激光焊接原理及工艺应用

合集下载

激光焊接工艺和应用技术

激光焊接工艺和应用技术

激光焊接工艺和应用技术引言激光焊接是一种高精度、高效率的焊接技术,通过激光束的聚焦实现金属材料的精确熔化和连接。

激光焊接工艺和应用技术已经在许多领域得到了广泛应用,包括汽车制造、电子设备、航空航天等。

本文将介绍激光焊接的基本原理、工艺流程和应用技术。

激光焊接的原理激光焊接是利用激光的高能量密度和高聚光性,通过激光束的照射使金属材料局部熔化和连接的焊接技术。

激光束经过透镜的聚焦,使激光功率密度在焦点位置达到一个很高的数值,从而使金属材料局部加热到熔化温度。

通过控制激光束的照射时间和位置,可以实现金属材料的精确焊接。

激光焊接的工艺流程激光焊接的工艺流程包括准备工作、参数设定、焊接操作和焊后处理。

准备工作在开始激光焊接之前,需要先对焊接材料进行准备工作。

这包括清洁焊接表面、去除氧化物等操作,以确保焊接质量。

参数设定在进行激光焊接时,需要设置一系列的参数,包括激光功率、焦距、焊接速度等。

这些参数的设定会影响焊接的质量和效率。

焊接操作激光焊接的操作需要一定的技术和经验。

操作人员需要根据焊接要求和参数设定进行操作,保证焊接的质量和一致性。

焊后处理焊接完成后,还需要进行焊后处理。

这包括焊缝清理、焊接部位的处理等操作,以确保焊接部位达到预期的要求。

激光焊接的应用技术激光焊接技术在许多领域得到了广泛应用。

汽车制造在汽车制造中,激光焊接被广泛应用于车身焊接和零部件焊接等领域。

激光焊接可以实现对汽车焊接质量的控制,提高生产效率和产品质量。

电子设备在电子设备制造中,激光焊接常被用于焊接电子元件和连接电路板等工作。

激光焊接可以实现对微小焊接点的精确焊接,提高产品的可靠性和性能。

航空航天在航空航天领域,激光焊接被广泛应用于航空器的制造和维修。

激光焊接可以实现对复杂结构的焊接,提高航空器的结构强度和整体性能。

结论激光焊接是一种高精度、高效率的焊接技术,已经在许多领域得到了广泛应用。

掌握激光焊接的工艺流程和应用技术,对于提高焊接质量和效率具有重要意义。

电池激光焊接工艺

电池激光焊接工艺

电池激光焊接工艺随着现代科技的发展,电池行业也在不断地发展壮大。

而电池的制造过程中,激光焊接技术已经成为了不可或缺的一部分。

本文将介绍电池激光焊接工艺的原理、应用以及未来发展趋势。

一、电池激光焊接工艺的原理激光焊接是将激光束聚焦到焊接区域,使其熔化并与另一材料熔合。

电池激光焊接与一般材料的激光焊接不同的是,电池激光焊接需要考虑到电池内部的电化学反应和热效应。

电池激光焊接的原理是利用激光束的高能量密度,使焊接区域的温度瞬间升高到数千摄氏度,使材料熔化并熔合在一起。

同时,激光焊接过程中的高能量密度还可以促进电池内部的电化学反应,提高电池的性能。

二、电池激光焊接工艺的应用1、电池片的连接电池片是构成电池的基本单元,而电池片之间的连接是电池组装的关键。

传统的电池片连接方式是采用钎焊、压焊等方法,但这些方法存在着焊接点热效应大、焊接点易断裂等缺点。

而电池激光焊接可以避免这些缺点,焊接点的热效应小、焊接点强度高、焊接点美观等优点,因此被广泛应用于电池片的连接。

2、电池组件的连接电池组件是由多个电池片组合而成的,而电池组件之间的连接也是电池组装的关键。

传统的电池组件连接方式是采用焊锡、电阻焊等方法,但这些方法存在着焊接点易断裂、焊接点热效应大等缺点。

而电池激光焊接可以避免这些缺点,焊接点的强度高、焊接点美观等优点,因此被广泛应用于电池组件的连接。

3、电池盒的密封电池盒是电池的保护外壳,而电池盒的密封是保证电池内部不受外界环境影响的关键。

传统的电池盒密封方式是采用胶封、热封等方法,但这些方法存在着密封效果不佳、密封点易破裂等缺点。

而电池激光焊接可以避免这些缺点,焊接点的密封效果好、焊接点强度高等优点,因此被广泛应用于电池盒的密封。

三、电池激光焊接工艺的未来发展趋势1、高效化电池激光焊接的高效化是未来发展的趋势之一。

高效化主要包括焊接速度的提高、生产效率的提高、设备的自动化等方面。

这些措施将进一步提高电池激光焊接的效率,降低生产成本。

激光焊接原理及工艺应用

激光焊接原理及工艺应用
激光特点
相干性好: 普通光源上不同点发出的光在不同方向上、不同时间里都是杂乱无章的,经过透镜后也不可能会聚在一点上。 激光与普通光相比则大不相同。因为它的频率很单纯,从激光器发出的光就可以步调一致地向同一方向传播,可以用透镜把它们会聚到一点上,把能量高度集中起来,这就叫相干性高。一台巨脉冲红宝石激光器的亮度可达1015w/cm2·sr,比太阳表面的亮度还高若干倍。方向性强 激光的方向性比现在所有的其他光源都好得多,它几乎是一束平行线。如果把激光发射到月球上去,历经38.4万公里的路程后,也只有一个直径为2km左右的光斑。单色性好: 受激辐射光(激光)是原子在发生受激辐射时释放出来的光,其频率组成范围非常狭窄,通俗一点讲,就是受激辐射光单色性非常好,激光的“颜色”非常的纯(不同颜色,实际就是不同频率)。激光的单色性是实现激光加工的重要因素。我们可以通过简单的物理实验来说明这个问题亮度高
激光器分类
YAG脉冲激光焊接机由于加工精度高,热输入量小,工件变形小,生产效率快,自动化程度高等优点,被广泛应用于IT消费类电子产品的加工制造中
2、激光焊接原理及特性
激光焊接原理
激光焊接原理
激光焊接是利用激光束优异的方向性和高功率密度等特性进行工作,通过光学系统将激光束聚焦在很小的区域内,在极短的时间内使被焊处形成一个能量高度集中的热源区,从而使被焊物熔化并形成牢固的焊点和焊缝。
激光焊接的特性
焊接方式
热影响区
热变形
焊缝质量
是否添加焊料
焊接环境
激光焊接
较小
较小
较好

