水塔水流量估计问题

合集下载

案例6 估计水塔水流量

案例6 估计水塔水流量


f ( t )dt 335329 (加仑) f ( t )dt 336480 (加仑)
25.5 1.5
相差只约1%
[0,24]区间内检验
第一次充水 前总用水量 第一次充水后, 第二次充水前 总用水量 第一次充水 期间用水量 第二次充水 期间用水量
V1= 606125-514872=91253(加仑)
充水时间约为2.1189小时
3. 由Vi—ti关系产生水流量 fi—ti的关系
注:亦可以由Vi—ti关系拟合 V(t),再求微商得到 f(t)
关于水流量 fi
Vi 1 Vi f i f (t i ) t i 1 t i V i V i 1 与 f i f (t i ) t i t i 1
水体积的误差为0.5% 用样条逼近的用水量其误差可用抽样计算得5.1%
一天 总量 误差
2 2 2 2 SV [ SV0 SV8.9678 SV p SV10.9542 SV20.8392
1
2 2 2 2 SV p SV 22.9581 SV23.88 SV[ 23.88 , 24 ] ]1 2
水泵工作的时间为32284秒(8.9678 小时); 水泵结束时间为39435秒(10.9542小时); 充水时间约为1.9864小时
水泵工作的时间为75021秒(20.8392 小时),水 位26.97英尺 第 二 次 充 水 水泵结束时间为82649秒(22.9581小时), 补充水位35.50英尺
水流量值(表3)

(小时)

水 流 量
(加仑/小时)

(小时)

水流量
(加仑/小时)

估计水塔的水流量

估计水塔的水流量

估计水塔的水流量美国某州的各用水管理机构要求各社区提供以每小时多少加仑计的用水率以及每天所用的总水量.许多社区没有测量流入或流出当地水塔的水量的装置,他们只能代之以每小时测量水塔中的水位,其精度不超过5%,更重要的是,当水塔中的水位下降最低水位L 时水泵就启动向水塔输水直到最高水位H,但也不能测量水泵的供水量.因此,当水泵正在输水时不容易建立水塔中水位和水泵工作时用水量之间的关系.水泵每两天输水一次或两次,每次约二小时.试估计任何时刻(包括水泵正在输水的017921 时间内)从水塔流出的流量f(t),并估计一天的总用水量.附表给出了某各小镇一天中真实的数据.附表给出了从第一次测量开始的以秒为单位的时刻.以及该时刻的高度单位为百分之一英尺的水位测量值.例如,3316 秒后,水塔中水位达到31.10 英尺.水塔是一个高为40 英尺,直径为57 英尺的正圆柱.通常当水塔水位降至约27.00 英尺的水泵开始工作,当水位升到35.50 英尺时水泵停止工作.问题分析与数据处理由问题的要求,关键在于确定用水率函数,即单位时间内用水体积,记为f(t),又称水流速度.如果能够通过测量数据,产生若干个时刻的用水率,也就是f(t)在若干个点的函数值,则f(t)的计算问题就可以转化为插值或拟合问题一,问题假设1)水塔中水流量是时间的连续光滑函数,与水泵工作与否无关,并忽略水位高度对水流速度的影响.2)水泵工作与否完全取决于水塔内水位的高度,且每次加水的工作时间为2小时.3)水塔为标准圆柱体.4)水泵第一次供水时间为[32284, 39435],第二次供水时间段为[75021,85948].5)为了方便计算我们把表格中的秒转化成小时.6)我们规定以下符号:h:水塔中水位的高度,是时间的函数,单位为英尺;v:水塔中水的体积,是时间的函数,单位为加仑; t:时间,单位为小时;f:模型估计的水塔水流量,是时间的函数,单位为加仑/小时p:水泵工作时的充水水流量,也是时间的函数,单位为加仑/小时。

水塔流量估计的数学建模

水塔流量估计的数学建模

水塔流量估计的数学建模1. 引言水塔是现代城市供水系统中至关重要的组成部分,其作用是通过储存水源来保障城市居民日常用水,并且在有紧急情况时提供应急用水。

为了更好地保障全社会的用水需求,并降低供水系统建设和运营成本,对水塔的流量进行准确的估计和预测具有重要意义。

本文将探讨如何利用数学建模的方法对水塔流量进行估计和预测。

2. 水塔流量的影响因素水塔流量的大小受到多种因素的影响,主要包括以下几个方面:2.1 水塔容积水塔的容积越大,其流量也就越大。

因此,在进行水塔流量估计时,首先需要考虑其容积。

2.2 外部水压水塔的流量受到外部水压的影响。

如果外部水压较大,则水塔的流量也将较大。

2.3 水泵功率水泵功率的大小直接影响到水塔的流量大小。

水泵功率越大,水塔的流量也就越大。

2.4 关阀状态水塔流量还受到管道关阀状态的影响。

如果关阀状态较大,则水塔流量也将减小。

3. 水塔流量的数学建模方法水塔流量的数学建模方法主要包括以下几个步骤:3.1 收集数据收集水塔流量的相关数据,并对其进行初步的整理和分析。

3.2 设计建模方程根据已收集到的数据,设计合适的建模方程。

建模方程需要考虑到水塔容积、外部水压、水泵功率、关阀状态等多种因素。

3.3 参数估计利用已有的数据对建模方程中的参数进行估计。

参数估计是非常重要的一步,其准确性直接影响到模型的准确性和可靠性。

3.4 模型检验和优化使用已有的数据来对所建立的模型进行检验和优化。

检验过程中需要对模型的精度、准确性、鲁棒性等进行评估,如果出现问题,需要进行适当的调整。

4. 案例分析为了说明水塔流量估计的数学建模方法,我们以某市几座水塔为例进行分析。

4.1 收集数据在该市的几座水塔中,我们选取了其中一座水塔进行了数据的收集,主要包括该水塔的容积、水泵功率、外部水压等基本信息。

4.2 设计建模方程根据收集到的数据,我们设计了一个基础的建模方程,其中各项参数分别为:Q为流量,V为水塔容积,P为外部水压,H为水泵的扬程,K为关阀系数。

水塔水流量的估计

水塔水流量的估计

水塔水流量的估计一.实验问题某居民区有一供居民用水的圆柱形水塔,一般可以通过测量其水位来估计水的流量。

但面临的困难是,当水塔水位下降到设定的最低水位时,水泵自动启动向水塔供水,到设定的最高水位时停止供水,这段时间无法测量水塔的水位和水泵的供水量。

通常水泵每天供水一次,每次约2h。

水塔是一个高为12.2m,直径为17.4m的正圆柱。

按照设计,水塔水位降至约8.2m时,水泵自动启动,水位升到约10.8m时水泵停止工作。

表1是某一天的水位测量纪录(符号“//”表示水泵启动),试估计任何时刻(包括水泵正供水时)从水塔流出的水流量,及一天的总用水量。

表1 水位测量纪录二.问题分析根据以上数据的形式和以往经验,适合采用线性拟合的方式进行数据处理。

对第1、2、3未供水时段可直接进行用五次多项式进行拟合。

对第1、2供水时段分别在两端各取两个点用前后时刻的流速拟合得到。

结果可以用分段函数表示分为5段,分别是第一未供水时段,第一供水时段,第二未供水时段,第二供水时段,第三未供水时段。

得出流速之后再乘以水塔横截面积即得任何时刻与水塔流出水流量的关系,即流速与时间的关系。

对流速进行分段积分并求和,即得一天的总水流量。

三.程序的设计与求解方法1.数据的单位转换水塔的横截面积为A=(17.4)^2*pi/4=237.0661(平方米)。

2.拟合水位——时间函数(1)对第1未供水时段的数据进行拟合。

t=[0 0.92 1.84 2.90 3.87 4.98 5.90 7.00 7.93 8.97 10.95 12.03 12.95 13.88 14.98 15.90 16.83 17.93 19.04 19.96 20.84 23.88 24.99 25.91]h=[ 9.68 9.48 9.31 9.13 8.98 8.81 8.69 8.52 8.39 8.22 10.82 10.50 10.21 9.94 9.65 9.41 9.18 8.92 8.66 8.43 8.22 10.59 10.35 10.18] f1=polyfit(t(1:10),h(1:10),5); tm1=0:0.1:9.0; y1=polyval(f1,tm1); plot(tm1,y1)01234567898.28.48.68.899.29.49.69.8(2)对第2未供水时段的数据进行拟合。

