图形的轴对称与中心对称
图形轴对称与中心对称
例2 (2013·钦州)如图,在平面直角坐标系中, △ABC的三个顶点都在格点上,点A的坐标为(2,4), 请解答下列问题:
(1)画出△ABC关于x轴对称的△A1B1C1,并写出点 A1的坐标.
(2)画出△A1B1C1绕原点O旋转180°后得到的 △A2B2C2,并写出点A2的坐标.
A. 3 2
B.3
C.1
D. 4 3
4.(2013·宁夏)如图,正三角形网格中,已有
两个小正三角形被涂黑,再将图中其余小正三角
形涂黑一个,使整个被涂黑的图案构成一个轴对
称图形的方法有3
种.
【解析】选择小正三角形涂黑,使整个被涂黑 的图案构成一个轴对称图形,选择的位置有以下 几种:1处,2处,3处,选择的位置共有3处.
(2)DG=B′G.
【思路分析】(1)∠1是折叠后所得到的角,根据轴 对称的性质,易得∠1=∠CEF,再由平行四边形的对 边平行,可得∠2=∠CEF,∴∠1=∠2.
第二篇 图形与几何
第26讲 图形与变换 第1课时 图形轴对称与中心对称
(学P97)
1.轴对称和轴对称图形 (1)轴对称 把一个图形沿着某一条直线折叠,如果它能够 与另一个图形 重合 ,那么就说这两个图形关 于这条直线对称,这条直线叫做对称轴.折叠后 重合的点是对应点,叫对称点.
(2)轴对称图形
如果一个图形沿某一直线对折后,直线两旁的部 分能够互相重合,这个图形叫做 轴对称图形,这
(3)性质
①中心对称的两个图形,对称点所连线段都经过 对称中心,而且被对称中心 平分 .
②成中心对称的两个图形 全等 .
(4)中心对称是指两个图形之间的相互位置关系;
中心对称图形是指具有特殊形状的一个图形.
轴对称与中心对称
轴对称与中心对称一、知识回顾(一)、轴对称与轴对称图形:1.轴对称:把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,两个图形中的对应点叫做对称点,对应线段叫做对称线段。
2.轴对称图形:如果一个图形沿着一条直线折叠,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线就是它的对称轴。
注意:对称轴是直线而不是线段3.轴对称的性质:(1)关于某条直线对称的两个图形是全等形;(2)如果两个图形关于某条直线对称,那么对称轴是对应点连线的垂直平分线;(3)两个图形关于某条直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上;(4)如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称。
(二)、中心对称与中心对称图形:1.中心对称:把一个图形绕着某一个点旋转180°,如果它能够和另外一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心,这两个图形中的对应点叫做关于中心的对称点。
2.中心对称图形:在平面内,一个图形绕某个点旋转180°,如果旋转前后的图形互相重合,那么这个图形叫做中心对称图形,这个点叫做它的对称中心。
3.中心对称的性质:(1)关于中心对称的两个图形是全等形;(2)在成中心对称的两个图形中,连接对称点的线段都经过对称中心,并且被对称中心平分;(3)成中心对称的两个图形,对应线段平行(或在同一直线上)且相等。
(四)、几种常见的轴对称图形和中心对称图形:轴对称图形:线段、角、等腰三角形、等边三角形、菱形、矩形、正方形、等腰梯形、圆对称轴的条数:角有一条对称轴,即该角的角平分线;等腰三角形有一条对称轴,是底边的垂直平分线;等边三角形有三条对称轴,分别是三边上的垂直平分线;菱形有两条对称轴,分别是两条对角线所在的直线,矩形有两条对称轴分别是两组对边中点的直线;中心对称图形:线段、平行四边形、菱形、矩形、正方形、圆对称中心:线段的对称中心是线段的中点;平行四边形、菱形、矩形、正方形的对称中心是对角线的交点,圆的对称中心是圆心。
轴对称和中心对称
