荧光漂白恢复_荧光共振能量转移和荧光相关光谱检测的技术特点

合集下载

荧光共振能量转移(FRET)的定量检测及其应用

荧光共振能量转移(FRET)的定量检测及其应用

荧光共振能量转移(FRET)的定量检测及其应用张建伟;陈同生【摘要】荧光共振能量转移(Fluorescence Resonance Energy Transfer,FRET)技术被广泛应用于活细胞中生物大分子构象变化和分子间动态相互作用的实时研究.针对光谱串扰和供体受体间的浓度比等困扰FRET效率定量检测的两大难题,已经发展了多种定量检测FRET效率的方法.作者结合自己的研究结果介绍了多种FRET 效率定量检测技术在细胞信号转导机制研究中的应用.%Fluorescence resonance energy transfer (FRET) is the most widely used technology to study the protein - protein real - time dynamic interactions and the change of macromolecular conformation in living cells. Spectral cross - talks and acceptor - to - donor concentration ratio are the tissues harassing the quantitative measurement of FRET efficiency. Many different methods to quantitate FRET efficiency, such as FLIM - FRET, spectral FRET, acceptor photobleaching FRET and sensitized emission FRET methods, have been proposed. In this report, we introduce some quantitative FRET methods to study the mechanism of cell signal translation.【期刊名称】《华南师范大学学报(自然科学版)》【年(卷),期】2012(044)003【总页数】6页(P12-17)【关键词】荧光共振能量转移(FRET);FRET效率;定量检测;荧光蛋白【作者】张建伟;陈同生【作者单位】华南师范大学生物光子学研究院生命科学教育部重点实验室,广东广州510631;华南师范大学生物光子学研究院生命科学教育部重点实验室,广东广州510631【正文语种】中文【中图分类】Q631荧光共振能量转移(Fluorescence Resonance Energy Transfer, FRET)是依赖于供体和受体分子间距离的光物理进程,处于激发态的荧光团通过偶极子间的相互作用将能量以非辐射的方式转移给邻近的受体分子[1-2], 从而导致供体荧光淬灭和受体荧光发射的增加. 供体和受体之间的FRET效率(E)与分子间的空间距离(r)满足6次方的关系[3]:FRET效率是依赖于供体与受体间的距离r和Forster距离R0的. R0由下式给出[3-4]:已知主要有2个因素影响FRET效率的定量检测:一个是光谱串扰, 包括供体荧光串扰到受体通道(发射光谱串扰)和激发供体时直接激发受体(激发光谱串扰)[7-8]. 由于有机荧光团的光物理特性, 绝大数现有的FRET供体受体对都存在光谱串扰. 在定量检测FRET效率时必须消除这些串扰, 选择2个发射光谱分离较大的供体受体对, 能够减小串扰, 但同时J()会减小. 影响FRET定量检测的另一个因素是参与FRET作用的供体与受体对所占整个荧光基团的比例[9-10]. 自由的供体与受体相互作用时, 往往不是所有的供体或受体分子都参与相互作用. 参与相互作用分子的百分数难以知晓, 因此, 各种FRET效率的定量检测方法对有自由的供受体存在时都不能完全地反映FRET效率, 只能测量表观FRET效率. 另外, 活细胞中荧光蛋白表达水平和背景噪音等其它因素也可能影响FRET效率的定量检测.绿色荧光蛋白(green fluorescent proteins, GFP)是从维多利亚水母中分离出来的,受紫外或蓝光激发而发出绿色荧光[11]. 与GFP融合的蛋白在细胞中仍然能够行使正常的功能, 因此GFP成为了检测蛋白质分子间相互作用的报告分子. 近年来又发现了GFP的多种变体, 与迅速发展的荧光显微镜技术结合极大地改善了活细胞成像和FRET技术在活细胞中的应用,使得FRET技术在细胞生物学和化学方面的应用得到了质的飞跃. 基于荧光蛋白的FRET(FPs-FRET)技术已被广泛应用于活细胞实验研究中,极大促进了生物学的发展[12]. 利用基因转导技术和共聚焦荧光显微成像可以在活细胞中研究蛋白质定位、信号的传递、蛋白质分子间的相互作用和蛋白质分子的构象变化. 将荧光蛋白(FPs)接到感兴趣的蛋白质分子上, 可以对细胞进行实时动态检测, 也可视化监测细胞内蛋白质与蛋白相互作用的生理过程[13]. FPs-FRET 传感器主要可以分为3类: 分子内的FRET传感器、双分子FRET传感器和基于双分子荧光互补传感器(BiFC)[13]. FPs-FRET传感器已经成为在活细胞中实时检测钙离子浓度、pH值、各种激酶活化、蛋白质磷酸化以及蛋白质分子间相互作用等动态过程的重要技术[13-14].FRET定量检测的常用方法有寿命成像(FLIM-FRET), 光谱成像(spectral FRET), 受体光漂白(acceptor photobleaching FRET)和敏化发射测量(sensitized emission FRET)等方法, 下面介绍FRET技术在细胞信号转导机制研究中的应用.FLIM方法主要是通过测量受体存在和不存在时的供体分子的荧光寿命 D和 DA来确定FRET效率E[5],FLIM方法检测的结果一般作为其他FRET定量检测方法的对照标准. 要求供体通道选择性探测供体荧光, 而且FLIM系统价格昂贵, 同时也需要熟练的操作人员进行操作, 这些都限制了FLIM方法的推广应用. 事实上用时间相关单光子计数(TCSPC)进行精确地拟合时可能带来了其他的方法没有的复杂问题[10], 尤其是复杂的光物理性质增加了寿命法分析的困难[15, 17]. 为了精确地对分子的荧光寿命进行多指数拟合, 在每个像素点上需有大量的光子[18], 这将大大延长成像时间, 使得FLIM方法不适合于活细胞中的实时动态检测[19-20].每一个荧光团都有各自的激发和发射光谱, 不同于采用荧光通道获得数据的强度测量方法和寿命测量方法的是光谱法获得的分别是供体、受体和供体与受体样本的发射光谱. 通过供体和受体的光谱对供体-受体样本的光谱进行拟合得到FRET效率. THALER等人[21]提出了一种利用光谱成像的FRET效率定量测量方法. 存在FRET 时混合光谱Fcomplex包括3个部分:供体的荧光、受体的荧光和从供体转移到受体的那部分荧光:Fcomplex=d×(1-E)×Fd+a×Fa+d×E×(Φa/Φd)×k()×Fa,本研究小组最近也提出了一种基于荧光光谱拟合的FRET定量分析方法[22]. 该方法通过测量细胞内供体-受体对的荧光发射谱, 然后按照供体和受体的荧光发射谱进行拟合得到FRET效率. 该方法有效地解决光谱串扰问题, 可用于检测蛋白质之间的相互作用. 最近, LEVY等[23]提出了基于2种不同激发光条件的发射光谱测量FRET效率的方法, 该方法能够测量很小的FRET效率和参与作用的供体与受体摩尔比, 而且能够通过仔细的校准来消除自发荧光和背景光的影响.sFRET方法是测量FRET效率最为灵敏的方法, 在目前已知的方法中只有光谱法能够探测出小于5%FRET信号. sFRET方法能够有效地解决光谱串扰问题, 也能够很好地消除背景光和自发荧光的影响, 因此sFRET方法可以用于测量蛋白质分子间弱的FRET信号. 但是sFRET方法对于数据采集要求很高, 因为较小的干扰就可能对结果造成较大影响, 所以须对数据要进行严格的校正, 特别是须对背景光和自发荧光进行严格校正.光漂白方法(Pb-FRET)通过检测光漂白受体前后供体的荧光强度来获得FRET效率, 光漂白受体会导致供体的荧光强度上升. 光漂白方法分为完全光漂白方法和部分光漂白方法.供体和受体发生FRET时, 供体的荧光减少, 即供体荧光会产生淬灭, 而受体的荧光增加. 一般采用最大的受体激发光完全漂白掉受体后, 供体就不再把能量传递给受体, 导致供体的荧光增加. 通过测量完全光漂白受体前后供体的荧光强度和就可以得出FRET效率[24]:ELDER等[20]提出了一种通过检测部分受体光漂白前后供体的荧光强度和受体光漂白程度来测量FRET效率的部分受体光漂白方法,受体光漂白方法(Pb-FRET)操作简单, 在共聚焦显微镜上也很容易实现. Pb-FRET方法测量FRET效率既不依赖于系统参数,也不依赖于供体与受体的量子产率和消光系数, 只依赖于受体光漂白前后供体的荧光强度变化. 但是, 受体光漂白会对生物体造成的损伤, 不利于在单细胞中进行多次测量, 也不能在细胞中进行实时动态检测[20, 27]. 必须注意的是:受体光漂白过程中用最大的光强的受体激发光也可能漂白掉供体分子,最近发现在光漂白过程中YFP分子可以光转换成CFP分子[28].敏化发射测量(SE-FRET)方法被广泛应用于活细胞中FRET效率的动态检测[20, 27]. SE-FRET既可以在共聚焦显微镜上实现, 也可以在宽场显微镜上实现. 传统的SE-FRET方法是利用3个滤光块组的方法, 每个滤光块组都是采用一个激发带宽滤光块来选择性激发供体或受体, 并用发射滤光块来收集供体或受体发射的荧光. 可是, 受体敏化发射荧光包括直接激发受体的荧光和供体串扰到受体通道的荧光, 其串扰路径如图1.在实际的实验中, 除了测量待测FRET样本实验外, 还需增加对3个参考样本来对系统进行串扰校正:只有供体荧光团的供体对照样本, 只有受体荧光团的受体对照样本和已知FRET效率的校正样本. 增加的供体对照样本测量供体发射串扰(图1中path2), 受体对照样本测定直接激发受体发射串扰(图1中path1), 已知FRET效率的校正样本获得给定条件下成像系统的校正因子G[27]. 也有文献报道用2个化学计量比为1∶1且FRET效率差别较大的参考样本来获得校正因子G[29].SE-FRET方法具有无损伤的特性, 成为在活细胞中最为适合于动态监测的方法[20, 26], 而且能够较好对光谱串扰和系统参数进行校正. 但是, SE-FRET方法也有其自身的限制,需要利用对照样本(至少3个)对光学检测系统以及荧光基团的光学性质进行事先校正,一旦校正完成,后续实验不能再改变任何系统参数, 且每次实验都要重新校正, 极大地增加了SE-FRET实验的工作量和难度, 也限制了该方法的推广应用. SE-FRET实验必须同时转染4个样本, 其中的任何一个样本没有转染成功, 都会导致实验的失败.FRET技术已经成为在活细胞中研究蛋白质之间相互作用和蛋白质分子构象变化的广泛应的工具. 本研究小组近几年利用FRET技术在活细胞中研究了细胞增殖和细胞凋亡过程中的分析调控机制[30-34]. 通过构建基于GFPs的FRET质粒,利用共聚焦荧光显微镜在单个活细胞中研究各种诱导刺激条件下细胞凋亡的分子调控机理[32-36].FRET技术在生物上的重要应用是通过实时检测荧光蛋白之间FRET的效率变化来研究荧光蛋白标记蛋白质分子间的相互作用. 利用FRET技术并结合共聚焦显微成像技术,本研究小组证明了在碱性条件下诱导细胞凋亡过程中Bid被切割成tBid 并转位到线粒体上,并且证明凋亡过程中Caspase-3活化[31]. 为了在活细胞中实时研究Caspase-3的动态活化过程,筛选了稳定表达SCAT3的细胞系,在此基础上通过检测细胞凋亡期间SCAT3 FRET效率的动态变化,实现了在单个活细胞中实时检测caspase-3的动态活化过程[32].利用ECFP标记Bax蛋白和EYFP标记PUMA蛋白,本实验室利用FRET技术在活细胞中首次证明了在紫外诱导的细胞凋亡过程中PUMA可以直接促进Bax的活化和转位,并抑制Bcl-XL蛋白活化[37]. 本研究小组还证明了低功率激光辐照能够通过GSK-3β未活化的机制来抑制Bax转位的上游过程[38],以及P53不依赖于PUMA转录因子而是通过Akt/FOXO3a介导的Bax活化和细胞凋亡[39].FRET技术已被广泛应用于活细胞中蛋白质之间相互作用和蛋白质分子构象变化的动态研究. 影响FRET定量检测的因素主要有光谱串扰和供体与受体的浓度比. GFP 及其变种的发现以及显微荧光技术的发展使得FRET技术在活细胞中的应用更加广泛. 本文介绍了寿命测量法、光谱法、部分受光漂白方法和敏化发射等几种常用的FRET定量检测方法,并对上述各种方法在定量检测FRET效率上进行了简单的评述.【相关文献】[1] LAKOWICZ J R. Energy Transfer: In Principles of Fluorescence Spectroscopy[M]. New York: Plenum Press, 1983.[2] CLEGG R. Fluorescence Imaging Spectroscopy and Microscopy[M]. New York: Wiley, 1996.[3] FÖRSTER T. Intermolecular energy migration and fluorescence[J]. Ann Phys, 1948, 2: 55-75.[4] VAN DER MEER B. Kappa-squared: from nuisance to new sense[J]. Rew Mol Biotechnol, 2002, 82(3): 181-196.[5] LAKOWICZ J R. Principles of fluorescence spectroscopy[M]. 