第5章_水塔用水量的估计

第5章_水塔用水量的估计

x
插值要求在每一个观测点处满足yi=f(xi)
2013-6-27 河北大学
Hebei University
5.1 引例

机床加工
X=0 3
5
7 9
11 12 13 14 15 1.8 1.2 1 1.6
4 Y=0 1.2 1.7 2 2.1 2 2 0 0
2013-6-27
5
河北大学
10
15
Hebei University
被插值节点 插值节点
xi处的插 值结果
2013-6-27
河北大学
Hebei University
5.2 插值基本原理

例:在1-12的11小时内,每隔1小时测量一次温度, 测得的温度依次为:5,8,9,15,25,29,31, 30,22,25,27,24。试估计1/10小时的温度值 hours=1:12 temps=[5 8 9 15 25 29 31 30 22 25 27 24]; h=1:.1:12; t=interp1(hours,temps,h); plot(hours,temps,’+’,h,t); title(‘线性插值下的温度曲线’) xlabel(‘Hour’), ylabel(‘Degrees Celsius’)
x=-5:10/2:5; y=1./(1+x.^2); x1=-5:0.1:5; y1=Langrage(x,y,x1); plot(x1,y1,'b--','linewidth',2) hold on x=-5:10/4:5; y=1./(1+x.^2); y2=Langrage(x,y,x1); plot(x1,y2,'r-','linewidth',2) x=-5:10/6:5; y=1./(1+x.^2); y3=Langrage(x,y,x1); plot(x1,y3,'k:','linewidth',2)

【精品】水塔水流量的估计建模问题

【精品】水塔水流量的估计建模问题

水塔水流量的估计
美国某州的各用水管理机构要求各社区提供以每小时多少加仑计的用水率以及每天所用的总水量.许多社区没有测量流入或流出水塔的水量装置,他们只能代之以每小时测量水塔中的水位,其误差不超过5%。

更重要的是,当水塔中的水位下降到最低水位L时水泵就启动向水塔输水直到最高水位H,期间不能测量水泵的供水量。

因此,当水泵正在输水时不容易建立水塔中水位和用水量之间的关系。

水泵每天输水一次或两次,每次约二小时.
试估计任何时刻(包括水泵正在输水时间)从水塔流出的水流量f(t),并估计一天的总用水量。

已知该水塔是一个高为40英尺(ft),直径为57英尺(ft)的正圆柱,表12。

1给出了某个小镇一天水塔水位的真实数据,水位降至约27.00ft水泵开始工作,水位升到35。

50ft停止工作。

(注:1英尺(ft)=0.3024米(m))
表12-1某小镇某天水塔水位。

水塔水流量估计问题

水塔水流量估计问题

水塔水流量估计问题一.问题描述某居民区有一供居民用水的园柱形水塔,一般可以通过测量其水位来估计水的流量,但面临的困难是,当水塔水位下降到设定的最低水位时,水泵自动启动向水塔供水,到设定的最高水位时停止供水,这段时间无法测量水塔的水位和水泵的供水量.通常水泵每天供水一两次,每次约两小时.水塔是一个高12.2米,直径17.4米的正园柱.按照设计,水塔水位降至约8.2米时,水泵自动启动,水位升到约10.8米时水泵停止工作.表1 是某一天的水位测量记录,试估计任何时刻(包括水泵正供水时)从水塔流出的水流量,及一天的总用水量.表1 水位测量记录(符号//表示水泵启动)二.流量估计的解题思路1.拟合水位~时间函数测量记录看,一天有两个供水时段(以下称第1供水时段和第2供水时段),和3个水泵不工作时段(以下称第1时段t=0到t=8.97,第2次时段t=10.95到t=20.84和第3时段t=23以后)。

对第1、2时段的测量数据直接分别作多项式拟合,得到水位函数.为使拟合曲线比较光滑,多项式次数不要太高,一般在3~6.由于第3时段只有3个测量记录,无法对这一时段的水位作出较好的拟合。

2.确定流量~时间函数对于第1、2时段只需将水位函数求导数即可,对于两个供水时段的流量,则用供水时段前后(水泵不工作时段)的流量拟合得到,并且将拟合得到的第2供水时段流量外推,将第3时段流量包含在第2供水时段内. 3.一天总用水量的估计总用水量等于两个水泵不工作时段和两个供水时段用水量之和,它们都可以由流量对时间的积分得到。

