式 旳支持,如coverage,shapefile,grid,image和 TIN。Geodatabase数据模型也能够在数据库中管理 一样旳空间数据类型。
表1 ArcGIS 中旳数据类型
• 基于文件旳 • 基于数据库旳空
• 4.2.2 数据格式转换
1. CAD数据旳转换 CAD数据是一种常用旳数据类型,例如大多数
旳工程图、规划图都是CAD格式。ArcGIS中旳要 素类,Shapefile数据能够转换成CAD数据,CAD数 据也能够转换成要素类和地理数据库。
4.2 数据格式转换
(1)数据输出CAD格式:将要素类或者要素层转换成CAD数据。 可利用Conversion Tools工具箱,To CAD 工具集中旳Export to CAD命令。
4.1 投影变换
单击
图标
图4.3 Define Projection对话框 图4.4 Spatial Reference属性对话框
4.1 投影变换
4.1.2 投影变换
投影变换(Project)是将一种地图投影转换为另 一种地图投影,主要涉及投影类型、投影参数或椭球 体 等 旳 变 化 。 在 ArcToolbox 旳 Data Management Tools工具箱,Projections and Transformations工具 集中分为栅格和要素类两种类型旳投影变换,其中对 栅格数据进行投影变换时,要进行重采样。
空间数据
间数据
Coverages Shapefiles Grids TINs
• Images(多 种格式旳)
Oracle Oracle with Spatial DB2 with its Spatial Type Informix with its Spatial Type SQL Server
arcgis空间数据的编辑处理及坐标变换

arcgis空间数据的编辑处理及坐标变换实验3-1、空间数据库管理及属性编辑⼀、实验⽬的1. 利⽤ArcCatalog 管理地理空间数据库,理解Personal Geodatabse 空间数据库模型的有关概念。
2. 掌握在ArcMap中编辑属性数据的基本操作。
3. 掌握根据GPS数据⽂件⽣成⽮量图层的⽅法和过程。
4. 理解图层属性表间的连接(Join)或关联(Link)关系。
⼆、实验准备预备知识:ArcCatalog ⽤于组织和管理所有GIS 数据。
它包含⼀组⼯具⽤于浏览和查找地理数据、记录和浏览元数据、快速显⽰数据集及为地理数据定义数据结构。
基本概念:要素数据集、要素类数据⽂件:National.mdb ,GPS.txt (GPS野外采集数据)。
软件准备:ArcGIS Desktop 9.x ---ArcCatalog三、实验内容与主要过程第1步启动ArcCatalog 打开⼀个地理数据库当ArcCatalog打开后,点击按钮(连接到⽂件夹). 建⽴到包含练习数据的连接在ArcCatalog窗⼝左边的⽬录树中, 点击上⾯创建的⽂件夹的连接图标旁的(+)号,双击个⼈空间数据库-National.mdb。
打开它。
在National.mdb 中包含有2 个要素数据集、1个关系类和1 个属性表。
第2步预览地理数据库中的要素类在ArcCatalog窗⼝右边的数据显⽰区内,点击“预览”选项页切换到“预览”视图界⾯。
在⽬录树中,双击数据集要素集-“WorldContainer”,点击要素类-“Countries94”激活它。
在此窗⼝的下⽅,“预览”下拉列表中,选择“表格”。
现在,你可以看到Countries94的属性表。
查看它的属性字段信息。
第3步创建缩图,并查看元数据导出元数据信息第4步创建个⼈地理数据库(Personal Geodatabase-PGD)在ArcCatalog 的⽬录树中,定位到E盘,右键点击这E盘,在出现的菜单中,选择[新建]>>[⽂件夹],⽂件夹名称改为myGeoDB 。
空间数据的编辑处理及坐标变换