轴对称图形与中心对称图形一、轴对称1.轴对称图形定义:如果一个图形沿着一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形。
折痕所在的直线叫做对称轴。
2.两个图形成轴对称:对于两个图形来说,如果沿一条直线对折后,它们能完全重合,那么称这两个图形成轴对称,这条直线就是对称轴。
3.关键知识点:①轴对称是说两个图形的位置关系;而轴对称图形是说一个具有特殊形状的图形。
②成轴对称的两个图形,必定是全等图形。
4.轴对称的性质:对应点所连的线段被对称轴垂直平分;对应线段相等;对应角相等。
5.简单的轴对称作图:求作一个几何图形关于某条直线对称的图形,可以转化为求作这个图形上的特征点关于这条直线对称的点。
后依次连结各特征点即可。
二、中心对称图形1.定义:把一个图形绕着某一点旋转180°,如果它能与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称。
2.中心对称和中心对称图形中心对称:如果把一个图形绕某一点旋转180度后能与另一个图形重合,这两个图形成中心对称。
中心对称图形:如果把一个图形绕某一点旋转180度后能与自身重合,这个图形是中心对称图形。
3.性质a.关于中心对称的两个图形是全等形。
b.关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分。
c.关于中心对称的两个图形,对应线段平行(或者在同一直线上)且相等。
三、图案的分析与设计① 首先找到基本图案,然后分析其他图案与它的关系,即由它作何种运动变换而形成。
② 图案设计的基本手段主要有:轴对称、平移、旋转三种方法。
专项练习轴对称与中心对称图形的概念:轴对称是指在平面内,如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形。
中心对称图形是指平面内,如果把一个图形绕某个点旋转180°后,能与自身重合,那么就说这两个图形关于这个点成中心对称。
1、(2013年潍坊市)下面的图形是天气预报中的图标,其中既是轴对称图形又是中心对称图形的是( ).A.B.C.D. BA .B .C .D .4、(2013四川南充,7,3分)有五张卡片(形状、大小、质地都相同),上面分别画有下列图形:①线段;②正三角形;③平行四边形;④等腰梯形;⑤圆。
轴对称与中心对称图形
轴对称与中心对称图形图形在数学中扮演着重要的角色,我们常常通过图形来进行分析和研究。
其中,轴对称和中心对称是两种常见的图形特征,本文将对这两种特征进行深入探讨。
一、轴对称图形轴对称图形是指具有轴对称特点的图形。
轴对称意味着图形可以通过一个轴进行镜像对称,即图形和其镜像重合。
简单来说,轴对称图形是左右完全对称的,即使折叠图形,两边也完全相同。
轴对称图形具有以下特点:1. 存在轴线:轴对称图形一定存在轴线,该轴线可以是垂直、水平或倾斜的。
2. 镜像关系:图形沿轴线进行折叠后,两侧完全对称。
3. 完全对称:图形的任意一点关于轴线,其对应点均重合于图形上。
常见的轴对称图形有正方形、长方形、圆形等。
这些图形的特点是左右对称,通过图形中的轴线可以轻松确定这些图形是否轴对称。
例如,对于一个正方形,通过从中心点绘制两条垂直、水平的轴线,可以发现图形可以完全折叠。
二、中心对称图形中心对称图形是指图形具有中心对称性质的图形。
中心对称意味着图形可以通过一个中心点进行旋转180度,使得旋转后的图形与原图形完全一致。
中心对称图形具有以下特点:1. 存在中心点:中心对称图形一定存在中心点,该中心点可以位于图形内部或边界上。
2. 旋转180度:图形绕中心点旋转180度后,与原图形完全一致。
3. 完全一致:图形的任意一点关于中心点,其对应点均重合于图形上。
常见的中心对称图形有正五边形、正六边形等。
这些图形的特点是任意一点到中心点的距离相等,并且旋转180度后的图形与原图形完全相同。
总结:轴对称和中心对称是图形的重要特征,通过观察和分析图形的对称性质,可以更好地理解图形的形态和结构。
轴对称图形以左右对称为主要特点,而中心对称图形以中心旋转180度为主要特点。
研究和了解这些对称性质,有助于我们更深入地理解数学中的图形学知识。
