第五章流体动力学基础(补充)流体力学课件
合集下载
流体力学课件_第五章_流体运动学基础
gQ
2g
2g
u dA v A
3
3
——动能修正系数
g
1
v1
2
2g
z2
p2
g
2
v2
2
层流α=2 紊流α=1.05~1.1≈1
2g
——总流的伯努利方程
5.3 理想流体的伯努利方程
丹· 伯努利(Daniel Bernoull,1700—1782):瑞 士科学家,曾在俄国彼得堡科学院任教,他在流体力 学、气体动力学、微分方程和概率论等方面都有重大 贡献,是理论流体力学的创始人。 伯努利以《流体动力学》(1738)一书著称于世, 书中提出流体力学的一个定理,反映了理想流体(不 可压缩、不计粘性的流体)中能量守恒定律。这个定 理和相应的公式称为伯努利定理和伯努利公式。 他的固体力学论著也很多。他对好友 欧拉提出 建议,使欧拉解出弹性压杆失稳后的形状,即获得弹 性曲线的精确结果。1733—1734年他和欧拉在研究上 端悬挂重链的振动问题中用了贝塞尔函数,并在由若 干个重质点串联成离散模型的相应振动问题中引用了 拉格尔多项式。他在1735年得出悬臂梁振动方程; 1742年提出弹性振动中的叠加原理,并用具体的振动 试验进行验证;他还考虑过不对称浮体在液面上的晃 动方程等。
g
1
v1
2
2g
z3
g
3
v3
2
3
2g
5.7 伯努利方程的应用 毕托管测流速
p1
h
h p2 p1
g
u
2
p2
2g
g
g
g
u
2 gh c
2 gh c——流速系数
5.流体力学-实际流体动力学基础-wyj
学习重点
➢掌握实际流体能量方程、动量方程; ➢掌握流体运动总流的分析方法,能熟练运用
三大运动方程解决实际问题;
➢了解N—S 方程。
2020/6/17
3
学习内容
伯努利方程 (能量方程)
动量方程
实际流体运 动微分方程
2020/6/17
4
§5—1 实际流体运动微分方程
一、以应力表示的实际流体运动微分方程
式 5—5
13
三、N—S 方程
将以上关系式5—3、5—5代入实际流体运动微分方程 5—1,结合不可压缩、均质流体连续性微分方程整理即可
得N—S方程(p166 5—6式)。
此 N—S方程 + 连续性微分方程
共 4 个方程,解 4 个未知量。
2020/6/17
14
四、实际流体运动微分方程积分
1、积分条件:
( uz
y
u y z
)
zx
xz
( uz
x
ux z
)
2020/6/17
实际流体切 应力普遍表达 式,也称广义 的牛顿内摩擦
定律。
11
2、压应力的特性和大小: px= p+ px’ p y= p+ py’ pz= p+ pz’
p ——平均压应力
p=
1 3
(px+py+pz
)
切应力互等定律。原 方程减少3个变量。
4>列动量方程求解。
2020/6/17
35
几点说明:
1>方程是矢量式,正确取好外力和速度的正负号;
2> 建立坐标系应尽量使问题简化;
3> 计算断面为渐变流断面(中间可为急变流);
流体力学课件(全)
X 1 p 0 x
Y 1 p 0 y
欧拉平衡方程
Z 1 p 0 z
p p( , T )
t
1 V V T p
1 V V p T
p p(V , T )
1 t T p
p
p
1 p T
V
p y = pn pz = pn
px = p y = pz = pn = p
28/34
第二章
流体静力学
§1 静压强及其特性 §2 流体静力学平衡方程 §3 压力测量 §4 作用在平面上的静压力 §5 作用在曲面上的静压力 §6 物体在流体中的潜浮原理
29/34
§2流体静力学平衡方程
通过分析静止流体中流体微团的受力,可以建立 起平衡微分方程式,然后通过积分便可得到各种不同 情况下流体静压力的分布规律。 why 因此,首先要建立起流体平衡微分方程式。 现在讨论在平衡状态下作用在流体上的力应满足 的关系,建立平衡条件下的流体平衡微分方程式。
《流体力学》
汪志明教授
5/24
第一章 流体的流动性质
§1 流体力学的基本概念
§2 流体的连续介质假设 §3 状态方程 §4 传导系数 §5 表面张力与毛细现象
《流体力学》
汪志明教授
6/24
§2 流体的连续介质假设
