材料力学第五版扭转切应力.ppt

合集下载

材料力学第3章扭转

材料力学第3章扭转

试问:纵向截面里的切应力是由什么内力平衡的?
§3.8 薄壁杆件的自由扭转
薄壁杆件:杆件的壁厚远小于截面的其它尺寸。 开口薄壁杆件:杆件的截面中线是不封闭的折线或曲
线,例如:工字钢、槽钢等。 闭口薄壁杆件:杆件的截面中线是封闭的折线或曲线,
例如:封闭的异型钢管。
一、开口薄壁杆的自由扭转
= Tl
GI t
变形特点:截面发生绕杆轴线的相对转动 本章主要研究圆截面等直杆的扭转
§3.2 外力偶矩的计算 扭矩和扭矩图
功率: P(kW) 角速度:ω 外力偶矩:Me
P = Meω
转速:n(r/min)
2n/ 60
Me
1000 P=9549
P n
(N
m)
内力偶矩:扭矩 T 求法:截面法
符号规则: 右手螺旋法则 与外法线同向“ + ” 与外法线反向“-”
max
T max
It
It
1 3
hi
3 i
二、闭口薄壁杆的自由扭转
max
T
2 min
TlS
4G 2
其中:ω截面为中线所围的面积
S 截面为中线的长度
闭口薄壁杆的应力分布:
例: 截面为圆环形的开口和闭口薄壁杆件如图所 示,设两杆具有相同平均半径 r 和壁厚δ,试 比较两者的扭转强度和刚度。
开=3 r 闭 开=3( r )2 闭
8FD3n Gd 4
C
ห้องสมุดไป่ตู้
Gd 4 8D3n
F C
§3.7 矩形截面杆扭转的概念
1) 翘曲
变形后杆的横截面不再保持为平面的现象。
2) 自由扭转和约束扭转
自由扭转:翘曲不受限制的扭转。 各截面翘曲程度相同,纵向纤维无伸缩, 所以,无正应力,仅有切应力。

材料力学-第4章 扭转 ppt课件

材料力学-第4章 扭转  ppt课件

dA
T

O
dA
23
材料力学-第4章 扭转
圆轴扭转横截面上的应力
A dA T
代入:

G



G
d dx
得到:
G d 2dA T dx A
记: IP -2dA称为圆截面的极惯性矩
A
则:圆轴扭转角的变化率 d T
dx GIP
圆截面切应力
采用右手螺旋法则,如果用四指表示扭矩的转向, 拇指的指向与截面的外法线n的方向相同时,该扭矩为 正;反之,规定扭矩为负
正扭矩
负扭矩
——保证了无论从哪一段计算,扭矩的大小和符号 都相同
12
材料力学-第4章 扭转
扭力偶矩计算与扭矩
讨论:如图受扭圆轴,m-m截面上扭矩为多少?
Me
m
2M e
m m
T Me
17
材料力学-第4章 扭转
圆轴扭转横截面上的应力
几何变形:
1. 横截面绕圆轴的轴线转动

主要
2. 圆轴中段的横截面缩小 几何变形特征
有剪切应变 rz 次要
3. 圆轴的长度略有增长
有轴向应变 z 次要
– 变形后,横截面仍保持为平面,其形状和大小均不
改变,半径仍为直线
– 变形后,相邻横截面的间距保持不变,相邻横截面 绕圆轴轴线转动一定的角度
外力偶矩的计算
• 工程中的传动轴,通常给出传动轴所传递的功率和转 速,而不直接给出外力偶矩的数值
• 设外力偶矩为Me,传动轴的功率为P,角速度为w,则
有(理论力学)
Me

P
w
外力偶矩Me 单位:N·m (牛顿·米) 功率为P 单位:J (焦耳)

材料力学扭转(共56张PPT)

材料力学扭转(共56张PPT)

