中考复习:二次函数的应用

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例2 [2013· 淮安]国家和地方政府为了提高农民种粮的 积极性,每亩地每年发放种粮补贴120元.种粮大户老王今 年种了 150 亩地,计划明年再承租 50 ~ 150 亩土地种粮以增 加收入.考虑各种因素,预计明年每亩种粮成本 y( 元 ) 与种 粮面积x(亩)之间的函数关系如图16-2所示: (1)今年老王种粮可获得补贴多少元? (2)根据图象,求y与x之间的函数关系式; (3) 若明年每亩的售粮收入能达到 2140 元,求老王明年种 粮总利润W(元)与种粮面积x(亩)之间的函数关系式.当种粮 面积为多少亩时,总利润最高?并求出最高总利润.
第16讲┃ 归类示例
解:(1)∵h=2.6,球从 O 点正上方 2 m 的 A 处发出, ∴y=a(x-6)2+h 过点(0,2), ∴2=a(0-6)2+2.6, 1 解得 a=- , 60 1 2 故 y 与 x 的关系式为:y=- (x-6) +2.6. 60
第16讲┃ 归类示例
ຫໍສະໝຸດ Baidu
第16讲┃ 归类示例
2 2
第16讲┃ 归类示例
二次函数解决销售问题是我们生活中经常遇 到的问题,这类问题通常是根据实际条件建立二 次函数关系式,然后利用二次函数的最值或自变 量在实际问题中的取值解决利润最大问题.
第16讲┃ 归类示例 ► 类型之三 二次函数在几何图形中的应用
命题角度: 1. 二次函数与三角形、圆等几何知识结合往往是涉及 最大面积,最小距离等; 2. 在写函数解析式时,要注意自变量的取值范围. 例3 [2013· 无锡] 如图16-3,在边长为24 cm的正方形纸 片ABCD上,剪去图中阴影部分的四个全等的等腰直角三 角形,再沿图中的虚线折起,折成一个长方体形状的包装 盒(A、B、C、D四个顶点正好重合于上底面上一点).已 知E、F在AB边上,是被剪去的一个等腰直角三角形斜边 的两个端点,设AE=BF=x cm.
(2)当h=2.6时,球能否越过球网?球会不会出界? 请说明理由;
(3)若球一定能越过球网,又不出边界,求h的取值 范围.
图16-1
第16讲┃ 归类示例
[解析] (1)根据h=2.6和函数图象经过点(0,2),可用待定 系数法确定二次函数的关系式;(2)要判断球是否过球网, 就是求x=9时对应的函数值,若函数值大于或等于网高2.43 ,则球能过网,反之则不能;要判断球是否出界,就是求抛 物线与x轴的交点坐标,若该交点坐标小于或等于18,则球 不出界,反之就会出界;要判断球是否出界,也可以求出x =18时对应的函数值,并与0相比较.(3)先根据函数图象过 点(0,2),建立h与a之间的关系,从而把二次函数化为只含 有字母系数h的形式,要求球一定能越过球网,又不出边界 时h的取值范围,结合函数的图象,就是要同时考虑当x=9 时对应的函数y的值大于2.43,且当x=18时对应的函数y的 值小于或等于0,进而确定h的取值范围.
二次函数的应用
第16讲┃ 考点聚焦
考点聚焦
考点1 二次函数的应用 二次函数的应用关键在于建立二次函数的数学模型, 这就需要认真审题,理解题意,利用二次函数解决实际 问题,应用最多的是根据二次函数的最值确定最大利润 、最节省方案等问题.
第16讲┃ 考点聚焦
考点2 建立平面直角坐标系,用二次函数的图象解决实际问题
建立平面直角坐标系,把代数问题与几何问题进行互 相转化,充分结合三角函数、解直角三角形、相似、全等 、圆等知识解决问题,求二次函数的解析式是解题关键.
第16讲┃ 归类示例
归类示例
► 类型之一 利用二次函数解决抛物线形问题 命题角度: 1. 利用二次函数解决导弹、铅球、喷水池、抛球、 跳水等抛物线形问题; 2. 利用二次函数解决拱桥、护栏等问题. [2012·安徽] 如图16-1,排球运动员站在点O处练
第16讲┃ 归类示例
(1)若折成的包装盒恰好是个正方体,试求这个包装盒 的体积V; (2)某广告商要求包装盒的表面(不含下底面)积S最大 ,试问x应取何值?
第16讲┃ 归类示例
图16-2
第16讲┃ 归类示例
[解析] (1) 用每亩地每年发放种粮补贴金额乘以今 年种粮面积即可求出今年老王种粮可获得的补贴;(2) 设出一次函数关系式,结合图象中给出的两点坐标, 用待定系数法求出一次函数关系式;(3)根据每亩的售 粮收入加每亩地的种粮补贴减去每亩种粮成本,再乘 以种粮面积x亩,可得关于x的二次函数关系式,然后 利用二次函数的性质,即可求出当种粮面积为多少亩 时总利润最高及最高总利润.
例1
习发球,将球从O点正上方2 m的A处发出,把球看成点, 其运行的高度y(m)与运行的水平距离x(m)满足关系式y= a(x-6)2+h.已知球网与O点的水平距离为9 m,高度为2.43 m,球场的边界距O点的水平距离为18 m.
第16讲┃ 归类示例 (1)当h=2.6时,求y与x的关系式(不要求写出自 变量x的取值范围);
第16讲┃ 归类示例
解:(1)120×150=18000(元). 答:今年老王种粮可获得补贴18000 元. (2) 由图象知,y与 x之间的函数是一次函数.设所求关系式 为:y =kx+b(k ≠0).将(205,1000) ,(275,1280)两点坐标 代入,这样所求的y与 x之间的函数关系式为y=4x+180. (3)W=(2140+ 120-y)x =(2140+120-4x-180)x=-4x2 +2080x. b 2080 因为- 4<0,所以当 x=- =- = 260(亩) 2a 2×(-4) 4ac -b 0-2080 时,W最大= = =270400(元). 4a 4×(-4) 答:当种粮面积为260亩时,总利润最高,最高总利润为 270400元.
第16讲┃ 归类示例
利用二次函数解决抛物线形问题,一般是先根 据实际问题的特点建立直角坐标系,设出合适的二 次函数的解析式,把实际问题中已知条件转化为点 的坐标,代入解析式求解,最后要把求出的结果转 化为实际问题的答案.
第16讲┃ 归类示例 ► 类型之二 二次函数在营销问题方面的应用
命题角度: 二次函数在销售问题方面的应用.
相关文档
最新文档