三.算法设计与编程1、拟合第1时段的水位,并导出流量设t ,h 为已输入的时刻和水位测量记录(水泵启动的4个时刻不输入),第1时段各时刻的流量可如下得:1) c1=polyfit (t (1:10),h (1:10),3);%用3次多项式拟合第1时段水位,c1输出3次多项式的系数2)a1=polyder (c1);% a1输出多项式(系数为c1)导数的系数3)tp1=0:0.1:9;x1=-polyval (a1,tp1);% x1输出多项式(系数为a1)在tp1点的函数值(取负后边为正值),即tp1时刻的流量4)流量函数为:1079.227173.22356.0)(2-+-=t t t f2、拟合第2时段的水位,并导出流量设t ,h 为已输入的时刻和水位测量记录(水泵启动的4个 时刻不输入),第2时段各时刻的流量可如下得: 1) c2=polyfit(t(10.9:21),h(10.9:21),3);%用3次多项式拟合第2时段水位,c2输出3次多项式的系数2) a2=polyder(c2);% a2输出多项式(系数为c2)导数的系数3)tp2=10.9:0.1:21;x2=-polyval(a2,tp2); % x2输出多项式(系数为a2)在tp2点的函数值(取负后边为正值),即tp2时刻的流量4)流量函数为:1994.349045.152173.10284.0)(23+-+-=t t t t f3、拟合供水时段的流量在第1供水时段(t=9~11)之前(即第1时段)和之后(即第2时段)各取几点,其流量已经得到,用它们拟合第1供水时段的流量.为使流量函数在t=9和t=11连续,我们简单地只取4个点,拟合3次多项式(即曲线必过这4个点),实现如下:xx1=-polyval(a1,[8 9]);%取第1时段在t=8,9的流量xx2=-polyval(a2,[11 12]);%取第2时段在t=11,12的流量xx12=[xx1 xx2];c12=polyfit([8 9 11 12],xx12,3);%拟合3次多项式tp12=9:0.1:11;x12=polyval(c12,tp12);% x12输出第1供水时段各时刻的流量拟合的流量函数为:在第2供水时段之前取t=20,20.8两点的流水量,在该时刻之后(第3时段)仅有3个水位记录,我们用差分得到流量,然后用这4个数值拟合第2供水时段的流量如下:dt3=diff(t(22:24));%最后3个时刻的两两之差dh3=diff(h(22:24));%最后3个水位的两两之差dht3=-dh3./dt3;%t(22)和t(23)的流量t3=[20 20.8 t(22) t(23)];1.10785049.3368448.341731.1)(23+-+-=ttttfxx3=[-polyval(a2,t3(1:2)),dht3];%取t3各时刻的流量c3=polyfit(t3,xx3,3);%拟合3次多项式tp3=20.8:0.1:24;x3=polyval(c3,tp3);% x3输出第2供水时段(外推至t=24)各时刻的流量拟合的流量函数为:4、一天总用水量的估计第1、2时段和第1、2供水时段流量的积分之和,就是一天总用水量.虽然诸时段的流量已表为多项式函数,积分可以解析地算出,这里仍用数值积分计算如下:y1=0.1*trapz(x1);%第1时段用水量(仍按高度计),0.1为积分步长y2=0.1*trapz(x2);%第2时段用水量y12=0.1*trapz(x12);%第1供水时段用水量y3=0.1*trapz(x3);%第2供水时段用水量8.44966844.6158430.274181.0)(23-+-=ttttfy=(y1+y2+y12+y3)*237.8*0.01; %一天总用水量 (L m 1033)计算结果:y1=146.1815, y2=266.4409, y12=48.5004, y3=74.8064,y=1274.45、流量及总用水量的检验计算出的各时刻的流量可用水位记录的数值微分来检验.用水量y1可用第1时段水位测量记录中下降高度968-822=146来检验,类似地,y2用1082-822=260检验.供水时段流量的一种检验方法如下:供水时段的用水量加上水位上升值260是该时段泵入的水量,除以时段长度得到水泵的功率(单位时间泵入的水量),而两个供水时段水泵的功率应大致相等.第1、2时段水泵的功率可计算如下:p1=(y12+260)/2; %第1供水时段水泵的功率(水量仍以高度计) tp4=20.8:0.1:23;xp2=polyval (c3,tp4); % xp2输出第2供水时段各时刻的流量 p2=(0.1*trapz(xp2)+260)/2.2;%第2供水时段水泵的功率(水量仍以高度计) 计算结果:p1=154.2502 ,p2=142.3670四.计算结果(3,4)流量函数为:(56)流量函数为:画图(n1,n2)y1 y2 y12 y3 y p1 p2 (3,4) 146.1815 266.4409 48.5004 74.8064 1274.4 154.2502 142.3670 (5,6) 146.5150 265.5417 46.1317 72.6057 1262.2 153.0659 141.4479⎪⎪⎩⎪⎪⎨⎧≤≤-+-<≤+-+-<≤+-+-<≤-+-=24218.44966844.6158430.274181.021111.10785049.3368448.341731.11191994.349045.151.21730284.091079.227173.22356.0)(2323232tttttttttttttttt f⎪⎪⎩⎪⎪⎨⎧≤≤-+<≤++-<≤+++-<≤-++-=24214.3551490.560022.3526-3382.021114974.362112.7045-11.80653930.01198447.20.8873-0.10780.0065-0.00020.000098296.235.71081.5878-0.22240120.0)(23232345234tttttttttttttttttttt fn=(3,4)n=(5,6)。

MCM-1991年A题估计水塔的水流量

MCM-1991年A题估计水塔的水流量

MCM-1991年A题:估计水塔的水流量逼近观察数据的一维样条模型在实际工作中,我们常会碰到这样一种情况:我们需要或希望了解某一性质或特征的运动规律,但是由于测量仪器设备的落后或缺乏等原因无法直接得到它,而只能代之以观察到较易得到的在特定时刻或距离上的一些数据,一般来说,虽然这些观察数据不可避免地会带有观察误差,它们还是反映了该性质或特征的主要规律,剩下的问题就是如何建立一个合理的模型,对这些观察数据进行拟合逼近,恢复出原有的规律。

这类问题是一类很典型的对已知数据进行数值拟合来建模的模型问题。

对这类问题,建模的关键在于提出合理的假设,设计出较好的拟合方法,尽量减少因方法不当带来的误差。

在这一讲里,我们就AMCM-91A题进行讨论,详细讲解解这类问题的样条模型。

内容是这样安排的。

在第1节,我们提出问题并作出合理的假设,在第2节,我们介绍建模必备的数学理论,即三次样条函数的概念与基本性质,最后,在第3节,我们给出问题的详细解答,并比较该题当年获优秀论文奖的三种解答的优点。

一、问题与假设在这一节里,我们先叙述AMCM-91A题,然后根据解题需要给出合理的假设。

AMCM-91A题:估计水塔的水流量[1]美国某州的各用水管理机构要求各社区提供以每小时多少加仑计的用水率以及每天所用的总水量。

但许多社区并没有测量流入或流出当地水塔的水量的设备,他们只能代之以每小时测量水塔中的水位,其精度在0.5%以内.更为重要的是,无论什么时候,只要水塔中的水位下降到某一最低水位L时,水泵就启动向水塔重新充水直至某一最高水位H,但也无法得到水泵的供水量的测量数据。