2nd ed. New York: Plenum Press, 1999.[6] PATTERSON G H, PISTON D W, BARISAS B G. Forster distances between green fluorescent protein pairs[J]. Anal Biochem, 2000, 284(2): 438-440.[7] XIA Z, LIU Y. Reliable and global measurement of fluorescence resonance energy transfer using fluorescence microscopes[J]. Biophys J, 2001, 81(4): 2395-2402.[8] ELANGOVAN M, WALLRABE H, CHEN Y, et al. Characterization of one- and two-photon excitation fluorescence resonance energy transfer microscopy[J]. Methods, 2003, 29(1): 58-73.[9] HOPPE A, CHRISTENSEN K, SWANSON J A. Fluorescence resonance energy transfer-based stoichiometry in living cells[J]. Biophys J, 2002, 83(6): 3652-3664.[10] MILLINGTON M, GRINDLAY G J, ALTENBACH K, et al. High-precision FLIM-FRET in fixed and living cells reveals heterogeneity in a simple CFP-YFP fusion protein[J]. Biophys Chem, 2007, 127(3): 155-164.[11] TSIEN R Y. The green fluorescent protein[J]. Annu Rev Sci, 1998, 67: 509-544.[12] SHANER N C, STEINBACH P A, TSIEN R Y. A guide to choosing fluorescent proteins[J]. Nat Methods, 2005, 2(12): 905-909.[13] LBRAHEEM A, CAMPBELL R E. Designs and applications of fluorescent protein-based biosensors[J]. Curr Opin Chem Biol, 2010, 14(1): 30-36.[14] AYE-HAN N N, NI Q, ZHANG J. Fluorescent biosensors for real-time tracking of post-translational modification dynamics[J]. Curr Opin Chem Biol, 2009, 13(4): 392-397. [15] TRAMIER M, GAUTIER I, PIOLOT T, et al. Picosecond-hetero-FRET microscopy to probe protein-protein interactions in live cells[J]. Biophys J, 2002, 83(6): 3570-3577. [16] HOPPE A, CHRISTENSEN K, SWANSON J A. Fluorescence resonance energy transfer-based stoichiometry in living cells[J]. Biophys J, 2002, 83(6): 3652-3664.[17] SARKAR P, KOUSHIK S V, VOGEL S S, et al. Photophysical properties of cerulean and venus fluorescent proteins[J]. J Biomed Opt, 2009, 14(3): 034 - 047.[18] KOLNER M, WOLFRUM J. How many photons are necessary for fluorescence lifetime measurements?[J]. Chem Phys Lett, 1992, 200(1/2): 199-204.[19] LAKOWICZ J R. Principles of Fluorescence Spectroscopy[M]. New York: Springer, 2006.[20] ELDER A D, DOMIN A, KAMINSKI SCHIERLE G S, et al. A quantitative protocol for dynamic measurements of protein interactions by Först er resonance energy transfer-sensitized fluorescence emission[J]. J R Soc Interface, 2009, 6(S1): S59-81.[21] THALER C, KOUSHIK S V, BLANK P S,et al. Quantitative multiphoton spectral imaging and its use for measuring resonance energy transfer[J]. Biophys J, 2005, 89(4): 2736-2749.[22] WANG L X, CHEN T S, QU J L, et al. Quantitative analysis of caspase-3 activation by fitting fluorescence emission spectra in living cells[J]. Micron, 2009, 40(8): 811-820. [23] LEVY S, WILMS C D, BRUMER E, et al. SpRET: highly sensitive and reliable spectral measurement of absolute FRET efficiency[J]. Microsc Microanal, 2011, 17(2): 176-190. [24] KENWORTHY A K, EDIDIN M. Distribution of a glycosylphosphatidylinositol-anchored protein at the apical surface of MDCK cells exami ned at a resolution of <100 Å using imaging fluorescence resonance energy transfer[J]. J Cell Biol, 1998, 142(1): 69-84. [25] WANG F, CHEN T S, XING D, et al. Measuring dynamics of caspase-3 activity in living cells using FRET technique during apoptosis induced by high fluence low power laser irradiation[J]. Lasers Surg Med, 2005, 36(1): 2-7.[26] WANG L X, CHEN T S, QU J L, et al. Photobleaching-based quantitative analysis of fluorescence resonance energy transfer inside Single living cell[J]. J Fluoresc, 2010, 20(1): 27-35.[27] ZAL T, GASCOIGNE N R. Photobleaching-corrected FRET efficiency imaging of live cells[J]. Biophys J, 2004, 86(6): 3923-3939.[28] VALENTIN G, VERHEGGEN C, PIOLOT T, et al. Photoconversion of YFP into a CFP-like species during acceptor photobleaching FRET experiments[J]. Nat Methods, 2005, 2(1): 801.[29] CHEN H, PUHL H L, 3RD KOUSHIK S V, et al. Measurement of FRET efficiency andratio of donor to acceptor concentration in living cells[J]. Biophys J, 2006, 91(5): L39-41.[30] GUO W J, QIAN L, ZHANG J, et al. SIRT1 overexpression in neurons promotes neurite outgrowth and cell survival with reduced mTOR signaling[J]. J Neurosci Res, 2011, 89(11): 1723-1736.[31] CHEN T S, WANG J J, XING D, et al.Spatio-temporal dynamic analysis of Bid activation and apoptosis induced by alkaline condition in human lung adenocarcinoma cell[J].Cell Physiol Biochem,2007,20(8):569-578.[32] PAN W L, QU J L, CHEN T S, et al. FLIM and emission spectral analysis of caspase-3 activation inside single living cell during anticancer drug-induced cell death[J]. Eur Biophy J, 2009, 38:447-456.[33] LU Y Y, CHEN T S, WANG X P, et al. Single cell analysis of dihydroartemisinin(DHA)-induced apoptosis through reactive oxygen species (ROS)-mediated caspase-8 activation and mitochondrial pathway in ASTC-a-1 cells using fluorescence imaging techniques[J]. J Biomed Opt, 2010,15(4): 046028-1-16.[34] ZHANG W W, WANG Z P, CHEN T S. Curcumol induces apoptosis via caspases-independent mitochondrial pathway in huaman lung adenocarcinoma ASTC-a-1 cells[J]. Medicine Oncology, 2011, 28(1): 307-314.[35] WU Y X, XING D. CHEN W R. Single cell FRET imaging for determination of pathway of tumor cell apoptosis induced by photofrin-PDT[J]. Cell Cycle, 2006, 5(7): 729-734. [36] WU Y X, XING D, LUO S M, et al. Detection of caspase-3 activation in single cells by fluorescence resonance energy transfer during photodynamic therapy induced apoptosis[J]. Cancer Lett, 2006, 235(2): 239-247.[37] ZHANG Y J, XING D, LIU L. PUMA promotes bax translocation by both directly activating Bax and antagonizing Bcl-XL during UV-induced apoptosis[J]. Mol Biol Cell, 2009, 20(13): 3077-3087.[38] ZHANG L L, ZHANG Y J, XING D. LPLI inhibits apoptosis upstream of Bax translocation via a GSK-3β-inactivation mechanism[J]. J Cell Physiol, 2010, 224(1): 218-228.[39] ZHANG Y J, ZHANG Z Z, XING D. P53-independent transcriptional regulation of PUMA by Akt/FOXO3a mediates Bax activation and cell apoptosis[J]. Cell Death Differ, 2010, in revision.。