通过对轴对称和中心对称图形的介绍,我们可以更好地理解图形的形态和特点。
图形学是数学中的重要分支,通过研究图形的特征和性质,我们可以将其应用于各个领域,如几何学、计算机图形学等。
中心对称图形和轴对称图形
什么是中心对称图形中心对称:在平面内,把一个图形绕着某个点旋转 180° ,如果旋转后的图形与另一个图形重合,那么就说明这两个图形的形状关于这个点成中心对称 (Central of symmetrygraph),这个点叫做它的 对称中心(Center of symmetry ),旋转180°后重合的两个点叫做 对 称点(corresponding points )。
理解中心对称的定义要抓住以下三个要素: (1 )有一个对称中心 一一点; (2 )图形绕中心旋转 180° ; (3)旋转后两图形重合. 中心对称的性质:连接中心对称图形上每一对对称点的线段都经过对称中心,且被对称中心平分 中心对称图形:在平面内,把一个图形绕着某个点旋转 180。
,如果旋转后的图形能与原来的图形重合,那么这个图形叫做 中心对称图形,这个点叫做它的 对称中心.旋转180°后重合的两个点叫做对应点(corresp onding poi nts)。
① 对称中心平分中心对称图形内通过该点的任意线段且使中心对称图形的面积被平分 (对称点在中心对称图形中)。
② 成中心对称的两个图形全等。
③ 中心对称图形上每一对对称点所连成的线段都被对称中心平分。
区分:中心对称是两个图形间的位置关系,而中心对称图形是一种具有独特特征的图 形。
中心对称图形常见图形常见的中心对称图形有:线段,矩形,菱形,正方形,平行四边形,圆,边数为偶数的正多边形,某些不规则图形等。
正偶边形是中心对称图形正奇数边形不是中心对称图形※正六角形是中心对称图形,等腰梯形不是中心对称图形,等边三角形(正三角形),至少需旋转120度,而不是180度,所以它不是中心对称图形。
反比例函数的图像双曲线是以原点为对称中心的中心对称图形什么是轴对称图形如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形(axial symmetric figure),这条直线叫做对称轴(axis of symetric);这时,我们也说这个图形关于这条直线对称。
图形轴对称与中心对称
实际应用中的选择
在建筑设计、图案设计等域中,轴对称和中心对称都是 非常重要的设计原则。
在实际应用中,选择使用轴对称还是中心对称取决于具体 的需求和场景。例如,在建筑设计上,轴对称常常用于强 调建筑物的稳定性和平衡感,而中心对称则常常用于创造 更加动态和灵活的视觉效果。
04 轴对称与中心对称的数学 证明
证明方法
通过证明图形中任意一点关于对 称中心的对称点也位于该图形上, 可以证明该图形是中心对称的。
实例
平行四边形、正六边形等都是中 心对称图形。
两者证明方法的比较
轴对称和中心对称是两种不同 的对称形式,它们的证明方法 也有所不同。
轴对称的证明主要关注图形的 整体结构,而中心对称的证明 则更注重图形中每个点的位置 关系。
图形轴对称与中心对称
contents
目录
• 轴对称图形 • 中心对称图形 • 轴对称与中心对称的区别与联系 • 轴对称与中心对称的数学证明 • 轴对称与中心对称的应用
01 轴对称图形
定义与特性
定义
如果一个图形关于某条直线对称 ,那么这个图形被称为轴对称图 形。
特性
轴对称图形具有对称性,即图形 关于对称轴折叠后两部分完全重 合。
轴对称
一个图形关于一条直线对称,即如果 一个图形沿着这条直线折叠,两侧的 部分可以完全重合。
中心对称
一个图形关于一个点对称,即图形旋 转180度后与原图重合。
特性上的联系
轴对称和中心对称都是图形的一种对称特性,它们都可以使 图形看起来更加美观和平衡。
在某些情况下,一个图形可能同时具有轴对称和中心对称的 特性,例如正方形。
在实际应用中,需要根据具体 问题选择合适的证明方法。
05 轴对称与中心对称的应用
轴对称与中心对称
轴对称与中心对称轴对称和中心对称是几何学中常用的概念,用来描述图形的对称性质。