例题: :空心轴和实心轴材料相同,面积相同, α= 0.5。试比较空心轴和实心轴的强度和刚度情况。
解: 1〕确定两轴尺寸关系
面积相同 (1)校核空心轴及实心轴的强度〔不考虑键槽的影响〕;
扭转角单位:弧度〔rad〕 在B、C轮处分别负载N2=75kW,N3=75kW。
D1 d1
D d 2 2可G、I见P扭—在矩—载计抗荷算扭相1、2刚同符度的号。条规件定下和,扭空矩2心图轴绘的制重量仅为实2心轴的31% 。
1、扭转杆件的内力〔截面法〕
m
m
左段:
mx 0, T m 0
T m
右段:
m x
0,
mT 0
T m
m
Tx
T
m
x
内力偶矩——扭矩 T
2、扭矩的符号规定:按右手螺旋法那么判断。
+
T
T
-
3、内力图〔扭矩图〕
扭矩图作法:同轴力图:
例题: 1、一传动轴作200r/min的匀速转动,轴上装有五个轮子。主动轮 2输入的功率为60kW,从动轮1、3、4、5依次输出的功率为18kW、 12kW、22kW和8kW。试作出该轴的扭矩图。
二、 扭转杆的变形计算
1、扭转变形:〔相对扭转角〕
d T
dx GI P
扭转变形与内力计算式
d T dx
GIP
T dx
L GIP
1) 扭矩不变的等直轴
Tl GI p
扭转角单位:弧度〔rad〕 GIP——抗扭刚度。
2)各段扭矩为不同值的阶梯轴
Tili GI pi
3)变截面轴
T (x) dx l GI p (x)
2)、设计截面尺寸:
T
Ip

材料力学扭转教学课件PPT

材料力学扭转教学课件PPT
200 kW。试做轴力图。
(a)
P2
P3
P1
n
P4
B
C
D
A
例题3-2图
m P2 2
m P3 3
P1
m1
m n
4 P4
B
C
D
A
m2
m3
m1
m4
(b)
B
C
A
D
解:1.计算外力偶矩
m1
m2
9.55 P1 15.9kN .m
m3
n
9.55
P2
n
4.78kN
.m
m4
9.55 P4 n
6.37kN .m
2.由计算简图用截面法计算各段轴内的扭矩,然后画扭矩图
§3.1 扭转的概念和实例
➢ 扭转变形 ——作用在垂直于杆件轴线的平面内 的力偶矩,使得杆件的任意两个 横截面都发生了绕轴线的相对转 动。
➢ 扭转变形杆件的内力 ——扭矩(T )
➢ 轴 ——主要承受扭矩的构件
m A'
g
A
m B j B'
扭转的受力特征 :在杆件的两端作用两个大小相等、
转向相反、且作用平面垂直于杆件轴线的力偶。
dA
O r
dA
dA
O
A
G 2
dj
dx
dA
G
dj
dx
A
2dA
T
GI p
dj
dx
令 Ip A 2dA
dj
dx
T GI p
代入物理关系式
G
dj
dx
得:
T
Ip
T
Ip
—横截面上距圆心为处任一点剪应力计算公式。

材料力学扭转教学课件

材料力学扭转教学课件
通过对材料力学扭转的深入研究,工程师可以在这些领域中优化设计,提高产品 的性能和安全性。此外,材料力学扭转在科学研究中也具有广泛的应用,如生物 医学工程和地质工程等领域。
材料力学扭转的教学建议
教学方法与技巧
案例分析法
实验演示法
互动讨论法
教学难点与重点
难点
理解材料在扭转作用下的应力分布和变 形特点。
材料力学扭转教学课件
目录
• 材料力学扭转基础
材料力学扭转基础
定义与概念
定义 概念
扭转的物理特性
扭矩
剪切应力
在材料力学中,剪切应力是物体在剪 切力作用下产生的应力,而在扭转中, 剪切应力是主要的应力形式。
扭转的分类
自由扭 转
约束扭转
材料力学扭转的应力分析
切应力与扭矩的关系
切应力与扭矩成正比
扭转变形的计算
扭转变形计算的公式 扭转变形计算的数据 扭转变形计算的过程
扭转变形的影响因素
01
02
03
材料性质的影响
加载条件的影响
环境因素的影响
材料力学扭转的实验研究
实验目的与原理
实验目的 实验原理
实验设备与材料
实验设备
实验材料
实验步骤与结果分析
实验步骤 1. 将试样安装在扭转试验机上,调整试样的位置和角度。
材料力学扭转的变形分析
扭转变形的测量
扭转变形的测量方法
通过测量材料在扭转变形后的角度、 长度等参数,计算出扭转变形的大小。
扭转变形测量的工具
扭转变形测量的步骤
按照规定的步骤进行测量,包括安装、 调整、操作和记录等步骤,确保测量 过程的规范性和准确性。
使用扭角仪、测角仪等工具进行测量, 确保测量结果的准确性和可靠性。