虽然流体的真实结构是由分子构成,分子间有一定的孔隙,但流 体力学研究的并不是个别分子微观的运动,而是研究大量分子组成的 宏观流体在外力的作用下所引起的机械运动。 因此在流体力学中引入连续介质假设:即认为流体质点是微观上 充分大,宏观上充分小的流体微团,它完全充满所占空间,没有孔隙 存在。这就摆脱了复杂的分子运动,而着眼于宏观机械运动。
Y 1 p 0 y
欧拉平衡方程
Z 1 p 0 z
p p( , T )
t
1 V V T p
1 V V p T
p p(V , T )
1 t T p
p
p
1 p T
V
p y = pn pz = pn
px = p y = pz = pn = p
28/34
第二章
流体静力学
§1 静压强及其特性 §2 流体静力学平衡方程 §3 压力测量 §4 作用在平面上的静压力 §5 作用在曲面上的静压力 §6 物体在流体中的潜浮原理
29/34
§2流体静力学平衡方程
通过分析静止流体中流体微团的受力,可以建立 起平衡微分方程式,然后通过积分便可得到各种不同 情况下流体静压力的分布规律。 why 因此,首先要建立起流体平衡微分方程式。 现在讨论在平衡状态下作用在流体上的力应满足 的关系,建立平衡条件下的流体平衡微分方程式。
《流体力学》
汪志明教授
5/24
第一章 流体的流动性质
§1 流体力学的基本概念
§2 流体的连续介质假设 §3 状态方程 §4 传导系数 §5 表面张力与毛细现象
《流体力学》
汪志明教授
6/24
§2 流体的连续介质假设
虽然流体的真实结构是由分子构成,分子间有一定的孔隙,但流 体力学研究的并不是个别分子微观的运动,而是研究大量分子组成的 宏观流体在外力的作用下所引起的机械运动。 因此在流体力学中引入连续介质假设:即认为流体质点是微观上 充分大,宏观上充分小的流体微团,它完全充满所占空间,没有孔隙 存在。这就摆脱了复杂的分子运动,而着眼于宏观机械运动。
流体力学 水力学 流体动力学 ppt课件
C ,t5
6 1.5 6 8 4 12.9m / s2
5
2
PPT课件
12
例:已知速度场 u 4y 6xt i 6y 9xt j。试问:
(1)t=2s时,在(2,4)点的加速度是多少?
(2)流动是恒定流还是非恒定流?(3)流动
是均匀流还是非均匀流?
C
uA
当t 5s时,uc t5 6m / s
2m
B uB
x
aC
t 0
u t
C ,t 0 uC
u l
C ,t 0
6 1.5 1.5 2 1
5
2
1.65m / s2
PPT课件
11
ac
u t
c uc
u
l
c
u t
C ,t5
uC
u l
PPT课件
9
旅客抵达北京时,感受到的气温变化是:
dT T T l dt t l t
T u T t l
1 C / d 2000km / d 4 C 2000km
3 C / d
PPT课件
10
流动场中速度沿流程均匀地增加并随
时间均匀地变化 。A点和B点相距2m,C点在
动能改变:
Eu
1 2
mu22
1 2
mu12
外力:重力和动水压力。
PPT课件
34
dE
dm
1 2
u22
dm
1 2
u12
dQdt (u22 u12 )
22
dQdt ( u22 u12 )
工程流体力学课件:流体动力学
式(5-31a)
t V V p R d 0
对于支教坐标系,其三个分量形式为
Vx
d
t
X d
V V dA p cos n, i dA
Y d
V V dA p cos n, i dA
时间而变化,则适用的连续方程为
D
d 0
Dt
利用雷诺运输公式,可把式 变成如下形式
d
t
d V dA
t
A
或
式(5-17)
这就是适用于控制体的积分形式的连续方程,它说明控制
体内流体质量的增加率等于通过控制面A进出的流体净流入率
。对于定常流,由于 / t 0 ,则连续方程变为
新占有的区域部分τ1 ,又设从τ(t)空出区域部分为τ3 ,故有
(t t ) 1 2 1 ( 2 3 ) 3 1 3
式中, τ2+ τ3即为体积τ,于是相应的体积分为
I (t t ) I1 (t t ) I (t t ) I 3 (t t )
念,讨论雷诺数是无意义的。
§5-1 雷诺输运定理
三、雷诺运输方程
