生产测井类型

合集下载

生产测井(2)

生产测井(2)

生产测井什么是生产测井生产测井是石油工程领域中用于评估油井产量、生产状况和储量的一种技术。

通过对油井进行测量和分析,生产测井可以提供关于油井中流体(包括油、气和水)的性质、产量和产能的有关信息。

这些信息对于油田开发和生产管理来说至关重要,能够帮助决策者制定相关的决策和调整生产策略。

生产测井的主要目的生产测井的主要目的是获取并分析与油井生产相关的数据,以便确定油井的产能、评估油田储量、监测生产状况、优化生产过程等。

通过生产测井,决策者可以了解到油井的产量、流体类型及其比例、油藏压力、水和气的侵入情况、裂缝的存在等信息。

这些数据可以用于判断油藏的产能、预测生产前景、调整生产策略、确定增产潜力、提高采收率等。

生产测井的常用方法和工具在生产测井过程中,常用的方法和工具主要包括以下几种:1.生产日报表:通过生产日报表,可以记录和汇总每日的产量情况,包括油、气和水的产量以及注入液体的用量等。

这些数据可以用于生产指标的评估和对油井性能的监测。

2.流量测井:通过流量测井工具,可以测量油井中流体的流动速度和流量。

流量测井可以提供关于油井中不同流体相的比例、流动速度和产量的信息。

3.压力测井:通过压力测井工具,可以测量油井中不同位置的压力情况。

压力测井可以提供油井压力分布、油藏的压力衰减情况、裂缝的存在等信息。

4.温度测井:通过温度测井工具,可以测量油井中不同位置的温度情况。

温度测井可以提供油井和油藏的温度分布情况,用于评估油井的生产状态和热采过程中的温度变化等。

5.密度测井:通过密度测井工具,可以测量油井中不同位置的密度情况。

密度测井可以提供不同流体相的密度差异,用于评估油井中不同流体相的比例和混合情况。

生产测井的应用生产测井在油田开发和生产管理中有着广泛的应用。

以下是一些典型的应用场景:1.优化生产策略:通过生产测井可以获取到有关油井产量、油藏压力、流体含量等的数据,决策者可以基于这些数据优化生产策略,提高油井产能和采收率。

关于井的几个深度

关于井的几个深度
KB(kelly bushing):补心海拔。
• MD:测量深度 TVD:垂深 Datum:补心高 KB:补心海拔 将MD校直得到TVD TVDSS=-TVD+从井口开始测量的,这就意 味着测井序列与地下岩性序列之间有位移。 以直井为例:MD=3000,KB=20,那么TVDSS=-2980, 取极限情况理解,测井曲线上3000米处的岩性并不是地下 3000米处的岩性,而是地下2980米处的岩性。 不知道我有没说明白,个人理解!
井斜数据一般只要MD、 INCL、 AZIM三列数据就够了!
MD、TVD都是以钻井平台位基准面的 Z值相当于-SSTVD,以海平面作为基准

几个概念先弄清楚: MD: 测量深度 measure depth, 从井口开始算的 TVD: 垂深 true vertical depth, 从井口开始,直井或直井段 TVD=MD MSL: 平均海平面 mean sea level, 也就是海拔0米 SSTVD: 海拔 sub sea TVD, 负数,从MSL向下算的 KB: 补心高,井口到地面 kelly bushing KB elevation: 补心海拔, KB+地面海拔,海上的井地面海拔=0 datum:一般指地震数据的基准面,就是时间0对应的海拔 (记得论坛上有果友画了一章图,刚才没有找到,可仔细找找,挺直 观的)
• 这个图貌似有问题啊!MD 的朝上的箭头是不是 应该穿过海平面线 直到方补心哪条横线啊 。 • 这个图除了MD应该从井口算起外, 其他都应该 没问题。 另外,果友 zhitianshi 的问题答案是:软件里一 般直接用KB代表补心海拔高度,而不用KBE来表 示补心海拔高度。前面那位果友说得没错,你好 好对照着图看看想想,肯定能弄明白! • 说KB 为补心高 KB elevation为补心海拔 ,那这个200 应该是补 心海拔高度。而非补心高。呵呵 ,

生产测井技术及应用

生产测井技术及应用

(二)、产气剖面测井解释及应用
① 确定产出剖面,了解生产动态
层位
盒7 马五12 马五13 马五14
2001.5.15 8.33 0.00 91.64 0.03
2002.10.27 9.58 0 90.42 0
相对产气量(%)
2003.11.28 0.00 13.01 82.95 4.03
2004.7.28 5.68 7.70 85.69 0.92
抽油井产液剖面测井解释及应用
(1)单探头追踪法
流速的计算方法为:
Va
L t
GR
式中 L为两次测量示踪剂
△t
段塞位移的距离(峰值的
GR
深度差); Δt为段塞位移
所需的时间。
(d2,t2) L
(d1,t1)
抽油井产液剖面测井解释及应用
(2)静止测量法
流速的计算方法为:
Va
L t
式中 L为喷射器至探头的距
主要技术指标: 测量范围 : 4 1/2in ~ 9 1/2in (114mm~ 245mm) 启动排量: 1.7ft/min(在7in套管中) 最大流体速度: 500ft/min(在7in套管中) 仪器外径 : 1 11/16in(43mm)
1 1/2in(38mm)
特点: 6臂篮式全井眼流量计可以很好地保护转子叶片,而且可以 在高斜度井和水平井中提供较好地扶正效果。不过,弹簧臂与管壁 间的相互作用增大了摩擦力,这增加了流量计下井的困难程度。
为了监测各储层生产动态, 近几年该井共进行了六次产出 剖面测井,解释结果综合情况 如上表所示,根据上表做出各 小层产气变化趋势如右图所示, 其中,马五1 3是该井主产气层, 但2005年相对产气量明显下降。