实验六:空间数据的编辑处理及坐标变换一、实验目的意义1、掌握空间数据处理(融合、拼接、剪切、交叉、合并)的基本方法、原理,并领会其用途;2、掌握地图投影变换的基本原理与方法;3、熟悉ArcGIS中投影的应用及投影变换的方法、技术;4、了解地图投影及其变换在实际中的应用。
二、实验步骤实验准备:设定工作区:在ArcMap中执行菜单命令:<Tools>-><Options>,在“Geoprocessing”→“Environments…”→“General Setting”常规设置选项中,设定“Scratch Workspace”为d:\kGIS。
1、裁剪要素⑴在ArcMap中,添数据云南县界.shp、Clip.shp。
如下图:⑵激活Clip图层。
选中Clip图层中的一个要素,注意确保不要选中“云南县界”中的要素!⑶点击打开ArcToolbox⑷双击“Clip”选项,在弹出的对话框中设置:指定输出要素类路径及名称,这里请命名为“云南县界_Clip1”;指定输入类:云南县界;指定剪切要素:Clip(必须是多边形要素)。
在出现的选项框中填写相应内容,如下图:点击ok按钮后,剪切操作自动执行。
然后在TOC中关闭云南县界、Clip图层,就可看到剪切得到的结果。
⑸按照上述步骤,依次选中Clip主题中其它三个要素(三个矩形框),重复以上的操作步骤,完成操作后将得到共四个图层(“云南县界_Clip1”、“云南县界_Clip2”、“云南县界_Clip3”、“云南县界_Clip4”)。
选定1个要素4个要素都选定之后2、拼接图层⑴在ArcMap中新建地图文档,加载剪切要素操作(上一步)中得到的四个图层。
⑵打开ArcToolbox,在ArcToolbox中执行“Append”命令。
⑶在弹出的对话框中设置:输出要素设定为云南县界_Clip,输入要素依次添加其它三个图层。
如下图1图1 图2通过以上操作我们就完成了将4个图层拼接为一个图层的处理(如图2)。
GIS空间数据处理与分析

栅格单元(i,j)四角点坐标的计算:
X(i1,i2)=(j-1)*DX和J*DX Y(i1,i2)=(i-1)*DY和i*DY I,j:栅格单元行列值; DX,DY:栅格单元边长
⑴:识别内边界,并将内边界端点坐标置零. 判别方法: 判断与栅格单元某条边相邻的另一栅 格单元的值,若值小于零,则该边为内边界. 内边界端点坐标置零: 边界起点和终点坐标置零.
分区数据的方法就称为空间数据的内插。
第五节 空间数据的内插方法
1、点的内插:研究具有连续变化特征现象 的数值内插方法。
步骤: 数据取样;数据处内插;数据记录
第五节 空间数据的内插方法
2、区域的内插
研究根据一组分区的已知数据来推求
同一地区另一组分区未知数据的内插方法。
区域内插方法:
2.1 叠合法:认为源和目标区的数据是均匀 分布的,首先确定两者面积的交集,然后 计算出目标区各个分区的内插值。
1、遥感与GIS数据的融合:
遥感技术的优势 融合必要性 GIS技术的优势 遥感图像与图形的融合 融合方法: 遥感数据与DEM的融合 遥感数据与地图扫描图像的融合第三节 多源 Nhomakorabea间数据的融合
2、不同格式数据的融合
不同格式数据的融合方法主要有:
2.1基于转换器的数据融合:
一种软件的数据格式输出为交换格式,然后用于另
P3
P
0
x
判断点是否在多边形内,从该点向左引水平扫描线,计算此 线段与区域边界相交的次数,若为奇数,该点在多边形内;若为 偶数,在多边形外。利用此原理,直接做一系列水平扫描线,求 出扫描线和区域边界的交点,对每个扫描线交点按X值的大小进 行排序,其两相邻坐标点之间的射线在区域内。
第二节
4空间数据处理(1)—空间数据坐标变换

