八年级数学19. 3 尺规作图 19. 4逆命题与逆定理华东师大版知识精讲

合集下载

华东师大版八年级数学上册《逆命题与逆定理》课件

华东师大版八年级数学上册《逆命题与逆定理》课件
观察上面三组命题,你发现了什么?
上面两个命题的题设和结论恰好互换了位置.
一般来说,在两个命题中,如果第一个命题的题设 是第二个命题的结论,而第一个命题的结论是第二 个命题的题设,那么这两个命题叫做互逆命题.
如果把其中一个命题叫做原命题,那么另一个 命题叫做它的逆命题.
命题“两直线平行,内错角相等”的 题设为两直线平行; 结论为内错角相等. 因此它的逆命题为 内错角相等,两直线平行.
在△PDO和△PEO中,因为
{∠∠DPDOOP= =∠ ∠EPEOOP((已已知证)),,
PO=PO(公共边),
O
∴△PDO≌△PEO (A.A.S)
∴PD=PE
A D
1P
2
C
E B
于是就有定理:
角平分线上的点到这个角的两边的距离相 等.
问答 :1、如图,在Rt△ABC 中, BD是∠B 的平分线 ,
那么这个三角形是等边三角形.
3、全等三角形的对应角相等. 题设:两个三角形是全等三角形. 结论:它们的对应角相等. 逆命题:如果两个三角形的对应角相等,
那么这两个三角形全等.
4、到一个角的两边距离相等的点,在这个角的 平分线上.
题设:一个点到一个角的两边距离相等. 结论:它在这个角的平分线上. 逆命题:角平分线上一点到角两边的距离相等.
逆命题与逆定理


1、命题的概念: 可以判断正确或错误的 句子叫做命题.
例如:两直线平行,内错角相等; 内错角相等,两直线平行;都是命题.
注意:问句和几何作法不是命题!
2、命题都有两部分: 题设和结论
我能行
说出下列命题的题设和结论:
1、两直线平行,内错角相等; 2、内错角相等,两直线平行; 3、如果小明患了肺炎,那么他一定会发烧 ; 45、 、如平果行小 四明 边发 形烧 的,对那角么线他互一相定平患分了; 肺炎; 6、对角线互相平分的四边形是平行四边形.

2021年八年级数学下册 .4逆命题与逆定理()教案 华东师大版

2021年八年级数学下册 .4逆命题与逆定理()教案 华东师大版

2021年八年级数学下册 19.4逆命题与逆定理(2)教案 华东师大版 教学目的:1. 理解并能用等腰三角形的等角对等边2. 理解并能用勾股定理的逆定理重点与难点:本节两个定理的应用教学过程:在七年级第二学期第10章中我们已经知道,等腰三角形的底角相等,这是等腰三角形的性质定理.它的逆命题“如果一个三角形有两个角相等,那么这两个角所对的边也相等”也是定理,是判定三角形是否是等腰三角形的一个重要的方法.回 忆你是怎样知道等腰三角形的这个判别方法的呢?如图19.4.1,在△ABC 中,∠B =∠C .当时是利用圆规截取AB 、AC ,比较AB 、AC 的大小,从而得到AB =AC .为了确认这个命题的正确性,我们可以用逻辑推理的方法加以证明.已知: 如图19.4.2,在△ABC 中,∠B =∠C . 求证: AB =AC . 分析: 要证明AB =AC ,可设法构造两个全等三角形,使AB 、AC 分别是这两个全等三角形的对应边,于是想到作∠BAC 的平分线AD .证明 作∠BAC 的平分线AD .在△BAD 和△CAD 中,∵ ∠B =∠C ,∠1=∠2,AD =AD ,∴ △BAD ≌△CAD (A .A .S .),∴ AB =AC (全等三角形的对应边相等). 于是得到: 如果一个三角形有两个角相等,那么这两个角所对的边也相等.(简写成“等角对等边”)在八年级上学期第14章中我们已经知道勾股定理及勾股定理的逆定理.我们也可以用逻辑推理的方法证明勾股定理的逆定理.图19.4.1图19.4.2 图19.4.3如果三角形的一条边的平方等于另外两条边的平方和,那么这个三角形是直角三角形.已知:如图19.4.3,在△ABC中,AB=c, BC=a, CA=b,且a2+b2=c2.求证:△ABC是直角三角形.分析:首先构造直角三角形A′B′C′,使∠C′=90°,B′C′=a, C′A′=b,然后可以证明△ABC≌△A′B′C′,从而可知△ABC是直角三角形.设三角形三边长分别是下列各组数,试判断各三角形是不是直角三角形.如果是直角三角形,请指出哪条边所对的角是直角.(1) 7, 24, 25;(2) 12, 35, 37;(3) 35, 91, 84.课堂练习:1.说出定理“等边三角形的三个内角都相等”的逆命题,并证明该逆命题为真命题.(第2题)2.如图,已知P、Q是△ABC的边BC上两点,并且BP=PQ=QC=AP=AQ,求∠BAC的大小.3.三角形三边长a、b、c分别是下列各组数,试判断各三角形是不是直角三角形?如果是,那么哪一个角是直角?(1) a=8, b=15, c=17;(2) a=6, b=10, c=8;(3) a=1, b=3, c=2.4.给定一个三角形的两边长分别为5、12,当第三条边为多长时,这个三角形是直角三角形?课堂小结:总结一下你所学过的知识28543 6F7F 潿37557 92B5 銵}20144 4EB0 亰\'34347 862B 蘫 33985 84C1 蓁=a24247 5EB7 康32199 7DC7 緇V。