因此,在水泵正在工作时,人们不容易建立水塔的水位与水泵工作时的用水量之间的关系。

水泵每天向水塔充水一次或两次,每次约二小时。

试估计在任何时刻,甚至包括水泵正在工作的时间内,水从水塔流出的流量f(t) ,并估计一天的总用水量.表8-1给出了某个真实小镇某一天的真实数据.表8-1给出了从第一次测量开始的以秒为单位的时刻,以及该时刻的高度单位为百分之一英尺的水塔中水位的测量值,例如,3316秒后,水塔中的水位达到31.10英尺.水塔是一个垂直圆形柱体,高为40英尺,直径为57英尺.通常当水塔的水位降至约27.00英尺时水泵开始向水塔充水,而当水塔的水位升至约35.50英尺时水泵停止工作.我们很容易想到应通过对所给数据进行数值拟合来建模.在讨论具体的建模方法以前,我们先给出一些合理的假设. (1)影响水从水塔流出的流率的唯一因素是公众对水的传统要求.因为附表只给出了某一天(实际是近26小时)水塔的水位数据,并没有对这些数据的产生有影响的因素作出具体说明,我们只能假定所给数据反映了有代表性的一天,而不包括任何特殊情况,如自然灾害、火灾、水塔溢水、水塔漏水等对水的特殊要求.(2)水塔中水的水位不影响水流量的大小.据物理学的Torricelli 定律,水塔最大水流量是与水位的高度的平方根成正比的.针对表8-1所给的数据,最大高度是35.50英尺,最小高度是27.00英尺,所以两个高度的最大水流量之比是15.100.27/50.35 ,接近于1,所以我们假定水位不影响水流量,类似地,我们假定气候条件、条件变化等也不直接影响水流量.(3)水泵工作起止时间由水塔的水位决定.我们总是假定水位大约27.00英尺时,水泵就开始工作,直到水位升至大约35.50英尺时停止工作,每次充水时间约为两小时.水泵工作性能、效率总是一定的,不因使用次数多少而变化,水泵工作时不需要维修,也不中途停止工作.当然,水泵充水的水流量远大于水塔的水流量,以保证人们对水的需求. (4)表8-1中水位数据取得的时间准确在1秒以内.(5)水塔的水流量与水泵状态独立,并不因水泵工作而增加或减少水流量的大小.(6)水塔的水流量曲线可以用一条光滑的曲线来逼近.这时,在每一个数据点,水流量的两阶导数是连续的,因为水的消耗是基于社区公众一天的活动,如洗澡、做饭、洗衣服等,每一个使用者的要求与整个社会的要求相比是微不足道的,而整个社会的需求是不可能同时增加或减少的,由于水的消耗的自然性,可以设想水流量曲线是一条连续光滑的曲线. 二 三次样条函数的基本理论在这一节里,我们介绍对观察数据进行数值拟合逼近的一种有效的数学理论——三次样条函数的基本理论[2].熟悉这部分数学理论后,我们就能对何以说样条插值逼近比高次多项式拟合要优越有一个清楚的认识.如果读者已具备这方面的知识,可以跳过这一节直接进入第三节问题的解答部分.1.三次样条函数的力学背景在工程和数学应用中常有这第一类数据处理问题:在平面上给定了一组有序的离散点列,要求一条光滑的曲线把这些点按次序连接起来,这叫做插值(拟合是一种更广泛意义上的逼近方法).在过去很长的一段时间内,工程技术人员为了得到这条光滑的曲线,常常是用一条富有弹性的均匀细木条(或是有机玻璃条),让它们依次经过这些点,并用“压铁”在若干点处压住,然后沿这条细木条画出一条光滑的曲线,形象地称之为“样条曲线”. 在力学上,如果把细木条看成为弹性细梁,压铁看成是作用在梁上的集中载荷,“样条曲线”就可模拟为弹性细梁在外加集中载荷作用下的弯曲变形曲线.如果用A 表示细梁的刚度系数,M 表示弯矩,在建立坐标系后,由于“样条”是均匀细木条,在两个相邻压铁之间无任何外力,所以M 是x 的线性函数,A 为常数,由力学知识可得 Ak(x)=M(x) (1) 其中k(x)为“样条曲线”y=y(x)的曲率.由数学知识,对一条光滑曲线,k(x)=y"/(1+y ′2)3/2.一般来说,上述样条曲线所适合的微分方程(1)是非线性的,它的解是无法用初等函数表示的,但在通常称为“小挠度”的情况下,即细梁弯曲不大,|y ′|<<1时,可以忽略y ′的影响,从而得到近似的方程Ay"(x)=M(x),由M 的线性,就有y (4)(x)≡0,即“样条曲线”是分段三次多项式,且曲线的函数值、一阶导数、二阶导数都是连续的,而三阶导数是间断的.这就是三次样条函数的力学背景. 2.三次插值样条函数定义 设在区间[a,b ]上给定一个分割∏:a=x 0<x 1<…<x n-1<x n =b,定义在[a,b ]上的一个函数S(x)如果满足下列条件:①在每个小区间[x i-1,x i ](i=1,2, …,n)内S(x)是三次多项式; ②在整个区间[a,b ]上,S(x)为二阶连续可导函数,也就是说,在每个节点x i (i=1,2,…,n-1)处, S (k)(x i -0)=S (k)(x i +0),k=0,1,2 (2)则称S(x)为三次样条函数.对定义在区间[a,b ]上的函数f(x),如果存在三次样条函数S(x),使得在节点处还满足S(x i )=f(x i )(i=0,1, …,n),就称S(x)为插值于f(x)的三次样条函数. 对给定的一组有序数组y i (i=0,1, …,n),如果三次样条函数S(x)满足S(x i )=y i (i=0,1, …,n),就称S(x)为插值于{y i }的三次样条函数.现在,如果对函数f(x),我们并不知道其解析表达式,而只知道其在节点处的值f i =f(x i ) (i=0,1, …,n),如何估计f(x)?一个很自然的方法就是求插值于{f i }的三次样条函数S(x),以S(x)作为对f(x)的逼近.那么,如何求出S(x)?我们将利用f i 及一阶、二阶导数来建立求S(x)的表示式及连续性方程. (1)M连续性方程与S(x)的表示式记S(x)在节点x i 处的函数值、一阶导数和二阶导数分别为 S(x i )=f i ,S ′(x i )=m i ,,S"(x i )=M i , (i=0,1, …,n) (3)由于S(x)是分片三次多项式,在每个小区间[x i-1,x i ]上,S(x)的二阶导数是线性函数,记h i =x i -x i-1表示小区间长度,有S 〃(x)=M i-1i 1i ii i h x x M h x x --+-, (x i-1≤x ≤x i ) (4) 将(4)式积分一次,得S '(x)=-M i-1i 1i21i i 2i C h )x x (Mi h 2)x x (+-+-- , (x i-1≤x ≤x i ) (5)再将(5)式积分一次,有 S(x)=M i-1,C x C h 63)x x (Mi h 63)x x (i 2i 1i 1i i i ++-+-- (x i-1≤x ≤x i )(6)由插值条件(3),S (x i )=f i ,S(x i-1)=f i-1,代入(6)式,有⎪⎪⎩⎪⎪⎨⎧+-+-=---=-----1i i i i i i 1i i i 1i i 21i i i 1i f i 1x )6M h h f (x )6M h h f (C 6)M M (h hi f C i 而由(5)式,有⎪⎪⎩⎪⎪⎨⎧----=++---=-+++++--2h M 6)M M (h h f f )0x ('S 2h M 6)M M (h hi f f )0x ('S 1i ii 1i 1i 1i i 1i i i i 1i i i 1i i i (7)但由一阶导数连续,S '(x i -0)=S’(x i +0)(i=1,…,n-1),由(7)式就得到n-1个等式 μi M i-1+2M i +λi M i+1=d i , (i=1,…,n-1) (8) 其中λi=1i i 1i h h h +++,μi =i1i ih h h ++di=)h f f h f f (h h 6i1i i 1i i 1i 1i i -+++---+ (i=1,…,n-1)。

数学建模估计水塔的流量用数学软件求解拟合问题

数学建模估计水塔的流量用数学软件求解拟合问题

算法设计与编程
1. 拟合第1、2时段的水位,并导出流量
2. 拟合供水时段的流量
3. 估计一天总用水量
4. 流量及总用水量的检验
1. 拟合第1时段的水位,并导出流量 设t,h为已输入的时刻和水位测量记录(水泵启动的4个时刻不输入),第1时段各 时刻的流量可如下得: 1) c1=polyfit(t(1:10),h(1:10),3); %用3次多项式拟合第1时段水位,c1输出3次多项式的系数 2)a1=polyder(c1); % a1输出多项式(系数为c1)导数的系数
m 3 103 L
MATLAB(llgjz)
4. 流量及总用水量的检验
计算出的各时刻的流量可用水位记录的数值微分来检验.用水量y1可用第1时段水位测 量记录中下降高度968-822=146来检验,类似地,y2用1082-822=260检验. 供水时段流量的一种检验方法如下:供水时段的用水量加上水位上升值 260是该时段泵入 的水量,除以时段长度得到水泵的功率(单位时间泵入的水量),而两个供水时段水泵的 功率应大致相等.第1、2时段水泵的功率可计算如下: p1=(y12+260)/2; %第1供水时段水泵的功率 (水量仍以高度计) tp4=20.8:0.1:23; xp2=polyval(c3,tp4); % xp2输出第2供水时段 各时刻的流量 p2=(0.1*trapz(xp2)+260)/2.2; %第2供水时段水泵的功率 (水量仍以高度计) 计算结果:p1=154.5 ,p2=140.1
用非线性最小二乘拟合c(t)-用lsqcurvefit
1. 用M文件curvefun3.m定义函数
function f=curvefun3(x,tdata) d=300 f=(x(1)\d)*exp(-x(2)*tdata) % x(1)=v; x(2)=k