无要求
电子束焊
较小
较小
较好

真空
等离子弧焊
一般
一般
一般

激光焊接技术综述

激光焊接技术综述

激光焊接技术综述如今,科学越来越发达,20世纪,继原子能、半导体等、计算机的发明之后,激光作为一个新型技术也逐渐走入人们视野,目前已经在很多的制造领域广泛运用,特别是欧洲发达国家,对于激光焊接技术的应用格外重视,并已将其列入国家发展方针当中。

本文主要就激光焊接技术的工作原理、工艺技术以及在当代工业中的应用进行了分析。

标签:激光焊接;原理;工艺如今,焊接技术在机械制造、车辆工程、建筑行业、使用化工以及航空航天等领域都被广泛应用,是实现材料永久性连接的有效方法,目前已经是制造业不可缺少的一项重要加工技术。

就当前来说,焊接的主要方法包括电焊、气焊氩弧焊、钎焊、电阻焊接等等。

但是,这些方法在空间限制以及精细件操作等方面,都还存在着各种缺陷。

激光束属于一种高能力量密度的人员,适应性较强,在当前的焊接领域得到了迅速的发展及应用,并已经逐渐取代传统的焊接技术,向着低成本、高质量的方向发展,拥有着广阔的发展空间。

并且对各种材料的连接领域也有着很重要的作用。

1 激光焊接的原理激光焊接实质上是非透明材料与激光束相互作用的过程。

整个过程极为复杂,从宏观的角度上看,表现为融化、吸收、气化以及反射;而微观上看则是一个量子过程。

将焊接根据机理进行分类可以分为热传导焊接以及激光深熔焊。

1.1 热传导焊接所谓热传导焊接就是当激光辐射到焊接材料上时,一部分激光被焊接材料所吸收并将其转化为热能量,表面热以热传递的形式通过材料,熔化焊缝并最终将焊接件焊接在一起。

1.2 激光深熔焊激光深熔焊接是将高功率密度的激光束焊接到焊接材料上。

这种材料将被吸收的光能转化为热能,加热蒸发产生金属蒸气,当金属蒸气从工件表面移动时,熔化的金属流动并形成凹痕,伴随着热量不断产生,凹痕也不断的加深,在激光停止后,凹痕周围的溶液回流、冷却后工件便连接在一起。

2 激光焊接的工艺参数目前,激光在很多领域中都有涉及。

因为一旦发生焊接的质量问题,便会导致非常严重的后果,因此精确控制焊接质量的工艺参数,将其控制在激光焊接的良好范围内,能够有效保障焊接的质量。

《激光焊接工艺》课件

《激光焊接工艺》课件

硬度检测
对焊缝进行拉伸、弯曲、冲击等试验,检 测其力学性能。
通过硬度计测量焊缝及热影响区的硬度, 判断材料的冶金状态。
焊接质量的控制措施与标准
控制焊接参数
选择合适的激光功率、焊接速度、光斑直径 等参数,确保焊接质量稳定。
控制母材与填充材料
确保母材与填充材料的冶金性能符合要求, 减少杂质与气体含量。
《激光焊接工艺》 ppt课件
THE FIRST LESSON OF THE SCHOOL YEAR
目录CONTENTS
• 激光焊接技术概述 • 激光焊接设备与材料 • 激光焊接工艺参数 • 激光焊接质量检测与控制 • 激光焊接技术的发展趋势与展望
01
激光焊接技术概述
激光焊接技术的定义
激光焊接技术是一种利用高能激光束 照射在材料表面,使材料熔化、冷却 并形成连接的工艺方法。

01
激光焊接设备与材 料
激光焊接设备的种类与特点
脉冲激光焊接机
适用于薄板、有色金属的精密焊接,具有能 量集中、热影响区小等特点。
光纤激光焊接机
具有光束质量好、聚焦光斑小、能量密度高 等特点,广泛应用于各种材料的焊接。
连续激光焊接机
适用于厚板、高熔点金属的焊接,具有焊接 速度快、深宽比大等特点。
通过添加填充金属丝,提高焊接质量和效率。
3
激光复合焊接技术
结合激光焊接和电弧焊接的优势,实现高效、高 质量的焊接。
激光焊接技术的未来发展方向
智能化控制
利用先进的传感器和控制系统,实现激光焊接过程的 智能控制。
高能束流加工技术
结合激光、电子束和离子束等高能束流加工技术,提 高加工效率和精度。
新型激光器研发

焊接工艺的激光焊接技术要点

焊接工艺的激光焊接技术要点

焊接工艺的激光焊接技术要点随着科技的不断进步和发展,激光焊接技术作为一种高效、精确的焊接方式得到了广泛的应用。

激光焊接技术利用激光束对焊接材料进行加热,达到熔化的目的。

本文将重点介绍激光焊接技术的要点,并讨论其在焊接工艺中的应用。

一、激光焊接技术的基本原理激光焊接技术利用激光束对焊接材料进行加热,并在激光束的照射下使熔融池形成,从而实现材料的焊接。

激光束通过光学元件的准直和导引,最终集中到焊接接头上。

激光焊接的热源浓度高、对热影响区小,具有焊接速度快、熔深大、焊缝质量高等优点。

二、激光焊接技术的要点1. 激光焊接设备的选型激光焊接设备的选型是激光焊接工艺的关键。

选型时需考虑到焊接材料的种类、厚度、焊接条件等因素,并结合生产需求和经济实际进行选择。

常见的激光焊接设备有CO2激光器、光纤激光器等。

2. 材料准备和表面处理激光焊接需要对焊接材料进行预处理,以保证焊接质量。

材料准备包括焊缝的设计、材料的选择和切割等。

表面处理则主要包括除锈、除油和打磨等工艺,以保证焊接材料表面的洁净度。

3. 焊接参数的选择激光焊接参数的选择是影响焊接质量的重要因素。

焊接参数包括激光功率、焊接速度、激光束直径等。

选取适当的焊接参数可以提高焊接速度和焊接质量,同时减小焊接变形和热影响区。

4. 焊接过程控制激光焊接过程控制是确保焊接质量的关键。

焊接过程控制主要包括焊接速度、激光束角度、焊接位置等的控制,以及焊接过程中的监测和调整。

合理的焊接过程控制可以提高焊缝质量和焊接效率。

三、激光焊接技术在焊接工艺中的应用激光焊接技术由于其独特的优点,在焊接工艺中得到了广泛的应用。

它被广泛应用于汽车制造、航空航天、电子设备制造等领域。

在汽车制造中,激光焊接可以用于车身焊接、发动机焊接等环节;在航空航天领域,激光焊接可以用于航空发动机叶片的焊接和涡轮盘的焊接等;在电子设备制造中,激光焊接可以用于电子器件的封装等。