华东师大初中数学八年级上册逆命题与逆定理基础知识讲解精选

华东师大初中数学八年级上册逆命题与逆定理基础知识讲解精选

逆命题与逆定理(基础)【学习目标】1.理解命题与逆命题、定理与逆定理的意义,会区分命题的题设(条件)和结论,并能判断一个命题的真假;会识别互逆命题与互逆定理,并知道原命题成立时其逆命题不一定成立;2.理解并掌握角平分线的性质定理及其逆定理,能用它们解决几何计算和证明题;3.理解并掌握线段垂直平分线性质定理及其逆定理,能用它们解决几何计算和证明题.【要点梳理】要点一、互逆命题与互逆定理1.互逆命题对于两个命题,如果一个命题的条件和结论分别是另外一个命题的结论和条件,那么这两个命题叫做互逆命题,其中一个命题叫做原命题,另外一个命题叫做原命题的逆命题.要点诠释:所有的命题都有逆命题. 原命题正确,它的逆命题不一定是正确的.2.互逆定理如果一个定理的逆命题也是定理,那么这两个定理叫做互逆定理,其中的一个定理叫做另一个定理的逆定理.要点诠释:(1)一个命题是真命题,但是它的逆命题不一定是真命题的,所以不是每个定理都有逆定理;(2)一个假命题的逆命题可以是真命题,甚至可以是定理.要点二、线段垂直平分线性质定理及其逆定理线段垂直平分线(也称中垂线)的性质定理是:线段的垂直平分线上的点到这条线段的两个端点的距离相等;逆定理:到线段两端距离相等的点在线段的垂直平分线上.要点诠释:性质定理的前提条件是线段已经有了中垂线,从而可以得到线段相等;逆定理的题设是已知线段相等,结论是确定线段被垂直平分,一定要注意两者的区别,前者在题设中说明,后者则在最终的结论中得到,所以在使用这两个定理时不要混淆了.要点二、角平分线性质定理及其逆定理角平分线性质定理是:角平分线上的点到角两边的距离相等;逆定理:角的内部到角两边距离相等的点在角的平分线上.要点诠释:性质定理的前提条件是已经有角平分线了,即角被平分了;逆定理则是在结论中确定角被平分,一定要注意两者的区别,在使用这两个定理时不要混淆了.【典型例题】类型一、互逆命题与互逆定理1、“等腰三角形是轴对称图形”的逆命题是 .【答案】轴对称图形是等腰三角形【解析】根据轴对称图形的概念求解.逆命题是结果与条件互换一下的说法.【总结升华】掌握好逆命题,及轴对称的概念.举一反三:【变式】下列定理中,没有逆定理的是().A.全等三角形的对应角都相等B.全等三角形的对应边都相等C.等腰三角形的两底角相等D.等边三角形的三边都相等【答案】A类型二、线段垂直平分线性质定理及其逆定理2、如图,已知AD是线段BC的垂直平分线,且BD=3cm,△ABC的周长为20cm,求AC的长.【思路点拨】根据线段垂直平分线的性质,可得AB=AC,BD=CD,然后根据等量代换,解答出即可.【答案与解析】解:∵AD是线段BC的垂直平分线,∴AB=AC,BD=CD,又∵BD=3cm,∴BC=6cm,又∵△ABC的周长=AB+BC+AC=20cm,∴2AC=14,AC=7cm.【总结升华】本题主要考查线段的垂直平分线的性质,线段的垂直平分线上的点到线段的两个端点的距离相等.举一反三【变式】如图所示,DE是线段AB的垂直平分线,下列结论一定成立的是().A.ED=CD B.∠DAC=∠B C.∠C>2∠B D.∠B+∠ADE=90°【答案】D3、如图,△ABC中,∠ACB=90°,AD平分∠BAC,DE⊥AB于E.的垂直平分线.CE是线段AD求证:直线【思路点拨】由于DE⊥AB,易得∠AED=90°=∠ACB,而AD平分∠BAC,易知∠DAE=∠DAC,又因为AD=AD,利用AAS可证△AED≌△ACD,那么AE=AC,而AD平分∠BAC,利用等腰三角形三线合一定理可知AD⊥CE,即得证.【答案与解析】证明:∵DE⊥AB,∴∠AED=90°=∠ACB,又∵AD平分∠BAC,∴∠DAE=∠DAC,∵AD=AD,∴△AED≌△ACD,∴AE=AC,∵AD平分∠BAC,∴AD⊥CE,即直线AD是线段CE的垂直平分线.【总结升华】本题考查了线段垂直平分的定义、全等三角形的判定和性质、等腰三角形三线合一定理,解题的关键是证明AE=AC.举一反三:【变式】数学来源于生活又服务于生活,利用数学中的几何知识可以帮助我们解决许多实际问题.李明准备与朋友合伙经营一个超市,经调查发现他家附近有两个大的居民区A、B,同时又有相交的两条公路,李明想把超市建在到两居民区的距离、到两公路距离分别相等的位置上,绘制了如下的居民区和公路的位置图.聪明的你一定能用所学的数学知识帮助李明在图上确定超市的位置!请用尺规作图确定超市P的位置.(作图不写作法,但要求保留作图痕迹.)【答案】解:类型三、角平分线性质定理及其逆定理4、(2016?邯郸二模)如图所示,已知△ABC的周长是20,OB、OC分别平分∠ABC和∠ACB,OD⊥BC于D,且OD=3,则△ABC的面积是.【思路点拨】根据角平分线上的点到角的两边的距离相等可得点O到AB、AC、BC的距离都相等(即OE=OD=OF),从而可得到△ABC的面积等于周长的一半乘以3,代入求出即可.【答案与解析】解:如图,连接OA,过O作OE⊥AB于E,OF⊥AC于F,ACB,OC分别平分∠ABC和∠OB∵、OE=OF=OD=3,∴OD=3,于D,且22∵△ABC的周长是,OD⊥BC OF×+×+×BC×OD∴S=×AB×OEAC ABC△ 3 )×+AC=×(AB+BC 3×=20=30.判断出三角形的面【总结升华】本题考查了角平分线上的点到角的两边的距离相等的性质,积与周长的关系是解题的关键.举一反三:).,则下列结论正确的是(【变式】如图:△ABC 的两个外角平分线交于点P 平分∠APC.的距离相等④BP①PA=PC ②BP平分∠ABC ③P到AB,BC.③④ D.③②.①④ A.①② B CC【答案】BE=CF BD=CD,,若于E、如图,DE⊥AB5于,DF⊥ACF 平分∠BAC.AD求证:【思路点拨】由DE⊥AB于E,DF⊥AC于F,若BD=CD,BE=CF,即可判定Rt△BDE≌Rt△CDF(HL),则可得DE=DF,然后由角平分线性质的逆定理,即可证得AD平分∠BAC.【答案与解析】证明:∵DE⊥AB,DF⊥AC,∴∠E=∠DFC=90°,在Rt△BDE和Rt△CDF中,,∴Rt△BDE≌Rt△CDF(HL),∴DE=DF,∴AD平分∠BAC.【总结升华】此题考察了角平分线性质的逆定理与全等三角形的判定与性质.此题难度不大,注意掌握数形结合思想的应用.举一反三:【变式】点D到△ABC的两边AB、AC的距离相等,则点D在().A. BC的中线上B. BC边的垂直平分线上C.BC边的高线上D.∠A的平分线所在的直线上【答案】D。

