年高考数学二次函数精选试题汇编

合集下载

二次函数考试题目及答案

二次函数考试题目及答案

二次函数考试题目及答案1. 已知二次函数y=ax^2+bx+c的图象开口向上,且经过点(1,0)和(3,0),求二次函数的解析式。

答案:由于二次函数的图象开口向上,所以a>0。

又因为函数图象经过点(1,0)和(3,0),可以设二次函数的解析式为y=a(x-1)(x-3)。

将点(2,-4)代入,得到-4=a(2-1)(2-3),解得a=4。

因此,二次函数的解析式为y=4(x-1)(x-3)。

2. 抛物线y=ax^2+bx+c与x轴交于点A(-1,0)和点B(3,0),且抛物线的顶点在直线y=-2x上,求抛物线的解析式。

答案:设抛物线的解析式为y=a(x+1)(x-3)。

由于顶点在直线y=-2x上,设顶点坐标为(m,n),则有n=-2m。

根据抛物线的对称性,顶点的横坐标m=(3-1)/2=1,所以n=-2。

将顶点坐标(1,-2)代入抛物线解析式,得到-2=a(1+1)(1-3),解得a=1。

因此,抛物线的解析式为y=(x+1)(x-3)。

3. 已知二次函数y=ax^2+bx+c的图象经过点(0,2)和(2,0),且对称轴为直线x=1,求二次函数的解析式。

答案:由于二次函数的对称轴为直线x=1,可以设二次函数的解析式为y=a(x-1)^2+k。

将点(0,2)代入,得到2=a(0-1)^2+k,即2=a+k。

又因为函数图象经过点(2,0),代入得到0=a(2-1)^2+k,即0=a+k。

解得a=-2,k=2。

因此,二次函数的解析式为y=-2(x-1)^2+2。

4. 抛物线y=ax^2+bx+c与x轴的交点为A(-2,0)和B(4,0),且抛物线经过点(1,3),求抛物线的解析式。

答案:设抛物线的解析式为y=a(x+2)(x-4)。

将点(1,3)代入,得到3=a(1+2)(1-4),解得a=-1/3。

因此,抛物线的解析式为y=-1/3(x+2)(x-4)。

5. 二次函数y=ax^2+bx+c的图象开口向下,且经过点(-1,0)和(3,0),求二次函数的解析式。

二次函数测试题及答案

二次函数测试题及答案

二次函数测试题及答案一、选择题(每题3分,共30分)1. 以下哪个选项是二次函数的一般形式?A. y = 2x + 1B. y = x^2 + 3x + 2C. y = 3x^3 - 5D. y = 4/x答案:B2. 二次函数y = ax^2 + bx + c的顶点坐标为(h, k),那么h的值为:A. -b/2aB. -b/aC. b/2aD. b/a答案:C3. 二次函数y = 2x^2 - 4x + 3的对称轴方程是:A. x = 1B. x = -1C. x = 2D. x = -2答案:A4. 如果二次函数y = ax^2 + bx + c的图象开口向上,那么a的值:A. 大于0B. 小于0C. 等于0D. 可以是任意实数答案:A5. 二次函数y = -x^2 + 4x - 3的顶点坐标是:A. (1, 2)B. (2, 1)C. (3, 0)D. (3, 4)答案:C6. 二次函数y = 3x^2 - 6x + 5的图象与x轴的交点个数是:A. 0个B. 1个C. 2个D. 3个答案:C7. 二次函数y = x^2 - 4x + 4的最小值是:A. 0B. 4C. -4D. 1答案:A8. 二次函数y = 2x^2 - 4x + 3的图象开口方向是:A. 向上B. 向下C. 向左D. 向右答案:A9. 二次函数y = -x^2 + 2x + 3的图象与y轴的交点坐标是:A. (0, 3)B. (0, -3)C. (0, 5)D. (0, -5)答案:A10. 二次函数y = 5x^2 - 10x + 8的图象与x轴的交点坐标是:A. (2, 0)B. (-2, 0)C. (1, 0)D. (-1, 0)答案:A二、填空题(每题4分,共20分)1. 二次函数y = ax^2 + bx + c的图象开口向上,且经过点(2, 0),则a的值至少为______。