变换区内的若干同名数字化点,采用插值法, 或待定系数法等,从
而实现由一种投影的坐标到另一种投影坐标的变换.
总结
重点掌握 • 空间数据坐标变换的类型; • 几何纠正的方法及过程; • 投影转换及其类型; • 我国常用的地图投影方式; • 投影转换有哪些方法及应用情况
仿射变换原理如图所示设xxyy为数字化仪坐标xxyy为理论坐标mm11mm22为地图横向和纵向的实际比例尺两坐标系夹角为??数字化仪原点o相对于理论坐标系原点平移了aa00bb00
4 空间数据处理
第一节 空间数据坐标变换
空间数据坐标变换类型: 几何纠正:主要解决数字化原图变形等原因引起的误差,并 进行几何配准。 坐标系转换:主要解决G1S中设备坐标同用户坐标的不一致
2.再输入 4个(或多个)控制 点的正确坐标 3.自动运算
TIC1 TIC4
例证 2 :遥感影像图的纠正
1.遥感影像图的纠正通常选用同遥感影像图比例尺相同的地
形图或正射影像图作变换标准图,
2.在选择好变换方法后, 3.在被纠正的遥感影像图和标准图上分别采集同名地物点, (所选的点在图上应分布均匀、点位合适,通常选道路交叉 点、河流桥梁等固定设施点,以保证纠正精度。)
4.进行变换运算
二、投影转换
投影转换是将一种地图投影转换为另一种地图投影,主要 包括投影类型、投影参数或椭球体等的改变。
当系统使用的数据取自不同地图投影的图幅时,需要将一
种投影的数字化数据转换为所需要投影的坐标数据。
1 地图投影的类型
圆柱投影
方位投影
圆锥投影
在上述投影中,由于辅助几何面与地球表面的关系位置
2 地图投影的转换方法
当系统使用的数据取自不同地图投影的图幅时,需要将 一种投影的数字化数据转换为所需要投影的坐标数据。
实验三 空间数据的编辑处理及坐标变换

实验三空间数据的编辑处理及坐标变换一、实验目的与要求1)理解空间数据编辑处理及坐标变换的作用及主要内容。
2)掌握在ArcGIS环境中开展空间数据一般编辑过程、拓扑编辑过程及投影变换的方法。
二、实验准备1)软件准备:ArcGIS 10.x2)数据准备:乡镇边界.shp三、实验内容与主要过程A、实验报告用数据(乡镇边界.shp)中出现三处错误:1、三条线段的结点没有连接上。
2、线段过短,需要延伸与其前端线段相交。
3、线段过长,需要删除过长的部分。
请处理改正。
处理过程:(1)打开Arcgis Map,启动地图文档乡镇边界.Shp。
(2)点击“编辑器”,单击“开始编辑”,在下拉框中单击“更多编辑工具”,调出“高级编辑”工具条。
用选中没有相交的三条线段,使用“高级编辑”工具条里的“线相交”工具单击线段,即可使之相交。
(2)用工具选择需要延伸到的边界线,在高级编辑工具条中选择延伸工具,再点击需要延长的线要素,该线就延伸到指定的边界。
(3)用工具选择需要剪切的参照线,在高级编辑工具条中选择修剪工具,单击需要修剪的线要素,过长的出头线就被剪切至参照线的边界。
B、基于修正了错误的“乡镇边界.shp”的线性图层,将其生成面状图层:乡镇边界面.shp。
处理过程:(1)点击主窗口中的“地理处理”,调出“arctoolbox”窗口,展开,双击启用数据管理工具然后找“要素”,双击“要素转面”。
(2)弹出窗口,“输入要素”选择下拉框中的“乡镇边界”,“输出要素类”则点击添加工具,输入名称为“乡镇边界面”,设置容差值为0.05,设置单位“米”,勾选保留属性,按“确定”按钮即可。
C、在“乡镇边界面.shp”图层的基础上,将最左边乡镇分成两部分。
处理过程:用工具选择需要分割的面用“裁剪面”工具把面分为两部分。
D、在“乡镇边界面.shp”面图层的基础上,借助拓扑关系编辑要素的方法,调整最右边两个相邻乡镇公共边界,使其近似成为直线。
处理过程:(1)在“编辑器”中调出“拓扑”工具条,单击,弹出“选择拓扑”对话框,点选地图拓扑,勾选图层“乡镇边界面”,再点击下侧的选项,输入“拓扑容差0.5米”,按“确定”键返回。
第三章空间数据处理教材