华东师大初中数学八年级上册尺规作图知识讲解

华东师大初中数学八年级上册尺规作图知识讲解

尺规作图知识讲解【学习目标】1.知道基本作图的常用工具,能正确、熟练的运用尺规作图的叙述语言,并会用尺规作常见的几种基本图形;2.根据三角形全等判定定理,掌握用尺规作三角形及作一个三角形与已知三角形全等;【要点梳理】要点一、基本作图1.尺规作图的定义利用没有刻度直尺和圆规作图,简称为尺规作图.要点诠释:尺规作图时使用的直尺是不能用来进行测量长度的操作,它一般用来将两个点连在一起.圆规可以开至无限宽,但上面也不能有刻度.它只可以拉开成之前构造过的长度或一个任意的长度.2.常见基本作图本套教科书设计的基本尺规作图包括: 1.作一条线段等于已知线段; 2.作一个角等于已知角;3.作一个角的平分线; 4.作一条线段的垂直平分线; 5.过一点作已知直线的垂线.要点诠释:1.要熟练掌握直尺和圆规在作图中的正确应用,对于作图要用正确语言来进行表达;2.本节中继续学习用直尺、圆规做一条线段等于已知线段、一个角等于已知角、作一条线段的垂直平分线等.要点二、根据三角形全等用尺规作三角形根据三角形全等判定定理,应用基本尺规作图作三角形以及作一个三角形与已知三角形全等.【典型例题】类型一、基本作图1、(2014秋?太谷县校级期末)如图,已知线段a、b,求作一条线段使它等于2a+b.【思路点拨】首先画一条射线,再在射线上分别截取a,b即可得出等于2a+b的线段.【答案与解析】解:如图所示:AB即为所求.【总结升华】此题主要考查了简单作图,关键是掌握作一条线段等于已知线段的作法.举一反三:【变式】已知线段a、b、c,用直尺和圆规作出一条线段,使它等于a+c-b.【答案】解:先在射线上作线段AB=a,画出线段BC=c,再在AC上截取AC=b,所以线段CD=a+c-b.如图所示:2、作图题(尺规作图,不写作法,但保留作图痕迹)如图,已知,∠α、∠β.求作∠AOB,使∠AOB=∠α+2∠β.【思路点拨】先作∠BOC=∠β,再以OC为一边,在∠BOC的外侧作∠COD=∠β,再以OB 为一边,在∠BOD的外侧作∠AOB=∠α,∠AOD即是所求.【答案与解析】解:只要方法得当,有作图痕迹就给分,无作图痕迹不给分.【总结升华】此题主要考查作一个角等于已知角的综合应用.举一反三:【变式】请把下面的直角进行三等分.(要求用尺规作图,不写作法,但要保留作图痕迹.)【答案】解:(1)以点B为一顶点作等边三角形;(2)作等边三角形点B处的角平分线.3、作图题(不写作图步骤,保留作图痕迹).已知:如图,求作点P,使点P到A、B两点的距离相等,且P到∠MON两边的距离也相等.【思路点拨】作∠MON角平分线和线段AB的垂直平分线,交点P即是所求.【解析】解:如图,【总结升华】此题主要考查角平分线和线段的垂直平分线的作法;注意角平分线到角两边的距离相等;线段垂直平分线上到线段两个端点的距离相等.举一反三:【变式】(2014?上城区校级模拟)数学来源于生活又服务于生活,利用数学中的几何知识可以帮助我们解决许多实际问题.李明准备与朋友合伙经营一个超市,经调查发现他家附近有两个大的居民区A、B,同时又有相交的两条公路,李明想把超市建在到两居民区的距离、到两公路距离分别相等的位置上,绘制了如下的居民区和公路的位置图.聪明的你一定能用所学的数学知识帮助李明在图上确定超市的位置!请用尺规作图确定超市P的位置.(作图不写作法,但要求保留作图痕迹.)【答案】解:如图,点P就是要找的点.类型二、作三角形4、已知∠α和线段a和b,作一个三角形,使其中一个角等于∠α,且这个角的两边长分别为a和b.(要求:用尺规作图,并写出已知、求作、保留作图痕迹)已知:求作:【思路点拨】先作∠ACB=∠α,然后以点C为圆心,以a长为半径画弧,与边BC相交于点B,再以点C为圆心,以b的长为半径画弧与CA相交于点A,连接AB即可得解.【解析】解:已知:∠α,线段a,b,求作:△ABC,是∠C=∠α,BC=a,AC=b,如图所示,△ABC即为所求作的三角形.【总结升华】本题考查了复杂作图,主要利用了作一个角等于已知角,作一条线段等于已知线段,都是基本作图,需熟练掌握.举一反三:【变式】已知∠α及线段b,作一个三角形,使得它的两内角分别为α和,且两角的夹边为b.(要求:用尺规作图,并写出已知、求作和结论,保留作图痕迹,不写作法)已知:求作:结论:【答案】解:已知:∠α,线段b;求作:△ABC,使得∠B=α,∠C=α,BC=b.结论:如图,△ABC为所求.5、(2016?门头沟区一模)阅读下面材料:数学课上,老师提出如下问题:小明解答如图所示:老师说:“小明作法正确.”请回答:(1)小明的作图依据是;(2)他所画的痕迹弧MN是以点为圆心,为半径的弧.【思路点拨】根据作一个角等于已知角的作法解答即可.【答案与解析】解:(1)小明的作图依据是SSS定理.故答案为:SSS;(2)他所画的痕迹弧MN是以点E为圆心,CD为半径的弧.故答案为:E,CD.【总结升华】本题考查的是作图﹣基本作图,熟知作一个角等于已知角的作法及依据是解答此题的关键.。

华东师大版初中数学电子教材-第19章-全等三角形

华东师大版初中数学电子教材-第19章-全等三角形

§19全等三角形 2 §19.1 命题与定理 21.命题 22.公理、定理 3§19.2 三角形全等的判定 41.全等三角形的判定条件 42.边角边 63.角边角 84.边边边 105.斜边直角边 12阅读材料 15§19.3 尺规作图 161.作一条线段等于已知线段 162.作一个角等于已知角 163.作已知角的平分线 174.经过一已知点作已知直线的垂线 175.作已知线段的垂直平分线 19阅读材料 20§19.4 逆命题与逆定理 211.互逆命题与互逆定理 212.等腰三角形的判定 223.角平分线 244.线段垂直平分线 25小结 28复习题 29课题学习 30§19全等三角形你玩过拼图游戏吗?那是用许多各种颜色的小拼板拼成一幅幅美丽的图画.那些拼板有不少是形状相同、大小一样的.它们相互之间有什么关系?发挥你的智慧,想想看!§19.1 命题与定理1.命题思考我们已经学过一些图形的特性,如“三角形的内角和等于180°”、“等腰三角形的两个底角相等”等.根据我们学过的图形特性,试判断下列句子是否正确.(1)如果两个角是对顶角,那么这两个角相等;(2)两直线平行,同位角相等;(3)同旁内角相等,两直线平行;(4)平行四边形的对角线相等;(5)直角都相等.根据已有的知识可以判断出句子(1)、(2)、(5)是正确的,句子(3)、(4)是错误的.像这样可以判断它是正确的或是错误的句子叫做命题(proposition).正确的命题称为真命题,错误的命题称为假命题.在数学中,许多命题是由题设(或已知条件)、结论两部分组成的.题设是已知事项;结论是由已知事项推出的事项.这样的命题常可写成“如果……,那么……”的形式.用“如果”开始的部分就是题设,而用“那么”开始的部分就是结论.例如,在命题(1)中,“两个角是对顶角”是题设,“这两个角相等”是结论.有的命题的题设与结论不十分明显,将它写成“如果……,那么……”的形式,也可分清它的题设与结论.例如,命题(5)可写成“如果两个角是直角,那么这两个角相等”.例1 把命题“三个角都相等的三角形是等边三角形”改写成“如果……,那么……”的形式,并分别指出命题的题设与结论.解这个命题可以写成“如果一个三角形的三个角都相等,那么这个三角形是等边三角形”.这个命题的题设是“一个三角形的三个角都相等”,结论是“这个三角形是等边三角形”.要判断一个命题是真命题,可以用逻辑推理的方法加以论证;而要判断一个命题是假命题,只要举出一个例子,说明该命题不成立,即只要举出一个符合该命题题设而不符合该命题结论的例子就可以了.在数学中,这种方法称为“举反例”.例如,要证明命题“一个锐角与一个钝角的和等于一个平角”是假命题,只需举出一个反例“某一锐角与某一钝角的和不是180°”即可.练习1 把下列命题改写成“如果……,那么……”的形式,并指出它的题设和结论.(1)全等三角形的对应边相等;(2)平行四边形的对边相等.2 指出下列命题中的真命题和假命题.(1)同位角相等,两直线平行;(2)多边形的内角和等于180°.2 公理、定理数学中有些命题的正确性是人们在长期实践中总结出来的,并把它们作为判断其他命题真假的原始依据,这样的真命题叫做公理(axioms).我们已经知道下列命题是真命题:一条直线截两条平行直线所得的同位角相等;两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行;全等三角形的对应边、对应角分别相等.在本书中我们将这些真命题均作为公理.数学中有些命题可以从公理或其他真命题出发,用逻辑推理的方法证明它们是正确的,并且可以进一步作为判断其他命题真假的依据,这样的真命题叫做定理(theorem).例如,有了“三角形的内角和等于180°”这条定理后,我们还可以证明刻画直角三角形的两个锐角之间的数量关系的命题:直角三角形的两个锐角互余.已知:如图19.1.1,在Rt△ABC中,∠C=90°.求证:∠A+∠B=90°.证明∵∠A+∠B+∠C=180°(三角形的内角和等于180°),又∠C=90°,∴∠A+∠B=90°.此命题可以用来作为判断其他命题真假的依据,因此我们把它也作为定理.定理的作用不仅在于它揭示了客观事物的本质属性,而且可以作为进一步确认其他命题真假的依据.练习1 把下列定理改写成“如果……,那么……”的形式,指出它的题设和结论,并用逻辑推理的方法证明题(1):(1)同旁内角互补,两直线平行;(2)三角形的外角和等于360°.2 判断命题“内错角相等”是真命题还是假命题,并说明理由.习题19.11 判断下列命题是真命题还是假命题,若是假命题,举一个反例加以证明.(1)两个锐角的和等于直角;(2)两条直线被第三条直线所截,同位角相等.(第3题)2 把下列命题改成“如果……,那么……”的形式.(1)全等三角形的对应边相等;(2)菱形的对角线相互垂直;(3)有一个角等于60°的等腰三角形是等边三角形.3 试证明“如果两条直线垂直于同一条直线,那么这两条直线平行.”即,已知:如图,AB⊥MN,CD⊥MN,垂足分别为E、F.求证:AB∥CD.(第3题)§19.2 三角形全等的判定1.全等三角形的判定条件我们知道:若两个三角形的三条边、三个角分别对应相等,则这两个三角形全等.那么能否减少一些条件,找到更为简便的判定三角形全等的方法?显然由于三角形的内角和等于180°,如果两个角分别对应相等,那么另一个角必然也相等.这样,若两个三角形的三条边、两个角分别对应相等,则这两个三角形仍然全等.能否再减少一些条件?对两个三角形来说,六个元素(三条边、三个角)中至少要有几个元素分别对应相等,两个三角形才会全等呢?1.我们从最简单的开始,如果只知道两个三角形有一组对应相等的元素(边或角),这两个三角形一定全等吗?(1)如果只知道两个三角形有一个角对应相等,那么这两个三角形全等吗?(2)如果只知道两个三角形有一条边对应相等,那么这两个三角形全等吗?2.如果两个三角形有两组对应相等的元素(边或角),那么这两个三角形一定全等吗?想一想,会有几种可能的情况?分别按照下面的条件,用刻度尺或量角器画三角形,并和周围的同学比较一下,所画的图形是否全等.(1)三角形的两个内角分别为30°和70°;(2)三角形的两条边分别为3cm和5cm;(3)三角形的一个内角为60°,一条边为3cm;(i)这条长3cm的边是60°角的邻边;(ii)这条长3cm的边是60°角的对边.你一定会发现,如果只知道两个三角形有一组或两组对应相等的元素(边或角),那么这两个三角形不一定全等(甚至形状都不相同).思考如果两个三角形有三组对应相等的元素(边或角),那么会有哪几种可能的情况?这时,这两个三角形一定会全等吗?练习1. 如图,点O是平行四边形ABCD的对角线的交点,△AOB绕O旋转180o,可以与△___________重合,这说明△AOB≌△___________.这两个三角形的对应边是AO与__________,OB与__________,BA与__________;对应角是∠AOB与________,∠OBA与_________,∠BAO与___________.2 如图,AE是平行四边形ABCD的高,将△ABE沿AD方向平移,使点A与点D重合,点E与点F重合,则△ABE≌_________,∠F=_________°.3 如图,点D是等腰直角三角形ABC内一点,AB=AC,将△ABD绕点A逆时针旋转90°,点D与点E重合,则△ABD≌_________,AD=_________,BD =_________.2 边角边如果两个三角形有3组对应相等的元素,那么含有以下的四种情况:两边一角、两角一边、三角、三边.我们将对这四种情况分别进行讨论.如果两个三角形有两条边和一个角分别对应相等,这两个三角形一定全等吗?如图19.2.1所示,此时应该有两种情况:一种是角夹在两条边的中间,形成两边夹一角;另一种情况是角不夹在两边的中间,形成两边一对角.如图19.2.2,已知两条线段和一个角,以这两条线段为边,以这个角为这两条边的夹角,画一个三角形.把你画的三角形与其他同学画的三角形进行比较,所有的三角形都全等吗?换两条线段和一个角试试,是否有同样的结论.步骤:1 画一线段AB,使它等于4cm;2 画∠MAB=45°;3 在射线AM上截取AC=3cm;4 连结BC.ABC即为所求.如图19.2.3,在△ABC和△A′B′C′中,已知AB=A′B′,∠B=∠B′,BC=B′C′.由于AB=A′B′,我们移动其中的△ABC,使点A与点A′、点B与点B′重合;因为∠B=∠B′,因此可以使∠B与∠B′的另一边BC与B′C′重叠在一起,而BC=B′C′,因此点C与点C′重合.于是△ABC与△A′B′C′重合,这就说明这两个三角形全等.由此可得判定三角形全等的一种简便方法:。