激光焊接技术的应用可以提高生产效率,减小焊接变形和热影响区,同时提高焊接强度和焊缝质量。

激光焊接解决方案

激光焊接解决方案

激光焊接解决方案激光焊接是一种高精度、高效率的焊接技术,广泛应用于汽车、航空航天、电子、医疗器械等领域。

本文将详细介绍激光焊接的原理、优势、应用领域以及解决方案。

一、激光焊接原理激光焊接利用高能量密度的激光束瞬间加热工件表面,使其局部区域熔化并迅速冷却,从而实现焊接。

激光束的能量密度高、焦点小,能够实现高精度的焊接,并且不会对周围区域产生热影响。

二、激光焊接的优势1. 高精度:激光束的焦点小,能够实现弱小焊点的精确定位,适合于对焊接质量要求高的应用场景。

2. 高效率:激光焊接速度快,焊接时间短,能够提高生产效率。

3. 无接触:激光焊接不需要直接接触工件表面,避免了传统焊接中可能浮现的磨损和污染问题。

4. 适应性强:激光焊接适合于各种材料的焊接,包括金属、塑料、陶瓷等,具有广泛的应用领域。

三、激光焊接的应用领域1. 汽车创造:激光焊接被广泛应用于汽车创造中的车身焊接、发动机焊接等环节,能够提高焊接质量和生产效率。

2. 航空航天:激光焊接在航空航天领域中的应用包括航空发动机部件、飞机结构等,能够提高零部件的强度和耐久性。

3. 电子创造:激光焊接在电子创造中的应用包括电路板焊接、电子元件连接等,能够实现高精度的焊接,提高产品的可靠性。

4. 医疗器械:激光焊接在医疗器械创造中的应用包括人工关节、牙科器械等,能够实现精细焊接,提高产品的质量和可靠性。

四、激光焊接解决方案针对不同行业和应用领域的激光焊接需求,我们提供以下解决方案:1. 设备选择:根据客户需求和焊接要求,提供适合的激光焊接设备,包括激光器、光纤传输系统、焊接头等。

2. 工艺优化:根据客户提供的工件材料和要求,优化焊接工艺参数,确保焊接质量和效率。

3. 自动化集成:根据客户的生产线布局和工艺要求,提供自动化激光焊接系统,实现自动化生产。

4. 售后服务:提供设备安装调试、操作培训等售后服务,确保客户能够顺利使用激光焊接设备。

总结:激光焊接作为一种高精度、高效率的焊接技术,在汽车、航空航天、电子、医疗器械等领域有着广泛的应用。

激光焊接技术原理及工艺分析

激光焊接技术原理及工艺分析

激光焊接技术原理及工艺分析激光焊接是一种利用高能量激光束进行材料焊接的技术。

它将激光光束聚焦到焊接点上,通过高能量密度的激光束短时间内加热材料,使其熔化并形成焊缝。

激光焊接的原理是利用激光的高强度和高能量密度。

激光是由激光器产生的一种狭窄、一致、相干的光束,具有较高的单色性和方向性。

激光束经过透镜聚焦后,能够将光束的能量集中到一个非常小的点上,从而形成高能量密度的光斑。

在这个高能量密度的光斑中,材料会迅速升温,达到熔化温度并形成焊缝。

激光焊接的工艺分析主要包括以下几个方面:1. 激光参数选择:激光焊接中,激光的功率、波长、脉冲频率等参数都会对焊接效果产生影响,需要根据具体材料和焊接要求选择合适的参数。