坐标
(行列)=?
Hale Waihona Puke 栅格尺寸确定 矢量数据转换成栅格数据后,图形的几何精度必然要降 低,所以选择栅格尺寸的大小要尽量满足精度要求,使 之不过多地损失地理信息。为了提高精度,栅格需要细 化,但栅格细化,数据量将以平方指数递增,因此,精 度和数据量是确定栅格大小的最重要的影响因素。
1)按变形的性质
等角投影(Conformal projections) 等积投影(Equal area projections) 等距投影(Equidistant projections)
2)按构成方法分类
几何投影
按投影面的形状
方位投影(Azimuthal Projections) 圆柱投影(Cylindrical Projections) 圆锥投影(Conic Projections)
XUTM=0.9996 * X高斯 YUTM=0.9996 * Y高斯 这个公式的误差在1米范围内,完全可以接受。
兰勃特投影
设有一个圆锥,其轴与地轴一致,套在地球椭球体上,然后将 椭球体面的经纬线网按照等角的条件投影到圆锥面上,再把圆 锥面沿母线切开展平,即得到正轴等角圆锥投影的经纬网图形。 其中纬线投影成为同心圆弧,经线投影成为向一点收敛的直线 束。当圆锥面与椭球体上的一条纬圈相切时,称切圆锥投影, 见图(a);当圆锥面相割于椭球面两条纬圈时,称割圆锥投 影,见图(b)。
③ 区域的填充 基于弧段数据的栅格化方法 基于多边形数据的栅格化方法
内点填充法 边界代数法 包含检验法
二、由栅格向矢量的转换——矢量化
从栅格单元转换到几何图形的过程称为矢 量化,矢量化过程要保证以下两点: 转换物体正确的外形
空间数据坐标转换方案

求得pointZ 即为△X
此方法实质是散点拟合法,核心在于利用不规 则三角网的特性,用插值求解算法得出各三角 形中包含要素的特征值。
§ 七参数转换方法
七参数是两空间直角坐标系之间的转换参 数,包括3个平移参数,3个旋转参数和1个尺度 参数。不同坐标系的转换模型很多,常用的有 布尔沙模型(B模型)和莫洛坚斯基模型(M模 型)。工程中常用来求取一定区域内不同椭球 体之间的转换参数。
0
B Z
YB
B Z
0
B X
Байду номын сангаас
B Y
B X
X1i
Y1i
0 Z1i 旋转参数
开始
控制点样本
配置坐标填写方 式、投影参数等
输入该组控制点 样本的两套坐标
求取七参数
计算结果中误差是 否
否满足要求
是
该区域的一套 七参数
加密控制点样本 或再细划分区域
54x,80x
54y,80y
56z,85z
△X=80x-54x
△Y=80y-54y
△Z=85z-56z
用控制点构建三角网 T1,以△X为特征值。
用控制点构建三角网 T2,以△Y为特征值。
用控制点构建三角网 T3,以△Z为特征值。
其他专业数据点要素层M (54xm,54ym,56zm)
求取M中每个点在T1中 的特征值△Xm
在投影面上,中央子午线和赤道的投影都是 直线,并且以中央子午线和赤道的交点O做为坐标 原点,以中央子午线的投影为纵坐标轴,以赤道 的投影为横坐标轴,这样便构成了高斯平面直角 坐标系。
第三章-空间数据的处理

二值化
细化
跟踪
分 类 图 扫描 二值化
遥感影象图 栅格分类图 原始线划图
边界 提取 预 处 理
二值化 细化
编 辑
矢 量 跟 踪
数 据 压 缩
拓 扑 化
基于再生栅格数据的矢量化方法
首先对栅格数据按行扫描,找出位于各类型边界的栅格 单元,并将边界内部具有相同值或同质的栅格单元以一 种显著不同的符号进行充值,产生只记录类型边界栅格 值得文件; 其次建立对类型边界栅格单元的追踪算法,寻找同质区 的闭合曲线,同时计算其坐标,并整理成有序(按顺时 针或逆时针方向)的坐标数组; 最后处理相邻类型的公共边界,将按区域单元建立的数 据结构转换为按线段链建立的数据结构,以便实现任意 区域或类型数据的提取、综合、分析和制图输出。
数值变换:根据两种投影在变换区内的若干同名数字化点,
采用插值法,或有限差分法,或最小二乘法,或有限元法, 或待定系数法,从而实现由一种投影的坐标到另一种投影坐 标的变换。
例如,采用二元三次多项式进行变换:
通过选择10个以上的两种投影之间的共同点, 并组成最小二乘法的条件式,进行解算系数。
第二节 空间数据结构的转换
不同格式的融合
数据存储格式和结构不同。 方式: 基于转换器的数据融合 基于数据标准的数据融合 基于公共接口的数据融合 基于直接访问的数据融合
MapInfo向Arcinfo转换
MapInfo中的地图可以有两种格式:Tab格式(表格式)、Mif格式(交换 格式)。 ArcInfo中的地图也支持多种格式:Shape格式、Coverage、E00(交换格 式).... 由Tab->Shape:使用MapInfo工具中的通用转换器 由Tab->E00:使用MapInfo工具中的ArcLink 由Tab->Coverage:先转换成Shape,然后在ArcInfo中用Shapearc;或则 先转成E00,在Import 由Mif->Shape:使用MapInfo工具中的通用转换器;或则使用ArcToolbox 直接转换 由Mif->E00:在MapInfo中导入成Tab,然后使用MapInfo工具中的 ArcLink 由Mif->Coverage:先用ArcToolbox转换成Shape,然后在ArcInfo中用 Shape arc
名词解释空间数据变换