答案:02. 二次函数y = 2x^2 - 4x + 3的顶点坐标是(______, ______)。

二次函数真题汇编附答案解析

二次函数真题汇编附答案解析

二次函数真题汇编附答案解析一、选择题1.在平面直角坐标系内,已知点A(﹣1,0),点B(1,1)都在直线1122y x=+上,若抛物线y=ax2﹣x+1(a≠0)与线段AB有两个不同的交点,则a的取值范围是()A.a≤﹣2 B.a<98C.1≤a<98或a≤﹣2 D.﹣2≤a<98【答案】C【解析】【分析】分a>0,a<0两种情况讨论,根据题意列出不等式组,可求a的取值范围.【详解】∵抛物线y=ax2﹣x+1(a≠0)与线段AB有两个不同的交点,∴令1122x+=ax2﹣x+1,则2ax2﹣3x+1=0∴△=9﹣8a>0∴a<9 8①当a<0时,110111 aa++≤⎧⎨-+≤⎩解得:a≤﹣2∴a≤﹣2②当a>0时,110111 aa++≥⎧⎨-+≥⎩解得:a≥1∴1≤a<9 8综上所述:1≤a<98或a≤﹣2故选:C.【点睛】本题考查二次函数图象与系数的关系,一次函数图象上点的坐标特征,二次函数图象点的坐标特征,利用分类讨论思想解决问题是本题的关键.2.已知二次函数y =ax 2+bx +c (a ≠0)的图象如图,则下列4个结论:①abc <0;②2a +b =0;③4a +2b +c >0;④b 2﹣4ac >0;其中正确的结论的个数是( )A .1B .2C .3D .4【答案】D【解析】【分析】 根据二次函数y =ax 2+bx +c 系数符号由抛物线开口方向、对称轴、抛物线与y 轴的交点抛物线与x 轴交点的个数确定解答.【详解】①由抛物线的对称轴可知:﹣>0,∴ab <0,∵抛物线与y 轴的交点在正半轴上,∴c >0,∴abc <0,故①正确;②∵﹣=1, ∴b =﹣2a ,∴2a +b =0,故②正确.③∵(0,c )关于直线x =1的对称点为(2,c ),而x =0时,y =c >0,∴x =2时,y =c >0,∴y =4a +2b +c >0,故③正确;④由图象可知:△>0,∴b 2﹣4ac >0,故②正确;故选:D .【点睛】本题考查二次函数的图象与系数的关系,解题的关键是熟练运用二次函数的图象与性质,属于中考常考题型.3.已知抛物线2:4W y x x c =-+,其顶点为A ,与y 轴交于点B ,将抛物线W 绕原点旋转180︒得到抛物线'W ,点,A B 的对应点分别为','A B ,若四边形''ABA B 为矩形,则c 的值为( )A .3-B .3C .32D .52【答案】D【解析】【分析】先求出A(2,c-4),B(0,c),'(24),'(0)A c B c ---,,,,结合矩形的性质,列出关于c 的方程,即可求解.【详解】∵抛物线2:4W y x x c =-+,其顶点为A ,与y 轴交于点B ,∴A(2,c-4),B(0,c),∵将抛物线W 绕原点旋转180︒得到抛物线'W ,点,A B 的对应点分别为','A B ,∴'(24),'(0)A c B c ---,,,, ∵四边形''ABA B 为矩形,∴''AA BB =,∴[][]2222(2)(4)(4)(2)c c c --+---=,解得:52c =. 故选D .【点睛】本题主要考查二次函数图象的几何变换以及矩形的性质,掌握二次函数图象上点的坐标特征,关于原点中心对称的点的坐标特征以及矩形的对角线相等,是解题的关键.4.如图,二次函数2y ax bx c =++的图象如图所示,则一次函数y ax c =+和反比例函数b y x=在同平面直角坐标系中的图象大致是( )A .B .C .D .【答案】D【解析】【分析】直接利用二次函数图象经过的象限得出a ,b ,c 的值取值范围,进而利用一次函数与反比例函数的性质得出答案.【详解】∵二次函数y=ax 2+bx+c 的图象开口向下,∴a <0,∵二次函数y=ax 2+bx+c 的图象经过原点,∴c=0,∵二次函数y=ax 2+bx+c 的图象对称轴在y 轴左侧,∴a ,b 同号,∴b <0,∴一次函数y=ax+c ,图象经过第二、四象限,反比例函数y=b x图象分布在第二、四象限, 故选D .【点睛】此题主要考查了反比例函数、一次函数、二次函数的图象,正确把握相关性质是解题关键.5.二次函数2(,,y ax bx c a b c =++为常数,且0a ≠)中的x 与y 的部分对应值如表:下列结论错误的是( )A .0ac <B .3是关于x 的方程()210ax b x c +-+=的一个根;C .当1x >时,y 的值随x 值的增大而减小;D .当13x -<<时,()210.ax b x c +-+>【答案】C【解析】【分析】根据函数中的x 与y 的部分对应值表,可以求得a 、b 、c 的值 然后在根据函数解析式及其图象即可对各个选项做出判断.【详解】解:根据二次函数的x 与y 的部分对应值可知:当1x =-时,1y =-,即1a b c -+=-,当0x =时,3y =,即3c =,当1x =时,5y =,即5a b c ++=,联立以上方程:135a b c c a b c -+=-⎧⎪=⎨⎪++=⎩,解得:133a b c =-⎧⎪=⎨⎪=⎩,∴233y x x =-++;A 、1330=-⨯=-<ac ,故本选项正确;B 、方程()210ax b x c +-+=可化为2230x x -++=, 将3x =代入得:232339630-+⨯+=-++=,∴3是关于x 的方程()210ax b x c +-+=的一个根,故本选项正确; C 、233y x x =-++化为顶点式得:2321()24=--+y x , ∵10a =-<,则抛物线的开口向下, ∴当32x >时,y 的值随x 值的增大而减小;当32x <时,y 的值随x 值的增大而增大;故本选项错误; D 、不等式()210ax b x c +-+>可化为2230x x -++>,令2y x 2x 3=-++, 由二次函数的图象可得:当0y >时,13x -<<,故本选项正确;故选:C .【点睛】本题考查了待定系数法求二次函数解析式、二次函数的性质、二次函数与不等式的关系,根据表中数据求出二次函数解析式是解题的关键.6.如图,正方形ABCD 中,AB =4cm ,点E 、F 同时从C 点出发,以1cm /s 的速度分别沿CB ﹣BA 、CD ﹣DA 运动,到点A 时停止运动.设运动时间为t (s ),△AEF 的面积为S (cm 2),则S (cm 2)与t (s )的函数关系可用图象表示为( )A.B.C.D.