它们在数学、物理、工程等领域中都有广泛的应用。
本文将介绍轴对称和中心对称的定义、性质以及一些实际应用。
轴对称的概念是指图形相对于某一条线对称,即图形绕某条线旋转180度后,仍能与原来的图形完全重合。
这条线被称为对称轴。
举个例子,我们可以想象一张纸上画了一个直角三角形,如果我们将纸沿着三角形的斜边对折,那么对折后的纸与原来的纸完全重合,这说明三角形是关于对称轴对称的。
中心对称是指图形相对于某一点对称,即图形绕某一点旋转180度后,仍能与原来的图形完全重合。
这个点被称为对称中心。
一个简单的例子是正方形,当我们将正方形绕着其中心旋转180度后,它仍然与原来的正方形完全一样。
轴对称和中心对称在几何学中有一些重要的性质。
首先,它们都是自反的,即一个图形关于对称轴或对称中心对称的话,它自身也是对称的。
其次,轴对称和中心对称都是可传递的,即如果图形A关于对称轴或对称中心对称,图形B关于同样的轴或中心对称,那么图形A 和图形B之间也是对称的。
轴对称和中心对称的应用非常广泛。
在艺术和设计领域,许多作品都利用了对称的美感。
建筑设计中,对称结构可以使建筑更加稳定和美观。
在化学领域,分子的对称性对于分子的性质和反应有着重要的影响。
在物理学中,对称性是研究物理定律和现象的基础。
总结起来,轴对称和中心对称是几何学中常用的概念,用来描述图形的对称性质。
它们有着自反性和传递性的特点,广泛应用于各个领域。
通过研究轴对称和中心对称,我们可以更深入地理解和应用几何学的知识。
中心对称图形和轴对称图形
什么是中心对称图形中心对称:在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形与另一个图形重合,那么就说明这两个图形的形状关于这个点成中心对称(Central of symmetry graph),这个点叫做它的对称中心(Center of symmetry),旋转180°后重合的两个点叫做对称点(corresponding points)。
理解中心对称的定义要抓住以下三个要素:(1)有一个对称中心——点;(2)图形绕中心旋转180°;(3)旋转后两图形重合.中心对称的性质:连接中心对称图形上每一对对称点的线段都经过对称中心,且被对称中心平分中心对称图形:在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形,这个点叫做它的对称中心。
旋转180°后重合的两个点叫做对应点(corresponding points).中心对称图形性质①对称中心平分中心对称图形内通过该点的任意线段且使中心对称图形的面积被平分(对称点在中心对称图形中)。
②成中心对称的两个图形全等。
③中心对称图形上每一对对称点所连成的线段都被对称中心平分。
区分:中心对称是两个图形间的位置关系,而中心对称图形是一种具有独特特征的图形。
常见图形常见的中心对称图形有:线段,矩形,菱形,正方形,平行四边形,圆,边数为偶数的正多边形,某些不规则图形等.正偶边形是中心对称图形正奇数边形不是中心对称图形※正六角形是中心对称图形,等腰梯形不是中心对称图形,等边三角形(正三角形),至少需旋转120度,而不是180度,所以它不是中心对称图形.反比例函数的图像双曲线是以原点为对称中心的中心对称图形什么是轴对称图形如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形(axial symmetric figure),这条直线叫做对称轴(axis of symetric);这时,我们也说这个图形关于这条直线对称。
中心对称与轴对称的区别及应用
中心对称与轴对称的区别及应用对称在我们生活中是一个很常见的概念,可以说是几何学中最基础的概念之一。
在几何学中,对称主要分为两类,一类是中心对称,另一类是轴对称。
那么这两种对称的区别是什么呢?又有哪些应用呢?下面我们来一起探讨一下。
一、中心对称和轴对称的定义我们先来看一下中心对称的定义,“中心对称是指平面中存在一个点,经过这个点作图形内的任意一点与该点的连线,不随着这个内部点的位置而改变的变换。