名词解释空间数据变换
空间数据变换是一种将空间数据从一种表示形式转变为另一种表示形式的过程。
它包括几何纠正和地图投影变换,以实现空间数据的几何配准。
此外,还包括数据重构,即从一种格式到另一种格式的转换,包括结构转换、格式转换、类型替代等,以实现空间数据在结构、格式和类型上的统一,以及多源和异构数据的联接与融合。
此外,数据提取也是空间数据变换的一部分,包括对数据进行某种条件的取舍,如类型提取、宽口提取、空间内插等,以适应不同用户对数据的特定要求。
新大地理信息系统课件第3章 空间数据的处理

第1节 空间数据的坐标变换
二、几何纠正
仿射变换的特性: 平行线变换后仍为平行线 不同方向上的长度比发生变化
第1节 空间数据的坐标变换
大地坐标系
❖ (1)54年北京坐标系 在东北黑龙江边境上同苏联大地网联测,通过大地坐标计算,推算出北京点 的坐标,北京坐标系是苏联42年坐标系的延伸,其原点在苏联普尔科沃。
第1节 空间数据的坐标变换
一、图幅数据的坐标变换
1.比例尺变换———乘系数
几 2. 变形误差改正——通过控制点利用高次变换、二次变换和仿射变
何
换加以改正
纠 正
3. 坐标旋转和平移 —即数字化坐标变换,利用相似变换、仿射变换
改正
4. 投影变换—————三种方法:正解变换、反解变换、数值变换
a
+
+
c
比b
令:a1 = m1cosφ,a2 = – m2sinφ,b1 = m1sinφ,b2 = m2cosφ
X = a0 + a1x + a2y Y = b0 + b1x +数,理论上只需要3个不在同一直线上的已知点,即可以求出理论解 事实上,由于图纸变形等在区域上分布的不均匀性,实际应用更多的是利用多于3个已知点的数据, 由最小二乘法求解,其目的是在面上得到更广泛的代表性
第3章 空间数据的处理
内容回顾
❖ mapinfo的组成、基本功能、文件结构、表操 作以及与外部软件系统的数据交换;
❖ 第二章中介绍了空间数据的特征、表达方式、 两种典型空间数据结构的特点、拓扑关系、 栅格压缩编码、空间数据结构的建立等知识。
主要内容 第一节 空间数据的坐标变换 第二节 空间数据结构的转换 第三节 多源空间数据的融合 第四节 空间数据的压缩与综合 第五节 空间数据的内插方法 第六节 图幅数据边沿匹配处理
地理信息系统教程(第4章 空间数据处理 2011-05-09)

3、投影变换
假定原图点的坐标为x,y(称为旧坐 标),新图点的坐标为X,Y(称为新坐 标),则由旧坐标变换为新坐标的基 本方程式为: 1、解析变换法 2、数值变换法 3、数值解析变换法
§4-3 空间数据格式转换
一、矢量向栅格转换
点:简单的坐标变换 线:线的栅格化 面:线的栅格化 +面填充 (一)线的栅格化 1、DDA法(数字微分分析法) 2、Bresenham算法 (二)面(多边形)的填充方法 1、内部点扩散法(种子扩散法) 2 3、边界代数法
a a a a a a b
a
576654323 … 优点:链码可有效地存贮压缩栅格数据,便于面积、长度、转折方向 和边界、线段凹凸度的计算。 缺点:不易做边界合并,插入操作、编辑较困难(对局部修改将改变 整体结构)。区域空间分析困难,相邻区域边界被重复存储。
第四章空间数据的处理
§4-4 空间数据的压缩处理
§4-3 空间数据格式转换
二、栅格向矢量转换
方法一,实际应用中大多数采用人工矢量化法,如扫描矢量化,该 法工作量大,成为GIS数据输入、更新的瓶颈问题之一。
方法二,程序转化转换(全自动或半自动)
过程为:
遥感影象图 分 类 图 扫描 二值化
栅格分类图
原始线划图
边界 提取 预 处 理
二值化 细化
编 辑
内插
外推
1、局部内插法 利用局部范围内的已知采样 点的数据内插出未知点的数据。
1)线性内插
将内插点周围的3个数据点的数据值带入多项式,即可解算出系数a0、a1、a2 。
2)双线性多项式内插
将内插点周围的4个数据点的数据值带入 多项式,即可解算出系数a0、a1、a2、a3 。 当数据是按正方形格网点布置:
空间数据坐标变换(1)