【答案】D【解析】试题分析:分类讨论:当0≤t≤4时,利用S=S正方形ABCD﹣S△ADF﹣S△ABE﹣S△CEF可得S=﹣t2+4t,配成顶点式得S=﹣(t﹣4)2+8,此时抛物线的开口向下,顶点坐标为(4,8);当4<t≤8时,直接根据三角形面积公式得到S=(8﹣t)2=(t﹣8)2,此时抛物线开口向上,顶点坐标为(8,0),于是根据这些特征可对四个选项进行判断.解:当0≤t≤4时,S=S正方形ABCD﹣S△ADF﹣S△ABE﹣S△CEF=4•4﹣•4•(4﹣t)﹣•4•(4﹣t)﹣•t•t=﹣t2+4t=﹣(t﹣4)2+8;当4<t≤8时,S=•(8﹣t)2=(t﹣8)2.故选D.考点:动点问题的函数图象.7.若平面直角坐标系内的点M满足横、纵坐标都为整数,则把点M叫做“整点”.例如:P(1,0)、Q(2,﹣2)都是“整点”.抛物线y=mx2﹣4mx+4m﹣2(m>0)与x轴交于点A、B两点,若该抛物线在A、B之间的部分与线段AB所围成的区域(包括边界)恰有七个整点,则m的取值范围是()A.12≤m<1 B.12<m≤1C.1<m≤2D.1<m<2【答案】B【解析】【分析】画出图象,利用图象可得m的取值范围【详解】∵y =mx 2﹣4mx +4m ﹣2=m (x ﹣2)2﹣2且m >0,∴该抛物线开口向上,顶点坐标为(2,﹣2),对称轴是直线x =2.由此可知点(2,0)、点(2,﹣1)、顶点(2,﹣2)符合题意.①当该抛物线经过点(1,﹣1)和(3,﹣1)时(如答案图1),这两个点符合题意. 将(1,﹣1)代入y =mx 2﹣4mx +4m ﹣2得到﹣1=m ﹣4m +4m ﹣2.解得m =1. 此时抛物线解析式为y =x 2﹣4x +2.由y =0得x 2﹣4x +2=0.解得12120.622 3.42x x ==-≈+≈,. ∴x 轴上的点(1,0)、(2,0)、(3,0)符合题意. 则当m =1时,恰好有 (1,0)、(2,0)、(3,0)、(1,﹣1)、(3,﹣1)、(2,﹣1)、(2,﹣2)这7个整点符合题意.∴m ≤1.【注:m 的值越大,抛物线的开口越小,m 的值越小,抛物线的开口越大】答案图1(m =1时) 答案图2( m =时) ②当该抛物线经过点(0,0)和点(4,0)时(如答案图2),这两个点符合题意. 此时x 轴上的点 (1,0)、(2,0)、(3,0)也符合题意. 将(0,0)代入y =mx 2﹣4mx +4m ﹣2得到0=0﹣4m +0﹣2.解得m =12. 此时抛物线解析式为y =12x 2﹣2x . 当x =1时,得13121122y =⨯-⨯=-<-.∴点(1,﹣1)符合题意. 当x =3时,得13923122y =⨯-⨯=-<-.∴点(3,﹣1)符合题意. 综上可知:当m =12时,点(0,0)、(1,0)、(2,0)、(3,0)、(4,0)、(1,﹣1)、(3,﹣1)、(2,﹣2)、(2,﹣1)都符合题意,共有9个整点符合题意,∴m =12不符合题. ∴m >12.综合①②可得:当12<m≤1时,该函数的图象与x轴所围成的区域(含边界)内有七个整点,故选:B.【点睛】考查二次函数图象与系数的关系,抛物线与x轴的交点,画出图象,数形结合是解题的关键.8.二次函数y=x2+bx的对称轴为直线x=2,若关于x的一元二次方程x2+bx﹣t=0(t为实数)在﹣1<x<4的范围内有解,则t的取值范围是()A.0<t<5 B.﹣4≤t<5 C.﹣4≤t<0 D.t≥﹣4【答案】B【解析】【分析】先求出b,确定二次函数解析式,关于x的一元二次方程x2+bx﹣t=0的解可以看成二次函数y=x2﹣4x与直线y=t的交点,﹣1<x<4时﹣4≤y<5,进而求解;【详解】解:∵对称轴为直线x=2,∴b=﹣4,∴y=x2﹣4x,关于x的一元二次方程x2+bx﹣t=0的解可以看成二次函数y=x2﹣4x与直线y=t的交点,∵﹣1<x<4,∴二次函数y的取值为﹣4≤y<5,∴﹣4≤t<5;故选:B.【点睛】本题考查二次函数图象的性质,一元二次方程的解;将一元二次方程的解转换为二次函数与直线交点问题,数形结合的解决问题是解题的关键.9.已知抛物线y=x2+2x﹣m﹣1与x轴没有交点,则函数y=的大致图象是()A.B.C.D.【答案】B【解析】【分析】由题意可求m<﹣2,即可求解.【详解】∵抛物线y=x2+2x﹣m﹣1与x轴没有交点,∴△=4﹣4(﹣m﹣1)<0∴m<﹣2∴函数y=的图象在第二、第四象限,故选B.【点睛】本题考查了反比例函数的图象,二次函数性质,求m的取值范围是本题的关键.10.若二次函数y=ax2+bx+c(a≠0)的图象于x轴的交点坐标分别为(x1,0),(x2,0),且x1<x2,图象上有一点M(x0,y0)在x轴下方,对于以下说法:①b2﹣4ac>0②x=x0是方程ax2+bx+c=y0的解③x1<x0<x2④a(x0﹣x1)(x0﹣x2)<0其中正确的是()A.①③④B.①②④C.①②③D.②③【答案】B【解析】【分析】①根据二次函数图象与x轴有两个不同的交点,结合根的判别式即可得出△=b2-4ac>0,①正确;②由点M(x0,y0)在二次函数图象上,利用二次函数图象上点的坐标特征即可得出x=x0是方程ax2+bx+c=y0的解,②正确;③分a>0和a<0考虑,当a>0时得出x1<x0<x2;当a<0时得出x0<x1或x0>x2,③错误;④将二次函数的解析式由一般式转化为交点式,再由点M(x0,y0)在x轴下方即可得出y0=a(x0-x1)(x0-x2)<0,④正确.【详解】①∵二次函数y=ax2+bx+c(a≠0)的图象于x轴的交点坐标分别为(x1,0),(x2,0),且x1<x2,∴方程ax2+bx+c=0有两个不相等的实数根,∴△=b2-4ac>0,①正确;②∵图象上有一点M(x0,y0),∴a+bx0+c=y0,∴x=x 0是方程ax 2+bx+c=y 0的解,②正确;③当a >0时,∵M (x 0,y 0)在x 轴下方,∴x 1<x 0<x 2;当a <0时,∵M (x 0,y 0)在x 轴下方,∴x 0<x 1或x 0>x 2,③错误;④∵二次函数y=ax 2+bx+c (a≠0)的图象于x 轴的交点坐标分别为(x 1,0),(x 2,0), ∴y=ax 2+bx+c=a (x-x 1)(x-x 2),∵图象上有一点M (x 0,y 0)在x 轴下方,∴y 0=a (x 0-x 1)(x 0-x 2)<0,④正确;故选B .【点睛】本题考查了抛物线与x 轴的交点、二次函数图象上点的坐标特征以及二次函数图象与系数的关系,根据二次函数的相关知识逐一分析四条结论的正误是解题的关键.11.