数学初二下华东师大版19.4逆命题与逆定理教案

数学初二下华东师大版19.4逆命题与逆定理教案

数学初二下华东师大版19.4逆命题与逆定理教案2、正确应用互逆命题与互逆定理重点与难点:区分互逆命题与互逆定理教学过程:我们差不多明白,能够判断正确或错误的句子叫做命题、例如“两直线平行,内错角相等”、“内错角相等,两直线平行”基本上命题、上面两个命题的题设和结论恰好互换了位置、一般来说,在两个命题中,假如第一个命题的题设是第二个命题的结论,而第一个命题的结论是第二个命题的题设,那么这两个命题叫做互逆命题、假如把其中一个命题叫做原命题,那么另一命题就叫做它的逆命题、命题“两直线平行,内错角相等”的题设为____________________________________;结论为____________________________________、因此它的逆命题为_____________________________________________、每一个命题都有逆命题,只要将原命题的题设改成结论,并将结论改成题设,便可得到原命题的逆命题、然而原命题正确,它的逆命题未必正确、例如真命题“对顶角相等”的逆命题为“相等的角是对顶角”,此命题确实是假命题、假如一个定理的逆命题也是定理,那么这两个定理叫做互逆定理,其中的一个定理叫做另一个定理的逆定理、我们差不多明白命题“两直线平行,内错角相等”和它的逆命题“内错角相等,两直线平行”基本上定理,因此它们确实是互逆定理、一个假命题的逆命题能够是真命题,甚至能够是定理、例如“相等的角是对顶角”是假命题,但它的逆命题“对顶角相等”是真命题,且是定理、练习1、说出以下命题的题设和结论,并说出它们的逆命题:〔1〕假如一个三角形是直角三角形,那么它的两个锐角互余;〔2〕等边三角形的每个角都等于60°;〔3〕全等三角形的对应角相等;〔4〕到一个角的两边距离相等的点,在那个角的平分线上;〔5〕线段的垂直平分线上的点到这条线段的两个端点的距离相等、2、举例说明以下命题的逆命题是假命题:〔1〕假如一个整数的个位数字是5,那么那个整数能被5整除;〔2〕假如两个角基本上直角,那么这两个角相等、3、在你所学过的知识内容中,有没有原命题与逆命题都正确的例子〔即互逆定理〕?试举出几对、课堂小结:总结一下你所学过的知识作业:P81。

华师大版-数学-八年级上册--互逆命题与互逆定理

华师大版-数学-八年级上册--互逆命题与互逆定理
八年级(下 册 )
华东师大版 §19.4.2
想一想
在七年级第二学期第10章中我们已经知道,等腰三角形 的底角相等,这是等腰三角形的性质定理.它的逆命题 “如果一个三角形有两个角相等,那么这两个角所对的 边也相等”也是定理,是判定三角形是否是等腰三角形 的一个重要的方法.
你是怎样知道等腰三角形的这个判别方法的呢?
如图19.4.1,在△ABC中,∠B=∠C.当 时是利用圆规截取AB、AC,比较AB、AC 的大小,从而得到AB=AC.为了确认这个
命题的正确性,我们可以用逻辑推理的方法 加以证明.
图 19.4.1
已知:如图19.4.2,在△ABC中,∠B=∠C. 求证:AB=AC
分析:要证明AB=AC,可设法构造两个全等三角形,使AB、
如图19.4.7,设直线MN是线段AB的垂直平分线,点C是垂 足.点P是直线MN上任意一点,连结PA、PB.证明PA=PB.
已. 知: MN⊥AB,垂足为点C,AC=BC,点P是直线MN上任 意一点.求证: PA=PB.
分析 图中有两个直角三角形APC和BPC,只
要证明这两个三角形全等,便可证得PA=PB.
已知: 如图19.4.8,QA=QB. 求证: 点Q在线段AB的垂直平分线上
分析: 为了证明点Q在线段AB的垂直平分线上,可 以先经过点Q作线段AB的垂线,然后证明该垂线平 分线段AB;也可以先平分线段AB,设线段AB的中 点为点C,然后证明QC垂直于线段AB
于是就有定理:
图 19.4.8
到一条线段的两个端点的距离相等的点,在这条线段 的垂直平分线上
想一想
上述两条定理互为逆定理,根据上述这两条定理, 我们很容易证明: .
三角形三条角平分线交于一点 从图19.4.6中可以看出,要证明三条角平分线交于一 点,只需证明其中的两条角平分线的交点一定在第三条 角平分线上就可以了.请你完成证明.