功率过大会产生焊缝熔穿,功率过小则焊缝质量不达标。

2. 材料选择:不同材料对激光焊接的适应性不同。

一些金属材料如铝合金、不锈钢等较容易进行激光焊接,而一些非金属材料如聚合物、陶瓷等则较难焊接。

3. 聚焦方式选择:激光焊接中,激光束的聚焦方式可以采用透镜、镜面反射等方法。

选择适当的聚焦方式可以提高焊接效果和效率。

4. 热影响区分析:激光焊接产生的高能量热源会对周围材料产生热影响,造成热变形、应力集中等问题。

需要通过优化焊接参数和调整焊接工艺,减小热影响区,降低热变形和应力。

5. 焊接质量控制:激光焊接中,焊缝形状、焊缝宽度、焊接深度等焊接质量指标直接影响焊接的可靠性。

需要通过严格控制焊接工艺参数和焊接设备的运行状态,保证焊接质量。

激光焊接技术具有焊接速度快、热影响区小、焊缝质量高等优势,已广泛应用于汽车制造、航空航天、电子电器等行业。

随着激光技术的不断发展,激光焊接技术将会在更多领域得到应用。

激光焊接技术的工艺与方法

激光焊接技术的工艺与方法

激光焊接技术的工艺与方法激光焊接技术是一种非常重要且广泛应用于工业生产领域的焊接方法。

它利用高能量密度的激光束来加热工件表面,使其达到熔化点,然后通过材料的自身熔化来进行焊接。

激光焊接技术具有高精度、高效率和不受材料性质限制等优点,因此在汽车制造、电子设备、航空航天等领域得到广泛应用。

本文将重点探讨激光焊接技术的一些常见工艺与方法,以及其在实际应用中的一些注意事项。

一、工艺常见方法1.传统激光焊接传统激光焊接是指使用高功率连续波激光进行焊接的方法。

其工作原理是将激光束聚焦到非常小的焦点上,通过光能的聚焦来使工件表面局部熔化,形成焊缝。

该方法适用于焊接厚度较大的工件,具有焊缝宽度窄、焊缝深度大的优点。

然而,由于激光能量密度较高,容易引起工件变形和热裂纹等问题,需要进行严格的控制和预热处理。

2.脉冲激光焊接脉冲激光焊接是指使用高能量脉冲激光进行焊接的方法。

相比传统激光焊接,脉冲激光焊接的能量密度更高,激光束作用时间更短,因此在焊接过程中对工件的热影响较小。

这种方法适用于对焊接过程热输入要求较低的材料,如薄板、精密仪器等。

脉冲激光焊接还可以实现连续拼接焊接和高速激光焊接等特殊要求。

3.深熔激光焊接深熔激光焊接是一种通过在焊接过程中使工件局部熔化并加热至汽化温度,利用金属蒸汽对激光束进行抑制,从而实现深熔焊接的方法。

该方法适用于要求焊缝深度较大的工件,如不锈钢、铝合金等。

在深熔激光焊接过程中,需要控制好激光束的功率和速度,以确保焊缝的质量和形状。

二、实际应用注意事项1.材料选择在激光焊接过程中,不同材料对激光的吸收率和热传导率不同,因此在选择焊接材料时需要考虑其适应激光焊接的特性。

同时还需要考虑材料的熔点、热膨胀系数等参数,以确保焊接质量。

2.焊接参数控制激光焊接的参数包括激光功率、激光束直径、焦距、焊接速度等多个方面。

这些参数的选择和控制直接影响焊缝的质量和性能。

因此,在实际应用中需要通过试验和实践确定最佳的焊接参数。

激光定位焊接的原理及应用

激光定位焊接的原理及应用

激光定位焊接的原理及应用1. 激光定位焊接的原理激光定位焊接是一种利用激光束进行定位和焊接的先进技术。

其原理主要涉及激光束的生成、定位系统和焊接过程的控制三个方面。

1.1 激光束的生成激光束是通过将激光器产生的光束进行处理得到的。

激光器通常采用半导体激光器或固体激光器,通过激活物质的电子跃迁产生的光子,经过光学系统的调整和整形,形成具有高度聚焦性和单色性的激光束。

1.2 定位系统激光定位系统主要用于确定焊接件的位置和姿态。

它通常包括激光发射器、激光接收器和相关的信号处理电路。

激光发射器发射激光束,经过被焊接件的表面反射,由激光接收器接收并转换为电信号。

通过对这些信号进行处理,可以确定焊接件的位置和姿态,从而实现激光焊接的精确定位。

1.3 焊接过程的控制激光焊接过程的控制主要包括焊接参数的设定和焊接质量的监测。

焊接参数包括激光功率、焦距、焊接速度等,通过优化这些参数,可以控制焊接的深度、宽度和形状。

焊接质量的监测一般通过检测焊缝的形状、尺寸和密度等指标来实现,通过激光定位系统和相关的算法,可以对焊接质量进行实时监测和控制。

2. 激光定位焊接的应用2.1 汽车制造在汽车制造领域,激光定位焊接技术被广泛应用于车身焊接、零部件焊接等工艺。

激光定位系统可以精确定位待焊接的零部件,通过控制焊接参数,实现高效、精确的焊接,提高汽车的结构强度和外观质量。

2.2 电子制造在电子制造领域,激光定位焊接技术主要应用于电子元件的连接和封装。

激光焊接的非接触性和高精度性使得它成为微观尺度电子制造的理想选择。

激光定位系统可以实现对微小焊缝的准确定位,保证焊接的精度和可靠性。

2.3 航空航天在航空航天领域,激光定位焊接技术被广泛应用于航空发动机、航天器结构等关键部件的焊接。

激光焊接具有高度的自动化、高效率和精确控制的优势,可以满足航空航天领域对焊接质量和可靠性的严格要求。

2.4 其他领域应用除了上述领域,激光定位焊接技术在机械制造、医疗器械、家电等领域也有广泛的应用。

激光焊接解决方案

激光焊接解决方案

激光焊接解决方案激光焊接是一种高效、精确、无损的焊接方法,广泛应用于各个行业,包括汽车制造、电子设备、航空航天等领域。

本文将介绍激光焊接的原理、优势以及应用领域,并提供一种激光焊接解决方案的详细描述。

1. 激光焊接原理激光焊接利用高能量密度激光束将工件的焊接部分加热至熔融或半熔状态,通过控制激光束的能量和焦点位置,实现工件的快速、精确焊接。

激光焊接具有狭窄热影响区、高焊接速度、无需接触、无需填充材料等优势。

2. 激光焊接的优势2.1 高焊接质量:激光焊接能够实现高精度焊接,焊缝质量好,焊接强度高,减少了焊接缺陷和变形的风险。

2.2 高效率:激光焊接速度快,一次焊接即可完成,节省了生产时间和成本。

2.3 适用性广泛:激光焊接适用于各种材料,包括金属、塑料等,可用于焊接薄板、厚板、复杂形状等工件。

2.4 环保节能:激光焊接无需使用焊接材料,减少了废料产生,同时激光器的能耗也相对较低。

3. 激光焊接的应用领域3.1 汽车制造:激光焊接广泛应用于汽车制造中的车身焊接、零部件焊接等工艺,提高了焊接质量和生产效率。

3.2 电子设备:激光焊接可用于电子设备的焊接、封装等工艺,确保电子元器件的连接可靠性。

3.3 航空航天:激光焊接在航空航天领域中用于焊接航空发动机、航天器结构等关键部件,提高了产品的可靠性和安全性。

3.4 其他领域:激光焊接还应用于金属制品、医疗器械、光电子、通信设备等领域。

4. 激光焊接解决方案描述为了满足不同行业的激光焊接需求,我们提供一种全面的激光焊接解决方案。

该解决方案包括以下几个方面:4.1 设备选择:根据客户的具体需求,我们提供各种类型的激光焊接设备,包括固态激光器、半导体激光器等。

这些设备具有高能量密度、高稳定性、长寿命等特点,可满足不同焊接任务的要求。

4.2 工艺参数优化:我们的专业团队将根据客户的工件材料、尺寸、焊接要求等因素,对激光焊接的工艺参数进行优化,确保焊接质量和效率的最大化。

激光焊接原理与主要工艺参数

激光焊接原理与主要工艺参数

1.激光焊接原理激光焊接可以采用连续或脉冲激光束加以实现,激光焊接的原理可分为热传导型焊接和激光深熔焊接。

功率密度小于104~105 W/cm2为热传导焊,此时熔深浅、焊接速度慢;功率密度大于105~107 W/cm2时,金属表面受热作用下凹成“孔穴”,形成深熔焊,具有焊接速度快、深宽比大的特点。

其中热传导型激光焊接原理为:激光辐射加热待加工表面,表面热量通过热传导向内部扩散,通过控制激光脉冲的宽度、能量、峰功率和重复频率等激光参数,使工件熔化,形成特定的熔池。

用于齿轮焊接和冶金薄板焊接用的激光焊接机主要涉及激光深熔焊接。

下面重点介绍激光深熔焊接的原理。

激光深熔焊接一般采用连续激光光束完成材料的连接,其冶金物理过程与电子束焊接极为相似,即能量转换机制是通过“小孔”(Key-hole)结构来完成的。

在足够高的功率密度激光照射下,材料产生蒸发并形成小孔。

这个充满蒸气的小孔犹如一个黑体,几乎吸收全部的入射光束能量,孔腔内平衡温度达2500 0C左右,热量从这个高温孔腔外壁传递出来,使包围着这个孔腔四周的金属熔化。

小孔内充满在光束照射下壁体材料连续蒸发产生的高温蒸汽,小孔四壁包围着熔融金属,液态金属四周包围着固体材料(而在大多数常规焊接过程和激光传导焊接中,能量首先沉积于工件表面,然后靠传递输送到内部)。