设在某时刻的流场中,单位体积流体的物理量分布函数值
为 f (r , t ) ,则t时刻在流体域τ上的流体所具有的总物理量为I(t)
,即
I (t )
f (r , t )d
(t )
设t时刻体积在空间τ(t)的位置
t V V p R d 0
对于支教坐标系,其三个分量形式为
Vx
d
t
X d
V V dA p cos n, i dA
Y d
V V dA p cos n, i dA
时间而变化,则适用的连续方程为
D
d 0
Dt
利用雷诺运输公式,可把式 变成如下形式
d
t
d V dA
t
A
或
式(5-17)
这就是适用于控制体的积分形式的连续方程,它说明控制
体内流体质量的增加率等于通过控制面A进出的流体净流入率
。对于定常流,由于 / t 0 ,则连续方程变为
新占有的区域部分τ1 ,又设从τ(t)空出区域部分为τ3 ,故有
(t t ) 1 2 1 ( 2 3 ) 3 1 3
式中, τ2+ τ3即为体积τ,于是相应的体积分为
I (t t ) I1 (t t ) I (t t ) I 3 (t t )
念,讨论雷诺数是无意义的。
§5-1 雷诺输运定理
三、雷诺运输方程
设在某时刻的流场中,单位体积流体的物理量分布函数值
为 f (r , t ) ,则t时刻在流体域τ上的流体所具有的总物理量为I(t)
,即
I (t )
f (r , t )d
(t )
设t时刻体积在空间τ(t)的位置
流体力学基础讲解PPT课件
措施。
05
流体流动的湍流与噪声
湍流的定义与特性
湍流定义
湍流是一种高度复杂的三维非稳态、带旋转的不规则流动。 在湍流中,流体的各种物理参数,如速度、压力、温度等都 随时间与空间发生随机的变化。
湍流特性
湍流具有随机性、不规则性、非线性和非稳定性等特性。在 湍流中,流体的速度、方向和压力等都随时间和空间发生变 化,形成复杂的涡旋结构。
环境流体流动与环境保护
要点一
环境流体流动
环境中的流体流动对环境保护具有重要影响。例如,大气 中的气流会影响污染物的扩散和迁移,水流会影响水体中 的污染物迁移和沉积等。
要点二
环境保护
通过对环境中的流体流动进行研究和模拟,可以更好地了 解污染物扩散和迁移规律,为环境保护提供科学依据。同 时,通过合理规划和设计流体流动系统,可以有效降低污 染物对环境的影响,保护生态环境。
04
流体流动的能量转换
能量的定义与分类
总结词
能量是物体做功的能力,可以分为机械能、热能、电能等。在流体力学中,主要关注的是机械能中的 动能和势能。
详细描述
能量是物体做功的能力,它有多种表现形式,如机械能、热能、电能等。在流体力学中,我们主要关 注的是机械能,它包括动能和势能两种形式。动能是流体运动所具有的能量,与流体的速度和质量有 关;势能则是由于流体所处位置而具有的能量。
流体流动噪声
流体流动过程中产生的噪声主要包括 机械噪声和流体动力噪声。机械噪声 主要由机械振动和摩擦引起,而流体 动力噪声主要由湍流和流体动力振动 引起。
噪声控制
为了减小流体流动产生的噪声,研究 者们提出了各种噪声控制方法,如改 变管道结构、添加消音器和改变流体 动力特性等。这些方法可以有效降低 流体流动产生的噪声。
05
流体流动的湍流与噪声
湍流的定义与特性
湍流定义
湍流是一种高度复杂的三维非稳态、带旋转的不规则流动。 在湍流中,流体的各种物理参数,如速度、压力、温度等都 随时间与空间发生随机的变化。
湍流特性
湍流具有随机性、不规则性、非线性和非稳定性等特性。在 湍流中,流体的速度、方向和压力等都随时间和空间发生变 化,形成复杂的涡旋结构。
环境流体流动与环境保护
要点一
环境流体流动
环境中的流体流动对环境保护具有重要影响。例如,大气 中的气流会影响污染物的扩散和迁移,水流会影响水体中 的污染物迁移和沉积等。
要点二
环境保护
通过对环境中的流体流动进行研究和模拟,可以更好地了 解污染物扩散和迁移规律,为环境保护提供科学依据。同 时,通过合理规划和设计流体流动系统,可以有效降低污 染物对环境的影响,保护生态环境。
04
流体流动的能量转换
能量的定义与分类
总结词
能量是物体做功的能力,可以分为机械能、热能、电能等。在流体力学中,主要关注的是机械能中的 动能和势能。
详细描述