华师大版-数学-八年级上册--辅导-19.4 逆命题与逆定理 解读“逆命题与逆定理”

华师大版-数学-八年级上册--辅导-19.4 逆命题与逆定理 解读“逆命题与逆定理”

解读“逆命题与逆定理”同学们已经知道,在日常生活中经常会遇到判断正确或错误的句子,这些句子就叫做命题.如,“直角都相等”和“相等的角都是直角”,等等都是命题,可是这样的两个命题之间又存在着什么的关系呢?为了弄清楚这个问题,我们先来学习一下“逆命题与逆定理”的知识.一、正确理解命题的组成每个命题都是由条件和结论两部分组成,条件是已知事项,结论是由已知事项推断出的事项.命题一般写成“如果…… ,那么……”的形式,“如果”引出的部分是条件,“那么”引出的部分是结论,但有些命题的条件、结论不太分明,可先写成“如果…… ,那“如果两个角都是直角,那么这两个角相等”,同样命题“相等的角都是直角”可以写成:“如果两外角相等,那么这两个角是直角”.二、分清命题的正确与错误命题有真有假,其中正确的命题叫做真命题;错误的命题叫做假命题.上面所讲的“直角都相等”和“相等的角都是直角”这两个命题中,前者是正确的,是真命题,而后者则是错误的,是假命题.事实上,要说明一个命题是假命题,通常可以举出一个例子,使之具有命题的条件,而不具有命题的结论,这种例子称为反例;要说明一个命题是真命题需根据公理和定理证明.对于真命题而言,如果题设成立,那么结论一定成立;对于假命题而言,题设成立时,不能保证结论总是正确的.三、正确理解互逆命题的概念在两个命题中,如果第一个命题的题设是第二个命题的结论,而第一个命题的结论是第二个命题的题设,那么这两个命题叫做互逆命题.如果把其中的一个命题叫做原命题,那么另一个命题就叫做它的逆命题.如,“如果两个角都是直角,那么这两个角相等”与“如果两外角相等,那么这两个角是直角”就是一对互逆命题.可见每一个命题都有逆命题,只要将原命题的题设改成结论,并将结论改成题设,便可以得到原命题的逆命题.但原命题正确,它的逆命题未必正确.如,对于真命题“如果两个角都是直角,那么这两个角相等”的逆命题“如果两外角相等,那么这两个角是直角”,此命题就是一个假命题.四、正确理解互逆定理的概念有些命题的正确性是通过推理证实的,这样的真命题叫定理.如果一个定理的逆命题经过证明是真命题,那么它也是一个定理,这两个定理叫做互逆定理,其中一个叫做另一个的逆定理.如,命题“两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行”就是一个定理,而它的逆命题“如果两条平行线被第三条直线所截,那么同位角相等”是一个真命题,即称为逆定理.就是说,如果一个定理的逆命题也是定理,那么这两个定理叫做互逆定理,其中一个定理叫做中一个定理的逆定理.刚才我们说的“两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行”与“如果两条平行线被第三条直线所截,那么同位角相等”就是互逆定理.虽然每个命题都有逆命题,但要注意,因为一个真命题的逆命题不一定也是真命题,所以并不是所有的定理都有逆定理.并强调说明“互逆命题”是说明两个命题之间的关系,两个命题的地位可以互换,它们之中可以确定其中任何一个为原命题,但是一旦确定,另一个就是它的逆命题了.“互逆定理”也同样.值得说明的是,每个命题都有逆命题,但一个定理不一定有逆定理.如,“对顶角相等”就没有逆定理.。