”简单来说,就是图形被以一个点为中心,对称到对称轴的另一侧,而图形上的所有点到中心的距离相等。
接下来再来看轴对称的定义,“轴对称是指平面中存在一条直线,经过这条直线作图形内的任意点与该直线的连线,距离与垂线长不变的一种变换。
”也就是说轴对称是图形以一个轴线为对称轴,把图形对称到对称轴的另一侧,而对称轴上的点到对称轴的距离为0,其他点到对称轴的距离相等。
二、中心对称和轴对称的区别从定义上我们可以看出,中心对称和轴对称两者的主要区别在于基本元素不同,中心对称以点为基本元素,轴对称以直线为基本元素。
这也造成了二者性质和应用上的差异。
(1)性质的差异在性质上,我们可以看出,中心对称的对称轴是一条点,图形与其对称轴对应的位置称为中心对称位。
而轴对称的对称轴是一条直线,图形与其对称轴对应的位置称为轴对称位。
中心对称的变换具有对称性、可逆性和等距性。
但轴对称具有的三种性质都是对称性,但不具有可逆性和等距性。
(2)应用的差异在应用上,中心对称主要用于计算图形中心、判断图形重合和寻找图形的对应点。
而轴对称则广泛应用于建筑设计、机械加工、生物医学等领域。
例如,制作对称的模具、设计对称的装饰、轴射成像等。
三、结语中心对称和轴对称是几何学中最基本的概念之一,理解它们的区别和应用非常重要。
在实际应用中,根据需要选择相应的对称方式,可以更加方便和高效地进行工作。
我们希望通过这篇文章,更好的理解中心对称和轴对称,并为读者提供更多参考。
轴对称与中心对称
轴对称与中心对称轴对称和中心对称是几何学中常见的两种对称性形态。
它们在不同的对象和场景中都有广泛的应用,无论是在数学中的几何学还是在现实生活中的设计中,都扮演着重要的角色。
本文将介绍轴对称和中心对称的概念、特点以及应用,并通过实例展示其在实际生活中的具体应用。
一、轴对称轴对称就是以某条直线为轴,对称图形的一种对称形态。
在轴对称中,图形的一部分与其余部分关于轴线对称,即对称图形的每一点在轴线上的投影到对称图形的另一侧都保持相等距离。
轴对称的特点是对称形态关于中心轴线对称,具有镜像对称性。
这种对称形态常见于图形的设计中,尤其是时钟面、树叶、汽车对称等。
轴对称能够给人以和谐、稳定、平衡的感觉,因此在设计中被广泛应用。
例如,时钟面上的数字通常被设计成轴对称的形态,这样一来无论是数字“6”还是数字“9”,只需要沿着钟面的某条轴线翻折即可得到对称的结果。
这种设计不仅美观,还使得人们在观看时能够迅速辨认出时间。
二、中心对称中心对称即以某一点为中心,对称图形的一种对称形态。
在中心对称中,对称图形的每一点都对称于以中心点为对称中心的另一点,即对称位置上的点到中心点的距离保持相等。
中心对称的特点是对称形态关于中心点对称,具有旋转对称性。
这种对称形态常见于自然界中的一些对象,如花朵、雪花、生物身体结构等。
中心对称能够给人以和谐、优美、自然的感觉,因此在艺术和设计中被广泛运用。
例如,花朵的形态通常呈现出中心对称的特点。
以玫瑰花为例,花瓣的排列呈现出以花心为中心的旋转对称,使得整个花朵看起来美丽而有序。
这种对称性不仅使花朵具有视觉上的吸引力,还让人们在欣赏花朵时感受到一种和谐与平衡。
三、轴对称与中心对称的应用轴对称和中心对称的应用非常广泛,涉及到多个领域和行业。
以下将分别介绍它们在数学、艺术和设计、自然界以及日常生活中的应用。
1. 数学领域轴对称和中心对称是数学几何学中的重要概念,常被用于分析和描述图形的形态特征。
通过研究轴对称和中心对称的性质,可以进一步深入理解几何学的基本原理,并应用于解决实际问题。
中心对称与轴对称图形的特征
中心对称与轴对称图形的特征在我们的日常生活和数学学习中,图形的对称性质是一个非常重要的概念。
其中,中心对称和轴对称图形是两种常见且具有独特特征的对称类型。
首先,我们来了解一下轴对称图形。
轴对称图形,简单来说,就是沿着某一条直线对折后,直线两侧的部分能够完全重合。
这条直线就被称为对称轴。
生活中,我们能看到很多轴对称图形的例子。
比如,美丽的蝴蝶,它的翅膀就是轴对称的,对称轴就是蝴蝶身体的中心线。
再比如,常见的等腰三角形,沿着底边的高对折,左右两边能够完全重合,这条高所在的直线就是它的对称轴。
