脑缺血再灌注损伤主要发病机制的研究进展

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

脑缺血再灌注损伤主要发病机制的研究进展

脑血管疾病是一种严重危害人类身体健康的疾病,其具有死亡率、致残率高和难以预见的特点,一直受到国内外医学界的广泛关注[1]。其中,缺血性脑损伤疾病占脑血管疾病的绝大部分,缺血后及时的恢复血流再灌注对于恢复缺血区脑组织血氧供应、维持受损脑组织的正常形态与功能具有重要的意义。但当脑组织缺血时间较长时,再给予恢复血流再灌注的处理会进一步加重脑组织的损伤程度,此即为脑缺血再灌注损伤。脑缺血再灌注损伤的发病机制是一个快速的级联反应,这个级联反应包括许多环节[2]。主要环节有细胞内钙稳态失调、脑组织中氨基酸含量失稳态、自由基生成、炎症反应、凋亡基因激活及能量障碍等。这些机制彼此重叠,相互联系,形成恶性循环,最终引起细胞凋亡或坏死,导致缺血区脑组织不可逆的损伤[3]。

脑缺血早期,由于阻断血流使相关脑区能量(葡萄糖、O2、ATP等)迅速耗尽而导致能量危机,大脑神经元内钙离子超载,氧自由基增多以及兴奋性氨基酸的过度释放,引发了细胞内的毒性反应,引起神经元的过度凋亡和一系列的炎症反应;长时间的脑缺血恢复再灌注后,存活的脑组织中过氧化物堆积,可加剧脑组织损伤,在缺血区可见坏死、凋亡的细胞并伴随明显的炎症症状,引起脑组织坏死,且坏死区域会随着时间和空间扩大,进一步加重脑损伤程度[4]:

1.Ca2+超载与脑缺血再灌注损伤

钙离子参与细胞膜电位和细胞内的生化反应过程,对于维持神经细胞的正常功能起到关键性的调节作用[5],钙离子在脑缺血再灌注损伤的作用主要包括:(1)脑缺血再灌注后,细胞内Na+/Ca2+交换蛋白迅速激活,Na+向细胞外转运,同时将大量Ca2+转入细胞内,造成细胞内Ca2+超载,触发线粒体摄取Ca2+,使Ca2+聚集在线粒体内,过量的Ca2+可抑制ATP合成,使能量生成障碍;(2)Ca2+活化能激活线粒体上的磷脂酶, 促进膜磷脂分解产生对细胞有毒害作用的游离脂肪酸、前列腺素、白三烯和溶血磷脂等,改变其通透性,引起线粒体膜损伤。另外

Ca2+还活化钙依赖蛋白酶, 使胞内无害的黄嘌呤脱氢酶转变黄嘌呤氧化酶, 生成大量氧自由基,造成细胞不可逆的损伤[6,7]。

2.氧自由基生成与脑缺血再灌注损伤

氧自由基能引起组织脂质过氧化和细胞内钙超负荷导致,主要表现为:急性缺血时脑细胞突然处于低氧、缺氧状态,能量供应不足,导致细胞ATP生成减少,线粒体及内质网质膜上Ca2+-ATP酶活性下降,使细胞内Ca2+平衡紊乱[8];而脑血流再灌注后,原处于低氧缺氧状态的脑细胞的供氧突然增加,刺激细胞产生大量自由基消耗了多种抗氧化酶和抗氧化剂,如超氧化物歧化酶(SOD)、谷胱甘肽(GSH)和维生素E等,使脑组织抗氧化能力明显降低;同时脑组织中又富含易被自由基攻击的脂质,能进一步加重缺血区脑组织的损伤[9,10]。另外,由于氧自由基的过量释放,使Ca2+的保留、摄取和释放的紊乱程度增加,亦能加速细胞损伤,自由基的这种链锁反应在脑缺血再灌注损伤中起重要作用。