1荧光共振能量转移 原理 如果两个荧光团相距在1~10 nm之间,且一个

1荧光共振能量转移 原理 如果两个荧光团相距在1~10 nm之间,且一个

1.荧光共振能量转移如果两个荧光团相距在1~10 nm之间,且一个荧光团的发射光谱与另一个荧光团的吸收光谱有重叠,当供体被入射光激发时,可通过偶极-偶极耦合作用将其能量以非辐射方式传递给受体分子,供体分子衰变到基态而不发射荧光,受体分子由基态跃迁到激发态,再衰变到基态同时发射荧光。

这一过程称为荧光共振能量转移(fluorescence resonance energy transfer,FRET)。

1.适用于活细胞和固定细胞的各类分子,2.灵敏度和分辨率高,并能清晰成像,3.准确度高,操作简便4.最直观地提供蛋白质相互作用的定位和定量信息,首先,FRET对空间构想改变十分敏感,其测量范围在1~10 nm,但如果待测蛋白原本就相当接近, FRET信号已经达到最大值,此时一些刺激引起的微小的构想改变就可能无法引起FRET信号的很大改变;其次,存在光漂白作用, FRET需要起始激发光激发D,这时就很难避免对A的间接激发,这样的交叉激发降低了分析的灵敏性; 第三,存在其他一些本底荧光的干扰;另外,起始激发光可能会破坏一些光敏的组织和细胞,产生光毒性。

这些缺点很大程度上限制了FRET的进一步发展。

2.蛋白质双杂交技术以与调控SUC2基因有关的两个蛋白质Snf1和Snf2为模型, 将前者与Gal4的DB结构域融合, 另外一个与Gal4的AD结构域的酸性区域融合。

由DB和AD形成的融合蛋白现在一般分别称之为“诱饵”(bait)和“猎物”或靶蛋白(prey or target protein)。

如果在Snf1和Snf2之间存在相互作用, 那么分别位于这两个融合蛋白上的DB和AD就能重新形成有活性的转录激活因子, 从而激活相应基因的转录与表达。

这个被激活的、能显示“诱饵”和“猎物”相互作用的基因称之为报道基因(reporter gene)。

通过对报道基因表达产物的检测, 反过来可判别作为“诱饵”和“猎物”的两个蛋白质之间是否存在相互作用。

荧光共振能量转移技术的基本原理和应用

荧光共振能量转移技术的基本原理和应用

荧光共振能量转移技术的基本原理和应用-标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII荧光共振能量转移技术的基本原理和应用荧光共振能量转移(fluorescence resonance energy transfer,FRET)作为一种高效的光学“分子尺”,在生物大分子相互作用、免疫分析、核酸检测等方面有广泛的应用。

在分子生物学领域,该技术可用于研究活细胞生理条件下研究蛋白质-蛋白质间相互作用。

蛋白质-蛋白质间相互作用在整个细胞生命过程中占有重要地位,由于细胞内各种组分极其复杂,因此一些传统研究蛋白质-蛋白质间相互作用的方法如酵母双杂交、免疫沉淀等可能会丢失某些重要的信息,无法正确地反映在当时活细胞生理条件下蛋白质-蛋白质间相互作用的动态变化过程。

