中考数学压轴题十大类型经典题目分类汇编(中考数学复习必备)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考数学压轴题十大类型
目录
第一讲中考压轴题十大类型之动点问题 1 第二讲中考压轴题十大类型之函数类问题7 第三讲中考压轴题十大类型之面积问题13 第四讲中考压轴题十大类型之三角形存在性问题19 第五讲中考压轴题十大类型之四边形存在性问题25 第六讲中考压轴题十大类型之线段之间的关系31 第七讲中考压轴题十大类型之定值问题38 第八讲中考压轴题十大类型之几何三大变换问题44 第九讲中考压轴题十大类型之实践操作、问题探究50 第十讲中考压轴题十大类型之圆56 第十一讲中考压轴题综合训练一62 第十二讲中考压轴题综合训练二68
第一讲 中考压轴题十大类型之动点问题
1. (2011吉林)如图,梯形ABCD 中,AD ∥BC ,∠BAD =90°,CE ⊥AD 于点E ,
AD =8cm ,BC =4cm ,AB =5cm .从初始时刻开始,动点P ,Q 分别从点A ,B 同时出发,运动速度均为1cm/s ,动点P 沿A -B -C -E 方向运动,到点E 停止;动点Q 沿B -C -E -D 方向运动,到点D 停止,设运动时间为x s ,△P AQ 的面积为y cm 2,(这里规定:线段是面积为0的三角形)解答下列问题:
(1) 当x =2s 时,y =_____ cm 2;当x =9
2
s 时,y =_______ cm 2.
(2)当5 ≤ x ≤ 14时,求y 与x 之间的函数关系式.
(3)当动点P 在线段BC 上运动时,求出15
4
y S 梯形ABCD 时x 的值.
(4)直接写出在整个..运动过程中,使PQ 与四边形ABCE 的对角线平行的所有x 的值.
2. (2007河北)如图,在等腰梯形ABCD 中,AD ∥BC ,AB =DC =50,AD =75,BC =135.点
P 从点B 出发沿折线段BA -AD -DC 以每秒5个单位长的速度向点C 匀速运动;点Q 从点C 出发沿线段CB 方向以每秒3个单位长的速度匀速运动,过点Q 向上作射线QK ⊥BC ,交折线段CD -DA -AB 于点E .点P 、Q 同时开始运动,当点P 与点C 重合时停止运动,点Q 也随之停止.设点P 、Q 运动的时间是t 秒(t >0). (1)当点P 到达终点C 时,求t 的值,并指出此时BQ 的长;
D
C
B
A P Q
K E D
C
B
A (2)当点P 运动到AD 上时,t 为何值能使PQ ∥DC ?
(3)设射线QK 扫过梯形ABCD 的面积为S ,分别求出点E 运动到CD 、DA 上时,S 与t 的关系式;
(4)△PQE 能否成为直角三角形?若能,写出t 的取值范围;若不能,请说明理由.
备用图
3. (2008河北)如图,在Rt ABC △中,∠C=90°,AB =50,AC =30,D ,E ,F 分
别是AC ,AB ,B C 的中点.点P 从点D 出发沿折线DE -EF -FC -CD 以每秒7个单位长的速度匀速运动;点Q 从点B 出发沿BA 方向以每秒4个单位长的速度匀速运动,过点Q 作射线QK AB ⊥,交折线BC -CA 于点G .点P Q ,同时出发,当点P 绕行一周回到点D 时停止运动,点Q 也随之停止.设点P Q ,运动的时间是t 秒(0t >).
(1)D F ,两点间的距离是 ;
(2)射线QK 能否把四边形CDEF 分成面积相等的两部分?若能,求出t 的值.若不能,说明理由;
(3)当点P 运动到折线EF FC -上,且点P 又恰好落在射线QK 上时,求t 的值; (4)连结PG ,当PG AB ∥时,请直接..写出t 的值.
G
K Q
P F E
D C B
A
备用图
F
E D C B
A
4. (2011山西太原)如图,在平面直角坐标系中,四边形OABC 是平行四边形.直
线l 经过O 、C 两点.点A 的坐标为(8,0),点B 的坐标为(11,4),动点P 在线段OA 上从点O 出发以每秒1个单位的速度向点A 运动,同时动点Q 从点A 出发以每秒2个单位的速度沿A →B →C 的方向向点C 运动,过点P 作PM 垂直于x 轴,与折线O -C -B 相交于点M .当P 、Q 两点中有一点到达终点时,另一点也随之停止运动,设点P 、Q 运动的时间为t 秒(0t ),△MPQ 的面积为S . (1)点C 的坐标为________,直线l 的解析式为__________.
(2)试求点Q 与点M 相遇前S 与t 的函数关系式,并写出相应的t 的取值范围. (3)试求题(2)中当t 为何值时,S 的值最大,并求出S 的最大值.
(4)随着P 、Q 两点的运动,当点M 在线段CB 上运动时,设PM 的延长线与直线l 相交于点N .试探究:当t 为何值时,△QMN 为等腰三角形?请直接写出t 的值.
y
x
O
A B
C Q
l
M P
P M l
Q C B A
O x
y
y
x
O
A B
C
Q
l
M P
F E O
P
D
C
B
A
F E O P
D
C
B
A
F E O
P
D
C B
A
5. (2011四川重庆)如图,矩形ABCD 中,AB =6,BC =23,点O 是AB 的中点,
点P 在AB 的延长线上,且BP =3.一动点E 从O 点出发,以每秒1个单位长度的速度沿OA 匀速运动,到达A 点后,立即以原速度沿AO 返回;另一动点F 从P 点出发,以每秒1个单位长度的速度沿射线P A 匀速运动,点E 、F 同时出发,当两点相遇时停止运动.在点E 、F 的运动过程中,以EF 为边作等边△EFG ,使△EFG 和矩形ABCD 在射线P A 的同侧,设运动的时间为t 秒(t ≥0). (1)当等边△EFG 的边FG 恰好经过点C 时,求运动时间t 的值;
(2)在整个运动过程中,设等边△EFG 和矩形ABCD 重叠部分的面积为S ,请直接写出S 与t 之间的函数关系式和相应的自变量t 的取值范围;
(3)设EG 与矩形ABCD 的对角线AC 的交点为H ,是否存在这样的t ,使△AOH 是等腰三角形?若存在,求出对应的t 的值;若不存在,请说明理由.
备用图1
备用图2