3.兴奋性氨基酸与脑缺血再灌注损伤

兴奋性氨基酸(EAA)是中枢神经系统中的兴奋性神经递质,其中谷氨酸(Glu)是兴奋性氨基酸中含量最多、分布最广的氨基酸,其发育早期阶段对组织具有神经营养作用,发育后期则表现为毒性作用[11]。同时,中枢神经系统中还存在着以γ-氨基丁酸(GABA)为代表的一系列抑制性氨基酸(IAA),它能促进脑的活化性,对抗Glu对脑组织的毒性作用[12]。生理条件下,高效能的谷氨酸摄取系统的存在使Glu维持在较低的水平,仅有少量作为兴奋性神经递质参与信号传递,使EAA和IAA含量保持在一个正常稳定的状态。而在脑缺血时,Glu大量释放导致神经元兴奋、溃变和死亡,产生兴奋性毒性[13]。主要表现在:(1)脑缺血后EAA含量增多,其神经毒性作用通过与N-甲基-D-门冬氨酸(NMDA)受体或非NMDA受体结合,引起Na+和Cl-进入胞内造成神经元损伤以及Ca2+内流使钙超载引起的细胞损伤[14];(2)Glu能抑制细胞膜上的谷氨酸/胱氨酸转运体,胱氨酸在体内能还原成半胱氨酸(cys),cys是合成抗氧化物质谷胱甘肽(GSH)的原料,当胞外Glu过多时可抑制谷氨酸/胱氨酸转运体的功能,导致GSH

合成减少,从而使细胞内氧自由基堆积对细胞产生毒性作用[15]。(3)EAA含量的异常增多会破坏EAA与IAA的动态平衡,引起内环境状态紊乱,使GABA 抗Glu功能降低,加剧细胞毒性。

4.热休克蛋白与脑缺血再灌注损伤

热休克蛋白(HSP)在脑缺血再灌注后,能够启动机体内源性保护机制,增强脑缺血耐受、毒耐受及氧化损伤耐受,是一种能提高细胞应激能力的保护性蛋白质。HSP通过结合相应的蛋白质分子,发挥多种生理功能:HSP能对抗内源性损伤因子引起的毒性作用,保护脑细胞;清除细胞内异常蛋白,加速脑细胞损伤修复;抑制促凋亡蛋白,提高抗凋亡蛋白表达水平[16]。具体表现为HSP能帮助氨基酸链折叠成正确的三维结构,清除无法正确折叠的变性蛋白及激活某些酶的作用以保护细胞生存和功能,参与细胞的修复。HSP还能保护线粒体,抑制凋亡促凋亡因子细胞色素C释放,抑制促凋亡基因P53、Bax的表达及诱导抗凋亡基因Bcl-2的表达,阻断细胞凋亡[17]。近年来对热休克蛋白70(HSP70)的研究越来越受到国内外医学界的重视,生理条件下HSP70的mRNA在脑内表达稳定;应激状态下,其他蛋白合成受到抑制,HSP70的表达在梗死灶周围神经元明显增多,而敲除HSP基因后,HSP表达下降,细胞凋亡增多[18,19],提示HSP70能通过表达的升高来增强机体对抗外界刺激的应激能力。

5.线粒体功能障碍与脑缺血再灌注损伤

脑缺血再灌注损伤期间,线粒体通透性转换通道(PTP)会发生明显的异常开放现象。脑缺血再灌注后,细胞内钙超载、氧自由基和游离脂肪酸的大量生成以及EAA的过度释放均可引起PTP开放,造成线粒体能量合成障碍,继发引起一系列的神经元凋亡及坏死现象。缺氧缺血情况下,线粒体DNA受损,线粒体正常功能受损,呼吸链复合物活性遭到破坏,使黄素腺嘌呤二核苷酸(FAD)依赖性复合物途径被过度利用,自由基生成增加,超过了细胞本身的清除能力,导致细胞凋亡及坏死[20,21]。

6.炎症反应与脑缺血再灌注损伤

相关文档
最新文档