孔壁外液体流动和壁层表面张力与孔腔内连续产生的蒸汽压力相持并保持着动态平衡。

光束不断进入小孔,小孔外的材料在连续流动,随着光束移动,小孔始终处于流动的稳定状态。

就是说,小孔和围着孔壁的熔融金属随着前导光束前进速度向前移动,熔融金属充填着小孔移开后留下的空隙并随之冷凝,焊缝于是形成。

上述过程的所有这一切发生得如此快,使焊接速度很容易达到每分钟数米。

2. 激光深熔焊接的主要工艺参数1)激光功率。

激光焊接中存在一个激光能量密度阈值,低于此值,熔深很浅,一旦达到或超过此值,熔深会大幅度提高。

只有当工件上的激光功率密度超过阈值(与材料有关),等离子体才会产生,这标志着稳定深熔焊的进行。

激光的焊接原理及工艺应用

激光的焊接原理及工艺应用

激光的焊接原理及工艺应用1. 激光焊接的原理激光焊接是利用激光束的高能量密度,将焊接区域加热至熔化或融化状态,通过热传导或熔池混合来实现材料的焊接。

主要原理包括以下几个方面:•光能转化:激光束通过外部激光器产生,由电能转化为光能,具有高能量密度和高聚焦性。

•热传导:激光束在材料表面的吸收会引发局部热量的产生,这种热量通过热传导进一步加热焊接区域。

•融合:当焊接区域的温度达到材料的熔点时,材料会发生熔化,形成熔池。

•熔池控制:通过调整激光的功率、扫描速度和焊接时间等参数,可以控制熔池的形成和稳定性。

•冷却:当激光束停止输入时,焊接区域的熔池会逐渐冷却凝固,完成焊接过程。

2. 激光焊接的工艺应用激光焊接具有许多优点,例如高精度、高速度、低热输入和无接触等特点,因此在工业生产中得到广泛应用。

以下是几种常见的激光焊接工艺应用:2.1 激光传导焊接激光传导焊接是通过激光束照射在材料表面,传导热量使材料表面熔化并与另一块材料接触。

这种焊接方式适用于薄板、线材和工件表面修补等应用。

2.2 激光深熔焊接激光深熔焊接是将激光束聚焦在焊缝上,使焊缝区域瞬间加热至熔融状态,形成深度较大的熔池。

这种焊接方式适用于厚板材和精密零件的连接。

2.3 激光微焊接激光微焊接是指使用激光束进行微小焊接。

由于激光焊接具有高能量密度和高聚焦性,可以实现微小尺寸的焊接,适用于精密仪器、电子元件和细小零件等微小焊接需求。

2.4 激光点焊激光点焊是将激光束聚焦在焊接区域的其中一个点上,通过控制焊接参数实现点对点的焊接。

这种焊接方式适用于需要精确定位和高速焊接的应用,例如汽车制造、电子组装等。

2.5 激光钎焊激光钎焊是利用激光束加热钎料而不是焊接材料来实现焊接。

激光钎焊常用于合金材料、玻璃和陶瓷等难焊材料的连接。

2.6 激光搅拌焊接激光搅拌焊接是将激光束与搅拌器结合,通过旋转激光焊接头和搅拌器,实现焊缝区域的熔化和搅拌,从而实现高质量的焊缝连接。

激光焊接原理及工艺应用

激光焊接原理及工艺应用

激光焊接原理及工艺应用激光焊接是一种利用激光束来加热材料并使其熔化以达到焊接目的的技术。

激光焊接具有高功率密度、高能量浓度、短作用时间、小熔化区、高焊接速度和良好的焊缝质量等优点,因此在现代工业中得到了广泛的应用。

激光焊接的原理是利用激光束的高能量,将其聚焦在待焊接的材料上。

当激光束照射到材料表面时,会被吸收并转化为热能,使材料局部升温至熔点以上。

随后,熔化的材料在激光束的作用下形成焊缝,经过冷却后形成焊接接头。

激光焊接主要有传导传输、深穿透焊和激光钎焊三种工艺应用。

传导传输焊是激光焊接的一种常见工艺应用。

在传导传输焊中,激光束通过传导热传递给焊接材料,使其局部熔化。

这一过程中,激光束主要用于提供热能,焊接所需的压力由其他设备提供。

传导传输焊适用于对焊接材料要求不高,焊接速度较快的材料,如不锈钢和铝合金等。

深穿透焊是激光焊接的另一种重要应用。

在深穿透焊中,激光束的功率密度非常高,能够直接穿透材料并在底部形成小孔。

激光束进一步通过孔内熔化周围材料,使其与基材连结形成焊接接头。

深穿透焊适用于焊接较厚的金属材料,可获得较深的焊缝。

激光钎焊是激光焊接的另外一种应用,主要用于焊接非金属材料。

激光钎焊通过激光束的加热作用,将钎料加热至熔化并与待钎焊的材料融合。

相比传统的焊接方法,激光钎焊具有高精度、高效率的优点,广泛应用于电子元器件、光通信器件等领域。

总之,激光焊接是一种高效、精确的焊接技术。

其原理简单且应用广泛,适用于各种不同材料的焊接需求。

激光焊接的发展将为现代工业的进步和创新提供更多可能性。

激光焊接技术应用及其发展趋势

激光焊接技术应用及其发展趋势

激光焊接技术应用及其发展趋势激光焊接技术是一种高效、精密的焊接方法,随着科学技术的不断发展,激光焊接技术在各个行业中得到了广泛的应用,并且在未来的发展中有着巨大的潜力。

本文将从激光焊接技术的原理和特点、应用领域以及发展趋势等方面进行详细的介绍和分析。

一、激光焊接技术的原理和特点激光焊接是利用激光束对焊接材料进行加热、熔化和冷却,从而实现焊接的一种高技术焊接方法。

激光焊接技术有非常突出的优势,首先是在焊接过程中激光束经聚焦后能够提供高能量密度的热源,因此可以实现高速、高温的熔化焊接。

激光焊接不需要接触,可以实现对材料的非接触式加工,避免了传统焊接中容易产生的氧化、变形等问题。

激光焊接还具有热影响区小、焊接变形小、焊缝质量高等优点。

激光焊接技术得到了越来越广泛的应用,并在许多行业中取代传统的焊接方法。

二、激光焊接技术的应用领域1. 汽车制造业在汽车制造业中,激光焊接技术被广泛应用于汽车车身的生产中。

激光焊接可精确控制焊接的温度和深度,可以实现对汽车车身的高精度焊接,使得焊接接缝更加紧密,提高了车身的强度和密封性,同时还能够减轻车身重量,提高汽车的燃油经济性。

2. 航空航天制造业在航空航天领域,由于激光焊接技术的高精度和高质量优势,被广泛用于制造航天器结构、航空发动机、导弹、卫星等领域。

激光焊接技术可以提高航空器和航天器的耐热性能、降低结构重量、提高使用寿命,同时还能够提高制造效率和降低生产成本。

3. 电子电气制造业在电子电气制造业中,激光焊接技术被广泛应用于生产半导体器件、电子元器件、电机线圈等领域。

激光焊接技术可以实现对薄膜、微小零件的高精度焊接,同时还能够避免污染和热影响,提高器件的性能和质量。

1. 多波长激光焊接技术传统激光焊接技术只能使用单一波长的激光进行焊接,而多波长激光焊接技术可以利用多种波长的激光,通过组合和调控不同波长的激光来实现对不同材料的高效焊接。