刘鸿文材料力学第五版课件

刘鸿文材料力学第五版课件
z A 1kN· m 5kN C 1kN· m B D x
z
5kN A CC 10kN B 3.64kN D
D
x
y
1.82kN 300mm
300mm
100mm
3.64kN
1 kN· m使轴产生扭转
y 1.82kN 10kN
§8-4 扭转与弯曲的组合
(3)绘制轴的内力图
z 5kN
3.64kN
1kN· m B D x
第八章 组合变形
§8-3 偏心压缩 §8-4 扭转与弯曲的组合
北京交通大学工程力学研究所
柯燎亮
§8-3 偏心压缩
一、偏心拉(压)
1.定义 当外力作用线与杆的轴线平行但不重合时, 将引起轴向 拉伸(压缩)和平面弯曲两种基本变形. 例如钻床的立柱、厂房中支承吊车梁的柱子。 F
F2
F1
O1
z A(yF,zF) y
M max 20kN m
πD W (1 4 ) 32
3
15kN· m
+
扭矩
20kN· m
-
r3
M2 T2 157.26MPa [ ] W
弯矩
§8-4 扭转与弯曲的组合
例题2 传动轴如图所示.在A处作用一个外力偶矩Me=1kN· m,皮 带轮直径D=300mm,皮带轮紧边拉力为F1,松边拉力为F2.且 F1=2F2,l=200mm,轴的许用应力[]=160MPa.试用第三强度理论设 y 计轴的直径
§8-3 偏心压缩
2. (外力分析)以横截面具有两对称轴的等直杆受偏心拉力 F 为例
(1)将外力向截面形心简化,使每个力(或力偶)只产生一种 基本变形形式 轴向拉力 F 力偶矩 M = F e,

材料力学第五章扭转应力

材料力学第五章扭转应力
航空航天工业对材料的要求极高,需要具备轻质、高强度和良好的抗扭性能。工 程师需要根据材料的力学性能进行优化设计,确保航空航天器的安全性和稳定性 。
建筑工业中的应用
建筑结构中的梁、柱等构件在承受扭矩时会产生扭转应力。
在建筑设计过程中,工程师需要考虑材料的抗扭性能,合理 设计梁、柱等构件的截面尺寸和连接方式,以确保建筑结构 的稳定性和安全性。
学习有限元分析方法,掌 握如何利用计算机软件进 行结构分析,提高解决实 际问题的能力。
ABCD
结合实际工程问题,分析 不同材料的抗扭性能,以 及如何优化设计以提高结 构的稳定性。
关注相关领域的最新研究 进展,了解材料力学在工 程实践和科学研究中的应 用。
THANKS
感谢观看
扭转应力的计算公式
计算公式
扭转应力的大小可以通过以下公式计算:$tau = frac{T}{A}$,其中$tau$是扭转应 力,$T$是扭矩,$A$是物体的截面面积。
截面面积
截面面积是指物体横截面的面积,通常用于计算物体在扭矩作用下的扭转应力。
扭转应力的单位和符号
单位
扭转应力的单位是帕斯卡(Pa),在国际单位制中,1Pa=1N/m²。
弹性模量
弹性模量是材料在弹性变形范围内,抵抗外力作用的能力, 它反映了材料的刚度。对于同一材料,弹性模量越大,抵抗 扭转变形的能力越强,因此,弹性模量越大,扭转应力也越 大。
总结
在材料力学中,弹性模量是影响材料扭转应力的关键因素之 一。高弹性模量的材料具有较高的抵抗扭转变形的能力,因 此会产生较大的扭转应力。
剪切模量对扭转应力的影响
剪切模量
剪切模量是指在剪切应力作用下,材料抵抗剪切变形的刚度。剪切模量的大小与材料的剪切应力成正比,即剪切 模量越大,材料抵抗剪切变形的能力越强,因此,扭转应力也越大。