精选生产测井若干种固井质量检测技术的对比分析

精选生产测井若干种固井质量检测技术的对比分析
③ 声波-伽马密度测井能识别水泥环与套管之间的 微间隙、水泥缺失,但测井资料显示地层波弱,波列 连续性不好,在对第二界面评价时出现较多不确定的 结论。尤其当水泥浆密度与周围介质密度差别小时, 难以区分管外水泥的存在(充填)状况,这种情况下不 应使用这种测井方法;
21
3 几点建议(续)
④ SBT测井用扇区水泥图进行管外环形空间水泥成像,能直
度衰减和声波的衰减系数、时差,还有全
波列;
③ 使用137Cs放射性源。用远近探测
器分别定量测量管外平均密度,套管壁厚,
套管偏心系数等信息;
12
1 国内现有的固井质量测井技术 1.3 声波-伽马密度测井
技术特点(续)
④ 能识别水泥环与套管之间的微间隙、水部分测井质
18
1 国内现有的固井质量测井技术
1.5 CET水泥评价测井
技术特点
• 确定水泥抗压强度; • 对微环有抗干扰性(如微环内充填气体则 影响加大); • 有一定分辨沟槽的能力; • 能消除环境(如快地层)的影响; • 可以确定套损的腐蚀程度及套管的椭圆度; • 不能对第二界面提供评价。
19
1 国内现有的固井质量测井技术 1.5 CET水泥评价测井 应用情况
1
1 国内现有的固井质量测井技术
1.1 声波变密度测井
技术特点 声波变密度测井是现场检查固井质量常用
的测井方法,其优点是仪器国产化,采集信息 较丰富即在对应的每一深度采样点上,输出一 个反映该点所在层段的声波全波列图,一般情 况下提供的固井质量检测资料及评价结果能满 足油田生产的需要。
2
1 国内现有的固井质量测井技术
两种SBT仪器设计上有差别,两者的性能也有所不同。 Eclips-SBT贴井壁测量,受水泥空隙、双层套管、仪 器偏心、泥浆性能变化等诸多因素的影响小,能了解水 泥沟槽大小、形状、位置和方向,且不受快地层的影响。 而康普乐SBT为居中测量,在一定程度上仍受井内泥浆 气侵、仪器偏心的影响,且不能定向测量。

测井方法原理及应用分类

测井方法原理及应用分类

测井方法的主要分类1. 电法测井,又分自然电位测井、普通电阻率测井、侧向(聚焦电阻率)测井、感应测井、介电测井、电磁波测井、地层微电阻率扫描测井、阵列感应测井、方位侧向测井、地层倾角测井、过套管电阻率测井等(频率:从直流0~1.1GHZ)。

2. 声波测井,又分声速测井、声幅测井、长源距声波全波列测井、水泥胶结评价测井、偶极(多极子)声波测井、反射式声波井壁成像测井、井下声波电视、噪声测井等(频率由高向低发展,20KHZ~1.5KHZ)。

3. 核测井,种类繁多,主要分三大类:伽马测井、中子测井和核磁共振测井,伽马测井具体如下:自然伽马测井、自然伽马能谱测井、密度测井、岩性密度测井、同位素示踪测井等。