多波长激光焊接技术可以提高焊接质量和效率,拓宽了激光焊接技术的应用范围。

激光焊接技术在电子器件制造中的应用

激光焊接技术在电子器件制造中的应用

激光焊接技术在电子器件制造中的应用激光焊接技术作为一种高精度、高效率的焊接方法,广泛应用于电子器件制造领域。

它通过激光束的高能量浓缩,实现材料的瞬间熔化和连接,具有无接触、无污染、无变形等优点。

本文将从激光焊接技术的原理、应用范围和未来发展趋势等方面进行探讨。

激光焊接技术的原理是利用激光束的高能量浓缩,使焊接材料瞬间达到熔点,形成稳定的焊接接头。

激光束的能量密度高,焊接速度快,可以实现高精度的焊接。

与传统的焊接方法相比,激光焊接不需要额外的焊接材料,减少了焊接接头的体积和重量,提高了产品的可靠性和稳定性。

激光焊接技术在电子器件制造中的应用范围广泛。

首先,它可以用于电子器件的封装焊接。

在电子器件的制造过程中,封装是一个关键的环节。

传统的封装方法需要使用焊锡等材料进行焊接,容易产生氧化和污染,影响焊接质量。

而激光焊接可以实现无接触焊接,避免了污染和氧化问题,提高了封装的可靠性。

其次,激光焊接技术可以用于电子器件的连接焊接。

在电子器件的制造过程中,常常需要将不同的部件进行连接。

传统的连接方法需要使用螺丝、胶水等材料,不仅加大了制造成本,而且容易产生松动和断裂等问题。

而激光焊接可以实现高精度的连接焊接,提高了连接的稳定性和可靠性。

此外,激光焊接技术还可以用于电子器件的修复焊接。

在电子器件的使用过程中,由于各种原因,可能会出现焊接接头的损坏或断裂。

传统的修复方法需要重新焊接或更换焊接接头,工艺复杂且成本高昂。

而激光焊接可以实现局部焊接,只修复损坏的部分,减少了修复的难度和成本。

激光焊接技术在电子器件制造中的应用还有很大的发展空间。

首先,随着电子器件的不断迭代更新,对焊接技术的要求也越来越高。

激光焊接技术具有高精度、高效率的特点,能够满足电子器件制造的需求。

其次,随着激光技术的不断进步,激光器的功率和稳定性得到了显著提升,为激光焊接技术的应用提供了更好的条件。

最后,随着人工智能和自动化技术的发展,激光焊接技术可以与机器人技术相结合,实现自动化的电子器件制造,提高生产效率和产品质量。

激光焊接解决方案

激光焊接解决方案

激光焊接解决方案激光焊接是一种高精度、高效率的焊接技术,广泛应用于汽车创造、航空航天、电子设备等领域。

本文将介绍激光焊接的原理、应用及其解决方案。

一、激光焊接原理激光焊接利用高能量密度的激光束对焊接材料进行加热,使其局部熔化并形成焊缝。

激光束的能量可通过光纤传输,具有灵便性和高精度。

激光焊接的原理可分为传导模式和深熔模式两种。

1. 传导模式激光焊接:激光束在焊接接头表面形成熔池,通过传导热量使焊缝形成。

2. 深熔模式激光焊接:激光束能量足够高,能够穿透焊接材料并在焊缝下方形成熔池,通过深度熔化实现焊接。

二、激光焊接应用领域激光焊接广泛应用于以下领域:1. 汽车创造:激光焊接可用于汽车车身焊接、零部件焊接等。

其高精度和高效率能够提高焊接质量和生产效率。

2. 航空航天:激光焊接可用于航空航天器件的焊接,如发动机部件、燃气涡轮叶片等。

激光焊接能够实现高强度、高质量的焊接,提高航空航天器件的性能。

3. 电子设备:激光焊接可用于电子设备的焊接,如电池片焊接、电路板焊接等。

激光焊接能够实现弱小焊点和高精度焊接,适合于微电子器件的创造。

三、激光焊接解决方案为了满足不同行业的需求,激光焊接解决方案应根据具体情况进行设计和优化。

以下是一些常见的激光焊接解决方案:1. 激光焊接设备:选择适合焊接材料和焊接方式的激光焊接设备,如激光焊接机器人、激光焊接工作站等。

设备应具备稳定的激光输出和高精度的焊接控制系统。

2. 材料选择:根据焊接要求选择合适的焊接材料,如金属材料、塑料材料等。

材料的选择应考虑其导热性、熔点和焊接性能等因素。

3. 工艺参数优化:根据焊接材料和焊接要求,优化激光焊接的工艺参数,如激光功率、焊接速度、焊接角度等。

通过实验和摹拟分析,确定最佳的工艺参数。

4. 自动化控制:采用自动化控制系统,实现激光焊接的自动化和智能化。

自动化控制系统可实现焊接路径规划、焊接参数调整、焊接质量检测等功能。

5. 质量检测与监控:建立焊接质量检测与监控系统,实时监测焊接质量,并及时调整焊接参数。

激光束焊接原理及应用完整版课件

激光束焊接原理及应用完整版课件

数据分析与优化
利用大数据技术对焊接过程中的数据 进行分析,不断优化焊接参数,提高 焊接质量。
智能预测与维护
通过机器学习等技术预测设备故障, 实现设备的预防性维护,提高设备利 用率。
CHAPTER
激光束焊接质量控制与检测
激光束焊接缺陷与防止措施
01
气孔
02
裂纹
03
咬边
激光束焊接质量检测方法
射线检测
高功率、高效率激光束焊接技术发展
高功率激光器
高效能量转换
复合激光束焊接技术研究与应用
激光-电弧复合焊接
将激光束与电弧复合使用,能够同时利用两者的优势,提高焊接速度和质量。
激光-超声复合焊接
利用超声波的振动效应,能够改善焊接接头的组织和性能,提高焊接质量。
激光束焊接在新能源、环保领域的应用前景
新能源领域
激光束焊接的工艺参数
激光功率
光斑直径
焊接速度
保护气体
CHAPTER
激光束焊接设备与技术
激光束焊接设备的组成
光束传输系统
将激光束从激光器 传输到工作区域。
工作台
承载和移动焊接件 的部分。
激光器
产生并控制激光束 的关键部分。
聚焦系统
将激光束聚焦到所 需直径,以达到焊 接要求。
控制系统
控制整个焊接过程, 包括激光输出、工 作台移动等。
激光束焊接技术能够应用于太阳能电池板、锂离子电池等新能源产品的制造中,实现高质量、高效率的焊接。
环保领域
激光束焊接技术具有无污染、低能耗等优点,在环保领域的应用前景广阔,如环保设备、水处理设备等制造过程 中可采用该技术。
激光束焊接技术的教育与培训展望
专业人才培养