能量是物体做功的能力,它有多种表现形式,如机械能、热能、电能等。在流体力学中,我们主要关 注的是机械能,它包括动能和势能两种形式。动能是流体运动所具有的能量,与流体的速度和质量有 关;势能则是由于流体所处位置而具有的能量。
流体流动噪声
流体流动过程中产生的噪声主要包括 机械噪声和流体动力噪声。机械噪声 主要由机械振动和摩擦引起,而流体 动力噪声主要由湍流和流体动力振动 引起。
噪声控制
为了减小流体流动产生的噪声,研究 者们提出了各种噪声控制方法,如改 变管道结构、添加消音器和改变流体 动力特性等。这些方法可以有效降低 流体流动产生的噪声。
流体力学课件 第五章 流动阻力
斜直线分布
r hf 1 g grJ 2 l 2
du grh f dr 2l
抛物线分布
2.流速分布 3.流量
Q
r0 0
gh f 2 2 u (r0 r ) 4l
gh f 2 2 gh f 4 (r0 r ) 2 rdr d 4l 128l
(3)粗糙区
莫迪
§5-7 局部损失计算
一、边界层理论
1.边界层:贴近平板存在 较大切应力、粘性影响不能 忽略的这一层液体 。
2.边界层的厚度:当流速达到 边界层的厚度顺流增大,即δ是x的函数。
处时,它
3.转捩点,临界雷诺数 转捩点:在x=xcr处边界层由层流转变为紊流的过渡点。
临界雷诺数: Recr
三、总水头损失
hw h f h j
i 1 i 1 n n
§5-2 流体流动的两种型态
一、雷诺实验
1883年英国物理学家雷诺按图示试验装置对粘性流体进行 实验,提出了流体运动存在两种型态:层流和紊流。
1 4
(a)
hf 5
(b)
2
3
(c)
1.层流 :管中水流呈层状流动,各层的流体质点互不掺混的 流动状态。
四、湍流切应力分布和流速分布
1.切应力分布
du 2 du 2 1 2 L ( ) dy dy
摩擦切应力 普朗特混合长度 : 附加切应力
y L ky 1 r0
k 称为卡门常数
k 0.36 ~ 0.435
2.流速分布 (1)近壁层流层: 管壁切应力
du u 0 dy y
§5-6 湍流的沿程损失
一、湍流沿程损失计算
工程流体力学课件3流体动力学基础
总结词
边界层理论是研究流体在固体表面附近流动的理论, 其特征包括流体的粘性和湍流状态。
详细描述
边界层理论主要关注流体与固体表面之间的相互作用 ,特别是流体的粘性和湍流状态对流动的影响。在边 界层内,流体的速度和压力变化梯度较大,湍流状态 较为明显。
边界层分离现象和转捩过程
总结词
边界层分离现象是指流体在经过曲面或突然扩大区域 时,流速减小,压力增加,导致流体离开壁面并形成 回流的现象。转捩过程则是从层流到湍流的过渡过程 。
有旋流动
需要求解偏微分方程组,如纳维-斯托克斯 方程(Navier-Stokes equations),该方 程组较为复杂,需要采用数值方法进行求解
。
05 流体动力学中的湍流流动
湍流流动的定义和特征
湍流流动的定义
湍流是一种高度复杂的流动状态,其中流体的速度、压 力和其它属性随时间和空间变化。
湍流流动的特征
质量守恒定律在流体中的应用
质量守恒定律
物质的质量不会凭空产生也不会消失,只会从一种形式转化为另一种形式。在流体中,质量守恒定律表现为流体 微元的质量变化率等于进入和离开微元的净质量流量。
质量守恒方程
根据质量守恒定律,流体微元的质量变化率可以表示为流入和流出微元的净质量流量。这个方程是流体动力学基 本方程之一,用于描述流体的运动特性。
流体流动的描述方法
描述流体流动的方法包括拉格朗日法和欧拉法。
拉格朗日法是以流体质点作为描述对象,追踪各个质点的运动轨迹,研究其速度、加速度等参数随时 间的变化。欧拉法是以空间点作为描述对象,研究空间点上流速、压强等参数随时间和空间的变化。
03 流体动力学基本方程的推 导
牛顿第二定律在流体中的应用
能源
边界层理论是研究流体在固体表面附近流动的理论, 其特征包括流体的粘性和湍流状态。
详细描述
边界层理论主要关注流体与固体表面之间的相互作用 ,特别是流体的粘性和湍流状态对流动的影响。在边 界层内,流体的速度和压力变化梯度较大,湍流状态 较为明显。
边界层分离现象和转捩过程
总结词