FRET技术是近来发展的一项新技术,为在活细胞生理条件下对蛋白质-蛋白质间相互作用进行实时的动态研究提供了便利。

荧光共振能量转移是指两个荧光发色基团在足够靠近时,当供体分子吸收一定频率的光子后被激发到更高的电子能态,在该电子回到基态前,通过偶极子相互作用,实现了能量向邻近的受体分子转移(即发生能量共振转移)。

FRET是一种非辐射能量跃迁,通过分子间的电偶极相互作用,将供体激发态能量转移到受体激发态的过程,使供体荧光强度降低,而受体可以发射更强于本身的特征荧光(敏化荧光),也可以不发荧光(荧光猝灭),同时也伴随着荧光寿命的相应缩短或延长。

能量转移的效率和供体的发射光谱与受体的吸收光谱的重叠程度、供体与受体的跃迁偶极的相对取向、供体与受体之间的距离等因素有关。

作为共振能量转移供、受体对,荧光物质必须满足以下条件:①受、供体的激发光要足够分得开;②供体的发光光谱与受体的激发光谱要重叠。

人们已经利用生物体自身的荧光或者将有机荧光染料标记到所研究的对象上,成功地应用于核酸检测、蛋白质结构、功能分析、免疫分析及细胞器结构功能检测等诸多方面。

荧光共振能量转移技术在蛋白质研究中的应用

荧光共振能量转移技术在蛋白质研究中的应用

荧光共振能量转移技术在蛋白质研究中的应用蛋白质是生命活动中不可或缺的分子,其结构和功能具有极其重要的研究价值。

荧光共振能量转移技术(FRET)是近年来被广泛应用于蛋白质研究中的一种技术。

本文将介绍FRET技术的基本原理以及在蛋白质研究中的应用,并且分析FRET技术的优势和局限性。

一、FRET技术的基本原理FRET是指基于两个发射荧光信号的不同颜色,即接受者荧光二次激发的信号和给体荧光发射的信号之间的能量传递。

在二者距离越近,能量转移的效率越高,也就是说接受者荧光强度则会增强,而给体荧光强度则减弱。

因此,FRET技术可以通过测量荧光强度的变化来研究分子间距离的变化。

FRET技术通常需要三个关键的组分:一是给体分子,即发出荧光信号的分子;二是接受者分子,即接收能量的分子;三是这两个分子之间的桥梁,即是通过某些特定的结构,比如基于染料、化学修饰物或蛋白质的标记来实现。

FRET研究的原理和应用包括以下几方面:1. 能量转移的范围介电常数(Dielectric constant)是常数,以描述介质对静电场的响应功能。

当介电常数越小时,FRET的距离传感器效果会更好。

2. 水解酶/内切酶的测量许多水解酶和内切酶都是含有两个底物的。

如果这两个底物分别标记为荧光基团(即“给体”和“受体”)并且贡献了不同的荧光谱轮廓,就可以测量它们之间的距离。

通常,分子底物被标记为一种用荧光染料标记的底物和一种荧光基团荧光标记的底物。

3. 蛋白质折叠和细胞信号的分析FRET技术也可以用于测量蛋白质折叠状态的变化。

蛋白质通常被认为处于“折叠状态”或“不折叠状态”。

如果在两者之间出现折叠的变化,则可以将该变化与一系列信号事件联系起来,包括结构变化、功能调节和疾病发展。

二、FRET技术在蛋白质研究中的应用FRET技术在蛋白质研究中有着广泛的应用。

主要包括以下几个方面:1. 研究蛋白质交互作用蛋白质间的交互作用是细胞中许多生化反应所必需的。

《荧光共振能量转移》课件

《荧光共振能量转移》课件
激发波长扫描
使用单色仪扫描不同激发波长下的荧 光光谱,观察荧光共振能量转移现象

光谱采集
使用荧光光谱仪采集荧光光谱,记录 荧光强度随波长的变化。
数据处理与分析
对采集到的光谱数据进行处理和分析 ,提取相关信息,如荧光寿命、能量 转移效率和光谱位移等。
数据处理与分析方法
Hale Waihona Puke 1 2荧光寿命测量
通过测量荧光衰减曲线,计算荧光分子的寿命。
荧光共振能量转移的概念起源于 20世纪50年代,最初用于研究分 子间的相互作用。
发展
随着技术的不断进步,荧光共振 能量转移的应用范围逐渐扩大, 成为生物医学、化学等领域的重 要工具。
未来展望
随着新材料的发现和技术的创新 ,荧光共振能量转移有望在更多 领域发挥重要作用。
02
荧光共振能量转移的原理
分子能级与光谱
通过荧光共振能量转移技术可以快速筛选出与目标分子结合的药物 候选物,提高药物研发效率。
医学诊断
荧光共振能量转移技术可以用于肿瘤标记物检测、免疫分析等医学 诊断领域,提高诊断准确性和灵敏度。
在化学与材料科学领域的应用
化学反应监测
荧光共振能量转移技术可以实时监测化学反应过程中分子的动态变 化,有助于深入了解化学反应机理。
能量转移效率计算
根据荧光光谱的变化,计算能量转移效率。
3
光谱位移分析
分析荧光光谱随激发波长的变化,确定能量转移 的特性。
04
荧光共振能量转移的应用 实例
在生物医学领域的应用
生物分子相互作用研究
利用荧光共振能量转移技术可以实时监测生物分子间的相互作用 ,有助于深入了解生命过程和疾病机制。
药物设计与筛选

荧光共振能量转移技术

荧光共振能量转移技术


物理技术


这些技术



荧光共振能量转移技术


荧光共振能量转移技术是一种物理技术 用分子生物学技术可将待研究分子进行荧光蛋 白标记并在细胞表达 研究受体-配基的相互作用

测定受体-配基相互作用的距离 测定受体亲和常数 受体二聚化 受体构象变化

该技术的最显著特点是在平衡条件下,无需分 离游离配基和结合配基, 即可测定平衡常数
FRET的理论基础


Forster 详细研究了上述现象,提出了共 振转移理论 两个分子的振动频率相同,可发生能量 转移(就好像一个振动的音叉可引起附 近另一具有相同频率的另一音叉振动一 样),因此称共振能量转移
FRET产生的条件
(1)D、A都能发荧光; (2)D的发射光谱和A的激发(或吸收) 光谱必须有部分重叠; (3)D和A之间的距离必须小于10nm。
1.2 FRET的理论基础

两种不同的发荧光分子,一个为D,另一个为 A 。当D吸收激发光,使D处于激发态D*。这 时如果在附近存在A,D*的激发能传给附近的 A,使A处于激发态A*, A* 就会发荧光
D * A D A* A hv (荧光)

这一现象称为激发能量转移或荧光共振能量转 移。D为供能者(donor , D),A为受能者 (acceptor, A),A发出的荧光称敏化荧光。

RBA技术需要分离游离配基和结合配基
荧光共振能量转移技术
FRET的优点 高灵敏度:现在可以用此方法在溶液中或单细 胞水平研究单个受体分子 可以和许多技术结合:如显微镜、流式细胞计、 共聚焦显微镜、稳态和瞬态荧光光谱,在生理 条件即活细胞状态下,选择性地研究分子间的 相互作用 可以从商业上得到各种荧光探剂: 用它们可以 标记各种所要研究的无荧光特性的分子如配体, 因而大大地开阔了研究途径

细胞生物学名词解释

细胞生物学名词解释

Ch1-31.细胞生物学:研究细胞基本生命活动规律的科学,它从显微、亚显微与分子水平研究细胞结构与功能,细胞增殖、分化、衰老与凋亡,信号转导,基因表达与调控,起源与进化等。