水塔流量估计的数学建模

水塔流量估计的数学建模

水塔流量估计的数学建模水塔是城市供水系统中的重要组成部分,它们储存着大量的水资源,为城市居民提供生活用水。

在城市供水系统中,水塔的流量是一个非常重要的参数,它直接影响着供水系统的运行效率和水资源的利用率。

因此,如何准确地估计水塔的流量是一个非常重要的问题。

水塔的流量估计可以通过数学建模来实现。

首先,我们需要了解水塔的基本结构和工作原理。

水塔通常由水箱、进水管、出水管、溢流管等组成。

当水箱内的水位下降时,进水管会自动打开,将外部的水源引入水箱中,同时出水管会自动关闭,防止水箱内的水流失。

当水箱内的水位上升到一定高度时,溢流管会自动打开,将多余的水流出水箱,以保持水箱内的水位稳定。

在水塔的运行过程中,我们可以通过测量进水管和出水管的水流速度来估计水塔的流量。

根据流量的定义,流量等于单位时间内通过某一截面的液体体积。

因此,我们可以通过测量进水管和出水管的截面积和水流速度来计算水塔的流量。

具体地,假设进水管的截面积为A1,出水管的截面积为A2,进水管的水流速度为v1,出水管的水流速度为v2,则水塔的流量Q可以表示为:Q = A1v1 - A2v2其中,A1v1表示进水管的流量,A2v2表示出水管的流量。

由于进水管和出水管的截面积和水流速度可能会随着时间的变化而发生变化,因此我们需要不断地对它们进行测量和调整,以保证水塔的流量估计的准确性。

除了测量进水管和出水管的水流速度外,我们还可以通过其他的方法来估计水塔的流量。

例如,我们可以通过测量水塔内部的水位变化来估计水塔的流量。

具体地,我们可以安装水位传感器在水塔内部,通过测量水位的变化来计算水塔的流量。

这种方法的优点是不需要对进水管和出水管进行测量,但是需要安装水位传感器,成本较高。

水塔流量估计的数学建模是一个非常重要的问题。

通过测量进水管和出水管的水流速度或者测量水塔内部的水位变化,我们可以准确地估计水塔的流量,从而保证城市供水系统的正常运行。

估计水塔的水流量

估计水塔的水流量

估计水塔的水流量1、问题提出:某地区用水管理机构需要对居民的用水速度(单位时间的用水量)和日总用水量进行估计。

现有一居民区,其自来水是由一个圆柱形水塔提供,水塔高12.2m,塔的直径为17.4m。

水塔是由水泵根据水塔中的水位自动加水,一般水泵每天工作两次,按照设计,当水塔中的水位降至最低水位,约8.2m时,水泵自动启动加水;当水位升高到最高水位,约10.8m时,水泵停止工作。

表1给出的是某一天的测量数据,测量了28个时刻的数据,但由于水泵正向水塔供水,有三个时刻无法测到水位(表中用—表示),试建立数学模型,来估计居民的用水速度和日用水量。

表1 水塔中水位原始数据2、问题分析:日用水量用水速度每个时刻水塔中水的体积3、模型假设:影响水从水塔中流出的流量的唯一因素是公众对水的传统要求;水塔中的水位、气候条件、温度变化等不影响水流量的大小;水泵充水速度水塔的水流量与水泵状态独立;恒定,且远大于水塔的水流速度;水流量曲线是一条连续光滑的曲线;表1数据是准确的;4、模型的建立与求解:(1)、水塔中水的体积其中, ,(r 为底面半径,d 为水面高度)(2)在Matlab 命令窗口直接运行(不包括未知三点)>>t=[0,0.921,1.843,2.949,3.871,4.978,5.900,7.006,7.928,8.967,10.954,12.032,12.954,13.875,14.982,15.903,16.826,17.931,19.037,19.959,20.839,22.958,23.880,24.986,25.908];>>v=[2301.1,2254,2213.3,2169.8,2135.8,2095.9,2065.4,2027.1,1994.6,1954.6,2572.9,2496.8,2427.8,2362.7,2295.4,2237.3,2182.9,2121.3,2059.7,2005.3,1954.6,2572.9,2518.4,2462.0,2420.7]; >> scatter(t,v)得到水塔中水体积的散点图 0510********19002000210022002300240025002600(3)在Matlab 中编写脚本文件(不包括未知三点)采用数值微分的一阶微商的两点公式(末位处近似为sd(n)=sd(n-1))t=[0,0.921,1.843,2.949,3.871,4.978,5.900,7.006,7.928,8.967,10.954,12.032,12.954,13.875,14.982,15.903,16.826,17.931,19.037,19.959,20.839,22.958,23.880,24.986,25.908];v=[2301.1,2254,2213.3,2169.8,2135.8,2095.9,2065.4,2027.1,1994.6,1954.6,2572.9,2496.8,2427.8,2362.7,2295.4,2237.3,2182.9,2121.3,2059.7,2005d r V 2π=.3,1954.6,2572.9,2518.4,2462.0,2420.7];for i=1:9sd(i)=abs((v(i+1)-v(i))/(t(i+1)-t(i)));endsd(10)=sd(9);for i=11:20sd(i)=abs((v(i+1)-v(i))/(t(i+1)-t(i)));endsd(21)=sd(20);for i=22:24sd(i)=abs((v(i+1)-v(i))/(t(i+1)-t(i)));endsd(25)=sd(24);scatter(t,sd)hold onplot(t,sd)得到水塔中水流速度的散点图及光滑图0510********(4)预测水塔中的未知流速[1]在Matlab中运行脚本文件(不包括未知三点):采用数值微分的一阶微商的两点公式(末位处近似为sd(n)=sd(n-1))t=[0,0.921,1.843,2.949,3.871,4.978,5.900,7.006,7.928,8.967,10.954,12. 032,12.954,13.875,14.982,15.903,16.826,17.931,19.037,19.959,20.839,22 .958,23.880,24.986,25.908];v=[2301.1,2254,2213.3,2169.8,2135.8,2095.9,2065.4,2027.1,1994.6,1954. 6,2572.9,2496.8,2427.8,2362.7,2295.4,2237.3,2182.9,2121.3,2059.7,2005 .3,1954.6,2572.9,2518.4,2462.0,2420.7];for i=1:9sd(i)=abs((v(i+1)-v(i))/(t(i+1)-t(i)));endsd(10)=sd(9);for i=11:20sd(i)=abs((v(i+1)-v(i))/(t(i+1)-t(i)));endsd(21)=sd(20);for i=22:24sd(i)=abs((v(i+1)-v(i))/(t(i+1)-t(i)));endsd(25)=sd(24);sd得到速度(不包括未知三点)sd =Columns 1 through 951.1401 44.1432 39.3309 36.8764 36.0434 33.0803 34.6293 35.2495 38.4986Columns 10 through 1838.4986 70.5937 74.8373 70.6840 60.7949 63.0836 58.9382 55.7466 55.6962Columns 19 through 2559.0022 57.6136 57.6136 59.1106 50.9946 44.7939 44.7939 [2]采用拉格朗日插值法估计未知三点的速度:在Matlab命令窗口直接运行>> x0=[7.928,8.967];>> y0=[38.4968,38.4968];>> lglr3(x0,y0,9.981)ans =38.4968>> x0=[8.967,9.981];>> y0=[38.4968,38.4968];>> lglr3(x0,y0,10.925)ans =38.4968>> x0=[19.959,20.839];>> y0=[57.6136,57.6136];>> lglr3(x0,y0,22.015)ans =57.6136[3]在Matalb中运行脚本文件t=[0,0.921,1.843,2.949,3.871,4.978,5.900,7.006,7.928,8.967,9.981,10.9 25,10.954,12.032,12.954,13.875,14.982,15.903,16.826,17.931,19.037,19.959,20.839,22.015,22.958,23.880,24.986,25.908];sd=[51.1401,44.1432,39.3309,36.8764,36.0434,33.0803,34.6293,35.2495,3 8.4986,38.4968,38.4968,38.4986,70.5937,74.8373,70.6840,60.7949,63.083 6,58.9382,55.7466,55.6962,59.0022,57.6136,57.6136,57.6136,59.1106,50. 9946,44.7939,44.7939];scatter(t,sd)hold onplot(t,sd)得到水塔中水流速度的散点图及光滑图(new)757065605550454035300510********(4)a、通过曲线拟合,拟合出上述函数(f1)b、通过数值积分(梯形,辛普森)求出用水量(f2)5、模型检验:应该另外测试一批数据检验模型(f1,f2)6、模型分析:(1) 4.(3)中末位处近似为sd(n)=sd(n-1)可以改进,比如先采用数值微分求1----(n-1)的速度,再采用拉格朗日插值法求末位n的速度;(2)拉格朗日插值可以改用其他更为精确的插值法(3)数值微分法可以采用其他的更为精确的方法(而不是一阶微商的两点公式)(4) 4.(4)中的两部暂时不会(5)模型假设处可能有一些瑕疵7、附录:。