中子测井具体包括:超热中子测井、热中子测井、中子寿命测井、中子伽马测井、C/O比测井、PND-S测井、中子活化测井等。

发展趋势:中子源-记录伽马谱类(非弹性散射、俘获伽马、活化伽马等不同时间测量)。

4. 生产测井,主要分为三大类:生产动态测井、工程测井、产层评价测井。

1生产动态测井方法主要有:流量计、流体密度计、持水率计、温度计、压力计、井下终身监测器等。

工程测井方法主要有:声幅、变密度测井仪、水泥胶结评价测井仪、磁定位测井仪、多臂微井径仪、井下超声电视、温度计、放射性示踪等。

产层评价方法测井:硼中子寿命、C/O比测井、脉冲中子能谱(PNDS)、过套管电阻率、地层测试器、其它常规测井方法组合等。

5. 随钻测井,大部分实现原理与常规电缆测井相同,实现方式上有许多特殊性。

2测井方法主要特征总结归类表方法发射接收记录显示纵向分层能力探测深度测量原理被测物理量的影响因素测井响应的影响因素主要应用自然伽马无NaI闪烁晶体探测器计数率强度(API)18英寸6-8英寸长半衰期的天然放射性同位素U、TH、K放射性同位素的丰度、地层密度泥浆密度井径泥浆性能地层密度地层划分与对比泥质定性与定量分析测量地层沉降示踪测量自然伽马能谱多道能谱计数器能谱U(PPM)、TH(PPM)K(%)18英寸6-8英寸利用232Th(2.62)238U( 1.76)、40K(1.46)特征能量放射性同位素的丰度、地层密度泥浆密度井径泥浆性能地层密度重晶石同上,附加沉积环境生油指示岩性与矿物组分粘土类型等成岩作用3自然电位井下点电极地面电极电位电位(mV)0.5m 6-8in薄膜电位扩散电位动电电位,通常可忽略地层水与泥浆滤液矿化度之差温度1)地层厚度2)地层的真电阻率3)侵入深度4)侵入带电阻率5)泥岩电阻率6)泥浆电阻率7)井眼直径8)所含流体性质划分储层地层对比估算泥质计算地层水电阻率声波速度2发2收4个首波时间时差()/(ftS(慢度)24英寸5英寸fV1f=20KHz声波反射、折射岩性、孔隙度、埋深、地层年代1)井眼不规则、扩径2)周波跳跃3)随机噪声4)天然气5)泥岩蚀变带地层对比孔隙度岩性地震时深转换识别气层和裂缝4长源距声波阵列声波2发2发2收2收8个阵列接收4个首波时间T1R1全波列多个波形双时差波形纵波、横波、撕通利波时差、波形36英寸12英寸声波反射、折射全波列:纵波、横波、瑞利波、撕通利波、泥浆波同上1)井眼不规则、扩径2)周波跳跃3)随机噪声4)天然气5)泥岩蚀变带地层对比孔隙度岩性地震时深转换岩石力学特性参数识别气层和裂缝(渗透率)中子测井(补偿)CNL 中子源双源距、双探测器双计数率石灰岩中子孔隙度(%)24英寸9-12英寸热中子的减速(含氢量)和扩散(双源距消掉了扩散的影响)地层中所有含氢物质井眼泥浆矿化度、地层水矿化度、骨架岩性等确定地层孔隙度、判断岩性、识别气层密度测井(补偿)FDC 伽马源双伽马探测器双计数率地层密度(3/cmg)18英寸6-9英寸康普顿散射效应-地层电子密度地层电子密度岩石骨架、孔隙度和孔隙流体类别、性质及含量、泥饼等确定岩性、计算孔隙度、确定泥质含量、划分裂缝带和气层5岩性密度测井LDT 伽马源双探测器(一个测量ρb、另一个测量Pe)总计数率伽马射线谱(光电区、散射区)ρbg/cm3Peb/e康普顿效应-地层密度、光电效应-岩性岩石矿物成分及含量、岩石孔隙度和孔隙流体类别、性质及含量-电子密度井眼的影响、泥饼自然放射性确定岩性、计算孔隙度、确定泥质含量、划分裂缝带和气层普通电阻率测井供电电极测量电极恒流供电测电极间电位差视电阻率m与电极距有关与电极距有关IUmnRa单极供电或双极供电岩石岩性、矿化度、孔隙度与孔隙结构、含油性及其分布1)井眼、2)电极距3)围岩与高阻邻层屏蔽影响4)侵入影响5)地层井眼倾斜的影响粗略区分油水层、划分岩性和确定岩层界面、估算Rt、地层对比6双测向主电极测量电极、辅助屏蔽电极(LLD)、监督电极供电电流回流电极(LLS)监督电极的电位变化视电阻率m0.6mLLD:115cmLLS:30-35cm1IUKRdll M深侧向与浅侧向同时测量岩石岩性、矿化度、孔隙度与孔隙结构、含油性及其分布同上计算Sw、判断油气、水层双感应发射线圈T接收线圈R6FF40-6线圈感应电动势视电导率a1.3mILD:1.7mILM:0.8m两个自成回路的线圈,即T和R,T(交变电流)-地层(涡流)-地层(交变电磁场)-R(感应电动势)井眼、侵入带、地层电导率;侵入带直径Di同上油田地质研究,如油层对比和油层非均质研究、划分裂缝带和有地阻环带的油气层微球形聚焦MSFL 长方形主电极A0测量电极M0 Rxo视电阻率m15cm 5cm??01IUR MoOMSFL探测冲洗带电阻率岩石岩性、矿化度、孔隙度与孔隙结构、含油性及其分布同上计算Rxo井径测井CAL 无贴井壁测量井眼直径in(cm) ————极板贴井壁机械法直接测量井眼直径井眼垮塌、下井仪器的状态(如仪器偏心)井径大小、计算固井水泥量;测井解释环境影响校正;提供钻井工程所需数据7中子寿命测井NLL (热中子衰减时间测井TDT)脉冲中子源双伽马射线探测器双源距,不同时间的伽马射线计数率热中子寿命τ(us)、Σ(c.u.)18in 6-8in减速与俘获,主要τ和Σ的关系地层中各种元素的俘获伽马井眼影响、泥浆滤液侵入带、原状地层的影响、层厚影响、背景值影响研究地层性质特别是含油性、更适合与套管井中区分油气及研究开发动态(时间推移测井)电磁波传播测井发射天线、发射1.1GZ接收天线探测岩石极化性质激发激化电位(mv)双发双收井眼补偿T180R140R280T2(mm)地层介电常数εr泥浆、泥饼介电常数确定冲洗带含水孔隙度;冲洗带含水饱和度;区分油气、水、层;探测裂缝带井下声波电视BHTV 超声换能器1.3MHz超声换能器声波回波幅度与回波时间电压(mv) 6.5mm 6-20in脉冲-回波法反射与声衰减特性声阻抗井眼内泥浆特性、井壁岩性表面特性识别裂缝、地层分析、替代取心、套管检查、地应力测量核磁共振NMR 径向磁极产生均匀磁场探测系统横向驰豫时间T23in 1inCPMG脉冲序列法测量T2、反转恢复法测量T1流体含量;流体特性;孔径和孔隙度流体含量;流体特性;孔径和孔隙度地层孔隙度、渗透率、束缚水饱和度;识别稠油层、复杂岩性地层;低阻储层8微电阻率成像FMS 多排纽扣状电极公共回流电极直接记录每个电极的电流强度及所施加的电压由仪器系数换算出反映井壁四周的地层微电阻率,井壁成像5mm 1-2in极板紧贴井壁,小电极向地层发射同极性的电流,流出的电流通过扫描测量方式被记录(高频、低频、直流)泥浆滤液矿化度、井壁介质导电特性井壁介质导电特性研究岩石层理、岩石结构、岩石构造、替代取心、薄层分析9。

生产测井技术简介

生产测井技术简介

生产测井技术简介(简稿)1、生产测井的定义所谓生产测井,是指用于完井后的注入井和生产井的测井技术,其目的在于评价该井本身和油藏的生产动态,即评价油管或套管内外流体的流动情况。

生产测井与裸眼井测井相比,后者反映的是储层的静态信息,主要目的是为了寻找油气层的;而前者反映的是油藏的动态信息,主要目的就是为了监测油藏的开发情况,侧重于油藏的开发管理工作。

2、生产测井的分类按照应用范围进行分类,生产测井技术包括:•动态监测测井主要包括生产井产液剖面测井和注入剖面测井两种。

产液剖面测井应用于自喷井、抽油井、电潜泵井等,主要目的是为评价井内流体的流动情况,并计算各生产层的产液能力(产液量的大小)、产液性质(如油、气、水等)等。

注入剖面测井应用于注入井,如注水井、注气井等(注入流体的性质取决于油田的开发设计方案和油藏的特征等因素),其主要目的是为了评价各注入层的吸液能力(如绝对吸水量的大小、吸水指数等)。