2.细胞学说:一切动植物都是由细胞组成的,细胞是一切动植物的基本单位。

基本内容:①细胞是有机体,一切动植物都是由细胞发育而来,并由细胞和细胞产物所构成。

②每个细胞作为一个相对独立的单位,既有它自己的生命,又对与其他细胞共同组成的整体的生命有所助益。

③新的细胞可以通过自己存在的细胞繁殖产生。

(细胞只能来自细胞)3.原生质:构成细胞中的所有生命物质,由蛋白质、核酸等生物大分子和水、无机盐、糖类、脂类等生物小分子组成。

4.细胞膜:由磷脂双分子和镶嵌蛋白质构成的富有弹性的半透性膜,具有流动性和不对称性。

5.中膜体:又称间体或质膜体,由细胞质内陷形成,在G+更明显,有拟线粒体之称,可能起DNA复制起点的作用。

6.细胞器:细胞内具有特定形态和功能的显微或亚显微结构。

7.荚膜:位于细胞壁表面的一层松散的黏液物质,主要由葡萄糖和葡萄糖醛酸组成。

8.芽孢:内生孢子,是对不良环境有强抵抗力的休眠体,含水量较丰富的致密体。

9.中心质:蓝藻细胞中央遗传物质DNA所在部位,相当于细菌的核区。

10.细胞体积守恒定律:器官的大小主要决定于细胞的数量,与细胞的数量成正比,而与细胞的大小无关。

11.病毒:迄今发现的最小最简单的,活细胞体内寄生的非细胞生命体,仅有一种核酸和蛋白质构成的核酸-蛋白质复合体。

12.亚病毒:仅由一个有感染性的RNA构成。

13.阮病毒:仅由有感染性的蛋白质构成。

14.分辨率:分开两个质点间的最小距离。

D=0.61λ/N*sin(α/2) N介质折射率α-物镜镜口角15.光学显微镜:光学放大系统,照明系统,机械和支架系统。

0.2μm16.相差显微镜:把光程差转换成振幅差,可用于观察未染色的活细胞。

17.微分干涉显微镜:以平面偏振光为光源,光线经棱镜折射后分成两束,在不同时间经过样品相邻部位,再经另一棱镜将其会和,将厚度差转化成明暗区别,立体感强。

荧光漂白恢复技术PPT

荧光漂白恢复技术PPT
(PLoS ONE |August 2011 | Volume 6 | Issue 8 | e22962)
Methods 1.Cell culture
Norden laboratory feline kidney (NLFK) and HeLa cells were grown in Dulbecco’s modified Eagle medium (DMEM)supplemented with 10% fetal bovine serum (Gibco, Paisley, UK)at 37℃ in the presence of 5% CO2.
(1)注意实验温度的控制。 (2)漂白区域大小的选择和荧光恢复检测时间的长短要根据具体情况而 定。 (3)激发光的波长和强度应不会使细胞严重损伤;尽量减少漂白前和漂 白后的荧光淬灭。
Page 7
FRAP技术的不足之处
第一,它只能检测膜蛋白的群体移动,而不能 观察单个蛋白的移动。 其次,它不能证明膜蛋白在移动时是否受局部 条件的限制。
2. FRAP experiments
The FRAP experiments were performed on a laser scanning confocal microscope FV1000 with an IX-81 microscope frame(Olympus, Tokyo, Japan) using an Olympus UPLSAPO 606 (NA= 1.2) water immersion objective. The sample stage was heated to 37uC prior the experiments. To image the cell geometry, a confocal stack was acquired before and after the FRAP experiment. The voxel size was adjusted to (200 nm)3or(150 nm)3 .The pinhole size was adjusted to 1 Airy unit. The 514 nm laser line was used for EYFP excitation and the emitted fluorescence was detected using a 530–600 nm band pass filter.Imaging was performed with a laser intensity of 0.1–2 For bleaching a circular (r = 1.85 mm and 2.83 mm) region of interest(ROI) was defined in the middle of the cytoplasm. As bleaching times in FRAP are usually rather large compared to the time scales of the measured diffusion processes, the region of the cell, which is actually bleached, is usually larger than the defined ROI. The size of the actually bleached region and its intensity distribution were measured by bleaching fixed cells (Fig. 1). ImageJ [32] was then used to construct an average shape and intensity profile of that region.

细胞生物学名词解释及思考题

细胞生物学名词解释及思考题

名词解释:第三章细胞生物学研究方法非细胞体系:来源于细胞,而不具有完整的细胞结构,但包含了进行正常生物学反应所需的物质(如供能系统和酶反应体系等)组成的体系即为非细胞体系。

原位杂交:将标记的核酸探针与细胞或组织中的核酸进行杂交,称为原位杂交。

原位分析:在保持细胞结构的基础上,某些化学物质(显色剂)和细胞内某种成分发生化学反应,在细胞局部范围内形成有色沉淀物,从而对细胞化学成分进行定性或定位。

用于对某些细胞成分进行定性和定位研究。

放射自显影技术:利用放射性同位素的电离辐射对乳胶(含AgBr或AgCl)的感光作用,对细胞内生物大分子进行定性、定位与半定量研究的一种细胞化学技术。

第四章细胞质膜脂质体:脂质体是一种人工膜。

在水中,搅动后磷脂形成脂双层分子的球形脂质体,直径25~1000nm不等。

人工脂质体可用于:转基因、制备药物和研究生物膜的特性。

脂筏:在以甘油磷脂为主体的生物膜上,胆固醇、鞘磷脂等形成有序的脂相,如同漂浮在脂双分子层上的“脂筏”一样载着执行某些特定生物学功能的各种膜蛋白。

膜骨架:膜骨架是指细胞质膜下与膜蛋白相连的由纤维蛋白组成的网架结构,它参与维持细胞质膜的形状并协助质膜完成多种生理功能。

生物膜:质膜和内膜总称为生物膜。

细胞质膜是指围绕在细胞最外层,由脂质和蛋白质组成的生物膜,所以又称细胞膜。

围绕各种细胞器的膜,称为细胞内膜。

生物膜是细胞进行生命活动的重要物质基础。

第五章物质的跨膜运输水孔:即水通道,是内在膜蛋白的一个家族,在各种特异性组织细胞中提供了水分子快速跨膜运动的通道。

对水有高度特异性,只容许水而不容许离子或其他小分子溶质通过。

P-型离子泵:其原理与钠钾泵相似,每分解一个A TP分子,泵出2个Ca2+。

位于肌质网上的钙离子泵占肌质网膜蛋白质的90%。

V-型离子泵:存在于各类小泡膜上,水解A TP产生能量,但不发生自磷酸化,位于溶酶体膜、植物液泡膜上。

F-型离子泵:H+ 顺浓度梯度运动,利用质子动力势合成A TP,也叫A TP合酶,位于细菌质膜,线粒体内膜和叶绿体的类囊体膜上。

荧光共振能量转移

荧光共振能量转移

FRET技术研究PEDF和目标蛋白之间在小鼠神经元(神经胶质细胞)的相互作用一、FRET技术基本原理荧光共振能量转移是指两个荧光发色基团在足够靠近时,当供体分子吸收一定频率的光子后被激发到更高的电子能态,在该电子回到基态前,通过偶极子相互作用,实现了能量向邻近的受体分子转移(即发生能量共振转移)。

FRET是一种非辐射能量跃迁,通过分子间的电偶极相互作用,将供体激发态能量转移到受体激发态的过程,使供体荧光强度降低,而受体可以发射更强于本身的特征荧光(敏化荧光),也可以不发荧光(荧光猝灭),同时也伴随着荧光寿命的相应缩短或延长。