还有那圆圆的月亮,它也是轴对称图形,对称轴可以是任意一条通过圆心的直线。
轴对称图形具有一些明显的特征。
其一,对称轴是一条直线,而且它垂直平分图形中对应点的连线。
其二,对应线段或者对应角相等。
也就是说,对称轴两侧相对应的部分,无论是长度还是角度,都是相等的。
接下来,我们再看看中心对称图形。
中心对称图形是指图形绕着一个点旋转 180 度后,能够与原图形完全重合。
这个点就被称为对称中心。
像平行四边形就是典型的中心对称图形。
以它两条对角线的交点为对称中心,旋转 180 度后,它会和原来的图形重合。
再比如,正六边形也是中心对称图形,其对称中心是它的几何中心。
中心对称图形也有其独特的特点。
首先,对称中心平分通过该点的任意直线。
其次,在中心对称图形中,对应点的连线都经过对称中心,并且被对称中心平分。
那么,轴对称图形和中心对称图形有没有什么关联呢?其实,有些图形既是轴对称图形,又是中心对称图形。
比如,圆形,它有无数条对称轴,同时它绕着圆心旋转 180 度也能重合,所以既是轴对称又是中心对称图形。
在数学学习中,理解和区分这两种对称图形的特征非常重要。
通过对它们的研究,我们可以更好地解决几何问题,比如计算图形的面积、周长等。
在实际应用中,这两种对称图形的特征也被广泛运用。
在建筑设计中,轴对称和中心对称的美学价值常常被充分体现。
许多宏伟的建筑,如故宫,就运用了轴对称的设计,使得整个建筑看起来庄重、整齐,给人一种平衡与和谐的美感。
精品数学课件 轴对称与中心对称
※中心对称和中心对称图形※
两个图形关于点对称, 叫做中心 对称。它指两个图形间的形状与 位置关系,具有这种关系的两个 图形有一些特殊性质。把一个图 形绕某一个点旋转180°,如果旋 转后的图形能够和原来的图形互 相重合,那么这个图形叫做中心对 称图形.它们的区别:中心对称是 对两个图形说的,它表示两个图形 之间的对称关系.中心对称图形是 对一个图形说的,它表示某个图形 的特性.
对称为何有如此广泛的应用?
㈠利用轴对称可以解决一些类似 修建水泵站来取最短路线的问题。 ㈡由于中心对称图形形状匀称美 观, 所以很多建筑物和工艺品上 常用这种图形做装饰图案,又因 为具有中心对称图形形状的物体, 能够在所在平面内绕对称中心平 稳地旋转,所以在生产中旋转的 零部件的形状常设计成中心对称 图形。所以对称有如此广泛的应 用。
高考总分:711分 毕业学校:北京八中 语文139分 数学140分 英语141分 理综291分 报考高校:
北京大学光华管理学院
北京市理科状元杨蕙心
班主任 孙烨:杨蕙心是一个目标高远 的学生,而且具有很好的学习品质。学 习效率高是杨蕙心的一大特点,一般同 学两三个小时才能完成的作业,她一个 小时就能完成。杨蕙心分析问题的能力 很强,这一点在平常的考试中可以体现。 每当杨蕙心在某科考试中出现了问题, 她能很快找到问题的原因,并马上拿出 解决办法。
坚持做好每个学习步骤
武亦文的高考高分来自于她日常严谨的学习 态度,坚持认真做好每天的预习、复习。 “高中三年,从来没有熬夜,上课跟着老师 走,保证课堂效率。”武亦文介绍,“班主 任王老师对我的成长起了很大引导作用,王 老师办事很认真,凡事都会投入自己所有精 力,看重做事的过程而不重结果。每当学生 没有取得好结果,王老师也会淡然一笑,鼓 励学生注重学习的过程。”
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
y2B.′1M.. -10.N1 2 3 4 5 x
. A′ -2 -3
.B
A
例5、如图,已知平面直角坐标系,A,B两点的坐标分 别为A(2,-3),B(4,-1) (3)若C(a,0),D(a+3,0)是x轴上的两个动点,则当a =_2_____时,四边形ABDC的周长最短;
y
2
1
. -10 1 2 3 4 5 x
(A) 1种拼法 (B) 2种拼法
(C) 3种拼法 (D) 4种拼法
3、如图,AD是等腰△ABC的顶角平分线, P是AD上一点,连接CP,BP,并分别将它们 延长,交AB于点F,交AC于点E.