水塔流量问题(专业教学)

水塔流量问题(专业教学)

本科生课程设计报告
实习课程数值分析
学院名称管理科学学院
专业名称
学生姓名
学生学号
指导教师
实验地点
实验成绩
二〇一六年六月二〇一六年六月
估计水塔的水流量
摘要
水塔流量的估计是一个较为经典的数学建模问题,本问题最大的困难在于不知泵启动时水位的变化和向外水流的速度.解决该问题,先确定近似流速,利用中点数值求导公式计算出每个时间点出的流速,再利用插值与拟合计算出流速与时间的函数,对0到24小时积分可得总用水量,这是第一种方法.第二种方法,水泵没有开动时利用高度差计算用水量,水泵开动时利用积分,这样计算出的结果较为准确,2种方法比较,可得出误差.
关键词:中点数值求导;插值与拟合;积分
目录
第1章前言 (1)
1.1 内容及要求 (1)
1.2 研究思路及结构安排 (2)
第2章模型建立与求解 (3)
2.1模型假设 (3)
2.2确定近似流速 (3)
2.3 确定水泵启动时的流量及总流量曲线 (4)
2.4确定总用水量 (4)
第3章算法步骤 (6)
3.1 中点数值求导函数步骤及流程图 (6)
3.2 三次样条插值函数步骤及流程图 (7)
第4章算法实现 (7)
4.1 程序总体结构 (7)
4.2 源程序清单 (8)
4.3 程序运行 (12)
第5章误差分析 (15)
第6章模型的评价和改进 (16)
6.1 优点 (16)
6.2 缺点 (16)
6.3 模型的改进方向 (16)
参考文献 (16)。

估计水塔水流量的求解模型要点

估计水塔水流量的求解模型要点

估计水塔水流量的求解模型摘要由所给的题目可知,本问题是一个关于如何计算居民用水的问题,由题目给出的表格,可知不同时刻的水位,根据所要求的不同时刻水位的不同入手,此计算问题就可以转化为插值或拟合问题。

这里主要考虑采用插值的方法,可以利用MATLAB软件进行插值和曲线拟合计算并解决一些具体的实际问题。

根据题目建立模型并采用插值的方法进行求解,推算出任何时刻(包括水泵正供水时)从水塔流出的水流量,及一天的总用水量。

关键词:用水规律与水泵的工作功率原始数据用水规律与水泵的工作功率一、问题重述1.1基本情况某居民区有一供居民用水的圆柱形水塔,一般可以通过测量其水位来估计水的流量。

面临的困难是,当水塔水位下降到设定的最低水位时,水泵自动启动向水塔供水,到设定的最高水位的时候停止供水,这段时间无法测量水塔的水位和水泵的供水量。

通常水泵每天供水一两次,每次约3h. 已知水塔是一个高为12.2m,直径为17.4m的正圆柱。

1.2 所要解决的问题现在需要了解该居民区用水规律与水泵的工作功率。

按照设计,当水塔的水位降至最低水位,约8.2米时,水泵自动启动加水;当水位升高到一个最高水位,约10.8米时,水泵停止工作。

可以考虑采用用水率(单位时间的用水量)来反映用水规律,并通过间隔一段时间测量水塔里的水位来估算用水率。

表1是某一天的测量记录数据,测量了28个时刻,但是由于其中有4个时刻遇到水泵正在向水塔供水,而无水位记录(表中用符号//表示)。

所要解决的问题就是,要估计任何时刻(包括水泵正供水时)从水塔流出的水流量,及一天的总用水量。

表1水位测量记录(符号//表示水泵启动)二、问题背景1991年的美国大学生数学建模竞赛A题(AMCM1991A),由于它是水库调度、自来水管理、公共场所的人流量估计等问题的代表,因此有许多文献对其进行了研究,但一般都是采用差分与拟合的方法。

而由于居民何时用水是无法准确的预报的,可能引起的水位的变化是随机事件,因此,可以以水容量作为随机变量,建立一个随机数学模型,不仅可以给出了水塔流量函数,同时还可以讨论水容量函数的数学期望。

估计水塔的水流量(AMCM91

估计水塔的水流量(AMCM91

估计水塔的水流量(AMCM911.实验问题某地的用水管理机构要求各社区提供用水率(以每小时多少加仑计,英制单位下,1加仑=4.54596dm3,美制单位下,1加仑=3.78533dm3)以及每天所用的总用水量,但许多社区并没有测量流入或流出当地水塔的水量的设备,而只能以每小时测量水塔的水位代替,其精度在0.5%以内。