能量转移的效率和供体的发射光谱与受体的吸收光谱的重叠程度、供体与受体的跃迁偶极的相对取向、供体与受体之间的距离等因素有关。

作为共振能量转移供、受体对,荧光物质必须满足以下条件:①受、供体的激发光要足够分得开;②供体的发光光谱与受体的激发光谱要重叠。

人们已经利用生物体自身的荧光或者将有机荧光染料标记到所研究的对象上,成功地应用于核酸检测、蛋白质结构、功能分析、免疫分析及细胞器结构功能检测等诸多方面。

(传统有机荧光染料吸收光谱窄,发射光谱常常伴有拖尾,这样会影响供体发射光谱与受体吸收光谱的重叠程度,而且供、受体发射光谱产生相互干扰。

最新的一些报道将发光量子点用于共振能量转移研究,克服了有机荧光染料的不足之处。

相对于传统有机荧光染料分子,量子点的发射光谱很窄而且不拖尾,减少了供体与受体发射光谱的重叠,避免了相互间的干扰;由于量子点具有较宽的光谱激发范围,当它作为能量供体时,可以更自由地选择激发波长,可以最大限度地避免对能量受体的直接激发;通过改变量子点的组成或尺寸,可以使其发射可见光区任一波长的光,也就是说它可以为吸收光谱在可见区的任一生色团作能量供体,并且保证了供体发射波长与受体吸收波长的良好重叠,增加了共振能量转移效率。

)以GFP的两个突变体CFP(cyan fluorescent protein)、YFP(yellow fluorescent protein)为例简要说明其原理:CFP的发射光谱与YFP的吸收光谱有相当的重叠,当它们足够接近时,用CFP的吸收波长激发,CFP的发色基团将会把能量高效率地共振转移至YFP的发色基团上,所以CFP的发射荧光将减弱或消失,主要发射将是YFP的荧光。

荧光光谱的原理及应用

荧光光谱的原理及应用

live cell protein localizations. J Cell Biology, 2003, 160: 629–633 Jin Zhang, et al.,. Genetically encoded reporters of protein kinase A activity reveal impact of substrate tethering. PNAS ,2001, 98: 14997–15002 Michael G. Erickson, et al., DsRed as a Potential FRET Partner with CFP and GFP. Biophysical Journal , 2003,85:599–611 Alexander Sorkin, et al., Interaction of EGF receptor and Grb2 in living cells visualized by fluorescence resonance energy transfer (FRET) microscopy. Current Biology 2000, 10:1395–1398
BFP-GFP BFP-YFP CFP-YFP CFP-dsRED GFP-dsRED
荧光寿命
基本概念
定义:当激发光切断后荧光强度衰减至原强度的1/e所经
历的时间。它表示了荧光分子的S1激发态的平均寿命。
测试方法:
①时间相关单光子记数法(Time-Correlated Single-Photon Counting , TCSPC); ② 相调制法(Phase Modulation Methods) ③频闪技术(Strobe Techniques).

荧光 光谱.

荧光 光谱.

荧光寿命
当某种物质被一束激光激发后,该物质的分子吸 收能量后从基态跃迁到某一激发态上,再以辐射跃迁 的形式发出荧光回到基态.当激发停止后,分子的荧光 强度降到激发时最大强度的1/e所需的时间称为荧光 寿命.
5). 荧光标记
荧光标记是将荧光基团共价连接到蛋白、核酸等分上的 过程。通常使用能够选择性地与目标分子上存在的功能 基团反应的荧光素基团衍生物来完成这样的过程。最常 见的标记过的分子是抗体,经常使用标记过的抗体来检 测特定的目标分子。
内转换 S2
内转换 振动弛豫 系间跨越
S1
能 量 吸 收 T1 发 射 荧 光 T2
外转换
发 射 磷 振动弛豫 光
S0
l1
l2
l 2
l3
a)光吸收:荧光物质从基态跃迁到激发态,过程约10-15s。此时, 荧光分子处于激发态。 b)内转换:处于电子激发态的分子由于内部的作用,以无辐射 跃迁过渡到低的能级。 c)外转换:处于电子激发态的分子由于和溶剂以及其他分子的 作用,以及能量转移,过渡到低的能级 d)荧光发射:如果不以内转换的方式回到基态,处于第一电子 激发态最低振动能级的分子将以辐射的方式回到基态,平均寿命 约为10ns左右。 e)系间转换:不同多重态,有重叠的转动能级间的非辐射跃迁。 如 电子自旋改变,禁阻跃迁,通过自旋—轨道耦合进行。 f)振动驰豫:高振动能级至低相邻振动能级间的跃迁。发生振 动弛豫的时间10 -12 s。
2.常用荧光光谱
荧光光谱有瞬态荧光光谱和稳态荧光光谱两类。 通常荧光光谱指的是稳态荧光光谱。 1)荧光的激发光谱,发射谱 激发谱:固定测量波长(选最大发射波长),化合物发射 的荧光强度与激发光波长的关系曲线 。 荧光的发射谱:固定激发波长,发射强度与发射波 长的关系。

单分子荧光共振能量转移技术

单分子荧光共振能量转移技术

研究生光谱技术与应用课程作业河南大学单分子荧光共振能量转移技术学生:郭爱宇学号:************学院:物理与电子学院年级专业:2012级光学工程课程名称:光谱技术及应用指导老师:郭立俊教授单分子荧光共振能量转移技术摘要:单分子荧光共振能量转移技术(single molecule fluorescence resonance energy transfer, smFRET) 通过检测单个分子内的荧光供体及受体间荧光能量转移的效率,来研究分子构象的变化。

在单分子探测技术发展之前,大多数的分子实验是探测分子的综合平均效应(ensemble averages),这一平均效应掩盖了许多特殊的信息。

单分子探测可以对体系中的单个分子进行研究,得到某一分子特性的分布状况,也可研究生物分子的动力学反应。

介绍了近来单分子荧光共振能量转移技术的进展。

关键词:单分子;荧光共振能量转移;荧光基团1 引言光谱技术是研究生物分子最常用的方法之一。

在单分子光谱(single molecule spectroscopy, SMS)探测技术发展以前,大多数的实验是探测分子的综合平均效应,得到的是由大量对象组成的一个整体所表现出的平均响应和平均值,这一平均效应掩盖了许多特殊的信息。

而单分子探测可对体系中的单个分子进行研究,通过与时间相关过程的探测,能实时了解生物大分子构象变化的信息。

2002年美国第46届生物物理年会表明单分子仍是生物物理学目前和今后重点发展的研究领域。

主要的技术手段包括生物大分子荧光光谱,单分子荧光能量转移谱、与原子力显微镜结合进行单分子水平的分子间相互作用力的测量,以及可进行单分子操作的激光光钳,高时间分辨率的单分子轨迹追踪等[1]。

由此可见,单分子荧光技术具有重要的地位。

标记在生物大分子上单个荧光基团的各种特性变化能够提供有关分子间相互作用、酶活性、反应动力学、构象动力学、分子运动自由度(molecular freedom of motion)及在化学和静电环境下活性改变的信息。

荧光共振能量转移(FRET)

荧光共振能量转移(FRET)

什么是荧光共振能量转移(fluorescence resonance energy transfer,FRET)技术?荧光共振能量转移(fluorescence resonance energy transfer,FRET)作为一种高效的光学“分子尺”,在生物大分子相互作用、免疫分析、核酸检测等方面有广泛的应用。

在分子生物学领域,该技术可用于研究活细胞生理条件下研究蛋白质-蛋白质间相互作用。

蛋白质-蛋白质间相互作用在整个细胞生命过程中占有重要地位,由于细胞内各种组分极其复杂,因此一些传统研究蛋白质-蛋白质间相互作用的方法如酵母双杂交、免疫沉淀等可能会丢失某些重要的信息,无法正确地反映在当时活细胞生理条件下蛋白质-蛋白质间相互作用的动态变化过程。

FRET技术是近来发展的一项新技术,为在活细胞生理条件下对蛋白质-蛋白质间相互作用进行实时的动态研究提供了便利。

一、FRET技术基本原理荧光共振能量转移是指两个荧光发色基团在足够靠近时,当供体分子吸收一定频率的光子后被激发到更高的电子能态,在该电子回到基态前,通过偶极子相互作用,实现了能量向邻近的受体分子转移(即发生能量共振转移)。

FRET是一种非辐射能量跃迁,通过分子间的电偶极相互作用,将供体激发态能量转移到受体激发态的过程,使供体荧光强度降低,而受体可以发射更强于本身的特征荧光(敏化荧光),也可以不发荧光(荧光猝灭),同时也伴随着荧光寿命的相应缩短或延长。

能量转移的效率和供体的发射光谱与受体的吸收光谱的重叠程度、供体与受体的跃迁偶极的相对取向、供体与受体之间的距离等因素有关。

作为共振能量转移供、受体对,荧光物质必须满足以下条件:①供、受体的激发光要分得足够开;②供体的发射光谱与受体的激发光谱要重叠。

人们已经利用生物体自身的荧光或者将有机荧光染料标记到所研究的对象上,成功地应用于核酸检测、蛋白质结构、功能分析、免疫分析及细胞器结构功能检测等诸多方面。

(传统有机荧光染料吸收光谱窄,发射光谱常常伴有拖尾,这样会影响供体发射光谱与受体吸收光谱的重叠程度,而且供、受体发射光谱产生相互干扰。

荧光发光原理.