[小知识]:起初,地下的原油是靠地层的原始压力自然开采出来的。

随着油田的不断开发,地层的能量即地层压力呈现下降的趋势,单单依靠此时的地层压力,是无法开采更多的原油。

为了解决这种矛盾,人们便开发了水驱、气驱或其他驱油技术,即通过注入井向目的层注入一定压力的流体,使地层逐步恢复原始地层压力,以提高油藏的采收率。

•产层评价测井套管井的产层评价测井,包括碳氧比(C/O)测井、脉冲中子衰减测井等测井方法,其主要目的是为了研究油藏投入开发后的剩余油分布情况。

•工程测井技术工程测井的应用范围较广,包括套管质量检查,射孔质量检查,固井质量检查,评价压裂酸化作业效果,检测漏失、窜槽等异常现象。

3、5700系列生产测井组合仪介绍目前,苏丹作业区拥有5700系统配备的生产测井仪8200系列,能够完成产液剖面、注水剖面以及部分工程测井项目。

•Gamma ray自然伽马仪,测量地层的自然放射性曲线,主要用于校深。

•Casing collar location磁定位仪,测量套管或油管的磁性记号曲线,主要用于校深,另外,也可以用于检查管柱结构、确定接箍、射孔的位置。

精选水平井生产测井技术

精选水平井生产测井技术

fn
0.0056
0.5N
0.32 Re n
(7-19)
(2)计算校正因素es
s
0.0523 3.182X
X 0.8725X
2
0.01853x 4
(7-20)
其中,
Y
L [H L ()]2
X ln(Y )
(7-21) (7-22)
(3)计算压力降落
dP dP dP dZ ( dZ )el ( dZ ) fr
对于高含水率情况,涡轮和持水率计主要暴 露在下部的水中,反映水的流动情况。测量时, 油气水必须通过金属集流伞,然后进入集流通道, 所以涡轮测得的RPS值反映了油气水总的流动情 况。
图7-9 低含水情况下的分层流体
图7-10 高含水情况下的分层流体
图7-11 水平井生产测井组合仪示意图
一、涡轮流量计和密度计的响应
水的表观速度较低时(小于0.1英尺/秒), 为均质泡状流动。随着油相表观速度的增加,油 泡开始聚集形成大油泡流动(段塞流),最后形 成雾状流。
1.油水两相流形图
图8-4 18.0厘泊,比重0.834的油与水在0.806英寸管道中的流型
2.气水两相流形图
图8-4a 空气-水混合物在1.026英寸管道中的流型
一、流型实验及流型图
1.流型实验
利用实验模型进行水平井流型实验,观察相应流体 的流型并测量持水率,各参数的变化范围为: (1) 气体流量,0~300MSCF/d; (2) 水的流量,0~30gal/min; (3) 平均系统压力,35~95Psi; (4) 管子直径,1英寸和1.5英寸; (5) 持水率,0~0.87; (6) 压力梯度,0~0.8Psi/ft; (7) 倾斜度,-90°~90°; ( 8 ) 水平流型。

生产测井 井下流量测井

生产测井 井下流量测井

思考:全井眼转子流量计和集流伞式流量计技术特点
全井眼流量计与一般的连续流量计不同之处是它有可伸 缩的涡轮转子叶片,通过套管时,转子叶片收缩,到达套管 下部的目的测量井段时,叶片可以张开。全井眼流量计的叶 片可以覆盖60%左右的套管截面。因此可以有效校正多相 流动中油、气、水速度剖面分布不均的影响。连续流量计一 般适用于中高产井。
对低产井应采用集流式流量计,集流式流量计测量时用 封隔器皮囊将套管套面封堵,迫使流体进入集流通道,从而 提高仪器响应值。
二、涡轮流量计测量原理(重点 )
涡轮结构示意图
涡轮流量计是应用流体动量矩原理实 现流量测量的。由动量矩定理可知,当 涡轮旋转时,它的运动方程为
J
d
dt
M0
Mi
涡轮起动后,管内流体的流量不随时
V2 θ
V1
θ Vb
涡轮示意图
V1(Vf)
驱动力矩M0
圆周运动动量方程:F (v1 cos1 v2 cos2 )Q
半径r处驱动力矩: M 0 Fr (v1 tan r)rQ
tan rQ2 r2Q
A
理想情况(无阻力):
M0
0
tan
A
rQ 2
பைடு நூலகம்r 2Q
Q tan
rA
考虑到叶片数目有限, 且具有一定厚度:
G
4
ve l
式中,Re为叶片雷诺数;G为常数,l 为叶片长度。
低流速时机械摩阻和 粘性摩阻共同影响
流速增加到一定程度, 机械摩阻几乎不再影响, 粘性摩阻起主导作用。
转子响应与流体速度关系曲线
第二章 井下流量测井
第2节 连续流量计测井
应用: 注水井确定吸水剖面 中高生产井中确定分层流量

NEW石油工程测井生产测井和电缆地层测试器教案

NEW石油工程测井生产测井和电缆地层测试器教案

压差密度计又称密度梯压计,利用两个相距2ft的压敏波纹管,测量井筒内流体两点间的压力差值。对摩阻损失不大的井眼,测出的压力梯度正比于流体密度。
压差密度计-Differential Pressure Fluid Density Tool
第15页/共80页
伽马密度计:利用不同流体对伽马射线的吸收特性不同,来测定流体的密度。
钻杆地层测试器(Drill Stem Tester---DST)电缆地层测试器(Wireline formation Tester—RFT---FMT---MDT)
是一类微型试井设备,价格低,但不能测量储集层的边界,对储集层压力影响范围在3米以内。电缆地层测试器的类型: RFT、 FMT、 SFT、 MDT、CWFT
伽马密度计:类似于地层密度测井射线与物质作用
流体密度测井资料的应用识别流体类型划分流体界面探测,见图4-1 分析多相流产液剖面—确定持液率Yh,YL
第16页/共80页
持水率测量方法主要有电容法持水率计和放射性低能伽马持水率计。 电容法持水率计(Capacitance water hold-up tool)测井是利用油气与水的介电特性差异(水的相对介电常数为60~80,油气的相对介电常数为1.0~4.0)实现对流体成分的区分和测定水的含量。放射性低能伽马持水率计利用不同流体对低能γ光子的吸收特性来测量混合流体的密度,从而实现对流体成分的区分。
RFT实测资料的应用
地层测试器
关系为:PFG =ρ*1.422 (3)
2)电缆地层测试器
第24页/共80页
RFT:重复式地层测试器(Schumberger公司,国内应用最多。Repeat Formation Tester)FMT:多次地层测试器 (西方---ATLAS公司。比RFT用得少,Formation Muti—Tester)SFT:选择式电缆地层测试器 (哈里伯顿公司 ,国内使用很少用。Select Formation Tester)MDT:组件式地层动态测试器 (90年代初 Schlumberger 推出),是井眼成像测井MAXIS-500上的一支重要井下仪器。CWFT:套管井地层测试器(哈里伯顿公司,80年代推出)