更为重要的是,无论什么时候,只要水塔中的水位下降到某一最低水位L时,水泵就启动向水塔重新充水直至某一最高水位H,但也无法得到水泵的供水量的测量数据。

因此,在水泵正在工作时,不容易建立水塔中水位与水泵工作时用水量之间的关系。

水泵每天向水塔充水一次或两次,每次大约2小时。

试估计在任何时候,甚至包括水泵正在工作的时间内从水塔流出的流量,并估计一天的总用水量。

水塔是一个垂直圆柱体,高为40英尺,直径为57英尺。

下表给出了某个小镇某一天的真实数据。

表:某小镇某天的水塔水位(1m=3.281英尺)2.实验分析2.1 计算中将流量定义为单位时间流出的水的高度乘以水塔横截面积。

2.2 把时间分成5段:第1未供水段、水泵开启第1段、第2未供水段、水泵开启第2段、第3未供水段。

2.3 先直接对第1、2、3未供水段进行5次曲线拟合。

2.4 再对得到的曲线分别求导,取得流速(即单位时间内流出的水的高度)。

2.5 水泵开启第1、2段,分别在两端各取两个点,用时刻流速进行拟合得到这两段的流速。

2.6 流速乘以水塔横截面积就得到任何时刻的水流量。

2.7 对其进行分段积分,求和得到一天的总水流量。

3.程序设计与求解方法3.1 对表中数据进行处理数据的单位转换:46636,49953,53936,57254,60574,64554,68535,71854,75021,85968,89953,932 70];y=[31.75,31.10,30.54,29.94,29.55,28.92,28.50,27.87,27.52,26.97,35.50, 34.45,33.50,32.67,31.56,30.81,30.12,29.27,28.42,27.67,26.97,34.75,33. 89,33.40];t=x/3600; %时间单位为小时h=y/3.281; %水位高度单位为米水塔横截面积为a=pi*(57/2)^2;3.2 对第1段未供水段进行5次拟合x1=t(1:10);y1=h(1:10);f1=polyfit(x1,y1,5);t1=0:0.01:t(10);h1=polyval(f1,t1);plot(x1,y1,'o',t1,h1,'k');xlabel('时间(h)');ylabel('水位(m)');title('第一未供水时段的时间水位图')3.3 对第2段未供水段进行5次拟合x2=t(11:21);y2=h(11:21);f2=polyfit(x2,y2,5);t2=t(11):0.01:t(21);h2=polyval(f2,t2);plot(x2,y2,'o',t2,h2,'r');xlabel('时间(h)');ylabel('水位(m)');title('第二未供水时段的时间水位图 ')3.4 对第3段未供水段进行5次拟合x3=t(22:24);y3=h(22:24);f3=polyfit(x3,y3,5);t3=t(22):0.01:t(24);h3=polyval(f3,t3);plot(x3,y3,'o',t3,h3,'r');xlabel('时间(h)');ylabel('水位(m)');title('第三未供水时段的时间水位图 '3.5 对1、2、3未供水段进行求导,得到流速,再乘以水塔横截面积得流量b1=polyder(f1);%求导b2=polyder(f2);%求导b3=polyder(f3);%求导g1=-polyval(b1,t1)*a;%流速值再乘以水塔横截面积得流量g11=-polyval(b1,x1)*a;g2=-polyval(b2,t2)*a;%流速值再乘以水塔横截面积得流量g22=-polyval(b2,x2)*a;g3=-polyval(b3,t3)*a;%流速值再乘以水塔横截面积得流量g33=-polyval(b3,x3)*a;plot(x1,g11,'*',t1,g1,'c') %第一未供水段时间流量图plot(t2,g2) %第二未供水段时间流量图plot(t3,g3) %第三未供水段时间流量图3.6 求水泵开启第一段的时间流量图,取那段的前后两端各两个点的流速进行拟合,再乘以水塔横截面积得流量。

11-水塔水流量估计模型与数据插值

11-水塔水流量估计模型与数据插值
n 1 1
解为X A1Y .
可以证明,对于n+1个不同结点,必存在唯一的次 数不超过n的满足条件的多项式,这个多项式称为 插值多项式,这种方法称为n次多项式插值(或代 数插值。
为了以后使用方便,先编制一个Lagrange插值函数程序: function p=lagrange(x,y) L=length(x); A=ones(L); for j=2:L A(:,j)=A(:,j-1).*x'; end X=inv(A)*y'; for i=1:L p(i)=X(L-i+1); end
结果分析
分段线性插值有效地回避了插值问题中的 “龙格现象”,结果连线也大致描述了已知数 据点的变化规律。但很明显,由分段直线连接 的插值曲线在节点处不光滑,不可导。
(3)3次样条插值
x=[0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1]; y=[-0.447 1.978 3.28 6.16 7.08 7.34 7.66 9.56 9.48 9.3 11.2]; plot(x,y,'b.','markersize',30) axis([0 1 -1 16]) grid hold on pause(1) t=0:0.01:1; u=spline(x,y,t); plot(t,u,'r-','linewidth',3)
差商具有如下性质:
(1)m阶差商是零阶差商的线性组合; (2)差商与插值结点的次序无关; (3)若f(x)是m次多项式,则 f[x0,x1,…,xm]=0
由差商公式, f ( x ) f ( x0 ) f [ x0 , x ]( x x0 ),

水塔流量问题

水塔流量问题

本科生课程设计报告实习课程数值分析学院名称管理科学学院专业名称学生姓名学生学号指导教师实验地点实验成绩二〇一六年六月二〇一六年六月估计水塔的水流量摘要水塔流量的估计是一个较为经典的数学建模问题,本问题最大的困难在于不知泵启动时水位的变化和向外水流的速度.解决该问题,先确定近似流速,利用中点数值求导公式计算出每个时间点出的流速,再利用插值与拟合计算出流速与时间的函数,对0到24小时积分可得总用水量,这是第一种方法.第二种方法,水泵没有开动时利用高度差计算用水量,水泵开动时利用积分,这样计算出的结果较为准确,2种方法比较,可得出误差.关键词:中点数值求导;插值与拟合;积分目录第1章前言..................................................................................................... 错误!未指定书签。

1.1内容及要求...................................................................................... 错误!未指定书签。

1.2研究思路及结构安排...................................................................... 错误!未指定书签。

第2章模型建立与求解................................................................................. 错误!未指定书签。

2.1模型假设.......................................................................................... 错误!未指定书签。

2.2确定近似流速.................................................................................. 错误!未指定书签。

MATLAB__水塔流量的估计

MATLAB__水塔流量的估计

水塔水流量的估计摘要:数学建模方法是处理科学理论的一种经典方法,也是解决各类实际问题的常用方法。

本文采用曲线拟合的方法,并利用数学软件MATLAB对水塔流量进行计算,计算结果与实际记录基本吻合。

关键词:建模,流量,拟合,MATLAB1.问题重述美国某州的各用水管理机构要求各社区提供用水率(以每小时多少加仑计,英制单位下,1加仑=4.54596dm3,美制单位下,1加仑=3.78533dm3)以及每天所用的总用水量,但许多社区并没有测量流入或流出当地水塔的水量的设备,而只能以每小时测量水塔的水位代替,其精度在0.5%以内。

更为重要的是,无论什么时候,只要水塔中的水位下降到某一最低水位L时,水泵就启动向水塔重新充水直至某一最高水位H,但也无法得到水泵的供水量的测量数据。

因此,在水泵正在工作时,不容易建立水塔中水位与水泵工作时用水量之间的关系。

水泵每天向水塔充水一次或两次,每次大约2小时。

试估计在任何时候,甚至包括水泵正在工作的时间f t,并估计一天的总用水量。

水塔是一个垂直圆柱体,高为内从水塔流出的流量()40英尺,直径为57英尺。

下表给出了某个小镇某一天的真实数据:表1某小镇某天的水塔水位(1m=3.281英尺)2.问题分析数据的单位转换:表2流量是单位时间流出的水的体积,由于水塔是正圆柱形,横截面积是常数,在水泵不工作的时段,流量很容易从水位对时间的变化率算出,问题是如何估计水泵供水时段的流量。

水泵供水时段的流量只能靠供水时段前后的流量拟合得到,作为用于拟合的原始数据,我们希望水泵不工作的时段流量越准确越好。

这些流量大体可由两种方法计算: 一是直接对表2中的水位用数值微分算出各时段的流量,用它们拟合其它时刻或连续时间的流量。

二是先用表中数据拟合水位-时间函数,求导数即可得到连续时间的流量。

一般说来数值微分的精度不高,何况测量记录还是不等距的,数值微分的计算尤其麻烦。

下面我们用第二种方法处理。

有了任何时刻的流量,就不难计算一天的总用水量。

水塔水流量估计

水塔水流量估计

答卷编号(参赛学校填写):答卷编号(竞赛组委会填写):论文题目: 98年A组别:本科参赛队员信息(必填):参赛学校:承诺书我们仔细阅读了中国大学生数学建模竞赛的竞赛规则.我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。

我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。

我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。

如有违反竞赛规则的行为,我们将受到严肃处理。

我们参赛选择的题号是(从A/B/C/D中选择一项填写): A我们的参赛报名号为(如果赛区设置报名号的话):所属学校(请填写完整的全名):参赛队员(打印并签名) :1.2.3.指导教师或指导教师组负责人(打印并签名):日期:年月日赛区评阅编号(由赛区组委会评阅前进行编号):编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):估计水塔的流量一、问题重述某居民区有一供居民用水的圆柱形水塔,一般可以通过测量其水位来估计水的流量,但面临的困难是,当水塔水位下降到设定的最低水位时,水泵自动启动向水塔供水,到设定的最高水位时停止供水,这段时间无法测量水塔的水位和水泵的供水量.通常水泵每天供水一两次,每次约两小时.水塔是一个高12.2米,直径17.4米的正圆柱.按照设计,水塔水位降至约8.2米时,水泵自动启动,水位升到约10.8米时水泵停止工作.表1 是某一天的水位测量记录,试估计任何时刻(包括水泵正供水时)从水塔流出的水流量,及一天的总用水量.二、模型假设1、假设该水塔为标准的圆柱形。