荧光发光原理.

4.1 引言某些物质被一定波长的光照射时,会在较短时间内发射出波长比入射光长的光,这种光就称为荧光。

1852年,Stokes阐明了荧光发射的机制,认为荧光是由于物质吸收了光能而重新发出的波长不同的光,并由一种能发荧光的矿物 萤石(fluospar)而定名为荧光。

我们通常所说的荧光,是指物质在吸收紫外光后发出的波长较长的紫外荧光或可见荧光,以及吸收波长较短的可见光后发出波长较长的可见荧光。

除了紫外荧光和可见荧光,还有红外荧光、X射线荧光等。

这不是本章要介绍的内容。

荧光光谱有两个主要优点:第一是灵敏度高。

由于荧光辐射的波长比激发光波长长,因此测量到的荧光频率与入射光的频率不同。

另外,由于荧光光谱是发射光谱,可以在与入射光成直角的方向上检测,这样,荧光不受来自激发光的本底的干扰,灵敏度大大高于紫外-可见吸收光谱。

第二,荧光光谱可以检测一些紫外-可见吸收光谱检测不到的过程。

紫外和可见荧光涉及的是电子能级之间的跃迁,荧光产生包括两个过程:吸收以及随之而来的发射。

每个过程发生的时间与跃迁频率的倒数是同一时间量级(大约10-15秒),但两个过程中有一个时间延搁,大约为10-9秒,这段时间内分子处于激发态。

激发态的寿命取决于辐射与非辐射之间的竞争。

由于荧光有一定的寿命,因此可以检测一些时间过程与其寿命相当的过程。

例如,生色团及其环境的变化过程在紫外吸收的10-15秒的过程中基本上是静止不变的,因此无法用紫外吸收光谱检测,但可以用荧光光谱检测。

4.2基本概念和原理4.2.1荧光的产生吸收外来光子后被激发到激发态的分子,可以通过多种途径丢失能量,回到基态,这种过程一般称为弛豫。

在很多情况下,分子回到基态时,能量通过热量等形式散失到周围。

但是在某些情况下,能量能以光子发射的形式释放出来。

***Figure 5.3 Some pathways of relaxation from the excited state.***(P96)上图(Campbell书中图5.3)表示了激发态分子的几种弛豫过程。

供体光漂白福斯特共振能量转移 光子布罗什

供体光漂白福斯特共振能量转移 光子布罗什

光漂白和共振能量转移是光化学领域中两个重要的过程,它们在许多光敏系统中起到至关重要的作用。

本文将分别对光漂白和共振能量转移进行介绍,并结合福斯特共振能量转移和光子布罗什效应进行深入探讨。

一、光漂白光漂白是指溶液中某种色素或荧光物质在光的作用下逐渐失去颜色或荧光的过程。

光漂白通常可分为光照漂白和黑暗漂白两种类型。

1. 光照漂白光照漂白是指色素或荧光物质在受到光照射后逐渐失去颜色或荧光的现象。

这种现象通常涉及到色素分子的激发态和基态之间的跃迁,导致分子结构的改变,从而使其失去原有的颜色或荧光性质。

2. 黑暗漂白黑暗漂白是指色素或荧光物质在光照停止后仍继续失去颜色或荧光的现象。

这种现象通常涉及到激发态分子的自发辐射或光敏化过程,在没有外界光照的情况下,分子依然处于激发态,导致颜色或荧光的逐渐消失。

二、共振能量转移共振能量转移是指分子之间通过非辐射跃迁将能量传递给另一分子的过程。

共振能量转移通常包括电子能级之间的跃迁或者振动能级之间的跃迁。

共振能量转移的发生需要满足一定的条件,包括能级的匹配、距离的适当以及方向的合适等因素。

1. 福斯特共振能量转移福斯特共振能量转移是由美国物理学家福斯特提出的一种描述分子之间能量传递过程的理论。

在福斯特共振能量转移中,能量从激发态分子传递到另一分子的基态,通过跃迁偶极子相互作用来实现。

福斯特共振能量转移的速率与分子之间的距离的六次方成反比,因此在实际应用中通常需要控制分子之间的距离来调节共振能量转移的效率。

2. 光子布罗什效应光子布罗什效应是指分子的荧光光谱在适当的条件下会受到周围介质的影响,从而发生红移或者蓝移的现象。

这种效应通常涉及到分子和溶剂之间的相互作用,通过介质的极化或者分子的局域结构改变来实现。

结语光漂白和共振能量转移是光化学领域中非常重要的过程,它们不仅可以帮助我们理解分子的光物理性质,还可以在实际应用中发挥重要作用。

通过对这两个过程的深入研究,我们可以更好地控制光敏系统的性质,为分子光电子学领域的发展提供重要参考。

荧光漂白恢复,荧光共振能量转移和荧光相关光谱检测的技术特点

荧光漂白恢复,荧光共振能量转移和荧光相关光谱检测的技术特点

荧光漂白恢复,荧光共振能量转移和荧光相关光谱检测的技术
特点
于淼;高建
【期刊名称】《中国医学装备》
【年(卷),期】2009(006)006
【摘要】荧光漂白恢复(FRAP)、荧光共振能量转移(FRET)和荧光相关光谱(FCS)是三种以荧光为基础的检测技术,常用来研究分子间相互作用.对三种技术的特点做以比较和讨论.
【总页数】2页(P8-9)
【作者】于淼;高建
【作者单位】中国医科大学实验技术中心,辽宁,沈阳,110001;中国医科大学实验技术中心,辽宁,沈阳,110001
【正文语种】中文
【中图分类】R197
【相关文献】
1.荧光漂白恢复技术及其在生物膜系统研究中的应用 [J], 隋鑫;满奕;张越;林金星;荆艳萍
2.人骨髓间充质干细胞缝隙连接通讯功能的荧光漂白恢复法测定 [J], 宋晋刚;周强;许建中;罗飞;孙玮
3.荧光漂白后恢复技术及其在活细胞分子机制研究中的应用 [J], 张志毅;周涛;巩伟
丽;张德添
4.在荧光漂白恢复测量中荧光恢复起始时间的研究 [J], 王文玉;江丕栋
5.一种观察藻胆体移动的光漂白后荧光恢复技术 [J], 马为民;米华玲;沈允钢
因版权原因,仅展示原文概要,查看原文内容请购买。

完整版荧光漂白恢复技术

完整版荧光漂白恢复技术

FRAP analysis
?We performed FRAP experiments on EYFP-expressing NLFK and HeLa cells. When the measured recovery data were analyzed by the Soumpasis method, we found a cytoplasm diffusion coefficient of D~0:75+0:3 mm2/s (n =8) for the NLFK cells and D~1:83+0:28 mm2/s (n =13) for the HeLa cells. ?The difference in the liquid phase properties (‘viscosity') of these cells is statistically significant (pv0:05), which indicates that they have different macromolecular concentrations. ?The average cytoplasm diffusion coefficients, SDcpT, were 15:5+2:7 mm2/s for the NLFK and 20:6+5:0 mm2/s for the HeLa cells, being thus quite similar. In both cell lines the cytoplasm diffusion coefficient,Dcp(r), varied significantly (Fig. 7 c).
3. Image processing
?The raw images of the confocal microscope were converted to 8-bit grey scale images. Only linear adjustments of the image brightness and contrast were performed, avoiding saturation. The gray-scale images were colored with an appropriate look-up table and converted to RGB images.