二次函数y=ax 2+bx+c (a≠0)的部分图象如图所示,图象过点(﹣1,0),对称轴为直线x=2,下列结论:(1)4a+b=0;(2)9a+c >﹣3b ;(3)7a ﹣3b+2c >0;(4)若点A (﹣3,y 1)、点B (﹣12,y 2)、点C (7,y 3)在该函数图象上,则y 1<y 3<y 2;(5)若方程a (x+1)(x ﹣5)=﹣3的两根为x 1和x 2,且x 1<x 2,则x 1<﹣1<5<x 2.其中正确的结论有( )A .2个B .3个C .4个D .5个【答案】B【解析】 根据题意和函数的图像,可知抛物线的对称轴为直线x=-2b a=2,即b=-4a ,变形为4a+b=0,所以(1)正确; 由x=-3时,y >0,可得9a+3b+c >0,可得9a+c >-3c ,故(2)正确;因为抛物线与x 轴的一个交点为(-1,0)可知a-b+c=0,而由对称轴知b=-4a ,可得a+4a+c=0,即c=-5a.代入可得7a ﹣3b+2c=7a+12a-5a=14a ,由函数的图像开口向下,可知a <0,因此7a ﹣3b+2c <0,故(3)不正确;根据图像可知当x <2时,y 随x 增大而增大,当x >2时,y 随x 增大而减小,可知若点A (﹣3,y 1)、点B (﹣12,y 2)、点C (7,y 3)在该函数图象上,则y 1=y 3<y 2,故(4)不正确;根据函数的对称性可知函数与x轴的另一交点坐标为(5,0),所以若方程a(x+1)(x ﹣5)=﹣3的两根为x1和x2,且x1<x2,则x1<﹣1<x2,故(5)正确.正确的共有3个.故选B.点睛:本题考查了二次函数图象与系数的关系:二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小,当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置,当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右;常数项c决定抛物线与y轴交点.抛物线与y轴交于(0,c);抛物线与x轴交点个数由△决定,△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.12.若用“*”表示一种运算规则,我们规定:a*b=ab﹣a+b,如:3*2=3×2﹣3+2=5.以下说法中错误的是()A.不等式(﹣2)*(3﹣x)<2的解集是x<3B.函数y=(x+2)*x的图象与x轴有两个交点C.在实数范围内,无论a取何值,代数式a*(a+1)的值总为正数D.方程(x﹣2)*3=5的解是x=5【答案】D【解析】【分析】根据题目中所给的运算法则列出不等式,解不等式即可判定选项A;根据题目中所给的运算法则求得函数解析式,由此即可判定选项B;根据题目中所给的运算法则可得a*(a+1)=a(a+1)﹣a+(a+1)=a2+a+1=(a+12)2+34>0,由此即可判定选项C;根据题目中所给的运算法则列出方程,解方程即可判定选项D.【详解】∵a*b=ab﹣a+b,∴(﹣2)*(3﹣x)=(﹣2)×(3﹣x)﹣(﹣2)+(3﹣x)=x﹣1,∵(﹣2)*(3﹣x)<2,∴x﹣1<2,解得x<3,故选项A正确;∵y=(x+2)*x=(x+2)x﹣(x+2)+x=x2+2x﹣2,∴当y=0时,x2+2x﹣2=0,解得,x1=﹣x2=﹣1B正确;∵a*(a+1)=a(a+1)﹣a+(a+1)=a2+a+1=(a+12)2+34>0,∴在实数范围内,无论a取何值,代数式a*(a+1)的值总为正数,故选项C正确;∵(x﹣2)*3=5,∴(x﹣2)×3﹣(x﹣2)+3=5,解得,x=3,故选项D错误;故选D .【点睛】本题是阅读理解题,根据题目中所给的运算法则得到相应的运算式子是解决问题的关键.13.在同一平面直角坐标系中,函数y=ax 2+bx 与y=bx+a 的图象可能是( )A .B .C .D .【答案】C【解析】试题解析:A 、对于直线y=bx+a 来说,由图象可以判断,a >0,b >0;而对于抛物线y=ax 2+bx 来说,对称轴x=﹣2b a<0,应在y 轴的左侧,故不合题意,图形错误. B 、对于直线y=bx+a 来说,由图象可以判断,a <0,b <0;而对于抛物线y=ax 2+bx 来说,图象应开口向下,故不合题意,图形错误.C 、对于直线y=bx+a 来说,由图象可以判断,a <0,b >0;而对于抛物线y=ax 2+bx 来说,图象开口向下,对称轴x=﹣2b a位于y 轴的右侧,故符合题意, D 、对于直线y=bx+a 来说,由图象可以判断,a >0,b >0;而对于抛物线y=ax 2+bx 来说,图象开口向下,a <0,故不合题意,图形错误.故选C .考点:二次函数的图象;一次函数的图象.14.如图,在边长为4的正方形ABCD 中,动点P 从A 点出发,以每秒1个单位长度的速度沿AB 向B 点运动,同时动点Q 从B 点出发,以每秒2个单位长度的速度沿BC CD →方向运动,当P 运动到B 点时,P Q 、点同时停止运动.设P 点运动的时间为t 秒,APQ ∆的面积为S ,则表示S 与t 之间的函数关系的图象大致是( )A .B .C .D .【答案】D【解析】【分析】本题应分两段进行解答,①点P 在AB 上运动,点Q 在BC 上运动;②点P 在AB 上运动,点Q 在CD 上运动,依次得出S 与t 的关系式,即可判断得出答案.【详解】解:当点P 在AB 上运动,点Q 在BC 上运动时,此时,,2AP t BQ t ==2122APQ S t t t =⋅⋅=V ,函数图象为抛物线; 当点P 在AB 上运动,点Q 在BC 上运动时,此时,AP t =,APQ V 底边AP 上的高保持不变1422APQ S t t =⋅⋅=V ,函数图象为一次函数; 故选:D .【点睛】本题考查的知识点是函数图象,理解题意,分段求出S 与t 之间的函数关系是解此题的关键.15.在同一平面直角坐标系中,函数3y x a =+与2+3y ax x =的图象可能是( ) A . B .C .D .【答案】C【解析】【分析】根据一次函数及二次函数的图像性质,逐一进行判断.【详解】解:A.由一次函数图像可知a >0,因此二次函数图像开口向上,但对称轴302a -<应在y 轴左侧,故此选项错误;B. 由一次函数图像可知a <0,而由二次函数图像开口方向可知a >0,故此选项错误;C. 由一次函数图像可知a <0,因此二次函数图像开口向下,且对称轴302a->在y 轴右侧,故此选项正确;D. 由一次函数图像可知a >0,而由二次函数图像开口方向可知a <0,故此选项错误; 故选:C .