2、水塔的流量只取决水塔内水位的差值,与其水位的高低无关且该流量应看做连续光滑的变量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

水塔水流量估计问题一.问题描述某居民区有一供居民用水的园柱形水塔,一般可以通过测量其水位来估计水的流量,但面临的困难是,当水塔水位下降到设定的最低水位时,水泵自动启动向水塔供水,到设定的最高水位时停止供水,这段时间无法测量水塔的水位和水泵的供水量.通常水泵每天供水一两次,每次约两小时.水塔是一个高12.2米,直径17.4米的正园柱.按照设计,水塔水位降至约8.2米时,水泵自动启动,水位升到约10.8米时水泵停止工作.表1 是某一天的水位测量记录,试估计任何时刻(包括水泵正供水时)从水塔流出的水流量,及一天的总用水量.表1 水位测量记录(符号//表示水泵启动)二.流量估计的解题思路1.拟合水位~时间函数测量记录看,一天有两个供水时段(以下称第1供水时段和第2供水时段),和3个水泵不工作时段(以下称第1时段t=0到t=8.97,第2次时段t=10.95到t=20.84和第3时段t=23以后)。

对第1、2时段的测量数据直接分别作多项式拟合,得到水位函数.为使拟合曲线比较光滑,多项式次数不要太高,一般在3~6.由于第3时段只有3个测量记录,无法对这一时段的水位作出较好的拟合。

2.确定流量~时间函数对于第1、2时段只需将水位函数求导数即可,对于两个供水时段的流量,则用供水时段前后(水泵不工作时段)的流量拟合得到,并且将拟合得到的第2供水时段流量外推,将第3时段流量包含在第2供水时段内.3.一天总用水量的估计总用水量等于两个水泵不工作时段和两个供水时段用水量之和,它们都可以由流量对时间的积分得到。

三.算法设计与编程1、拟合第1时段的水位,并导出流量设t,h为已输入的时刻和水位测量记录(水泵启动的4个时刻不输入),第1时段各时刻的流量可如下得:1)c1=polyfit(t(1:10),h(1:10),3);%用3次多项式拟合第1时段水位,c1输出3次多项式的系数2)a1=polyder(c1);% a1输出多项式(系数为c1)导数的系数3)tp1=0:0.1:9;x1=-polyval(a1,tp1);% x1输出多项式(系数为a1)在tp1点的函数值(取负后边为正值),即tp1时刻的流量4)流量函数为:1079.227173.22356.0)(2-+-=tttf2、拟合第2时段的水位,并导出流量设t,h为已输入的时刻和水位测量记录(水泵启动的4个时刻不输入),第2时段各时刻的流量可如下得:1)c2=polyfit(t(10.9:21),h(10.9:21),3);%用3次多项式拟合第2时段水位,c2输出3次多项式的系数2)a2=polyder(c2);% a2输出多项式(系数为c2)导数的系数3)tp2=10.9:0.1:21;x2=-polyval(a2,tp2); % x2输出多项式(系数为a2)在tp2点的函数值(取负后边为正值),即tp2时刻的流量4)流量函数为:1994.349045.152173.10284.0)(23+-+-=ttttf3、拟合供水时段的流量在第1供水时段(t=9~11)之前(即第1时段)和之后(即第2时段)各取几点,其流量已经得到,用它们拟合第1供水时段的流量.为使流量函数在t=9和t=11连续,我们简单地只取4个点,拟合3次多项式(即曲线必过这4个点),实现如下:xx1=-polyval (a1,[8 9]); %取第1时段在t=8,9的流量 xx2=-polyval (a2,[11 12]); %取第2时段在t=11,12的流量 xx12=[xx1 xx2];c12=polyfit ([8 9 11 12],xx12,3); %拟合3次多项式 tp12=9:0.1:11;x12=polyval (c12,tp12); % x12输出第1供水时段各时刻的流量 拟合的流量函数为:在第2供水时段之前取t=20,20.8两点的流水量,在该时刻之后(第3时段)仅有3个水位记录,我们用差分得到流量,然后用这4个数值拟合第2供水时段的流量如下: dt3=diff (t(22:24)); %最后3个时刻的两两之差 dh3=diff (h(22:24)); %最后3个水位的两两之差 dht3=-dh3./dt3; %t(22)和t(23)的流量 t3=[20 20.8 t(22) t(23)];1.10785049.3368448.341731.1)(23+-+-=t t t t fxx3=[-polyval(a2,t3(1:2)),dht3]; %取t3各时刻的流量 c3=polyfit (t3,xx3,3); %拟合3次多项式 tp3=20.8:0.1:24;x3=polyval (c3,tp3);% x3输出第2供水时段(外推至t=24)各时刻的流量 拟合的流量函数为:4、一天总用水量的估计第1、2时段和第1、2供水时段流量的积分之和,就是一天总用水量.虽然诸时段的流量已表为多项式函数,积分可以解析地算出,这里仍用数值积分计算如下:y1=0.1*trapz(x1); %第1时段用水量(仍按高度计),0.1为积分步长 y2=0.1*trapz(x2); %第2时段用水量 y12=0.1*trapz(x12); %第1供水时段用水量 y3=0.1*trapz(x3); %第2供水时段用水量8.44966844.6158430.274181.0)(23-+-=t t t t fy=(y1+y2+y12+y3)*237.8*0.01; %一天总用水量 (L m 1033)计算结果:y1=146.1815, y2=266.4409, y12=48.5004, y3=74.8064,y=1274.45、流量及总用水量的检验计算出的各时刻的流量可用水位记录的数值微分来检验.用水量y1可用第1时段水位测量记录中下降高度968-822=146来检验,类似地,y2用1082-822=260检验.供水时段流量的一种检验方法如下:供水时段的用水量加上水位上升值260是该时段泵入的水量,除以时段长度得到水泵的功率(单位时间泵入的水量),而两个供水时段水泵的功率应大致相等.第1、2时段水泵的功率可计算如下:p1=(y12+260)/2; %第1供水时段水泵的功率(水量仍以高度计) tp4=20.8:0.1:23;xp2=polyval (c3,tp4); % xp2输出第2供水时段各时刻的流量p2=(0.1*trapz(xp2)+260)/2.2;%第2供水时段水泵的功率(水量仍以高度计) 计算结果:p1=154.2502 ,p2=142.3670四.计算结果(3,4)流量函数为:(56)流量函数为:画图(n1,n2)y1y2y12y3y p1p2 (3,4)146.1815266.440948.500474.80641274.4154.2502142.3670 (5,6)146.5150265.541746.131772.60571262.2153.0659141.4479⎪⎪⎩⎪⎪⎨⎧≤≤-+-<≤+-+-<≤+-+-<≤-+-=24218.44966844.6158430.274181.021111.10785049.3368448.341731.11191994.349045.151.21730284.091079.227173.22356.0)(2323232tttttttttttttttt f⎪⎪⎩⎪⎪⎨⎧≤≤-+<≤++-<≤+++-<≤-++-=24214.3551490.560022.3526-3382.021114974.362112.7045-11.80653930.01198447.20.8873-0.10780.0065-0.00020.000098296.235.71081.5878-0.22240120.0)(23232345234tttttttttttttttttttt fn=(3,4)n=(5,6)。

相关文档
最新文档