地球物理测井、生产测井简介

地球物理测井、生产测井简介

密度、声波等等),然后利用这些物理参数和地质信息(泥质
含量、孔隙度、饱和度、渗透率等等)之间应有的关系,采用 特定的方法把测井信息加工转换成地质 信息,从而研究地下 岩石物理性质与渗流特性,寻找和评价油气及其它矿藏资源。
测井的起源及发展历程 测井起源于法国,1927年法国人斯仑贝谢兄弟发明了电
测井,开始在欧洲用于勘探煤和气。中国使用电测井勘探石
地球物理测井、生产测井简介
前言
地球物理测井是应用地球物理学的一个分
支,简称测井。它是在勘探和开发石油、天然 气、煤、金属矿等地下矿藏过程中,利用各种 仪器测量井下地层的各种物理参数和井眼的技 术状况,以解决地质和工程问题的一门学科。
• 测井的基本原理
测井是用多种专门仪器放入钻开的井内,沿着井身测量钻井 地质剖面上地层的各种物理参数(电阻率、自然电位、中子、
测井资料的采集-下井仪器
下井仪器主体是探测器,还有电子线路、机 械部件及钢外壳。探测器将地层的物理性质
转换成电信号。
测井资料的采集-地面记录仪
地面记录仪是在地面给井下仪器供电,对井下
仪器实行测量控制,接受和处理井下仪器传来的测 量信号,并将测量信号转换成测井物理参数加以记 录。 多线记录仪
数字磁带测井仪
油和天然气,始于1939年12月,奠基人是原中国科学院院士、
著名地球物理学家翁文波教授,测的第一口是四川巴县石油
沟油矿1号井。
60多年来,中国测井仪器经历了四次更新换代,第一 代-半自动测井仪;第二代-全自动测井仪;第三代-
数字测井仪;第四代-数控测井仪。海洋测井一直走在
中国测井的前列,已经完成了第四代测井仪器的转化工 作。目前,中国正在研制或者引进第五代测井仪器-成 像测井仪,将作为21世纪更新换代的新产品!

生产测井技术简介

生产测井技术简介

YW
CPSO CPS CPSO CPSW
图2-10 JLS- 25分测仪持水率与含水率的关 系实验图板
式中分别为持水 率在油、水中的 标定值和实际测 量值。查图板时, 输入的涡轮流量 频率响应值采用 停抽法或平均法 读取。
图2-11 是该仪器实测一口井的实例。对三个层进 行了点测,各测点的读值如表2-1。把读值代入 图2-9和图2-10中可以得到相应射孔层的含水率 和油水产量。
2 生产测井的发展历史
生产测井技术的发展始于20世纪30年代, 最初只研制了温度计,40年代又研制了压力计和 流量计,当时这些仪器只能单参数测量;50年代 研制了同时测量的综合产出剖面测井仪器,一次 下井可同时采集流量、压力、温度、持水、密度 等多参数信息;进入21世纪的今天,中子寿命测 井、C/O测井、脉冲中子氧活化测井、井下电视 成像测井、水平井生产测井等特殊生产测井技术 日臻完善,相应的处理方法也有了突飞猛进的发 展。
(五)流型判断
判断是油水两相流动还是油、气、水三相流动的主要标准 是看流动压力是否大于泡点压力。在一口井中通常可能是两相 流动或者三相流动。地面产油、气、水的井在泡点压力小于井 下流动压力时,井下为油水两相流动,反之井下呈油、气、水 三相流动。
井下是单相流动、两相流动还是三相流动,要根据井口产 出流体性质、泡点压力和密度等测井资料综合分析确定。
型、漂移流动模型。
对于油气两相流动,计算时用油的参数替代水的参数即可。
3.油、气、水三相流动
三相流动中,计算油、气、水表观速度方法 是采用滑脱速度模型:
(七)产层各相产量计算
图2-7 过环空测井仪器下入示意图
图2-8 JLS- 25分测仪结构原理示意图
图2-9 JLS- 25分测仪涡轮响应关系实验图板

第七部分 生产测井资料解释

第七部分 生产测井资料解释

脉冲中子氧活化测井仪器采用一个 较短的活化期(2s、10s视水流速 度而定)和一个相对较长的数据采 集期(一般为60s),以点测非集 流方式进行活化测量。当水流经中 子发生器时,被快中子活化,活化 后的水在流经3个不同源距的探测器 时,记录下活化伽玛射线(能量为 6.13MeV)的时间谱(如下图所示), 得到“峰位时间”,即水从中子源 流动到探测器所用的时间T;结合源 距S(远、中、近探测器源距分别为 180cm、90 cm、45 cm),就可计 算水流速度V;再根据被测点的横截 面积A,可计算出测点水流量Q。即, Q =(S/T)×A=V×A
涡轮流量测井方法分别为:多次通过法、两次通过法和单通过 法。其中多次通过法的测量和解释精度最高。
涡轮流量注入剖面的定量解释
• 视速度回归(每个层) • 确定表观速度 • (表观速度:管子的全部过流断面被混合物中的某一 相占据的流动速度) • 分层注入量计算
W120井涡轮吸水剖面处理界面
W120井涡轮吸水剖面解释成果图
自然电位
油管穿孔


封隔器


判 断 注 水 工 具 是 否 正 常 ( 电 磁 流 量 判 断 1 配 水 器 1 被 堵 )
微电极
电磁流量
磁定位
配水器P1被堵
泵压:20.9MPa 油压:15.0MPa
封隔器F1
P
套压:0
配水器P2
(三)脉冲中子氧活化注入剖面解释
• 脉冲中子氧活化测井可以求得管外水流量。主要用于 注水、聚合物和三元复合剂的注入剖面测量,同时还 可实现对配注井内的管柱工具(水嘴和封隔器)是否 堵死、泄漏、油套变径以及管外窜流的检测等。脉冲 中子氧活化注水剖面解释资料精度高,为合理评价调 驱效果,调整注水开发方案提供可靠依据。

生产测井技术介绍

生产测井技术介绍

解释模型
1、相关流量测井是流体追踪测井,由此可推演出流 体速度和体积流量计算方法。 2、在追踪过程中,由于示踪剂可随流体进入地层, 追踪到的异常幅值为剩余的示踪剂强度,利用面积法 进行相对吸水量的计算。 3、由测井速度与示踪剂移动速度的关系,可在层间 追踪的韵律上判断各层的吸水情况。
下井仪器: 遥测短节、磁性定 位、伽马、温度、 井下释放器等仪器。 主要技术指标: 耐温:150℃; 耐压:60MPa; 直径:22mm 25.4mm 38mm。
测井实例
管外窜通层
同位素测井判 断套管外上窜 现象。窜通吸 水量占全井注 水的81.56% 该井经工程作 业证实确实窜 槽。
路径粘污
正常 吸水层
生产测井在油田开发中的作用