【点睛】本题考查二次函数与一次函数图象的性质,解题的关键是利用数形结合思想分析图像,本题属于中等题型.16.如图1,在△ABC 中,∠B =90°,∠C =30°,动点P 从点B 开始沿边BA 、AC 向点C 以恒定的速度移动,动点Q 从点B 开始沿边BC 向点C 以恒定的速度移动,两点同时到达点C ,设△BPQ 的面积为y (cm 2).运动时间为x (s ),y 与x 之间关系如图2所示,当点P 恰好为AC 的中点时,PQ 的长为( )A.2 B.4 C.23D.43【答案】C【解析】【分析】点P、Q的速度比为3:3,根据x=2,y=63,确定P、Q运动的速度,即可求解.【详解】解:设AB=a,∠C=30°,则AC=2a,BC=3a,设P、Q同时到达的时间为T,则点P的速度为3aT,点Q的速度为3aT,故点P、Q的速度比为3:3,故设点P、Q的速度分别为:3v、3v,由图2知,当x=2时,y=63,此时点P到达点A的位置,即AB=2×3v=6v,BQ=2×3v=23v,y=12⨯AB×BQ=12⨯6v×23v=63,解得:v=1,故点P、Q的速度分别为:3,3,AB=6v=6=a,则AC=12,BC=63,如图当点P在AC的中点时,PC=6,此时点P运动的距离为AB+AP=12,需要的时间为12÷3=4,则BQ=3x=43,CQ=BC﹣BQ=63﹣43=23,过点P作PH⊥BC于点H,PC=6,则PH=PC sin C=6×12=3,同理CH=3,则HQ=CH﹣CQ=333,PQ22PH HQ+39+3,故选:C .【点睛】本题考查的是动点图象问题,此类问题关键是:弄清楚不同时间段,图象和图形的对应关系,进而求解.17.如图所示,二次函数y=ax 2+bx+c (a≠0)的图象经过点(﹣1,2),且与x 轴交点的横坐标分别为x 1、x 2,其中﹣2<x 1<﹣1,0<x 2<1.下列结论:①4a ﹣2b+c <0;②2a ﹣b <0;③abc <0;④b 2+8a <4ac .其中正确的结论有( )A .1个B .2个C .3个D .4个【答案】C【解析】【分析】 首先根据抛物线的开口方向可得到a <0,抛物线交y 轴于正半轴,则c >0,而抛物线与x 轴的交点中,﹣2<x 1<﹣1、0<x 2<1说明抛物线的对称轴在﹣1~0之间,即x =﹣2b a>﹣1,可根据这些条件以及函数图象上一些特殊点的坐标来进行判断【详解】 由图知:抛物线的开口向下,则a <0;抛物线的对称轴x=﹣2b a>﹣1,且c >0; ①由图可得:当x=﹣2时,y <0,即4a ﹣2b+c <0,故①正确; ②已知x=﹣2b a>﹣1,且a <0,所以2a ﹣b <0,故②正确; ③抛物线对称轴位于y 轴的左侧,则a 、b 同号,又c >0,故abc >0,所以③不正确;④由于抛物线的对称轴大于﹣1,所以抛物线的顶点纵坐标应该大于2,即:244ac b a >2,由于a <0,所以4ac ﹣b2<8a ,即b 2+8a >4ac ,故④正确;因此正确的结论是①②④.故选:C .【点睛】本题主要考查对二次函数图象与系数的关系,抛物线与x 轴的交点,二次函数图象上点的坐标特征等知识点的理解和掌握,能根据图象确定与系数有关的式子的正负是解此题的关键.18.在平面直角坐标系中,点P 的坐标为()1,2,将抛物线21322y x x =-+沿坐标轴平移一次,使其经过点P ,则平移的最短距离为( )A .12B .1C .5D .52【答案】B【解析】【分析】先求出平移后P 点对应点的坐标,求出平移距离,即可得出选项.【详解】 解:21322y x x =-+=()215322x --, 当沿水平方向平移时,纵坐标和P 的纵坐标相同,把y=2代入得:解得:x=0或6,平移的最短距离为1-0=1;当沿竖直方向平移时,横坐标和P 的横坐标相同,把x=1代入得:解得:y=12-, 平移的最短距离为152=22⎛⎫--⎪⎝⎭, 即平移的最短距离是1,故选B.【点睛】本题考查了二次函数图象上点的坐标特征,能求出平移后对应的点的坐标是解此题的关键.19.平移抛物线y =﹣(x ﹣1)(x +3),下列哪种平移方法不能使平移后的抛物线经过原点( )A .向左平移1个单位B .向上平移3个单位C .向右平移3个单位D .向下平移3个单位【答案】B【解析】【分析】先将抛物线解析式转化为顶点式,然后根据顶点坐标的平移规律即可解答.【详解】解:y =﹣(x ﹣1)(x +3)=-(x+1)2+4A 、向左平移1个单位后的解析式为:y =-(x+2)2+4,当x=0时,y=0,即该抛物线经过原点,故本选项不符合题意;B 、向上平移3个单位后的解析式为:y=-(x+1)2+7,当x=0时,y=3,即该抛物线不经过原点,故本选项符合题意;C 、向右平移3个单位后的解析式为:y=-(x-2)2+4,当x=0时,y=0,即该抛物线经过原点,故本选项不符合题意.;D 、向下平移3个单位后的解析式为:y=-(x+1)2+1,当x=0时,y=0,即该抛物线经过原点,故本选项不符合题意.【点睛】本题考查了二次函数图像的平移,函数图像平移规律:上移加,下移减,左移加,右移减.20.在同一坐标系中,二次函数2y ax bx =+与一次函数y bx a =-的图像可能是( ) A . B .C .D .【答案】C【解析】【分析】直线与抛物线联立解方程组,若有解,则图象有交点,若无解,则图象无交点;根据二次函数的对称轴在y 左侧,a ,b 同号,对称轴在y 轴右侧a ,b 异号,以及当a 大于0时开口向上,当a 小于0时开口向下,来分析二次函数;同时在假定二次函数图象正确的前提下,根据一次函数的一次项系数为正,图象从左向右逐渐上升,一次项系数为负,图象从左向右逐渐下降;一次函数的常数项为正,交y 轴于正半轴,常数项为负,交y 轴于负半轴.如此分析下来,二次函数与一次函数无矛盾者为正确答案.【详解】解:由方程组2y ax bx y bx a⎧=+⎨=-⎩得ax 2=−a , ∵a ≠0∴x 2=−1,该方程无实数根,故二次函数与一次函数图象无交点,排除B.A:二次函数开口向上,说明a>0,对称轴在y轴右侧,则b<0;但是一次函数b为一次项系数,图象显示从左向右上升,b>0,两者矛盾,故A错;C:二次函数开口向上,说明a>0,对称轴在y轴右侧,则b<0;b为一次函数的一次项系数,图象显示从左向右下降,b<0,两者相符,故C正确;D:二次函数的图象应过原点,此选项不符,故D错.故选C.【点睛】本题考查的是同一坐标系中二次函数与一次函数的图象问题,必须明确二次函数的开口方向与a的正负的关系,a,b的符号与对称轴的位置关系,并结合一次函数的相关性质进行分析,本题中等难度偏上.。