数学初二下华东师大版19.4逆命题与逆定理教案

数学初二下华东师大版19.4逆命题与逆定理教案

数学初二下华东师大版19.4逆命题及逆定理教案教学目旳:1.理解互逆命题及互逆定理2.正确应用互逆命题及互逆定理重点及难点:区分互逆命题及互逆定理教学过程:我们已经知道,可以判断正确或错误旳句子叫做命题.例如“两直线平行,内错角相等”、“内错角相等,两直线平行”都是命题.上面两个命题旳题设和结论恰好互换了位置.一般来说,在两个命题中,如果第一个命题旳题设是第二个命题旳结论,而第一个命题旳结论是第二个命题旳题设,那么这两个命题叫做互逆命题.如果把其中一个命题叫做原命题,那么另一命题就叫做它旳逆命题.命题“两直线平行,内错角相等”旳题设为____________________________________;结论为____________________________________.因此它旳逆命题为_____________________________________________.每一个命题都有逆命题,只要将原命题旳题设改成结论,并将结论改成题设,便可得到原命题旳逆命题.但是原命题正确,它旳逆命题未必正确.例如真命题“对顶角相等”旳逆命题为“相等旳角是对顶角”,此命题就是假命题.如果一个定理旳逆命题也是定理,那么这两个定理叫做互逆定理,其中旳一个定理叫做另一个定理旳逆定理.我们已经知道命题“两直线平行,内错角相等”和它旳逆命题“内错角相等,两直线平行”都是定理,因此它们就是互逆定理.一个假命题旳逆命题可以是真命题,甚至可以是定理.例如“相等旳角是对顶角”是假命题,但它旳逆命题“对顶角相等”是真命题,且是定理.练习1.说出下列命题旳题设和结论,并说出它们旳逆命题:(1)如果一个三角形是直角三角形,那么它旳两个锐角互余;(2)等边三角形旳每个角都等于60°;(3)全等三角形旳对应角相等;(4)到一个角旳两边距离相等旳点,在这个角旳平分线上;(5)线段旳垂直平分线上旳点到这条线段旳两个端点旳距离相等.2.举例说明下列命题旳逆命题是假命题:(1)如果一个整数旳个位数字是5,那么这个整数能被5整除;(2)如果两个角都是直角,那么这两个角相等.3.在你所学过旳知识内容中,有没有原命题及逆命题都正确旳例子(即互逆定理)?试举出几对.课堂小结:总结一下你所学过旳知识作业:P81.12. 等腰三角形旳判定教学目旳:1.理解并能用等腰三角形旳等角对等边2.理解并能用勾股定理旳逆定理重点及难点:本节两个定理旳应用教学过程:在七年级第二学期第10章中我们已经知道,等腰三角形旳底角相等,这是等腰三角形旳性质定理.它旳逆命题“如果一个三角形有两个角相等,那么这两个角所对旳边也相等”也是定理,是判定三角形是否是等腰三角形旳一个重要旳方法.回 忆你是怎样知道等腰三角形旳这个判别方法旳呢?如图19.4.1,在△ABC 中,∠B =∠C .当时是利用圆规截取AB 、AC ,比较AB 、AC 旳大小,从而得到AB =AC .为了确认这个命题旳正确性,我们可以用逻辑推理旳方法加以证明.已知: 如图19.4.2,在△ABC 中,∠B =∠C .求证: AB =AC .分析: 要证明AB =AC ,可设法构造两个全等三角形,使AB 、AC分别是这两个全等三角形旳对应边,于是想到作∠BAC 旳平分线AD .图19.4.1证明 作∠BAC 旳平分线AD .在△BAD 和△CAD 中, ∵ ∠B =∠C ,∠1=∠2,AD =AD ,∴ △BAD ≌△CAD (A .A .S .),∴ AB =AC (全等三角形旳对应边相等).于是得到:如果一个三角形有两个角相等,那么这两个角所对旳边也相等.(简写成“等角对等边”)在八年级上学期第14章中我们已经知道勾股定理及勾股定理旳逆定理.我们也可以用逻辑推理旳方法证明勾股定理旳逆定理. 如果三角形旳一条边旳平方等于另外两条边旳平方和,那么这个三角形是直角三角形.已知: 如图19.4.3,在△ABC 中,AB =c , BC =a , CA =b ,且a2+b2=c2.求证: △ABC 是直角三角形.分析: 首先构造直角三角形A ′B ′C ′,使∠C ′=90°,B ′C ′=a , C ′A ′=b ,然后可以证明△ABC ≌△A ′B ′C′,从而可知△图19.4.3图19.4.2ABC是直角三角形.设三角形三边长分别是下列各组数,试判断各三角形是不是直角三角形.如果是直角三角形,请指出哪条边所对旳角是直角.(1) 7, 24, 25;(2) 12, 35, 37;(3) 35, 91, 84.课堂练习:1.说出定理“等边三角形旳三个内角都相等”旳逆命题,并证明该逆命题为真命题.(第2题)2.如图,已知P、Q是△ABC旳边BC上两点,并且BP=PQ=QC =AP=AQ,求∠BAC旳大小.3.三角形三边长a、b、c分别是下列各组数,试判断各三角形是不是直角三角形?如果是,那么哪一个角是直角?(1) a=8, b=15, c=17;(2) a=6, b=10, c=8;(3) a=1, b=3, c=2.4.给定一个三角形旳两边长分别为5、12,当第三条边为多长时,这个三角形是直角三角形?课堂小结:总结一下你所学过旳知识作业:P81.23. 角平分线教学目旳:角平分线定理及逆命题旳应用重点及难点:角平分线定理及逆命题旳应用教学过程:回 忆我们知道角平分线上旳点到这个角旳两边旳距离相等.角平分线旳这条性质是怎样得到旳呢?如图19.4.4,OC 是∠AOB 旳平分线,点P 是OC 上任意一点,PD ⊥OA , PE ⊥OB ,垂足分别为点D 和点E .当时是在半透明纸上描出了这个图,然后沿着射线OC 对折,通过观察,线段PD 和PE 完全重合.于是得到PD =PE .及等腰三角形旳判定方法相类似,我们也可用逻辑推理旳方法加以证明.图中有两个直角三角形△PDO 和△PEO ,只要证明这两个三角形全等,便可证得PD =PE .于是就有定理:角平分线上旳点到这个角旳两边旳距离相等.此定理旳逆命题是“到一个角旳两边旳距离相等旳点在这个角旳平分线上”,这个命题是否是真命题呢?即到一个角旳两边旳距离相等旳点是否一定在这个角旳平分线上图19.4.4 图19.4.5呢?我们可以通过“证明”来解答这个问题.已知: 如图19.4.5,QD ⊥OA , QE ⊥OB ,点D 、E 为垂足,QD =QE .求证: 点Q 在∠AOB 旳平分线上.分析: 为了证明点Q 在∠AOB 旳平分线上,可以作射线OQ ,然后证明Rt △DOQ ≌Rt △EOQ ,从而得到∠AOQ =∠BOQ .于是就有定理:到一个角旳两边距离相等旳点,在这个角旳平分线上.上述两条定理互为逆定理,根据上述这两条定理,我们很容易证明: 三角形三条角平分线交于一点.从图19.4.6中可以看出,要证明三条角平分线交于一点,只需证明其中旳两条角平分线旳交点一定在第三条角平分线上就可以了.请你完成证明.课堂练习:1. 如图,在直线l 上找出一点P ,使得点P 到∠AOB 旳两边OA 、OB 旳距离相等.图19.4.6(第1题)(第2题)2. 如图,已知△ABC 旳外角∠CBD 和∠BCE 旳平分线相交于点F ,求证: 点F 在∠DAE 旳平分线上.课堂小结:总结一下你所学过旳知识作业:P81.44. 线段垂直平分线教学目旳:线段旳垂直平分线定理及逆定理重点及难点:线段旳垂直平分线定理及逆定理旳应用教学过程:我们已经知道线段是轴对称图形,线段旳垂直平分线是线段旳对称轴,并知道线段旳垂直平分线上旳点到这条线段旳两个端点旳距离相 等.我们也可用逻辑推理旳方法证明这一结论.如图19.4.7,设直线MN 是线段AB旳垂直平分线,图19.4.7点C 是垂足.点P 是直线MN 上任意一点,连结PA 、PB .证明PA =PB .已知: MN ⊥AB ,垂足为点C ,AC =BC ,点P 是直线MN 上任意一点.求证: PA =PB .分析:图中有两个直角三角形APC 和BPC ,只要证明这两个三角形全等,便可证得PA =PB .于是就有定理:线段旳垂直平分线上旳点到这条线段旳两个端点旳距离相等. 此定理旳逆命题是“到一条线段旳两个端点旳距离相等旳点在这条线段旳垂直平分线上”,这个命题是否是真命题呢?即到一条线段旳两个端点旳距离相等旳点是否一定在这条线段旳垂直平分线上呢?我们也可以通过“证明”来解答这个问题.已知:如图19.4.8,QA =QB .求证: 点Q 在线段AB 旳垂直平分线上.分析: 为了证明点Q 在线段AB 旳垂直平分线上,可以先经过点Q 作线段AB 旳垂线,然后证明该垂线平分线段AB ;也可以先平分线段AB ,设线段AB 旳中点为点C ,然后证明QC 垂直于线段AB . 于是就有定理:到一条线段旳两个端点旳距离相等旳点,在这条线段旳垂直平分线上.图19.4.8上述两条定理互为逆定理,根据上述两条定理,我们很容易证明: 三角形三边旳垂直平分线交于一点.从图19.4.9中可以看出,要证明三条垂直平分线交于一点,只需证明其中旳两条垂直平分线旳交点一定在第三条垂直平分线上就可以了.试试看,现在你会证了吗?课堂练习1. 如图,已知点A 、点B 以及直线l ,在直线l 上求作一点P ,使PA =PB .2. 如图,已知AE =CE , BD ⊥AC .求证: AB +CD =AD +BC .3. 如图,在△ABC 上,已知点D 在BC 上,且BD +AD =BC .求证: 点D 在AC 旳垂直平分线上.课堂小结:总结一下你所学过旳知识作业:P81.5.6图19.4.9一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一。

2022年华东师大版数学八上《逆命题与逆定理3》精品课件

2022年华东师大版数学八上《逆命题与逆定理3》精品课件

I F
A H E
即可.思路可表示如下:
P
B
DG C
AP是∠BAC PI=PH
的平分线
BP是∠ABC PG=PI
PH=PG
点P在∠BCA 的平分线上
的平分线
试试看,你会写出证明过程吗?
典例精析
例 如图,△ABC的角平分线BM,CN相交于点P. 求证:点P也在∠A的平分线上. A
N M
P B
C
证明:过点P作PD⊥AB,PE⊥BC, PF⊥AC,
∴点P 在∠AOB的平分线上.
A D
C P
EB
角平分线的判定定理与性质定理互为逆定理.
做一做
利用尺规作三角形的三条角平分线,你发现了什么?
发现:三角形的三条角平分线交于一点.
A 怎样证明这个结论呢?
NP
M
B
C
点拨:要证明三角形的三条角平分线 相交于一点,只要证明其中两条角平 分线的交点一定在第三条角平分线上
此题直接利用同底数幂 的乘法法那么计算
〔2〕x6·x4=x?10
〔3〕2m×2n=2?m+n
此题逆向利用同底数幂的
2.填空:
乘法法那么计算
〔1〕〔 2 〕〔5 〕×23=28
〔2〕x6·x〔 〕4 〔 〕=x1
相当于求28 ÷23=?
相当于求x10÷x6=?
〔3〕〔 2 〕〔m 〕×2n=2m+n
相当于求2m+n ÷2n=?
(a 0)
典例精析
例 计算:
(1 ) a 8 a 3; ( 2 )( a )10 ( a ) 3; (3)(2a)7 (2a)4.
以后,如果没 有特别说明, 我们总假设所 给出的式子是 有意义的.本 例中我们约定