材料力学课件:第3章 圆轴扭转时的应力变形分析与强度刚度计算计算

材料力学课件:第3章 圆轴扭转时的应力变形分析与强度刚度计算计算
韧性材料:不耐剪,最大剪应力所处截面是”最短木板”! 破坏方式是被剪断!
脆性材料:不耐拉,最大拉应力所处截面是”最短木板”! 破坏方式是被拉断!
承受扭转时圆轴的强度设计 与刚度设计
扭转强度设计
承受扭转时圆轴的强度设计 与刚度设计
扭转强度设计
与拉伸强度设计相类似,扭转强度设计时,首先需要根 据扭矩图和横截面的尺寸判断可能的危险截面;然后根据 危险截面上的应力分布确定危险点(即最大剪应力作用 点);最后利用试验结果直接建立扭转时的强度设计准则。
承受扭转时圆轴的强度设计 与刚度设计
扭转实验与扭转破坏现象
韧性材料与脆性材料扭 转破坏时,其试样断口有着 明显的区别。韧性材料试样 最后沿横截面剪断,断口比 较光滑、平整。
铸铁试样扭转破坏时沿 45°螺旋面断开,断口呈细 小颗粒状。
经济学术语中的“木桶效应”,是说对于一个沿口 不齐的木桶而言,它盛水的多少并不在于木桶上那 块最长的木板,而在于木桶上最短的那块木板。
已知:钢制空心圆轴的外直径D=100 mm,内直径d=50 mm。若要求轴在2 m长度内的最大相对扭转角不超过1.5(),材 料的切变模量G=80.4 GPa。
试: 1. 求该轴所能承受的最大扭矩; 2. 确定此时轴内最大剪应力。
解: 1.确定轴所能承受的最大扭矩 根据刚度设计准则,有
承受扭转时圆轴的强度设计 与刚度设计

max
Mx WP
=16M x πd13
=16
1.5kN πd13
m
103
=50.9
106
Pa
据此,实心轴的直径
d1=3
16 1.5kN m 103=53.1103 m=53.1mm π 50.9 106 Pa

材料力学(第五版)扭转切应力 PPT课件

材料力学(第五版)扭转切应力 PPT课件
得:
pq
da
Me
cb
pq
pq
d’ a’
Me
c’
b’
pq
切应力互等定理
切应力互等定理


d
a
d
a
c
b
c
b
在相互垂直的两个截面上,切应力 必然成对出现,且大小相等,方向为共 同指向或共同背离两个截面的交线。
二、剪切胡克定律
d
a
Me
c
b
d’
γ
a’
pq
da
Me
cb
pq pq
T3 158.7 N m
Wp1

d13 16

703 109 16
67.34 106 m3
Wp 2

d32 16

503 109 16
24.54 106 m3
Wp3

d33 16

353 109 16
8.418106 m3
(max )E

D4 d 4 32
D
I p

πD4
1 α4 32
d
O
式中: d
D
D
圆轴扭转最大切应力
max

|R

TR IP
令:
Wp

IP R
抗扭截面系数
圆轴扭转最大切应力为:
max

T Wp
实心圆轴的抗扭截面系数为:
D3 Wp 16
空心圆轴的抗扭截面系数为:
Wp
A1
4
d12
A2
4

材料力学课件-第四章 扭转-薄壁杆件的扭转

材料力学课件-第四章  扭转-薄壁杆件的扭转
部分加厚由于最小壁厚不变,最大应力不变。部分加厚后甚至由于应力集中更危险。
例2:某等壁厚d闭口薄壁杆受扭矩T,中心线周长S,轴的最大扭转切应力与扭转变形:(1)在 S/2中心线长度上壁厚增加一倍到2d;(2)在很小的局部受损伤壁厚减薄到d/2。
解:(2)第2种情形
局部减薄对积分值影响甚微,可以忽略不计。
最大应力增加一倍。
定性研究结论:强度是局部量,刚度是整体量。
例3:比较扭转切应力与扭转变形
解:
R0
R0
比较
(1)闭口薄壁圆管
(2)开口薄壁圆管
(狭长矩形)
作业 4-22 4-27 4-35 4-36
谢谢
薄壁圆管
思考:公式的精度?
在线弹性情况下,精确解为
思考:公式(1)和(2)的适用范围?
(1)
(2)
误差
T
dx
a
b
c
d
二、闭口薄壁杆的扭转变形
dx
ds
分析方法讨论:
由静力学、几何和物理三方面求解所遇到的困难:几何形状复杂。
新方法探索:
尝试能量法。
一未知量
无未知量
问题可解
二、闭口薄壁杆的扭转变形
假设:切应力沿壁厚均匀分布,其方向平行于中心线 假设依据:
T
dx
a
b
c
d
a
b
c
d
2
1
dx
1
1
2
2
薄,切应力互等定理
利用切应力互等定理,转化为研究纵向截面切应力,利用平衡方程求解.
截面中心线所围面积 的2倍
思考:O点位置可否任选,如截面外?
ds
o
ds