激光焊接工艺

激光焊接工艺
卷边接头与对接接头基本相同.平直的直角边、良好的配合、 压紧和准确的横向平直度都是必要的,对收缩率大的材料如 铝更是如此.
6.5.2 激光焊接工艺
• 激光焊接是将光能转换为热能的过程,因此光和热 两方面的性能在激光焊接时都要考虑,如光的吸收、 能量密度、热容量、熔点、沸点及金属表面状况 等.
• 1焊接时激光的能量范围 • 为避免焊点金属的蒸发和烧穿,必须控制能量密度,
电子束焊 钨极氩弧焊
中等 优 高 高
中等 高 好
高 优 高 低 低 中等 好





2 激光焊接的重要参数
1功率密度
功率密度是激光加工中最重要的参数之一.采用较高 的功率密度,在微秒时间范围内,表层即可加热至沸 点,产生大量气化.因此高功率密度对材料去除加工, 如打孔、切割、雕刻有利.对于较低功率密度,表层 温度达到沸点需要经历数毫秒,在表层气化前,底层 达到熔点,易形成良好的熔融焊接.
激光பைடு நூலகம்特性
1高方向性 激光发散角小,接近平行光,可用于定位、导向和测距等. 2亮度高光强 聚焦后光斑上的功率密度达1015W/cm2或更高,其亮度比太阳
光要亮100亿倍,可以进行材料加工或医疗外科手术. 3高单色性 其单色性比一般光高108-109倍以上,可把激光波长作为长度
的标准进行精密测量,或把其周期用作时间测量标准,应用 于激光通讯等. 4高相干性 单色性越好相干长度越长,可用于较长工件的高精度测量与校 验.
1 传热焊
采用的激光光斑功率功率密度小于105W/mm2时,激光将金 属表面加热到熔点与沸点之间,焊接时,金属材料表面将所 吸收的激光能转变为热能,使金属表面温度升高而熔化,然 后通过热传导方式把热能传向金属内部,使熔化区逐渐扩 大,凝固后形成焊点或焊缝,其熔深轮廓近似为半球形.这种 焊接机理称为传热焊.传热焊的主要特点是激光光斑的功 率密度小,大部分光被金属表面所反射,光的吸收率较低,焊 接熔深浅,焊接速度慢.主要用于厚度小于1mm件的焊接加 工.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

激光谐振腔
• 光学谐振腔
L
M1100%
M298%
图2-6
图 2-7 构
谐振腔结
激光谐振腔
G1*G2=(1-d2/f-b/R1)*(1-d1/f-b/R2) 其中,f:棒的热焦距 d1:棒中心到半反的距离 d2:棒中心到全反的距离 R1:全反曲率半径 R2:半反曲率半径 b=d1+d2-d1d2/f


3、谐振腔 有了合适的工作物质和激励源后,可实现粒子数反转,但这样产生的受激辐 射强度很弱,无法实际应用。还需要将辐射的光进行放大,于是人们就想到 了用光学谐振腔进行放大。 所谓光学谐振腔,实际是在激光器两端,平行装上两块反射率很高的镜片, 一块为全反射镜片,一块为部分反射、少量透射镜片。全反射镜片的作用是 将入射的光全部按原路径反射回去,部分反射镜片的作用是将能量未达到一 定限度的部分光子按原路径反射回去,而达到一定能量限度的光子则透射而 出。这样,透射而出的这部分光子就成为我们需要的,经过放大了的激光; 而被反射回工作介质的光,则继续诱发新一轮的受激辐射,光将逐渐被放大 。因此,光在谐振腔中来回振荡,造成连锁反应,雪崩似的获得放大,产生 强烈的激光,直到能量达到一定的限度,从部分反射镜片中输出。