①说出点E关于AD的对称点,并说明理由;
②找出图中与△CPE全等的三角形,并说 明理由;
③若AC=6,BC=4,求图中
(3)将阴影部分的图形先以x轴为对称轴作轴对称 变换,再把所得的图形和原图形一起,以y轴为对 称轴,作轴对称变换,请作出两次变换后的图形。
y
4
3
A’(-3,1)
2
1
-4 -3 -2 -1 0 -1
-2
-3
-4
B(1,3) A(3,1)
1234 x
B’(1,-3)
例2 已知矩形纸片ABCD,先折出折痕(对角线)BD,再 折叠使AD边与对角线BD重合,得折痕DG,如图所示, 若AB=2,BC=1,求AG
. -2
B
-3
A
基本练习
1. 如图,最大圆直径为4cm,则图中阴影部分 的面积之和为(C )。 (A) 8πcm (B) 4πcm (C) 2πcm (D) πcm
3. 一个由三个正方形组成的图形如图, 若再在这个图形的外面拼上一个同样 大小的正方形,而且有一条边在原图 形的边上,使新图形为轴对称图形, 则一共有(C)。
把一个图形绕着某一个点旋转180°,如果它能与另一 个图形重合,那么就说这两个图形关于这个点成中心对 称,该点叫做对称中心
1.关于中心对称的两 个图形是全等图形 2.关于中心对称的两 个图形对称点连线都 经过对称中心,并且 被对称中心平分
C A
B
O
B'
A' C'
1.下列图形中既是轴对称图形又是中心对称图形的是
作平行四边形的对角线交于 点A,再作出圆的圆心O, 过O,A作直线分别和平 行四边形的一边交于B点 ,和圆交于D点,沿BD挖 水渠即可.
例5、如图,已知平面直角坐标系,A,B两点的坐标分 别为A(2,-3),B(4,-1)
7
(1)若P(p,0)是x轴上的一个动点,则当p=_2_____时, △PAB的周长最短;
中考复习
时刻准备着!
周万留
第五章第一课时 图形的轴对称和中心对称
由一个图形变为另一个图形,并使两个图 形关于某一条直线成轴对称.这样的图形变换 叫做图形的轴对称变换.
轴对称变换性质 对称轴_垂___直__平__分__连结两个对称点
之间的线段,轴对称变换不改变图形
的_形___状__和__大__小__
A
阴影部分的面积。
FP
E
B
C
D
方法小结
图形变换是几何中的一个重要概念,应用图形 变换解题也是一种极为重要的数学思想方法, 适当地应用对称、平移、旋转等方法,将那些 分散、远离的条件从图形的某一部分转移到适 当的新的位置上,集中、汇集已知条件和求证 结论,发现、拓展解题思路,构造基础三角形、 平行四边形,进行计算与证明。
A.等边三角形
B.菱形
(B)
C.平行四边形
D.五角星
2.下列图形中是中心对称而不是轴对称的是( D )
A.角
B.等腰梯形
C.等腰三角形 D.平行四边形
3.在下列图形中,既是轴对称图形,又是中心对称图形 的是 ( C )
例1 如图, (1)求点A关于y轴对称的点的坐标;
(2)求点B关于x轴对称的点的坐标;
y A.′
2 1
P.
. -10 1 2 3 4 5 x
. -2
B
-3
A
例5、如图,已知平面直角坐标系,A,B两点的坐标分 别为A(2,-3),B(4,-1) (2)设M,N分别为x轴和y轴上的动点,请问:是否 存在这样的点M(m,0),N(0,n),使四边形ABMN的
周长最短?若存在,请求出m=___5___, n = ____5__ (不必写解答过程);若不存在,2请说明理由。 3
AG 5 1 2
D
C
1 2
1
1
E
5 1
x
A x G 2x B
2
x2 ( 5 x)2 (2 x)2
例3 如图,矩形纸片的长为4cm,宽为3cm,使相对顶点 A,C重合,把纸片对折,求其折痕的长.
D’
OF 2.5 34
A
2.5
FD
3
O
EF 15
B E4
C
4
【例4】 如图所示,在一块平行四边形的稻田里有一圆 形的水池,为了给稻田注水,并使稻田里的水量趋于均匀, 现要从水池引一条笔直的水渠(水渠的宽度忽略不计),请 你设计一种方案,使水渠两侧的稻田面积相等,并说明你 的理由.