材料力学剪切与扭转PPT课件

材料力学剪切与扭转PPT课件
32
第32页/共97页
4 扭矩图
扭矩沿轴线方向变化的图形称为扭矩图。
T Me1
+
Me4
x

Me1+ Me2
扭矩图的X横坐标轴平行于杆件轴线,表示轴相应的横截面位置;纵坐 标表示该横截面的扭矩值。正扭矩画在X轴上方,负扭矩画在X轴下方。
扭矩图中需标明(+)、(-)以表示扭矩的正负。
33
第33页/共97页
2 FS
bs
F Abs
F lh 2
57 103 100 6106
95.3MPa bs
综上,键满足强度要求.
21
第21页/共97页
§3.2 扭转的概念和工程实例
一、扭转变形特点及基本概念 1. 扭转变形:是杆件的一种基本变形形式。在垂直于杆件轴线的平面内有力
偶作用时,各横截面将绕杆轴线作相对转动,杆件便产生扭转变形。
3、挤压的实用计算
挤压:构件局部面积的承压现象。 挤压力:在接触面上的压力,记FC
(1) 挤压力―FC F
(合力) F n
假设:挤压应力在有效挤压面上均匀分布。
第10页/共97页
F
F (合力)
10
(2)有效挤压面积Abs:实际挤压面在垂直于挤压力FC 方向的平面上的投影面积。
(3)挤压强度条件(准则) 工作挤压应力不得超过材料的许用挤压
在连接件与拉板接触 F处因挤压产生变形。
6
第6页/共97页
(合力) F n
F (合力)
FS
剪切面
n
n
F
4、连接处(接头)破坏三种形式 ①剪切破坏 沿螺栓的剪切面剪断,如 沿n– n面剪
断。 ②挤压破坏 螺栓与拉板在相互接触面上因挤压发生过
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
得:
pq
da
Me
cb
pq
pq
d’ a’
Me
c’
b’
pq
切应力互等定理
切应力互等定理


d
a
d
a
c
b
c
b
在相互垂直的两个截面上,切应力 必然成对出现,且大小相等,方向为共 同指向或共同背离两个截面的交线。
二、剪切胡克定律
d
a
Me
c
b
d’
γ
a’
pq
da
Me
cb
pq pq
d
dx
(c)
得: T G d 2dA
dx A
令:
IP
2dA
A
得: d T
dx GIP
极惯性矩
T
dA

O
四、圆轴扭转切应力计算公式


G
d
dx
(c)
Me
d T
dx GIP
由上述两个方程最终解得
圆轴扭转时横截面上的 切应力计算公式为:
T
AB

d32 16

1203 109 16
B
mB
22
C
d1 mC
14
339.3106m3
(max )AB

TAB
WP AB

22 103 339.3 10 6
64.8MPa
BC段:
TBC 14 kNm
A
d2
mA
T (kN m)
Wp

mC 14 kNm
要求:计算轴的强度
mA 22 kNm
A
mB 36 kNm d 2
mC 14 kNm
mA
T (kN m)
解:作轴的扭矩图
对AB段和BC段的 强度要分别计算
B
mB
22
C
d1 mC
14
AB段:
TAB 22 kNm
A
d2
mA
T (kN m)
Wp
E
拉压弹性模量

泊松比
G
剪切弹性模量
三个弹性常量之间有如下关系:
G

E
21

对于钢材:
G

200
21 0.25

80GPa
§3-4 圆轴扭转时的应力
一、变形几何条件 1、变形观察:
pq
圆周线不变(大小、
间距都不变)
Me
纵向线倾斜, 倾斜角相同
d
a
Me
c
b
pq
表面矩形变成 平行四边形
BC
d32 16

