结构力学问答题总结

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

概念题

1.1 结构动力计算与静力计算的主要区别是什么?

答:主要区别表现在:(1) 在动力分析中要计入惯性力,静力分析中无惯性力;(2) 在动力分析中,结构的内力、位移等是时间的函数,静力分析中则是不随时间变化的量;(3) 动力分析方法常与荷载类型有关,而静力分析方法普通与荷载类型无关。

1.2 什么是动力自由度,确定体系动力自由度的目的是什么?

答:确定体系在振动过程中任一时刻体系全部质量位置或者变形形态所需要的独立参数的个数,称为体系的动力自由度 (质点处的基本位移未知量)。确定动力自由度的目的是:(1) 根据自由度的数目确定所需建立的方程个数(运动方程数= 自由度数),自由度不同所用的分析方法也不同;(2) 因为结构的动力响应(动力内力和动位移)与结构的动力特性有密切关系,而动力特性又与质量的可能位置有关。

1.3 结构动力自由度与体系几何分析中的自由度有何区别?

答:二者的区别是:几何组成份析中的自由度是确定刚体系位置

所需独立参数的数目,分析的目的是要确定体系能否发生刚体运动。结构动力分析自由度是确定结构上各质量位置所需的独立参数数目,分析的目的是要确定结构振动形状。

1.4 结构的动力特性普通指什么?

答:结构的动力特性是指:频率(周期)、振型和阻尼。动力特性是结构固有的,这是因为它们是由体系的基本参数(质量、刚度)

所确定的、表征结构动力响应特性的量。动力特性不同,在振动中的响应特点亦不同。

1.5 什么是阻尼、阻尼力,产生阻尼的原因普通有哪些?什么是等效粘滞阻尼?

答:振动过程的能量耗散称为阻尼。

产生阻尼的原因主要有:材料的内磨擦、构件间接触面的磨擦、介质的阻力等等。固然,也包括结构中安装的各种阻尼器、耗能器。阻尼力是根据所假设的阻尼理论作用于质量上用于代替能量耗散的一种假想力。粘滞阻尼理论假定阻尼力与质量的速度成比例。粘滞阻尼理论的优点是便于求解,但其缺点是与往往实际不符,为扬长避短,按能量等效原则将实际的阻尼耗能换算成粘滞阻尼理论的相关参数,这种阻尼假设称为等效粘滞阻尼。

1.6 采用集中质量法、广义位移法(坐标法)和有限元法都可使无限自由度体系简化为有限自由度体系,它们采用的手法有何不同?

答:集中质量法:将结构的分布质量按一定规则集中到结构的某个或者某些位置上,认为其他地方没有质量。质量集中后,结构杆件仍具有可变形性质,称为“无重杆”。

广义坐标法:在数学中常采用级数展开法求解微分方程,在结构动力分析中,也可采用相同的方法求解,这就是广义坐标法的理论依据。所假设的形状曲线数目代表在这个理想化形式中所考虑的自由度个数。考虑了质点间均匀分布质量的影响(形状函数),普通来说,

对于一个给定自由度数目的动力分析,用理想化的形状函数法比用集中质量法更为精确。

有限元法:有限元法可以看成是广义坐标法的一种特殊的应用。普通的广义坐标中,广义坐标是形函数的幅值,有时没有明确的物理意义,并且在广义坐标中,形状函数是针对整个结构定义的。而有限元法则采用具有明确物理意义的参数作为广义坐标,且形函数是定义在分片区域的。在有限元分析中,形函数被称为插值函数。

综上所述,有限元法综合了集中质量法和广义坐标法的特点:(l) 与广义坐标法相似,有限元法采用了形函数的概念。但不同于广义坐标法在整体结构上插值(即定义形函数),而是采用了分片的插值,因此形函数的表达式(形状)可以相对简单。(2) 与集中质量法相比,有限元法中的广义坐标也采用了真正的物理量,具有直接、直观的优点,这与集中质量法相同。

2.1 建立运动微分方程有哪几种基本方法?各种方法的合用条件是什么?

答:常用的有3 种:直接动力平衡法、虚功原理、变分法(哈密顿原理)。

直接动力平衡法是在达朗贝尔原理和所设阻尼理论下,通过静力分析来建立体系运动方程的方法,也就是静力法的扩展,合用于比较简单的结构。

利用虚功原理的优点是:虚功为标量,可以按代数方式相加。而作用于结构上的力是矢量,它只能按矢量叠加。因此,对于不便于列平衡方程的复杂体系,虚功方法较平衡法方便。

哈密顿原理的优点:不明显使用惯性力和弹性力,而分别采用对动能和势能的变分代替。于是对这两项来讲,仅涉及标量处理,即能量。而在虚功原理中,尽管虚功本身是标量,但用来计算虚功的力和虚位移则都是矢量。

2.2 直接动力平衡法中常用的有哪些具体方法?它们所建立的方程各代表什么条件?

答:常用方法有两种:刚度法和柔度法。刚度法方程代表的是体系在满足变形协调条件下所应满足的动平衡条件;而柔度法方程则代表体系在满足动平衡条件下所应满足的变形协调条件。

2.3 刚度法与柔度法所建立的体系运动方程间有何联系?各在什么情况下使用方便?

答:刚度法与柔度法建立的运动方程在所反映的各量值之间的关系上是彻底一致的。由于刚度矩阵与柔度矩阵互逆,刚度法建立的运动方程可转化为柔度法建立的方程。普通说来,对于单自由度体系,求[δ]和求[k]的难易程度是相同的,因为它们互为倒数,都可以用同一方法求得,不同的是一个已知力求位移,一个已知位移求力。对于多自由度体系,若是静定结构,普通情况下求柔度系数容易些,但对于超静定结构就要根据具体情况而定。若仅从建立运动方程来看,当刚度系数容易求时用刚度法,柔度系数容易求时用柔度法。

2.4 计重力与不计重力所得到的运动方程是一样的吗?

答:如果计与不计重力时都相对于无位移的位置来建立运动方程,则两者是不一样的。但如果计重力时相对静力平衡位置来建立运动方程,不计重力仍相对于无位移位置来建立,则两者是一样的。

3.1 为什么说结构的自振频率是结构的重要动力特征,它与哪些

量有关,怎样修改它?

答:动荷载(或者初位移、初速度)确定后,结构的动力响应由

结构的自振频率控制。从计算公式看,自振频率和质量与刚度有关。质量与刚度确定后自振频率就确定了,不随外部作用而改变,是体系

固有的属性。为了减小动力响应普通要调整结构的周期(自振频率),只能通过改变体系的质量、刚度来达到。总的来说增加质量将使自振

频率降低,而增加刚度将使自振频率增加。

3.2 自由振动的振幅与哪些量有关?

答:振幅是体系动力响应的幅值,动力响应由外部作用和体系的

动力特性确定。对于自由振动,引起振动的外部作用是初位移和初速度。因此,振幅应该与初位移、初速度以及体系的质量和刚度的大小与分布(也即频率等特性)有关。当计及体系阻尼时,则还与阻尼有关。

3.3 阻尼对频率、振幅有何影响?

答:按粘滞阻尼假定分析出的体系自振频率计阻尼与不计阻尼是

不一样的,计阻尼自振频率此小于不计阻尼频率。,计阻尼时的自振周期会长于不计阻尼的周期。由于相差不大,通常不考虑阻尼对自振

相关文档
最新文档