边界层分离现象是指流体在经过曲面或突然扩大区域 时,流速减小,压力增加,导致流体离开壁面并形成 回流的现象。转捩过程则是从层流到湍流的过渡过程 。
有旋流动
需要求解偏微分方程组,如纳维-斯托克斯 方程(Navier-Stokes equations),该方 程组较为复杂,需要采用数值方法进行求解
。
05 流体动力学中的湍流流动
湍流流动的定义和特征
湍流流动的定义
湍流是一种高度复杂的流动状态,其中流体的速度、压 力和其它属性随时间和空间变化。
湍流流动的特征
质量守恒定律在流体中的应用
质量守恒定律
物质的质量不会凭空产生也不会消失,只会从一种形式转化为另一种形式。在流体中,质量守恒定律表现为流体 微元的质量变化率等于进入和离开微元的净质量流量。
质量守恒方程
根据质量守恒定律,流体微元的质量变化率可以表示为流入和流出微元的净质量流量。这个方程是流体动力学基 本方程之一,用于描述流体的运动特性。
流体流动的描述方法
描述流体流动的方法包括拉格朗日法和欧拉法。
拉格朗日法是以流体质点作为描述对象,追踪各个质点的运动轨迹,研究其速度、加速度等参数随时 间的变化。欧拉法是以空间点作为描述对象,研究空间点上流速、压强等参数随时间和空间的变化。
03 流体动力学基本方程的推 导
牛顿第二定律在流体中的应用
能源
流体力学-第5章
六. 伯努利方程 的应用举例
%%%%%%%%%%%%
恒定总流伯努利方程表明三种机械能相互 转化和总机械能守恒的规律,由此可根据具 体流动的边界条件求解实际总流问题。
1
%%%%%%%%%%%%
先看一个跌水的例子。取 顶上水深处为 1-1 断面,平 均流速为 v1,取水流跌落高 度处为断面 2-2 ,平均流速 为 v2,认为该两断面均取在 渐变流段中。基准面通过断 面 2-2 的中心点。
Gz dQdt( z2 z1 )
2 2 1 1 u u 2 2 m2u2 m1u1 ( 2 1 ) dQdt 2 2 2 2
外力对系统做功=系统机械能量的增加
2 2 u2 u1 ( p1 p2 )dQdt dQdt( z2 z1 ) ( ) dQdt 2 2
实际流体恒定总流 的伯努利方程
断面 A1 是上游断面,断面 A2 是 下游断面,hl 1-2 为总流在断面 A1 和 A2 之间平均每单位重量流体所损耗 的机械能,称为水头损失。水头损 失如何确定,将在后面叙述。
分析流体力学问 题最常用也是最 重要的方程式
二、恒定总流伯努利方程的几何表示——水头线
u p2 u z1 z2 2g 2g
p1
2 1
2 2
(P57 3-39)
单位重量理想 流体沿元流的 能量方程式
能量方程
•能量方程的
物理意义
z
u2 z Cl 2g p
伯努利方程表示能 量的平衡关系。
单位重量流体所具有的位置 势能(简称单位位置势能) **************** p 单位重量流体所具有的压强 势能(简称单位压强势能) **************** 单位重量流体所具 p z 有的总势能(简称 单位总势能)
液压流体力学第五章流体动力学基础
液压流体力学
南京工程学院
夏庆章
20150720
第五章 流体动力学基础
• • • • • • 流体动力学概述 5.1理想流体的运动微分方程式 5.3理想流体的伯努利方程式 5.4实际流体总流的伯努利方程式 5.7伯努利方程的应用 5.8动量、动量矩定理及其应用
流体动力学概述
流体动力学是研究流体在外力作用下的运
动规律即研究流体动力学物理量和运动学 物理量之间的关系的科学。 流体动力学主要研究内容就是要建立流体 运动的动量平衡定律、动量矩平衡定律和 能量守恒定律(热力学第一定律)。
5.1 理想流体的运动微分方程式
1、选取控制体:在所研究的运动流体中,任取一 微小平行六面体,如图5-1所示。六面体边长分别 为dx、dy、dz,平均密度为 ,顶点A 处的压强 为 p。 2、受力分析 质量力:fxdxdydz , fydxdydz , fzdxdydz 表面力:设A点压强为p时,则与其相邻的ABCD 、 ADEH、ABGH三个面上的压强均为p,而与这三个 面相对应的EFGH、 BCFG、 CDEF 面上的压强可 由泰勒级数展开略去二阶以上无穷小量而得到,分 p p p p dz p dx p dy 别为 z x y