【精编】2021年超详细高考数学复习二次函数测试题

【精编】2021年超详细高考数学复习二次函数测试题

21. 解析式、待定系数法高考数学复习二次函数测试题若 fx xbx c 、且 f 10 、 f 3 0 、求 f 1 的值.变式 1:若二次函数f xaxbx c 的图像的顶点坐标为2、1 、与 y 轴的交点坐标为(0、11) 、则 A .a1、b4、 c 11B. a3、b12、 c 11C. a 3、 b6、 c 11D. a3、b12、c 11变式 2: 若 fx xb 2 x 3、 x [b 、 c] 的图像 x=1 对称、则c= .变式 3: 若二次函数f xax 2 bx c 的图像与 x 轴有两个不同的交点A x 1、0 、Bx 、0 、且 x 2x226 、试问该二次函数的图像由 f x3 x 1 2 的图像向上平移几个2129单位得到?2. 图像特征将函数f x3x6 x 1 配方、确定其对称轴、顶点坐标、求出它的单调区间及最大值或最小值、并画出它的图像. 变式 1 : 已 知二次 函数f xaxbx c 、 如 果f x 1f x 2 ( 其 中 x 1x 2 ) 、 则fx 1 x 2 2b b A .B .2 aaC.cD .4ac b 24a变式 2:函数 fx x 2 px q 对任意的 x 均有 f 1 x f 1 x 、那么 f 0 、f1 、f 1 的大小关系是yA . f1 f 1f 0 B . f 0 f 1 f 1C . f1f 0 f1D . f1f 0f 1变式 3: 已知函数f x ax 2 bx c 的图像如右图所示、请至少写出三个与系数 a 、b 、c 有关的正确命题.Ox22223.单调性22222已知函数f x x2x 、 g x x2x x [2、4] .(1) 求 fx 、 g x 的单调区间; (2) 求 f x 、 g x 的最小值.变式 1: 已知函数f xx 2 4ax 2 在区间、6内单调递减、则 a 的取值范围是A . a 3B . a3 C . a 3 D . a 3 变式 2:已知函数是.f xx 2a 1 x5 在区间 (1 2、1)上为增函数、那么f 2 的取值范围变式 3: 已知函数f x xkx 在 [2、 4] 上是单调函数、求实数 k 的取值范围.4. 最值已知函数f xx2x 、g xx2x x[2、4] .(1) 求 fx 、 g x 的单调区间; (2) 求 f x 、 g x 的最小值.变式 1:已知函数f xx2x 3在区间 [0、 m ]上有最大值3、最小值 2、则 m 的取值范围是A . 1、B . 0、2C . 1、2D .、2变式 2: 若函数 y3 x4 的最大值为 M 、最小值为 m 、则 M + m 的值等于.变式 3: 已知函数f x4x 2 4ax a 2 2a 2 在区间 [0、2] 上的最小值为 3、求 a 的值.5. 奇偶性已知函数f x 是定义在 R 上的奇函数、当 x ≥0 时、f x x 1x .画出函数 f x 的图像、并求出函数的解析式.变式 1: 若函数 f xm 1 x2m21 x 1是偶函数、则在区间 、0 上 f x 是22A .增函数B .减函数C.常数D.可能是增函数,也可能是常数变式2:若函数 f x ax2bx 3a b a 1 x 2a 是偶函数,则点a,b 的坐标是.变式3:设a 为实数,函数 f ( x) x 2 | x a | 1 ,x R.(I) 讨论 f ( x) 的奇偶性;(II) 求f ( x) 的最小值.6.图像变换已知 f ( x) x23xx24x3,6x3, 35,1xxx1.6(1)画出函数的图象;(2) 求函数的单调区间;(3)求函数的最大值和最小值.变式1:指出函数y x 2 2 x 3 的单调区间.楠变式2:已知函数 f ( x) | x2 2 a x b | (x R) .给下列命题:① f ( x) 必是偶函数;② 当f(0) f (2) 时、 f (x) 的图像必关于直线x=1 对称;③若a2 b0 、则 f ( x) 在区间[ a、+∞) 上是增函数;④f (x) 有最大值| a 2 b | .其中正确的序号是.③变式3:设函数 f (x) x | x | bx c、给出下列4个命题:①当c=0 时、y f ( x) 是奇函数;②当b=0、c>0 时、方程 f ( x) 0 只有一个实根;楠③ yf ( x) 的图象关于点( 0、c )对称;④方程 f ( x)0 至多有两个实根.上述命题中正确的序号为.7. 值域求二次函数 2f ( x)2 x6 x 在下列定义域上的值域:(1) 定义域为 x Z 0x 3 ; (2) 定义域为 2、1 .变式 1: 函数 f (x)2x6x 2 x 2 的值域是3 2A . 20、2B . 20、4C . 920、29 D .20、2变式 2: 函数 y=cos2x+sinx 的值域是.变式 3:已知二次函数 f (x) = a x 2 + bx ( a 、b 为常数、且 a ≠ 0)、满足条件 f (1 + x) = f (1 - x)、且方程 f ( x) = x 有等根.(1) 求 f ( x) 的解析式;(2) 是否存在实数 m 、n (m < n )、使 f (x) 的定义域和值域分别为[m 、n] 和 [3 m 、3n]、如果存在、求出m 、 n 的值、如果不存在、说明理由.8. 恒成立问题当 a 、 b 、c 具有什么关系时、二次函数f xaxbx c 的函数值恒大于零?恒小于零?变式 1: 已知函数 f (x) = lg (a x 2 + 2x + 1) .(I) 若函数 f (x) 的定义域为 R 、求实数 a 的取值范围; (II) 若函数 f (x) 的值域为 R 、求实数 a 的取值范围.变式 2: 已知函数 f ( x)2xax 3 a 、若 x2、2时、有 f ( x) 2 恒成立、求 a 的取值范围.22楠变式3:若f (x) = x 2 + bx + c、不论、为何实数、恒有 f (sin )≥0、f (2 + cos )≤0.(I) 求证:b + c = -1;(II) 求证:c≥3;(III) 若函数 f (sin ) 的最大值为8、求b、c 的值.9. 根与系数关系右图是二次函数 f x ax bx c 的图像、它与x 轴交于点x1、0和x2、、试确定a、 b、 c以及x1x2、x1x2的符号.y1xx1 O 1 x2变式1:二次函数y ax 2 b 与一次函数y ax b(a b) 在同一个直角坐标系的图像为y y y yOx O xOx OxA .B.C. D .楠2m变式2:直线y mx 3 与抛物线C1 : y x25mx 4m、C 2 : y x 2( 2m 1) x 23、C3 : y x23mx 2m 3 中至少有一条相交、则m 的取值范围是.变式3:对于函数 f (x)、若存在x0 R 、使 f (x0) = x0成立、则称x0为 f (x) 的不动点.如果函数 f (x) = a x 2 + bx + 1(a > 0 )有两个相异的不动点x1、x2.(I) 若x1 < 1 < x2、且 f (x) 的图象关于直线x = m 对称、求证m > 1 ;2(II) 若| x1 | < 2 且| x1-x2 | = 2 、求 b 的取值范围.10. 应用绿缘商店每月按出厂价每瓶 3 元购进一种饮料.根据以前的统计数据、若零售价定为每瓶 4 元、每月可销售400 瓶;若每瓶售价每降低0.05 元、则可多销售40 瓶.在每月的进货量当月销售完的前提下、请你给该商店设计一个方安:销售价应定为多少元和从工厂购进多少瓶时、才可获得最大的利润?变式1:在抛物线 f x xy ax 与x 轴所围成图形的内接矩形(一边在x 轴上)中(如图)、求周长最长的内接矩形两边之比、其中a 是正实数.A DxO B C2变式 2:某民营企业生产 A , B 两种产品,根据市场调查与预测, A 产 品的利润与投资成正比,其关系如图一;B 产品的利润与投资的算术平 方根成正比,其关系如图二(注:利润和投资单位:万元) (1) 分别将 A 、B 两种产品的利润表示为投资的函数关系式; (2) 该企业已筹集到 10 万元资金,并全部投入 A ,B 两种产品的生产,问:怎样分配这 10 万元投资, 才能使企业获得最大利润?其最大利润约为多少元(精确到 1 万元)? 变式 3: 设 a 为实数,记函数 f (x) a 1 x 21 x 1 x 的最大值为 g(a) .(Ⅰ)求 g(a);(Ⅱ)试求满足 g(a) g( 1) 的所有实数 a .楠a楠。