1003 109 16
B
mB
22
C
d1 mC
14
196.3106 m3
(max )BC
TB C Wp BC

14 103 196.3 10 6
71.3MPa

轴的强度符合要求
例题
已知:P=7.5kW,n = 100r/min,许用切应力=
pq
薄壁圆筒由于壁很薄,表 面变形即为内部变形。
Me
d’
a’
c’
b’
Me
圆轴无此结论
必须对内部变形作进一步分析
pq
2、平面假设
变形前的横截面,变形后仍为平面,且 形状、大小不变,原先的半径仍为半径。
φ 圆轴两端面的
相对扭转角
Me
qq平面相对于pp的相对扭转角
为: d
圆轴表面的切应变γ 为:
aa Rd R d
ad dx
dx
R d (a)
dx
pq
d’
a’
c’
b’
Me
φ
pq
p
q
R
d
a
ρ
c
a b
b
p
q
现研究圆轴内部的切应变
圆轴内部的切应变
R
d
ae
ρ
e
c
a e’ b
e’b源自ddx(b)
圆轴内部任意一点的切应变
与该点到圆心的距离ρ成正比
二、物理关系
Me



d
dx
IP
dA

O
圆轴的极惯性矩 I P
IP
2dA
A
代入: dA d d
IP
3dd
A

2
d
R 3d
0
0
R4 D4


2
32
dA

O
实心圆轴的极惯性矩 I P
D 4
I P 32
O
空心圆轴的极惯性矩 I P
IP
40MPa,空心圆轴的内外径之比 = 0.8。
Mx 0
T A (dA)r

dA
T
d
T 2 rdr 0

r

得到:



T
2r 2

T
2 A0

圆筒壁厚
A0
圆筒平均直径所围圆周的面积
二、切应力互等定理
考虑圆筒中的微元体abcd
Me
dx


d
a dy
c
b
Me
Mz 0
(dy )dx ( dx )dy

D3 1 4 16
五、圆轴扭转时的强度条件
圆轴扭转时的最大切应力不能超过 材料的许用切应力
max
Tmax Wp


例题
A
d2 mA
B
mB
C
d1 mC
已知:阶梯轴尺寸如图
mA 22 kNm, mB 36 kNm, d1 120 mm, d2 100mm
80 MPa

D4 d 4 32
D
I p

πD4
1 α4 32
d
O
式中: d
D
D
圆轴扭转最大切应力
max

|R

TR IP
令:
Wp

IP R
抗扭截面系数
圆轴扭转最大切应力为:
max

T Wp
实心圆轴的抗扭截面系数为:
D3 Wp 16
空心圆轴的抗扭截面系数为:
Wp
pq
d’
a’
Me
c’
b’
pq
因为各圆周线大小、形状、间距都不变
2、沿同一圆周线上的切应力
大小相等
Me
因为各纵向线倾斜角相同
T
3、沿壁厚方向切应力 大小相等
因为薄壁圆筒
Me T

T

薄壁圆筒的扭转时

横截面上扭转应 力分布规律为:

在整个横截面均匀分布,方向 沿圆周线的切线,与T的转向相同。
扭转应力的大小:
(b)
由剪切胡克定律
G
圆轴内部到圆心的距离为ρ 的任意一点的切应力为:
圆轴内部任意一点的切应力
与该点到圆心的距离ρ成正比


G
d
dx
(c)
0
0
R

max
GR d
dx
三、静力关系
Me
T A ( dA)
代入:

G
§3-3 薄壁圆筒的扭转,纯剪切
一、薄壁圆筒的扭转应力
变形观察:
Me
圆周线不变(大小、 间距都不变)
纵向线倾斜, 倾斜角相同
表面矩形变成 平行四边形
Me
pq
d
a
Me
c
b
pq
pq
d’
a’
Me
c’
b’
pq
横截面上扭转应力分布 规律的分析:
1、横截面上仅有切应力 M e
没有正应力,切应力方 向与圆周线相切。
c’
Me
d’ a’
c’
b’
Me
b’
pq
切应变 γ :直角的改变量
φ 圆筒两端面的相对扭转角
r
l
对于线弹性材料,
或者对于
p 时,有
剪切胡克定律
G
G – 材料的剪切弹性模量 钢材的 G = 80GPa
pq
d’ a’
c’
b’
φ
pq
d’
γ
τ
a’
c’
τ
b’
到目前为止,已经学到三个材料的弹性常量: E, , G
相关文档
最新文档