1830 1841 1880 1886 1910 1940
1976 1984
长轴半径(m) 短轴半径(m) 扁率
6377276 6337379 6378249 6378206 6378388 6378245
6356075 6356079 6356515 6356584 6356912 6356863
投影与坐标变换
可编辑ppt
1
地球与地理参数
梨形球体
PN
b
φ Oa
W
E
λ
A
PS 地球椭球体
可编辑ppt
2
长轴半径:a;短轴半径:b
扁率:
aaba
第一偏心率:
e a2b2 a2
第二偏心率:
e a2b2 b2
可编辑ppt
3ห้องสมุดไป่ตู้
常用的地球椭球体数据
椭球体名称 提出年代
Everest Bassel Clarke Clarke Hayford 克拉索夫斯 基 IUGG WGS84
准椭球 4)WGS-84椭球 WGS-84 GPS 基准椭球
可编辑ppt
5
地图投影
建立地球椭球表面上点与地图平面上点 之间的一一对应关系
xy
ff12((,,))
可编辑ppt
6
投影面与地球面相对位置分类
圆锥投影、圆柱投影和方位投影 正轴投影、斜轴投影和横轴投影 切投影和割投影
可编辑ppt
我国 1:2.5万——1:50万地形图采用 6º分带方案。
1:1万及更大比例尺地形图采用3º分带 方案。
可编辑ppt
23
已知带号求中央经线位置
东半球
西半球
可编辑ppt
第三章 空间数据处理