生物物理-荧光光谱技术

生物物理-荧光光谱技术

光漂白
2、淬灭(quenching)
(1)温度淬灭:
温度每升高10C ,荧光减少的百分比,称为温度系数。
在20-300C的范围内,温度系数大约为1.5。
(2)浓度淬灭:内滤光效应(inner filter effect)
(3)杂质淬灭:3O2
1O2
3、溶液pH的影响
利用一些物质在不同pH值溶液中荧光强度和颜色的改变, 可以判别各种滴定的终点。
B:I//或I为0 ,P=±1,平面偏振光,荧光分 子运动很慢或取向有序的情况。
C: I//I 0 ,0<P<1,生物大分子的荧光属 于这种情况。
(2) 环境因素及分子运动对荧光偏振度的影响 AA.温:度温的影度响的: 影响-温度升高,P降低 B:溶液粘度-粘度升高,P升高 C:分子的运动—转动
生色团
条件
ex max
em
nm 10-3
nm
Trp
H2O, pH7
280 5.6
348
Tyr
H2O, pH7
274 1.4
303
Phe
H2O, pH7
257 0.2
282
Y-base
二氢尿嘧 Yeast t-RNAPhe 320
1.3
460

F
F 敏感度 ns maxF 10-2
0.2
2.6
11
0.1
(一) 荧光的产生
1、分子的能量状态
在光学分析中涉及的分子能量有: Eo=Ee+ Ev + Er
Ee:价电子运动能, electron
Ev:原子在平衡位置附近的振动,vibration
Er:分子绕其重心的转动能, rotation 其中,Ee > Ev > Er
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

ZHONGGUO YIXUEZHUANGBEI
于 淼① 高 建①
[文章编号] 1672-8270(2009)06-0008-02 [中图分类号] R 197 [文献标识码] B
Characteristics of application and technology on FRAP , FRET and FCS/Yu Miao , Gao Jian//China Medical Equipment,2009,6(6):8-9.
[Abstract] Fluorescence recovery after photobleaching (FRAP), fluorescence resonance energy transfer (FRET) and fluorescence correlation spectroscopy (FCS) are three experimental techniques based on the fluorescence analysis that are commonly used to study molecular interaction. In this article, we will discuss and compare the application and technical specifications for FRAP , FRET and FCS.[Key words] FRAP; FRET; FCS; Fluorescence Analysis
[First-author's address] Laboratory Center, China Medical University, Shenyang 110001, China.
荧光漂白恢复、荧光共振能量转移和荧光相关光谱检测的技术特点
[摘要] 荧光漂白恢复(FRAP)、荧光共振能量转移(FRET)和荧光相关光谱(FCS)是三种以荧光为基础的检测技术,常用来研究分子间相互作用。

对三种技术的特点做以比较和讨论。

[关键词] 荧光漂白恢复;荧光共振能量转移;荧光相关光谱;荧光检测
作者简介
于淼,女,(1980- ),硕士,助教。

现就职于中国医科大学实验技术中心,主要从事激光扫描共聚焦显微镜工作。

FRAP:经荧光素标记的某一区域被光照射后,荧光物质的光化学结构被破坏,荧光强度下降,但随之此处荧光强度会逐渐恢复,荧光强度与恢复强弱及快慢代表周围分子扩散的速率或分子运动速度[1]。

FRET:受激态荧光素(供体)将其能量向另一个荧光素(受体)传递,使后者被激发,这一过程称荧光能量共振转移。

测定FRET程度的参数,包括供体淬灭、受体发射、供体荧光寿命、供体荧光去极化等[2]。

FCS:是一种通过检测微区内(共焦体积)分子
的荧光信息(强度、波动、波长等)来分析样品特性的检测
技术,类似于传统的荧光分光光度计,主要用于液态样品的成份分析[3]。

以上三种技术的主要参数有:
扩散率:测量扩散的速率,通常表现在分子和分子络合物的扩散系数。

多组分扩散:用来检测和区别单个和多组分之间扩散的能力。

运动分量:检测能够自由扩散的组分。

①中国医科大学实验技术中心 辽宁 沈阳 110001
ZHONGGUO YIXUEZHUANGBEI
学术论著
浓度:提供一个不需独立校准测量分子浓度的能力。

络合:检测分子络合。

络合化学计量学:检测分子络合的化学计量学,如分子结合时的基本率等。

结合动力学:测量形成络合物的动力学。

比较三种技术的检测参数,见表1。

物形成的动力学。

FRET又称为福斯特共振能量转移,即在两个单独的荧光团之间的偶极诱导偶极的作用。

这种现象要求在独立的受体供体荧光对之间的转换在相对分子距离小于10 nm时才能发生,而且供体的发射光谱与受体的吸收光谱要有实质性的重叠。

如果没有这种保证我们可能会被诱导,或者至少不是纯粹定性。

FCS是一种在很小容量内测定荧光强度相关变动的单分子检测技术,可以用来测量单一组分和多种组分的扩散。

如同FRAP,测定扩散系数需要了解光束的半径。

FCS不能测量运动分量,未经校准时不能提供一个直接和独立的浓度测量。

由于这种浓度测量方法能用来区分扩散系数,故FCS能提供络合物化学计量学和结合等温线的测量数据。

FCS也可以用来测量络合物的形成率。

FCS的测量依赖于有一个大的浓度波动,这限制了其所能测量的浓度范围只能在FCS能够测量的范围内。

综上所述,这三种新兴的实验手段为生命科学相关研究开辟了新的研究途径和研究领域,需要根据这
三种荧光检测技术的不同,选择适合的实验方法,配置适宜的软硬件功能[4],完成相应的科学实验。

参考文献
张志毅,周涛,巩伟丽.荧光漂白后恢复技术及其
在活细胞分子机制研究中的应用[J].生物技术通讯,2008(4):46-48.
张益珍,幸浩洋,李宜贵,等.荧光共振能量转移
技术及其在医药学中的应用[J].华西药学杂志, 2004,19(6):491-492.
袁兰.激光扫描共聚焦显微镜技术教程[M].北
京:北京大学医学出版社.2004:107-109.崔泽实.荧光显微镜的功能配置及应用要点[J].
医疗装备,2004,17(9):4-6.
[1] [2][3] [4] 收稿日期:2009-04-21
检测参数FRAP FRET
FCS 扩散率○
○多组分扩散○
运动分量○
浓度○络合○
○络合化学计量学○络合动力学

○○
表1 FRAP、FRET及FCS检测参数
FRAP是一种相对来说比较容易完成的技术。

通过扩散时间测量扩散系数,因而需要精心测量沿着z 轴在xy平面上光束的半径。

从FRAP中获得多个扩散系数是非常难的。

FRAP在三种技术中是唯一能够检测运动分量的技术,但它不能独立作浓度检测。

由于其只能区分扩散系数,因此检测分子络合和测量这些络合物的化学计量学的能力受限。

FRAP在二维扩散测定方面存在较特殊问题,如膜扩散,扩散系数依赖于分子大小,而且成对数关系。

FRAP能够用来测量分子动力学。

但FRAP技术也有它的不足之处,第一,它只能检测膜蛋白的群体移动,而不能观察单个蛋白的移动,其次,它不能证明膜蛋白在移动时是否受局部条件的限制。

FRET一般不用作测量分子扩散,不能独立的测量供体浓度, 如果精确校准,可用来测量受体浓度。

FRET很难获得化学计量学的信息,经过精心校准仅可获得有限的信息。

FRET在测量络合程度变化上体现出强大的技术能力,因此可用来测量络合
中国医学装备2009年6月第6卷第6期 荧光漂白恢复、荧光共振能量转移和荧光相关光谱检测的技术特点-于 淼等。

相关文档
最新文档