开发初级阶段:生产测井主要目的是了解油井的分层产液 量及性质,在注入井中了解注入层位及注入剖面,检查射 孔效果等。为油田初期试产提供准确的井下信息,以此做 为确定采油速度、注采方式、开发层系、合理布井、调整 井网和采油工艺等技术依据。 中后期:利用生产测井定期录取的油、水井动态监测资料 对油田合理开发、挖潜、堵水、调剖等措施提供理论依据。 可利用动态监测资料分析开发区块的注采关系,并结合地 质资料对剩余油分布情况进行分析,为合理开发油气田提 供依据。
测井实例
该井为局重点井, 测井时日产达 90m3/d,井口不含 水,通过该井测量, 为该区块布井及下 步勘探重点井段提 供了依据,同时也 为该区块的资料解 释提供了宝贵信息。
产油井实例 该井产出29.2m3/d 均来自井底层段, 为地质人员了解动 用产层情况提供了 准确信息。
气水两相测 井成果
井温曲线--用作定性判断产层位置和计算流 体物性参数;
压力曲线--主要参与计算流体物性参数; 持水率--用作判断产层产出性质,计算持相 率(对油水两相产出);

生产测井解释

生产测井解释

生产测井解释目录一、生产测井概述二、吸水剖面测井三、变硬剖面测井资料处置与表述四、生产量剖面测井了解五、井内流体的流动特性六、自喷井(气举井)产出剖面测井七、抽油井环空测井八、产出剖面测井资料的应用一、生产测井详述1、测井概念地球物理测井(缩写测井)就是应用领域地球物理学的一个分支,它就是应用领域物理学方法原理,使用电子仪器测量井筒内信息的技术学科。

它所应用领域至科学知识包含:物理学、电子学、信息学、地质工程、石油工程等。

它的最小特点就是科学知识含量低、技术运用崭新。

测井表述的目的就是把各种测井信息转变为地质或工程信息。

如果把测井的数据采集看作就是一个正出演过程,测井表述就是一个反演过程。

因此,测井表述存有着多解性(容许表述发生相同的结果,容许发生表述犯规!),也就存有着表述符合率的问题。

2、测井分类按照油气勘探开发过程,油田测井可分为两大类:油气勘探阶段的勘探测井(又称为裸眼井测井)和油气开发阶段的开发测井(又称为套管井测井)。

裸眼测井主要是为了发现和评价油气层的储集性质及生产能力。

套管井测井主要是为了监视和分析油气层的开发动态及生产状况。

勘探测井变硬剖面测井测井生产动态测井开发测井油层监视测井产出剖面测井钻采工程测井3、生产测井油田研发测井技术就是由生产动态测井、油层监控测井和岩棉工程测井三部分组成。

我们主要讨论开发测井中的生产测井,也就是两个剖面测井。

在油层投入生产以后,其管理对采收率影响非常大。

如是分层采矿,还是合层采矿?就是分层灌水,还是笼统灌水?油井投产后,各生产层段产量就是多少,与否达至了预期的产量?廖成利须要展开措施改建?这些问题对采收率都有著极其重要的影响。

充分利用不好生产测井资料能够为提升采收率提供更多非常大的协助。

它能化解以下问题:(1)生产井的产出剖面,确定各小层产液性质和产量。

(2)备注水井的变硬剖面,确认各小层的相对变硬和绝对喷水量。

(3)掌握生产井的水浸和漏失情况。

生产测井

生产测井
找窜槽位置 找漏 找出出水层位 确定地层出砂层位 判断窜槽流体性质
多臂井径
X-Y 8ARM 36ARM 60ARM 40ARM
原理: D=do+k*U/I
Do----仪器外径 K----系数 I----井下供电电流 U----电压差
图10 多臂井径检查套管状况图
图11
生产测井
一、概论 二、吸水剖面测井
三、产出剖面测井
四、剩余油测井 五、工程测井
一、总论
生产测井的概念: 指在油井(包括采油井、 注水井、观察井等)投产后 至报废整个生产过程中,所 进行的地球物理测井的统称
生产测井的分类
测井项目 电磁类:磁性定位仪,磁测井仪,电磁测厚仪,管 子分析仪(垂直测井),方位井斜仪,电容式持水 率仪,超高频含水率仪 放射性类:伽马仪,自然伽马能谱仪,中子伽马仪 ,中子寿命测井仪,中子—中子测井仪,C/O能谱测 井仪,伽马密度测井仪,核示踪流量仪 热学类:井温仪,径向微差井温仪 声学类:声幅测井,声波变密度测井,噪声测井, 超声波成像测井(井下电视) 机械类:系列井径( 8 , 36 , 40 , 60 , X-Y 井径), 应变压力计,涡轮流量计,压差密度计,放射性物 质释放器,流体取样仪
三、产出剖面测井技术
各参数简介
GR CCL
TEMP
压力计 原理:压力仪是一种应变压力计,其传感器是
一个应变电阻,它是组成电桥电路的其中
一个电阻。当外界压力变化时,应变电阻
R 变化,电位差也相应的变化,此信号经
差分放大器和电压频率转换器后,使压力 的变化变成频率的变化,输出信号送到接 收发送板。
2、主要技术指标
仪器外径:89mm 仪器长度:4160mm 最大耐温:132℃ 最大耐压:100MPa 最大测速:0.9m/min 3、适用范围: 地层孔隙度φ>15% ,测井井段理想情况下应小于 300m 。井 筒规则、固井质量好,测井前必须用通井规进行通井并洗 井,新井固井十天后方可能进行测井。

水平井生产测井技术

水平井生产测井技术

水平井生产测井技术引言水平井是一种在地下开采油、气等能源资源的常用技术。

在水平井的生产过程中,测井技术被广泛应用于评估井筒中的地层性质、确定井底油层产能及优化采收方案。

本文将详细介绍水平井生产测井技术的原理、方法以及其在油田开发中的应用。

水平井的特点水平井是一种沿水平方向延伸的井筒,与传统的垂直井相比,具有如下特点:1. 增加了地层暴露面积,提高了油、气的产能; 2. 压裂压力分布均匀,能够有效刺激油、气分布; 3. 横向排采对比垂直排采有更高的产量。