平面方程为: zp=a0+a1x+a2y 只需要3个数据点即可。
z1=a0+a1x1+a2y1
z2=a0+a1x2+a2y2
z3=a0+a1x3+a2y3
z1 1 z 1 2 z 3 1
x1 x2 x3
y1 a 0 y 2 a 1 y 3 a 2
21 22.5 23 27 28 28.6 29 30.4 31 26 18 17
23 24 24 28 30 29 30 31 32 27 20 18
26.6 24.3
2、双线性多项式内插法
双线性内插多用于已经规则分布的数据内插。
用最邻近的四个已知点构成一个四边形块,并确定一 个双线性函数。
p1 p2
因此最少需要三个同名地点的坐标,列出6 个方程组。求出系数,得到两者的转换方程。
X1’= a0 +a1 x1+a2 y1 Y1’= b0 + b1 x1 + b2 y1 X2’= a0 +a1 x2+a2 y2 Y2’= b0 + b1 x2 + b2 y2 X3’= a0 +a1 x3+a2 y3 Y3’= b0 + b1 x3 + b2 y3 a0, a1, a2, b0 , b1, b2
压缩后由{A1,A2………Am}m个坐标子集组成。 则压缩比为: a=m/n ; a≤1
二、矢量数据压缩
V3 V2 V4
V5
V1
V6
(一)矢量数据压缩基本原理:道格拉斯—佩克算法 (1)用待压缩折线首尾两点连接为直线L。
(2)计算折线上各坐标点到直线的垂直距离。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章空间数据处理
⏹空间数据处理是G I S的重要功能之一。
⏹空间数据处理涉及的内容取决于原始数据的特点和用户的具体要求。
⏹空间数据处理一般包括数据变换、数据重构、数据提取等。
第三章空间数据处理
⏹数据变换——几何纠正、投影变换
⏹数据重构——结构转换、格式转换、类型替换
⏹数据提取——类型提取、窗口提取、空间内插
3.1空间数据的坐标变换
⏹1 数字化仪的设备坐标系与用户确定坐标系不一致。
⏹2 数字化原图图纸常常发生变形。
⏹3 不同来源的地图还存在地图投影与地图比例尺的差异
3.1空间数据的坐标变换
⏹一、几何纠正二、投影变换
一、几何纠正
⏹在图形编辑中,只能消除数字化产生的明显误差,而图纸变形产生的误差难以
改正,因此要进行几何纠正。
几何纠正常用的有高次变换、二次变换和仿射变换。
一、几何纠正
⏹一)高次变换二)二次变换三)仿射变换
一)高次变换
⏹上式是高次变换方程,符合上式的变换称为高次变换。
在进行高次变换时,需要
有6对以上控制点的坐标和理论值,才能求出待定系数。
二)二次变换
⏹当不考虑高次变换方程中的A和B时,则变成二次变换方程,称为二次变换。
二
次变换适用于原图有非线性变形的情况,至少需要5对控制点的坐标及其理论值,才能求出待定系数。
三)仿射变换
⏹仿射变换是使用最多的一种几何纠正方式,只考虑到x和y方向上的变形,仿射
变换的特性是:
⏹·直线变换后仍为直线;
⏹·平行线变换后仍为平行线;
⏹·不同方向上的长度比发生变化。
三)仿射变换
⏹对于仿射变换,只需知道不在同一直线上的三对控制点的坐标及其理论值,就
可求得待定系数。
但在实际使用时,往往利用4个以上的点进行纠正,利用最小二乘法处理,以提高变换的精度。
三)仿射变换
⏹误差方程为:其中:X、Y为已知的理论坐标。
三)仿射变换
⏹其中n为控制点个数,x,y为控制点坐标,X,Y为控制点的理论值,a1,a2,a3,
b1,b2,b3为待定系数。
⏹通过上述法方程就可求得仿射变换的待定系数。
二、投影变换
⏹当系统所使用的数据是来自不同地图投影的图幅时,需要将一种投影的几何数据
转换成所需投影的几何数据,这就需要进行地图投影变换。
⏹地图投影变换的实质是建立两平面场之间点的一一对应关系。
假定原图点的坐标
为x,y(称为旧坐标),新图点的坐标为X,Y(称为新坐标),则由旧坐标变换为新坐标的基本方程式为:
二、投影变换
⏹实现由一种地图投影点的坐标变换为另一种地图投影点的坐标就是要找出上
述关系式,其方法通常分为三类:
一)解析变换法二)数值变换法三)数值解析变换法
一)解析变换法
⏹这类方法是找出两投影间坐标变换的解析计算公式。
由于所采用的计算方法不同
又可分为反解变换法和正解变换法。
⏹反解变换法(又称间接变换法)。
这是一种中间过渡的方法,即先解出原地图
投影点的地理坐标λ,对于x,y的解析关系式,将其代入新图的投影公式中求得其坐标。
即:
一)解析变换法
⏹正解变换法(又称直接变换法)。
这种方法不需要反解出原地图投影点的地理坐
标的解析公式,而是直接求出两种投影点的直角坐标关系式。
即:
二)数值变换法
⏹如果原投影点的坐标解析式不知道,或不易求出两投影之间坐标的直接关系,
可以采用多项式逼近的方法,即用数值变换法来建立两投影间的变换关系式。
例如,可采用二元三次多项式进行变换。
二元三次多项式为:
二)数值变换法
⏹通过选择10个以上的两种投影之间的共同点,并组成最小二乘法的条件式,即:
其中:n为点数,X i,Y i为新投影的实际变换值,X i′,Y i′为新投影的理论值。
根据求极值原理,可得到两组线性方程,即可求得各系数的值。
⏹必须明确,实际中所碰到的变换,决定于区域大小,已知点密度,数据精度,所
需变换精度及投影间的差异大小,理论和时间上决不是二元三次多项式所能概括的。
三)数值解析变换法
⏹当已知新投影的公式,但不知原投影的公式时,可先通过数值变换求出原投影点
的地理坐标φ,λ,然后代入新投影公式中,求出新投影点的坐标。
即:
复习回顾地图投影的类型(P74)
⏹高斯-克吕格投影
⏹U T M投影
⏹墨卡托投影。