华师大版八年级数学上册《互逆命题与互逆定理》课件

华师大版八年级数学上册《互逆命题与互逆定理》课件

13.5.1 互逆命题与互逆定理
新知梳理
► 知识点一 互逆命题 在两个命题中,如果第一个命题的_条_ 件__是第二个命题
的_结_ 论__,而第一个命题的_ 结论___是第二个命题的_条_ 件__, 那么这两个命题叫做互_ 逆_命__题.如果把其中一个命题叫做原命 题,那么另一个命题就叫做它的逆__命_ 题_.
13.5.1 互逆命题与互逆定理
活动2 教材导学
1.互逆命题
命题“等边对等角”是_真_ __命题,把它改写为“如果……,
那么……”的形式,结果是如果一__个三角形的两边相__等,那么
___这两边所对的角相等 _.它的条件是_一_个三角形的两边_相_,等
结论是_这两边所对的角相等___;把这个命题的结论作条件,同
•不习惯读书进修的人,常会自满于现状,觉得再没有什么事情需要学习,于是他们不进则退。经验丰富的人读书用两只眼睛,一只眼睛看到纸面上的话,另 一眼睛看到纸的背面。2022年4月4日星期一2022/4/42022/4/42022/4/4 •书籍是屹立在时间的汪洋大海中的灯塔。2022年4月2022/4/42022/4/42022/4/44/4/2022 •正确的略读可使人用很少的时间接触大量的文献,并挑选出有意义的部分。2022/4/42022/4/4April 4, 2022 •书籍是屹立在时间的汪洋大海中的灯塔。
[归纳总结] 写一个命题的逆命题的步骤:(1)分清原命题的 条件和结论;(2)调换原命题的条件和结论;(3)运用正确的数学 语言和通顺的语句表达出来.
注意:(1)要特别注意写一个命题的逆命题的步骤中的第三 步,如“等腰三角形两底角相等”,它的逆命题为“两内角相等 的三角形是等腰三角形”,而不是“两底角相等的三角形是等腰 三角形”.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初二数学19. 3 尺规作图19. 4逆命题与逆定理华东师大版【本讲教育信息】一. 教学内容:19. 3 尺规作图19. 4 逆命题与逆定理二. 重点、难点:1. 重点:⑴认识尺规作图,掌握五种基本作图,并运用基本方法作三角形;⑵了解尺规作图的步骤,对一些简单的尺规作图,会写主要的作图过程;⑶理解逆命题与逆定理的概念,并能识别互逆命题;⑷学习几个重要的定理及逆定理,并灵活运用.2. 难点:⑴掌握五种基本图形的作图方法,能灵活地用来解决一些较简单的实际问题,培养动手能力;⑵能灵活运用几个重要的定理及逆定理,提高数学能力.三.知识梳理:1. 尺规作图:⑴定义:我们把只能使用圆规和没有刻度的直尺这两种工具去作几何图形的方法称为尺规作图.⑵作图与画图的区别:凡写“求作”的题目,都只能使用无刻度的直尺和圆规作图;凡写“画”的题目,可使用多种工具作图,如三角板,量角器,有刻度的直尺,也可用圆规等其他作图工具.2. 基本作图内容:⑴画一条线段等于已知线段;⑵画一个角等于已知角;⑶经过一点画已知直线的垂线;⑷画已知线段的垂直平分线;⑸平分已知角.3. 常用的尺规作图的基本术语:⑴过点×、点×作直线××,或作直线(线段、射线)××;⑵连接两点×、×,或连接××;⑶在线段××上截取××=××;⑷延长××至点×,使××=××;⑸以点×为圆心,××长为半径作圆(或弧),交××于点×;⑹分别以点×、点×为圆心,以××、××为半径画圆弧,两弧相交于点×、×.4. 尺规作图的步骤:已知、求作、分析、作法、证明(一般不用证明).5. 逆命题与逆定理:⑴逆命题:在两个命题中,如果第一个命题的题设是第二个命题的结论,而第一个命题的结论是第二个命题的题设,那么这两个命题叫做互逆命题.如果把其中一个命题叫做原命题,那么另一命题就叫做它的逆命题.⑵逆定理:如果一个定理的逆命题也是定理,那么这两个定理叫做互逆定理,其中的一个定理叫做另一个定理的逆定理.⑶互逆定理:如果命题和它的逆命题都是定理,那么它们就是互逆定理.6. 本节中的定理:⑴等腰三角形的判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等.简称“等角对等边”.⑵勾股定理及逆定理:勾股定理:直角三角形两直角边的平方和等于斜边的平方;勾股定理的逆定理:如果三角形的一条边的平方等于另外两条边的平方和,那么这个三角形是直角三角形.⑶角平分线有关定理角平分线的性质定理:角平分线上的点到这个角的两边的距离相等;角平分线的性质定理的逆命题:到一个角的两边的距离相等的点在这个角的平分线上;内心:三角形三条角平分线交于一点,并且这点到三边的距离相等.⑷线段垂直平分线有关定理:定理:线段的垂直平分线上的点到这条线段的两个端点的距离相等.定理的逆命题:到一条线段的两个端点的距离相等的点在这条线段的垂直平分线上;三角形三边的垂直平分线交于一点,并且这点到三个顶点的距离相等.【典型例题】例1. 已知线段a、b画一条线段,使其等于a+2b.分析:所画的线段等于a+2b,实质上是等于a+b+ b.作图由左向右逐个画出所加的线段,结果仍是线段.图形反映的是“形的关系”,与计算反映的“数量的关系”是统一的.解:⑴画射线AP;⑵在射线AP截取AB=a;⑶在射线BP上依次截取BC=CD=b;⑷线段AD就是所求作的线段.例2. 已知∠1和∠2,求作一个角,使它等于∠1-∠2.分析:画角的和与差,注意角的位置关系.角的和,角度变大,外部相邻;角的差,角度变小,内部相邻.解:⑴用直尺和圆规画出∠AOB=∠1;⑵以O为顶点,射线OA为一边,在∠AOB的内部,画∠AOC=∠2,则∠BOC=∠AOB-∠AOC=∠1-∠2;∠BOC就是所求的角.例3. 如图内宜高速公路OA 和自雅路OB 在我市相交于点O ,在∠AOB 的内部有五宝C 、正紫D 两个镇,若要修一个大型农贸市场P ,使P 到OA 、OB 的距离相等,且使PC =PD ,用尺规作出市场P 的位置(不写作法,保留作图痕迹).分析:由题意知:点P 既要在∠AOB 的平分线上,又要在线段CD 的垂直平分线上,即点P 应为∠AOB 的角平分线与线段CD 的垂直平分线的交点.解:如图所示.例4. 已知三角形的一边及这条边上的中线和高线求作三角形.已知:线段m ,h ,a (h m >)求作ABC ∆,使AD 为BC 边上的中线且m AD =, AH 为BC 边上的高,使a BC h AH ==,.分析:作三角形,关键是要定下三角形的三个顶点.这里可根据中线、高线定下A 点的位置;再根据中线过底边中点,定下底边上的B 、C 两点.解:作法:⑴画ADH Rt ∆,使h AH m AD ==,,︒=∠90AHD⑵以D 为圆心,以a 21为半径画弧,分别交HD 的延长线于B 、C 两点 ⑶连结AB 、AC为所求作的三角形ABC例5. 如图△ABC中,∠ABC和∠ACB的平分线相交于F,过F作DE∥BC交AB于点D,交AC于E,若AB=10,AC=12,则△ADE的周长是.分析:角平分线遇到平行,一般存在等腰三角形.因为∠ABC和∠ACB的平分线在DE上,DE∥BC,所以一定存在等腰△DBF和等腰△EFC. 