水平井测井技术的原理水平井生产测井技术的原理是通过测量井筒中的物理参数,判断地层状况并评估产能。

常用的水平井测井技术包括测井工具测量、井底气体采收及注入、井内压力监测等。

测井工具测量测井工具是用于测量地层性质、孔隙度、饱和度等参数的设备。

在水平井中,测井工具通常是通过井筒下放,然后绕曲率补偿器通过井筒弯曲段进入水平段。

测井工具的测量数据将用于判断油、气分布情况,并确定进一步开采和压裂的方案。

井底气体采收及注入井底气体采收和注入技术能够通过收集井底的气体样品,以确定地层中的气体类型和含量。

采收和注入过程通常是通过在井筒中设置气体收集器或注入器,配合相应的气体分析设备完成的。

通过分析收集的气体样品,可以有效评估地层中的气体资源潜力,为后续的生产和压裂决策提供依据。

井内压力监测井内压力监测是水平井生产测井中的重要环节。

通过在井筒中布置压力传感器,并定期测量和记录井内压力变化情况,可以获得井底和井口的压力数据。

井内压力数据的分析和监测可以帮助评估地层性质、油、气产能以及压裂效果,为生产操作提供参考。

水平井测井技术的应用水平井测井技术在油田开发中有着广泛的应用。

以下是一些常见的应用场景:地层评估和优化水平井测井技术可以提供地层性质的详细数据,包括孔隙度、饱和度、渗透率等,从而更准确地评估地层的产能潜力。

根据测井数据,可以调整井下水平段的位置和长度,优化开采方案,提高产量。

生产测井技术介绍

生产测井技术介绍

生产测井技术介绍
压力-测量原理
压力测井是用电缆将压力计下入井内测取井眼内流体的 流动压力、静止压力以及地层内流体压力及其变化的测 井方法。
生产测井常用压力计有应变压力计和石英晶体压力计
应变压力计利用应变电阻片的应变效应测量井下压力及 其变化。应变电阻片受到外力作用,产生机械变形时, 其电阻将发生变化,且电阻变化的大小取决于所受作用 力的大小。
电阻温度计多采用铂电阻R1作灵敏臂,采用康
铜电阻R2、R3、R4作固定臂(这是因为铂的
温度系数大,对温度变化敏感,而康铜温度系
数小,对温度不敏感),构成图所示的测温电
桥 。 当 温 度 恒 定 时 , R1=R2=R3=R4 , 当 温
度变化时,固定臂电阻基本不变,而灵敏臂电
阻R1将由于其铂金属材料电阻率的变化而变化,
自然消失。
生产测井技术介绍
压力-测量原理
压力测量的影响因素
应变压力计的读数主要受温度影响和滞后影响。 温度影响主要是由于作为应变电阻片的镍铬合金丝的电阻率随温度 变化而变化。尽管压力计同一骨架绕有相同的参考线圈和应变线圈 进行温度补偿,但由于温度突然改变后需要一定时间才能达到热平 衡,两个线圈之间会存在温差而导致压力读数的偏差。因为线圈升 温比降温过程容易得多,故应变压力计下放测量比上提测量稳定得 更快。 滞后影响取决于施压方式。压力增加过程中,应变压力计的读数 将有过低的趋势;反之,压力降低过程中,读数有过高的趋势。对 绝大多数应变压力计,滞后影响的最大误差在(±0.069MPa)范围 内。如果压力测井过程中下放测量,滞后影响比上提测量要小。
实际影响井温的因素很多,仅用井温资料解
释注入剖面不十分可靠。
温度测井仪的结构
生产测井技术介绍

生产测井技术(井身质量)

生产测井技术(井身质量)

轴向短探头C 横向探头B
轴向短探头C探 测深度较浅,只能 用于探测内层管的 损伤。
轴向长探头A
电磁探伤测井仪的结构
上扶正器 伽马探头 井温探头 下扶正器
轴向短探头C 横向探头B
轴向长探头A探测 深度较深,能够探 测内外两层管的损 伤。
轴向长探头A
电磁探伤测井仪的结构
上扶正器 伽马探头 井温探头 下扶正器
Mak2-SGDT是俄罗斯研制的 一种固井质量评价测井仪,该仪器 是一种声波-伽马密度组合仪。
Mak2-SGDT的声波测量部分
Mak2-SGDT的声波测量部分与 CBL/VDL测量原理、仪器结构基本相同,都 是测量套管滑行波的首波。Mak2测量参数 包括两个接收器分别记录的首波传播时间T1、 T2(由此可计算出声波时差ΔT)、两个接收 器分别记录的首波衰减曲线dk1、dk2(由此 计算出衰减系数αk)和全波列或变密度曲线。 用这些曲线进行综合分析,就可以判断两个 界面的胶结情况。
ⅡⅡ


电磁探伤模拟测井实验
TEXP UUB1 UUC1 UUA1
电磁探伤模拟测井实验
TEXP UUB1 UUA1 UUC1
缝高 缝宽


75mm 1mm



Байду номын сангаас
100mm 2mm




75mm 2mm
电磁探伤测井应用
裂 缝
电磁探伤测井应用
损伤
电磁探伤测井应用
变形
该井为一 口注水井,由 于不了解井下 套管的破损情 况不知是否应 该作业。因此, 采用电磁探伤 仪在油管内测 量套管变形情 况。测井结果 发现该井只是 变形,并没有 产生裂缝,因 此,没有作业。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