激光器分类
• 对激光器有不同的分类方法,一般按工作介质的不同来分类,在可以 分为固体激光器、气体激光器、液体激光器和半导体激光器。 另外,根据激光输出方式的不同又可分为连续激光器和脉冲激光器, 其中脉冲激光的峰值功率可以非常大,还可以按发光的频率和发光功 率大小分类。 • 固体激光器 一般讲,固体激光器具有器件小、坚固、使用方便、输出功率大的特 点。这种激光器的工作介质是在作为基质材料的晶体或玻璃中均匀掺 入少量激活离子,除了前面介绍用红宝石和玻璃外,常用的还有钇铝 石榴石(YAG)晶体中掺入三价钕离子的激光器 • 气体激光器 具有结构简单、造价低;操作方便;工作介质均匀,光束质量好;以 及能长时间较稳定地连续工作的有点。其中,氦-氖激光器是最常用 的一种。
激光焊接原理
激光焊接一般分为热传导焊接和深熔焊 激光功率密度为105~106w/cm2形成激光热传导焊 激光功率密度为105~106w/cm2形成激光深熔焊
激光焊接的特性
与其它焊接方式相比,激光焊接具有以下特性:
能量集中,焊接效率高、加工精度高,焊缝深宽比大
热输入量小,热影响区小,工件残余应力和变形小 非接触式焊接,光纤传输,可达性较好,自动化程度高 接头设计灵活,节省原材料 焊接能量可精确控制,焊接效果稳定,焊接外观好
• 常见激光器中,掺钕钇铝石榴石(简Nd3+:YAG)激光器,氦氖激光 器和二氧化碳激光器也都属四能级系统激光器。需要指明,以上讨论 的三能级系统和四能级系统都是对激光器运转过程中直接有关的能级 而言,不是说某种物质只具有三个能级或四个能级。
激光产生条件
• 1、激光工作介质 激光的产生必须选择合适的工作介质,可以是气体、液体、固体或半 导体。关键是能在这种介质中实现粒子数反转,以获得产生激光的必 要条件。显然,亚稳态能级的存在,对实现粒子数反转是非常有利的 。 • 2、激励源 为了使工作介质中出现粒子数反转,必须用一定的方法去激励原子体 系,使处于上能级的粒子数增加。一般可以用气体放电的办法来利用 具有动能的电子去激发介质原子,称为电激励;也可用脉冲光源来照 射工作介质,称为光激励;还有热激励、化学激励等。各种激励方式 被形象化地称为泵浦或抽运。为了不断得到激光输出,必须不断地“ 泵浦”以维持处于上能级的粒子数比下能级多。
此外,异种金属焊接还跟材料之间的熔点、线膨胀系数、导热率、比热、氧化
性、反光率等性能有很大关系,这些物理特性相差越大,则越难焊接,所形成 的焊接接头强度越差 通常钢与铜、铝和镍、铜和镍等异种金属材料的激光焊接性都比较好,能获得 较好的焊接质量
激光焊接常见缺陷及应对措施
三能级结构
• 当粒子受外界能量激励从E1到E3,由于E3能级寿命短,很快转移到 E2上,因能级E2为亚稳态,在E2、E1间实现粒子数反转分布。下能 级E1为基态,通常总是积聚着大量的粒子,因此要实现粒子数反转, 必须将半数以上的基态粒子激发到E2上,所以,外界激励就需要有相 当强的能力。
四能级结构
激光焊接的特性
各种焊接方式比较 焊接方式 激光焊接 电子束焊 等离子弧焊 电阻焊 氩弧焊 钎焊 热影响区 较小 较小 一般 较大 较大 一般 热变形 较小 较小 一般 较大 较大 一般 焊缝质量 较好 较好 一般 一般 一般 一般 是否添加焊料 否 否 是 否 是 是 焊接环境 无要求 真空 需电极 需电极 需电极 整体加温
• 半导体激光器 半导体激光器是以半导体材料作为工作介质的。目前较成熟的是砷化 镓激光器,发射840nm的激光。另有掺铝的砷化镓、硫化铬硫化锌等 激光器。激励方式有光泵浦、电激励等。这种激光器体积小、质量轻 、寿命长、结构简单而坚固,特别适于在飞机、车辆、宇宙飞船上用 。在70年代末期,由于光纤通讯和光盘技术的发展大大推动了半导体 激光器的发展。 • 液体激光器 常用的是染料激光器,采用有机染料最为工作介质。大多数情况是把 有机染料溶于溶剂中(乙醇、丙酮、水等)中使用,也有以蒸气状态 工作的。利用不同染料可获得不同波长激光(在可见光范围)。染料 激光器一般使用激光作泵浦源,例如常用的有氩离子激光器等。液体 激光器工作原理比较复杂。输出波长连续可调,且覆盖面宽是它的优 点,使它也得到广泛应用。
激光焊接原理及工艺应用
1、激光原理及特性
ight
mplification by
timulated
mission of
adiation
光线
放大
受激辐射
辐射
镭射=激光=LASER
激光产生的原理
• 能级
物质是由原子组成,而原子又是由原子核及电子构成。电子围绕着原子核运动。 而电子在原子中的能量不是任意的。描述微观世界的量子力学告诉我们,这些电 子会处于一些固定的“能级”,不同的能级对应于不同的电子能量,离原子核越 远的轨道能量越高。此外,不同轨道可最多容纳的电子数目也不同,例如最低的 轨道(也是最近原子核的轨道)最多只可容纳2个电子,较高的轨道上则可容纳8 个电子等等。
针对一些铜合金,如黄铜、白铜等,受合金元素影响,焊接难度较大,焊接时需 注意工艺参数的选择
异种金属焊接
性差异是否较大 其它影响因素
铝合金与镀金磷铜小片点焊
异种金属焊接
异种金属能否形成优质焊接接头主要取决于被焊金属的物理性能、化学性 能、化学成分和工艺措施,通常从以下几个方面考量:
钢及其合金的焊接
316L不锈钢激光点焊
316L不锈钢激光点焊焊点截面
不锈钢使用普通方波即可获得良好的焊接效果
设计焊接结构时,尽量使焊点远离非金属物质 为满足强度及外观要求,应尽量预留足够的焊接区域及工件厚度 焊接时应、保证工件的清洁度及环境的干燥度
铝及其合金的焊接
铝合金螺柱激光点焊
铝合金螺柱激光点焊
• 稳定腔: 0< G1*G2<1 • 介稳腔: G1*G2=1或G1*G2=0 • 非稳腔: G1*G2<0或G1*G2>1
激光特点
• 相干性好: 普通光源上不同点发出的光在不同方向上、不同时间里都是杂乱无章的,经过透 镜后也不可能会聚在一点上。 激光与普通光相比则大不相同。因为它的频率很单纯,从激光器发出的光就可以 步调一致地向同一方向传播,可以用透镜把它们会聚到一点上,把能量高度集中起来 ,这就叫相干性高。一台巨脉冲红宝石激光器的亮度可达1015w/cm2· sr,比太阳表面 的亮度还高若干倍。 方向性强 激光的方向性比现在所有的其他光源都好得多,它几乎是一束平行线。如果把激 光发射到月球上去,历经38.4万公里的路程后,也只有一个直径为2km左右的光斑。 单色性好: 受激辐射光(激光)是原子在发生受激辐射时释放出来的光,其频率组成范围非 常狭窄,通俗一点讲,就是受激辐射光单色性非常好,激光的“颜色”非常的纯(不 同颜色,实际就是不同频率)。激光的单色性是实现激光加工的重要因素。我们可以 通过简单的物理实验来说明这个问题 亮度高

跃迁
电子可以通过吸收或释放能量从一个能级跃迁到另一个能级。例如当电子吸收了 一个光子时,它便可能从一个较低的能级跃迁至一个较高的能级。同样地,一个 位于高能级的电子也会通过发射一个光子而跃迁至较低的能级。在这些过程中, 电子释放或吸收的光子能量总是与这两能级的能量差相等。由于光子能量决定了 光的波长,因此,吸收或释放的光具有固定的颜色。
泵浦灯
氙灯为惰性气体放电灯, 我们使用的灯的形状多为 直管形。其结构一般都是 由电极、灯管和充入的氙 (Xe)气体组成。电极是 用高熔点、高电子发射率, 又不易溅射的金属材料制 成。灯管用机械强度高、 耐高温、透光性好的石英 玻璃制成。灯管内充入氙 气。

Nd:YAG激光棒
Nd:YAG(掺钕的钇 铝石榴石)是目前最常 用的一类固体激光器。 YAG是一种立方结构晶 体,质地很硬、光学质 量好、热导率高。用三 价钕代替了晶体中部分 的三价钇,因此称为掺 钕的钇铝石榴石。
• 受激吸收
– 受激吸收就是处于低能态的原子吸收外界辐射而跃迁到高能态。 – 电子可通过吸收光子从低能级跃迁到高能级。
• 受激辐射
– 受激辐射是指处于高能级的电子在光子的“刺激”或者“感应”下,跃迁到低能级,并 辐射出一个和入射光子同样频率的光子。受激辐射的最大特点是由受激辐射产生 的光子与引起受激辐射的原来的光子具有完全相同的状态。它们具有相同的频率 ,相同的方向,完全无法区分出两者的差异。这样,通过一次受激辐射,一个光 子变为两个相同的光子。这意味着光被加强了,或者说光被放大了。这正是产生 激光的基本过程。
能否形成固溶体,异种金属在液态及固态下能否互溶,只有能无限互溶时,才 能形成牢固焊接接头,一般只有两者之间的原子半径差小于14%~15%时,才能 形成溶解度较大甚至无限互溶的固溶体 异种金属之间的负电性差异是否较大,相差越大,则他们之间的化学亲和力就 越强,就越倾向于生成化合物而不利于形成固溶体,所形成的固溶体溶解度也 就越小,其焊接接头强度也越低
相关文档
最新文档