p V p V z1 1 1 z 2 2 2 h w g 2 g g 2 g
2 2
式(5-1)的几何解释如图5-1所示,实际总水头线沿微元流 束下降,而静水头线则随流束的形状上升或下降。
图5-1 伯努利方程的几何解释
二、黏性流体总流的伯努利方程 流体的实际流动都是由无数微元流束所组成的有效截面为 有限值的总流流动,例如流体在管道中和渠道中的流动等。 微元流束的有效截面是微量,因而在同一截面上流体质点 的位置高度 z 、压强 p 和流速 V 都可认为是相同的。而 总流的同一有效截面上,流体质点的位置高度 z 、压强 p 和流速 V 是不同的。总流是由无数微元流束所组成的。 因此,由黏性流体微元流束的伯努利方程来推导总流的伯 努利方程,对总流有效截面进行积分时,将遇到一定的困 难,这就需要对实际流动作某些必要的限制。为了便于积 分,首先考虑在什么条件下总流有效截面上各点的 p z 常数?这只有在有效截面附近处有缓变流动时 g 才能符合这个要求。
南京工程学院
夏庆章
20150720
第五章 流体动力学基础
• • • • • • 流体动力学概述 5.1理想流体的运动微分方程式 5.3理想流体的伯努利方程式 5.4实际流体总流的伯努利方程式 5.7伯努利方程的应用 5.8动量、动量矩定理及其应用
流体动力学概述
流体动力学是研究流体在外力作用下的运
动规律即研究流体动力学物理量和运动学 物理量之间的关系的科学。 流体动力学主要研究内容就是要建立流体 运动的动量平衡定律、动量矩平衡定律和 能量守恒定律(热力学第一定律)。
5.1 理想流体的运动微分方程式
1、选取控制体:在所研究的运动流体中,任取一 微小平行六面体,如图5-1所示。六面体边长分别 为dx、dy、dz,平均密度为 ,顶点A 处的压强 为 p。 2、受力分析 质量力:fxdxdydz , fydxdydz , fzdxdydz 表面力:设A点压强为p时,则与其相邻的ABCD 、 ADEH、ABGH三个面上的压强均为p,而与这三个 面相对应的EFGH、 BCFG、 CDEF 面上的压强可 由泰勒级数展开略去二阶以上无穷小量而得到,分 p p p p dz p dx p dy 别为 z x y
p V p V z1 1 1 z 2 2 2 h w g 2 g g 2 g
2 2
式(5-1)的几何解释如图5-1所示,实际总水头线沿微元流 束下降,而静水头线则随流束的形状上升或下降。
图5-1 伯努利方程的几何解释
二、黏性流体总流的伯努利方程 流体的实际流动都是由无数微元流束所组成的有效截面为 有限值的总流流动,例如流体在管道中和渠道中的流动等。 微元流束的有效截面是微量,因而在同一截面上流体质点 的位置高度 z 、压强 p 和流速 V 都可认为是相同的。而 总流的同一有效截面上,流体质点的位置高度 z 、压强 p 和流速 V 是不同的。总流是由无数微元流束所组成的。 因此,由黏性流体微元流束的伯努利方程来推导总流的伯 努利方程,对总流有效截面进行积分时,将遇到一定的困 难,这就需要对实际流动作某些必要的限制。为了便于积 分,首先考虑在什么条件下总流有效截面上各点的 p z 常数?这只有在有效截面附近处有缓变流动时 g 才能符合这个要求。
流体动力学基础ppt课件
质点在不同时刻所形成的曲线,其数学表达式为:
dx dy dz dt u vw
(3-14)
2024/2/11
21
式(3-14)就是迹线微分方程,是自变量。 流线是某一瞬时在流场中所作的一条曲线,在这条曲
线上的各流体质点的速度方向都与该曲线相切,因此流线 是同一时刻,不同流体质点所组成的曲线,如图3-3所示。
化(增加或减少),则管道中每一点上流体质点的速
2024/2/11
9
图 3-1 中间有收缩形的变截面管道内的流动
2024大或减少),从而产生了当地加速 度。
应该注意,流体质点和空间点是两个截然不同的概念,
空间点指固定在流场中的一些点,流体质点不断流过空间
点,空间点上的速度指流体质点正好流过此空间点时的速
量小于从阀门B流出的水量,水箱中的水位就逐渐下降,
于是水箱和管道任一点流体质点的压强和速度都逐渐减小,
射流的形状也逐渐向下弯曲。这种运动流体中任一点流体