组合测井
针对井况也可采用上述方法进行 组合测井。
五、水平井测井技术
水平井测井
一直与裸眼水平井测井技术的发展同步前进
水平井测井
保护套式、直推式、湿接头式-------- 固井质量、储层 评价
水力法、双管柱法--------------硼中子、氧活化等
Sondex的爬行器+PLT生产测井组合仪---所有项目
注入剖面测井技术
井温测井
用流动井温曲线和关井井温曲线估计注入剖面
通常,注入液的温度低于 原始地层温度。在注入井 中,井筒温度与注入液大 致相等,而在所有吸液层 的下部,存在静水柱,温 度与原始地层温度相同。 关井后,对应未吸液层位 的井段迅速升温,而吸液 层处由于大量低温液体进 入地层,井筒温度上升较 慢。关井井温曲线在吸液 层位显示负异常。
注入剖面测井技术
同位素测井
放射性同位素载体示踪法测井(俗称同位素测井)是一种 利用放射性物质人为提高地层伽马射线强度,用来研究 井的注入剖面和井身技术状况的方法。 用释放器向井内注入放 射性同位素载体,注入 前后分别进行伽马测井, 对比两次结果,分析放 射性物质在井内分布情 况。 假设:地层的吸水量与滤积在该段地层对应井壁上的同 位素载体量以及载体的放射性强度三者之间成正比。
1100
ab V B dl a Q K ab
b
根据电磁感应原理,导 体切割磁力线时在导体 中产生感生电动势。电 磁流量利用这一原理实 现对水和聚合物水溶液 等导电流体流量的测量。
注入剖面测井技术
流量测井
氧 活 化 流 量 计
氧活化测井是一种示 踪流量测井,示踪剂 是被高能中子活化的 一段水。
注入剖面测井技术
同位素测井
这种测井方法对小层有分辨 能力。 载体密度和粒径均匀性影响 测井质量。 存在粘污、下沉等问题。 在深穿透射孔和大孔道层段 或许会给出完全错误的结果。
注入剖面测井技术
流量测井
放 射 性 示 踪 流 量 计
示踪流量计采用放射性 示踪剂位移原理,依据 示踪剂通过两个探测器 的时间计算流速
探头 1 探头 2
流量测井
频差法测量结果与声速无关,由于对应 于流速变化的频差很小,可用锁相环路将 频率信号倍频N 倍以便于测量电路测量: △F =N· △f最后可算得: v=△F· L/2N
注入剖面测井技术
井温:量计和电磁流量计施工简单,结果 准确,示踪流量计和氧活化流量计误差较大。它 们都受井下管柱条件和流量限制。 同位素载体示踪:施工技术较复杂,可以显示小 层。测井结果受粘污、载体比重、载体粒径大小、 射孔孔眼状况、地层是否有大孔道等因素影响。 通过组合测井综合分析,能得到较为客观的结论。
注入剖面测井技术
井温测井
通过测量井温测井可以质确定吸液层位、确定管柱漏 失位置、定性判断注入量; 井温测井是一种辅助测井方法,与其它测井方法综合 应用,仍是评价生产井和注入井的一种有效手段。
井温测井仪多采用电阻、热电偶、 PN 结或石英晶体 传感器,它们的精度、灵敏度和时间常数等特性有所不 同。
井温测井结果常以梯度井温和微差井温的方式显示。
吸水剖面:
1、根据不同区块、不同井况选用不同的同位素 粒径,并通过计算机屏幕实时监测同位素运移情况, 取得很好的效果。 2、对所有吸水剖面测井加测了井温曲线,井温 曲线结合同位素曲线可以准确判断窜通吸水、注入水 漏失以及确定吸水底界。 3、对于射孔井段在喇叭口以下的井,采用同位 素、井温、加测涡轮流量方法,可以准确计算各层的 相对吸水量,特别是对有部分射孔井段因遇阻未测全 的井,通过涡轮流量曲线作交会图,很好的解决了同 位素测井因遇阻造成测取剖面不全的问题。
生 产 测 井 类 型


一、注入剖面测井技术
注入剖面测井技术
什么是注入剖面测井?
中国多数油田采用注水方式 保持地层压力,三次采油中 还有注聚合物开发的区块。 注入剖面测井的主要目的是 了解注入流体的去向,各层 的吸入量,以及是否按设计 方案注入地层。
注入剖面测井技术
注入井注入工艺
笼统注入: 所有的层都以相同的压力注入; 无法控制分层注入量; 分层注入: 不同的层以不同的压力注入。 可以根据生产需要调配分层注入量;
L v t
注入剖面测井技术
N
流量测井
涡 轮 流 量 计
Q
在井眼内径、测速和流体粘度一定的条件 下,在单相流体中,涡轮的转数与流体的 流速呈线性关系。
注入剖面测井技术
流量测井
电 磁 流 量 计
600 500
Q (m 3 /d)
400 300 200 100 0 300
500
700 F (Hz)
900
不同层之间: 渗透率不同、地层压力不同、吸液能力不同
注入剖面测井技术
注入流体
中国多数油田采用早期注水 方式保持地层压力,除此之 外还有: 注蒸汽 注 气 注聚合物 注三元液 注入剖面测井的主要目 的是了解注入液或气的去向, 各层的注入量,以及是否按
设计方案注入地层。
注入剖面测井技术
注入剖面测井用途
二、产出剖面测井技术
产出剖面测井
持水率
适于低含水的电容持水率计
适于高含水的阻抗式持水率计
测井方法
流量
适于小流量的集流式流量计
适于大流量连续流量计
产出剖面
水平井
英国Sondex公司的8参数(持 气率)测井仪+井下爬行器
施工能力
由直井到大斜度水平井施工
产出剖面测井


产出剖面测井主要应用于自喷采油井、 抽油机井,通过测量生产层段的流量、含水、
井温、压力、流体密度、伽玛、磁定位等参
数,获得生产层的产液量和产液性质,为油
井措施提供指导依据。
三、储层评价测井技术
储层评价测井
引进仪器
高精度C/O测井仪、 HOTWELL公 司引进PNN测井技术
1、储层评价
施工能力
由直井、大斜度井到水平井
储层评价测井

用:
储层评价测井能够提供剩余油(气)饱和度、
100
O16 g (6.13 MeV)
O
16*
Beta 衰变
80
N16
1135.0m 中探测器 峰位:9.67s 远探测器 峰位:13.88s
7.3s 半衰期 氧活化
计数率
60
n
40
20
0 0 10 20 30 40 50 60
O16
时间(s)
注入剖面测井技术
超 声 波 流 量 计
1 1 c v c v 2v f f f f b t f tb L L L
测量注入井的分层段和分层注入量主要
应用在
压裂、堵水、调剖等措施的选井、 选层和措施效果评价; 为注水方案的调整提供依据;
验封(封隔器漏失)和验窜(管外 窜槽)。
注入剖面测井技术
注 入 剖 面 测 井 测 量 参 数
接箍定位 井温
压力
流量:涡轮流量、放射性示踪流量、 电磁流量、氧活化流量、超声流量等 同位素载体示踪:伽马射线强度
水淹程度、油(气)水界面、地层孔隙度和地层岩
性等参数,为油田挖潜、油层改造、区分油(气)水
界面、确定水淹层和划分水淹等级提供依据。
四、工程技术测井技术
工程技术测井
检查固井 质量
CBL/VDL、阿特拉斯-SBT
检查套管 质量
多臂井径(40)、电磁探伤、 流量、氧活化测井等
工程技术 测井系列
检查管外窜 槽、出水点 井温、同位素示踪、注硼(钆) 中子、氧活化水流等。
相关文档
最新文档