高考二次函数试题及答案

高考二次函数试题及答案

高考二次函数试题及答案1. 已知二次函数f(x)=ax^2+bx+c(a≠0),若其图像经过点(1,3),(2,-1),(3,-3),求a,b,c的值。

解:将点(1,3),(2,-1),(3,-3)代入二次函数f(x)=ax^2+bx+c,得到以下方程组:\begin{cases}a+b+c=3 \\4a+2b+c=-1 \\9a+3b+c=-3\end{cases}解此方程组,得到a=-2,b=4,c=-3。

因此,二次函数的解析式为f(x)=-2x^2+4x-3。

2. 某二次函数的图像开口向上,且经过点(-1,0),(2,0),求该二次函数的解析式。

解:由于二次函数的图像开口向上,可知a>0。

设二次函数的解析式为f(x)=a(x+1)(x-2)。

将点(-1,0)和(2,0)代入解析式,得到a=1。

因此,该二次函数的解析式为f(x)=(x+1)(x-2)=x^2-x-2。

3. 已知二次函数f(x)=ax^2+bx+c(a>0)的图像与x轴有两个交点,且这两个交点的横坐标之和为-1,求b的值。

解:根据题意,二次函数f(x)=ax^2+bx+c的图像与x轴有两个交点,设这两个交点的横坐标分别为x1和x2。

根据根与系数的关系,有x1+x2=-b/a。

又因为x1+x2=-1,所以-b/a=-1,即b=a。

由于a>0,所以b>0。

4. 某二次函数的图像经过点(0,1),且其顶点坐标为(1,-4),求该二次函数的解析式。

解:设二次函数的解析式为f(x)=a(x-1)^2-4。

将点(0,1)代入解析式,得到a(0-1)^2-4=1,解得a=5。

因此,该二次函数的解析式为f(x)=5(x-1)^2-4=5x^2-10x+1。

5. 已知二次函数f(x)=ax^2+bx+c(a≠0)的图像经过点(-2,0),(4,0),且在x=2时取得最大值,求a,b,c的值。

解:由于二次函数f(x)=ax^2+bx+c的图像经过点(-2,0),(4,0),可知其对称轴为x=1。

二次函数练习题及答案

二次函数练习题及答案

二次函数练习题及答案1. 已知二次函数的顶点为(2, 3),且经过点(1, 5),求该二次函数的解析式。

2. 抛物线y=ax^2+bx+c与x轴交于点A(-1, 0)和B(3, 0),求抛物线的对称轴方程。

3. 函数f(x)=2x^2-4x+m在区间[0, 2]上的最大值为8,求m的值。

4. 已知二次函数y=ax^2+bx+c的图象经过点(-1, 2)和(2, 2),且在x=1处取得最小值,求a、b、c的值。

5. 抛物线y=ax^2+bx+c的图象开口向上,且经过点(0, 1)和(2, 5),求a的取值范围。

6. 函数y=x^2-2x+3的图象与x轴的交点坐标为多少?7. 抛物线y=-2x^2+4x+1的顶点坐标是什么?8. 已知二次函数y=ax^2+bx+c的图象与y轴交于点(0, 2),且在x=-1处取得最大值,求a、b、c的值。

9. 函数f(x)=x^2-6x+8在区间[1, 4]上的最大值和最小值分别是多少?10. 抛物线y=3x^2-6x+2与x轴的交点坐标是什么?11. 已知二次函数y=ax^2+bx+c的图象经过点(1, 0)和(-2, 0),且在x=0处取得最小值,求a、b、c的值。

12. 函数y=2x^2-4x+1在区间[0, 3]上的最大值和最小值分别是多少?13. 抛物线y=-x^2+2x+3的图象开口向下,求抛物线的顶点坐标。

14. 已知二次函数y=ax^2+bx+c的图象经过点(-3, -2)和(1, -2),求a、b、c的值。

15. 函数y=x^2-4x+5的图象与x轴的交点坐标为多少?16. 抛物线y=4x^2-12x+9的顶点坐标是什么?17. 已知二次函数y=ax^2+bx+c的图象与y轴交于点(0, -1),且在x=2处取得最大值,求a、b、c的值。

18. 函数f(x)=-2x^2+8x-8在区间[0, 4]上的最大值和最小值分别是多少?19. 抛物线y=x^2-4x+5的图象开口向上,求抛物线的对称轴方程。

二次函数综合问题(高考专题,含答案)

二次函数综合问题(高考专题,含答案)

二次函数综合问题一、转化为最值问题(值域)1、设m 是实数,记M={m |m >1},f(x)=log 3(x 2-4mx+4m 2+m+11-m ). (1)证明:当m ∈M 时,f(x)对所有实数都有意义;反之,若f(x)对所有实数x 都有意义,则m ∈M ; (2)当m ∈M 时,求函数f(x)的最小值;(3)求证:对每个m ∈M,函数f(x)的最小值都不小于1. 解:(1)证明:先将f(x)变形:f(x)=log 3[(x -2m)2+m+11-m ], 当m ∈M 时,m>1,∴(x -m)2+m+11-m >0恒成立,故f(x)的定义域为R 。