质点的流动参数(压强和速度等)随时间而变化的流动,称
为非定常流动。由上可见,定常流动的流场中,流体质点
的速度、压强和密度等流动参数仅是空间点坐标x、y、z
流体运动学研究流体的运动规律,如速度、加速度等 运动参数的变化规律,而流体动力学则研究流体在外力作 用下的运动规律,即流体的运动参数与所受力之间的关系。 本章主要介绍流体运动学和流体动力学的基本知识,推导 出流体动力学中的几个重要的基本方程:连续性方程、动 量方程和能量方程,这些方程是分析流体流动问题的基础。
的函数,而与时间t无关,用Φ表示任一流动参数(即Φ可
表示u,v,w,p,ρ等),则
Φ= Φ (x,y,z)
(3-11)
2024/2/11
《流体力学》课件
流体力学的应用领域
总结词
流体力学的应用领域与实例
详细描述
流体力学在日常生活、工程技术和科学研究中有广学、石油和天然气工业中的流体输送等。
流体力学的发展历程
总结词
流体力学的发展历程与重要事件
详细描述
流体力学的发展经历了多个阶段,从 早期的水力学研究到近代的流体动力 学和计算流体力学的兴起。历史上, 牛顿、伯努利等科学家对流体力学的 发展做出了重要贡献。
损失计算
根据流体流动的阻力和能量损失,计算流体流动的总损失。
流体流动阻力和能量损失的减小措施
优化管道设计
采用流线型设计,减少流体与 管壁的摩擦。
合理配置局部障碍物
减少不必要的弯头、阀门等, 或优化其设计以减小局部阻力 。
选择合适的管材
选用内壁光滑、摩擦系数小的 管材。
提高流体流速
适当提高流体的流速,可以减 小沿程损失和局部损失。
流体动力学基本方程
连续性方程
表示质量守恒的方程,即单位时间内流出的质量等于单位 时间内流入的质量。
01
动量方程
表示动量守恒的方程,即单位时间内流 出的动量等于单位时间内流入的动量。
02
03
能量方程
表示能量守恒的方程,即单位时间内 流出的能量等于单位时间内流入的能 量。
流体动力学应用实例
航空航天
飞机、火箭、卫星等的设计与制造需要应用 流体动力学知识。
流动方程
描述非牛顿流体的流动规律,包括连续性方程 、动量方程等。
热力学方程
描述非牛顿流体在流动过程中的热力学状态变化。
非牛顿流体的应用实例
食品工业
01
非牛顿流体在食品工业中广泛应用于番茄酱、巧克力、奶昔等
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
ddtVd
F
V 2dQ V 1dQ F
A 2
A 1
udQVQ
A
2Q 2 V 21Q 1 V 1F称为总流的动量方程
它的物理意义是:在定常流动中,单位时间内, 从控制面流出的动量减去流入的动量,等于作用
在控制体上的外力和。
V 2dQ V 1dQ F 对某点取矩
A 2
A 1
另一种办法则是利用动量方程和动量矩方程求解, 这种方法往往不需要知道流动的细节,只要根据一些 边界上的流动状况就可以解决问题。
下面我们详细介绍定常流动的动量方程和动量矩 方程。
动量方程
牛顿定律可表示为
d(mV)F dt
流体的动量定理可以表述为:系统的动量对于时 间的变化率等于作用在系统上的外力和,即
方程才能得以求解。 下面举例说明方程的应用。
动量和动量矩方程的应用 1、 水流对 Nhomakorabea管的作用力
上图是一段弯管,截面1—1和2—2的过流面积分别 为A1、A2,弯管的转角为θ。设水流量为Q,求固定 此段弯管所需的力F。
先分析弯管管壁的受力。设弯管在水平面上,取如图 示的水平面坐标xy。弯管内壁受水流压强p的作用, 外壁受大气压pa作用。设表面积为A0,外法线n0。在 水流和大气压的作用下,管壁受到的合力F´为:
F y (p 2 p a )A 2si nQ 2sV in
为了固定弯管,必需施加的外力为F=-F´。
F x ( p 1 p a ) A 1 ( p 2 p a ) A 2 c o Q ( V 2 s c o V 1 )
F x ( p 1 p a ) A 1 ( p 2 p a ) A 2 c o Q ( V 2 s c o V 1 )
z1g p 11V 21 g 2z2g p22V 22 g 2
上式称为总流的伯努利方程。