所以AB+AC等于△ADE的周长.解答:22例6. 已知:如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD.求:△ABC各角的度数分析:如此多的线段相等,蕴含很多的等腰三角形.但是没有已知角,只有设未知数,寻找等量关系.解:设∠A=x,∵BD=BC=AD,∴∠A=∠ABD,∠BDC=∠C∴∠A=∠ABD=x,∠BDC=∠C=2x∵AB=AC ∴∠ABC=∠C=2x∵∠A+∠ABC+∠C=180°∴x+2x+2x=180°∴x=36°∴∠A=36°,∠ABC=72°,∠C=72°.例7. 如图,已知:△ABC中,AD是它的角平分线,且BD=CD,DE、DF分别垂直AB、AC,垂足为E、F.求证:EB=FC.分析:说明线段相等,常用方法是“在一个三角形中,等角对等边”,或找以它们为对应边的三角形全等,显然后者比较方便.证明:∵AD是△ABC的平分线.(已知)DE⊥AB于E点,DF⊥AC于F点(已知)∴DE=DF(角平分线性质定理)∠DEB =∠DFC (垂直定义) 在Rt △DEB 和Rt △DFC 中 ∵DE =DF (已证)BD =CD (已知)∴Rt △BDE ≌Rt △CDF (HL )∴BE =CF (全等三角形的对应边相等)例8. 如图所示,∠BAC =30°,D 为角平分线上一点,DE ⊥AC 于E ,DF ∥AC ,且交AB 于点F .⑴求证:△AFD 为等腰三角形; ⑵若DF =10cm ,求DE 的长.CFAEDB32CF1G AEDB分析:角平分线遇到平行,一般存在等腰三角形,△AFD 为等腰三角形易证;要求DE 的长度,而已知是线段DF 的长度,这里要找到他们之间的关系.没有直接关系,可找第三媒介DG 联系起来.解:⑴证明:如答图所示, ∵DF ∥AC ,∴∠3=∠2. ∵∠1=∠2,∴∠1=∠3.∴FD =FA. ∴△AFD 为等腰三角形. ⑵解:过D 作DG ⊥AB ,垂足为G ,∵∠1=∠2=12∠BAC ,∠BAC =30°,∴∠1=15°. 又∵∠1=∠3,∴∠1=∠3=15°. ∴∠GFD =∠1+∠3=15°+15°=30°.在Rt △FDG 中,DF =10cm ,∠GFD =30°,∴DG =5.∵AD 为∠BAC 的平分线,DE ⊥AC ,DG ⊥AB , ∴DE =DG =5cm .例9. P 是∠AOB 的平分线OM 上任意一点,PE ⊥OA 于E ,PF ⊥OB 于F ,连结EF . 求证:OP 垂直平分EF .分析:两点确定一条直线.只要分别说明O 、P 是垂直平分线上的点,就能说明OP 垂直平分EF .证明:∵PE ⊥OA 于E ,PF ⊥OB 于F ∴∠PEO =90°=∠PFO ∴在△PEO 和△PFO 中,⎪⎩⎪⎨⎧=∠=∠∠=∠OP OP FOP EOP PFO PEO ∴△PEO ≌△PFO ,∴PE =PF ,EO =FO ∴O 、P 在EF 的中垂线上, ∴OP 垂直平分EF .例10. 如图,一机器人在y 轴上的点A 处发现一个小球自x 轴上的点B 处,沿x 轴向原点方向匀速滚来,机器人立即从A 处匀速直线前进,去截小球.若机器人的速度与小球的速度相等.⑴请你用尺规在图中找出机器人最快能截住小球的位置点C (不写作法,保留作图痕迹).⑵若点A 的坐标为(0,4),点B 的坐标为(8,0),求在⑴中机器人最快能截住小球的位置点C 的坐标.分析:小球在x 轴上运动,截住时的点C 定在x 轴上;同时,机器人、小球速度相同,由此,点C 与A 、B 的距离相同,定在线段AB 的垂直平分线上;所以,线段AB 的垂直平分线与x 轴的交点,即为C 点.点C 在x 轴上,所以只要求横坐标即可,即只要求线段OC 的长.可运用直角三角形的勾股定理,构造方程求解.解:⑴如图所示.⑵连接AC ,AC =BC设BC 长为x ,则AC =BC =x ,OC =8-x在Rt △AOC 中,AO 2+OC 2=AC 2即42+(8-x )2=x 2x =5,OC =3点C坐标为(3,0).【模拟试题】(答题时间:40分钟)一、选择题:1. 下列作图语句正确的是()AB=A. 延长线段aB. 以点O为圆心作弧∆中,连结AD,使AD=DCC. ABC∆中,取BC中点D,连结ADD. ABC2. 用尺规作图,不能作出惟一三角形的是()A. 已知两角和夹边;B. 已知两边和其中一边的对角C. 已知两边和夹角;D. 已知两角和其中一角的对边3. 下列画图语言表述正确的是()A. 延长线段AB至点C,使AB=BC;B. 以点O为圆心作弧;C. 以点O为圆心,以AC长为半径画弧;D. 在射线OA上截取OB=a,BC=b,则有OC=a+b4. 下列真命题中,其逆命题也真的是()A. 全等三角形的对应角相等B. 两个图形关于轴对称,则这两个图形是全等形C. 等边三角形是锐角三角形D. 直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.5. 如图,等腰三角形ABC中,∠BAC=90°,在底边BC上截取BD=AB,过D作DE⊥BC 交AC于E,连结AD,则图中等腰三角形的个数是()A. 1B. 2C. 3D. 46. 如图所示,在△ABC中,已知∠ABC和∠ACB的平分线相交于点F,过点F作DE ∥BC,交AB于点D,交AC于点E,若BD+CE=9,则线段DE的长为()A. 9B. 8C. 7D. 67. 如图,在△ABC中,DE、GF分别是AB、AC边上的垂直平分线,若AB=10,BC =22,AC=18,则△AEG的周长等于()A. 22B. 24C. 25D. 30二、填空题:1. 如图是画∠AOB 的平分线的方法,射线OC 平分∠AOB 的理由是.2. 把∠O 四等分的步骤是:第一步:先把∠O_______等分;第二步:把得到的两个角分别再_______等分.3. 命题:全等三角形的对应角相等.题设:,结论:;它的逆命题是,这个逆命题是命题(填真、假).4. 若有两条线段,长度是1cm 和2cm ,第三条线段为______时, 才能组成一个直角三角形.5. 在等腰△ABC 中,AB =AC ,BC =5cm ,作AB 的垂直平分线交另一腰AC 于D ,连结BD ,如果△BCD 的周长是17cm ,则△ABC 的腰长为. 三、解答题:1. 按要求作图:延长AD 到点E ,使DE =AD ,连结BE 、CE .ABC D2. 如图所示,已知∠AOB 和两点M 、N 画一点P ,使得点P 到∠AOB 的两边距离相等,且PM =PN ,简述步骤.NM BAO3. 已知:如图,P 、Q 是△ABC 边BC 上两点,且BP =PQ =QC =AP =AQ ,求∠BAC 的度数.4. 在四边形ABCD 中,BD 平分∠ABC ,∠BAD+∠C =180°,求证:AD =CD.5. 如图,△ABC的周长为19cm,且AB=AC,AB的垂直平分线DE交AC于E,D为垂足,BC=5cm,求△BCE的周长.【试题答案】一、选择题。

相关文档
最新文档