对于管流,z和p可以在轴线上取值。动能修正系 数α与截面上的速度分布有关,速度分布愈不均 匀,α的值愈大。在工程实际的流动中,α≈1
总流的伯努利方程
z1g p 11V 21 g 2z2g p22V 22 g 2
应用条件
(1)恒定(定常) (2)理想流体 (3)不可压流体 (4)重力场 (5)所选过流断面流动均匀或渐变流
5-6动量方程和动量矩方程及其应用
在工程实际中,常常需要求物体所受的流体作用 力或者力矩。解决这类问题的方法有两种:
一种是利用流体运动的微分方程式,再根据边界 条件求出速度和压强的分布。用这种方法的困难很大。
( Q ) 出 V ( Q ) 入 V F
( Q V ) 出 r ( Q V ) 入 r r F
( Q ) 出 V ( Q ) 入 V F
( Q V ) 出 r ( Q V ) 入 r r F
应用动量方程和动量短方程时,要注意以下几点: 1. 择一个适宜的坐标系,求出各项的投影值。 2. 选择一个合适的控制体。 3. 方程的未知数较多,要联立连续性方程和伯努利
F (ppa)n0 dA
A0
水流对弯管的作用力
选取控制体如右图
分析控制体所受的外 力。由于弯管在水平 面上,不必考虑重力 影响。
控制体受到的外力(大气压pa在任意封闭面的积分为零):
Fpn dA (ppa)n dA
(p1pa)n 1d A(p2pa)n 2d A(ppa)n 0dA
A 1
A2
A0
F pndA (ppa)ndA
(p1 pa)n1dA (p2 pa)n2dA (ppa)n0dA
A1
A2
A0
(p1 pa)n1dA (p2 pa)n2dAF
A1
A2
上式最后一项就表示水流对物体的合力
F ( p 1 p a ) n 1 A 1 ( p 2 p a ) n 2 A 2 Q ( V 2 V 1 )
❖ 流体动力学主要研究内容就是要建立流 体运动的动量平衡定律、动量矩平衡定 律和能量守恒定律(热力学第一定律)、 流量测量原理。
得到理想不可压缩流体重力作用下沿流线的伯努利
方程式:
2
gz p v c 2
式一
2
z p v c g 2g
式二
2
2
z1pg1 v21gz2pg2 v22gc
式三
二、理想流体总流的伯努利方程
A1 2u1g21gu1dA12v1g2 1gv1A1
A2u22g22gu2dA2v22g22gv2A2
得理想流体总流的伯努利方程式:
z1pg 1 21vg12z2pg 2 2 2vg22
(z1g p 11V 2 1 g 2)Q 1(z2g p 22V 2 2 g 2)Q 2
对不可压缩流体的定常流动,Q1=Q2
1、动能修正系数α
用平均速度表示的单位时间内通过某一过流断面的流体动
能为:
1 2
2
qmv
1 2
v3A
式中: 于是:
z1
p1 g
c1
z2
p2
g
c2
A 1(z1p g 1)1g1d uA(z1p g 1)1gv1A 1
A 2(z2p g 2)2g2u dA (z2p g 1)2gv2A 2
r 2 V 2 d Q r 1 V 1 d Qr F
A 2
A 1
udQVQ
A
2 Q 2 r 2 V 2 1 Q 1 r 1 V 1 r F
称为总流的动量矩方程
它的物理意义是:在定常流动中,单位时间内,从 控制面流出的动量矩减去流入的动量矩,等于作用
在控制体上所有的外力矩之和。
有多个出口和入口情况
第五章 流体动力学基础
• 流体动力学概述 • 5.1理想流体的运动微分方程式 • 5.2理想流体的伯努利方程式 • 5.3实际流体总流的伯努利方程式 • 5.4伯努利方程的应用 • 5.5叶轮机械内相对运动伯努利方程 • 5-6动量方程和动量矩方程及其应用
流体动力学概述
❖ 流体动力学是研究流体在外力作用下的 运动规律即研究流体动力学物理量和运 动学物理量之间的关系的科学。
取动量修正系数β=1,投影到x,y方向,为:
F x ( p 1 p a ) A 1 ( p 2 p a ) A 2 c o Q ( V 2 c s o V 1 )s
F y (p 2 p a)A 2si n Q 2sV in
F x ( p 1 p a ) A 1 ( p 2 p a ) A 2 c o Q ( V 2 c s o V 1 )s