反之,若f(x)对所有实数x 都有意义,则只须x 2-4mx+4m 2+m+11-m >0。

令Δ<0,即16m 2-4(4m 2+m+11-m )<0,解得m>1,故m ∈M 。

(2)解析:设u=x 2-4mx+4m 2+m+11-m ,∵y=log 3u 是增函数,∴当u 最小时,f(x)最小。

而u=(x -2m)2+m+11-m ,显然,当x=m 时,u 取最小值为m+11-m ,此时f(2m)=log 3(m+11-m )为最小值。

(3)证明:当m ∈M 时,m+11-m =(m -1)+ 11-m +1≥3,当且仅当m=2时等号成立。

∴log 3(m+11-m )≥log 33=1。

2、x x f f bx ax x f a b a ==+=≠)(0)2()(02,并使方程,且,为常数,,已知有等根 (1)求()x f 的解析式;(2)是否存在实数()n m n m <,,使f(x)的定义域和值域分别为[]n m ,和[]n m 2,2。

解:0)2()(12=+=f bx ax x f ,且)( ∴+=420a b又方程,即f x x ax bx x ()=+=2即有等根ax b x 210+-=()211004)1(2-===⨯⨯--=∆∴a b a b ,从而,即 x x x f +-=∴221)( 2121)1(2121)(222≤+--=+-=x x x x f )( 41212≤≤n n ,则有又f(x)在[m ,n ]上是增函数(或对称轴x =1≥n ) ⎪⎪⎩⎪⎪⎨⎧==≤<∴n n f m m f n m 2)(2)(41 解得,m n =-=20∴存在m =-2,n =0使f(x)的定义域和值域分别为[m ,n ]和[2m ,2n ]。

二次函数经典例题20题

二次函数经典例题20题

二次函数经典例题20题题目1:已知二次函数y=2x²+4x-1的图象与x轴交于点A和点B,交于y轴的点为C,求△ABC的面积。

解析:首先求出交于x轴的点:令y=0,我们可以得到2x²+4x-1=0,利用求根公式可以求出x的值:x₁=(-4+√(4²-4*2*(-1)))/(2*2)=-2+√3x₂=(-4-√(4²-4*2*(-1)))/(2*2)=-2-√3所以点A的坐标是(-2+√3,0),点B的坐标是(-2-√3,0)接下来求出交于y轴的点:当x=0时,y=2*0²+4*0-1=-1所以点C的坐标是(0,-1)下面就可以求△ABC的面积了。

用△ABC的面积公式S=½*AB*CH,其中AB为√((x₂-x₁)²+(y₂-y₁)²),CH为y轴的长度AB=√(((-2-√3)-(-2+√3))²+(0-0)²)=√((2√3)²)=2√3CH=,-1-0,=1所以△ABC的面积为S=½*2√3*1=√3二次函数y=ax²+bx+c图象与y轴交于点A,与x轴交于点B和点C,并且AB的斜率为2,求a的值。

解析:首先根据图象与y轴交于点A,得到点A的坐标是(0,a*0²+b*0+c)=(0,c)然后弧像与x轴交于点B和点C。

假设点B的坐标是(x₁,0),点C 的坐标是(x₂,0)由题意已知,AB的斜率为2,所以可以得到斜率的表达式:k=2=(0-a)/(x₁-0),即a=-2x₁由于图像关于y轴对称,所以点C的坐标为(-x₂,0)然后我们知道由二次函数的性质可知,二次函数的对称轴过抛物线的顶点,则对称轴的表达式是x=-b/2a而顶点的横坐标为x₀=-b/2a,所以点A的横坐标为x₀=-b/2a=0。

代入a=-2x₁可得到-1/2*x₁=-b/2a=0,即-1/2*x₁=0解得x₁=0所以a的值为0。

高考数学专题《二次函数与一元二次方程、不等式》习题含答案解析

高考数学专题《二次函数与一元二次方程、不等式》习题含答案解析

专题2.3 二次函数与一元二次方程、不等式1.(浙江高考真题)已知a ,b ,c ∈R ,函数f (x )=ax 2+bx +c .若f (0)=f (4)>f (1),则( )A .a >0,4a +b =0B .a <0,4a +b =0C .a >0,2a +b =0D .a <0,2a +b =0【答案】A 【解析】由已知得f (x )的图象的对称轴为x =2且f (x )先减后增,可得选项.【详解】由f (0)=f (4),得f (x )=ax 2+bx +c 图象的对称轴为x =-2ba=2,∴4a +b =0,又f (0)>f (1),f (4)>f (1),∴f (x )先减后增,于是a >0,故选:A.2.(2021·全国高三专题练习(文))已知函数42()f x x x =-,则错误的是( )A .()f x 的图象关于y 轴对称B .方程()0f x =的解的个数为2C .()f x 在(1,)+∞上单调递增D .()f x 的最小值为14-【答案】B 【解析】结合函数的奇偶性求出函数的对称轴,判断A ,令()0f x =,求出方程的解的个数,判断B ,令2t x =,2211()()24g t t t t =-=--,从而判断C ,D 即可.【详解】42()f x x x =-定义域为R ,显然关于原点对称,又()()4242()f x x x x x -=---=-()f x =,所以()y f x =是偶函数,关于y 轴对称,故选项A 正确.令()0f x =即2(1)(1)0x x x +-=,解得:0x =,1,1-,函数()f x 有3个零点,故B 错误;练基础令2t x =,2211()(24g t t t t =-=--,1x >时,函数2t x =,2()g t t t =-都为递增函数,故()f x 在(1,)+∞递增,故C 正确;由12t =时,()g t 取得最小值14-,故()f x 的最小值是14-,故D 正确.故选:B .3.(2021·北京高三其他模拟)设x ∈R ,则“2560x x -+<”是“|2|1x -<”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件【答案】A 【解析】分别解出两个不等式的解集,比较集合的关系,从而得到两命题的逻辑关系.【详解】2560x x -+<23x ⇒<<;|2|1x -<13x ⇒<<;易知集合()2,3是()1,3的真子集,故是充分不必要条件.故选:A.4.(2021·全国高三月考)已知函数2()f x x bx c =-++,则“02b f f ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭”是“方程()0f x =有两个不同实数解且方程(())0f f x =恰有两个不同实数解”的( )A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件【答案】C 【解析】根据二次函数的图象与性质,求得((02b f f >,反之若()0f t =有两个正根12t t <,当12max ()t t f x <<,得到方程(())0f f x =恰有四个不同实数解,结合充分条件、必要条件的判定方法,即可求解.【详解】由2()f x x bx c =-++表示开口向下的抛物线,对称轴的方程为2b x =,要使得方程()0f x =有两个不同实数,只需()02b f >,要使得方程(())0f f x =恰有两个不同实数解,设两解分别为12,x x ,且12x x <,则满足1max 2()x f x x <<,因为12(,)x x x ∈时,()0f x >,所以((02bf f >,所以必要性成立;反之,设(02b t f =>,即()0f t >,当()0f t =有两个正根,且满足12t t <,若12max ()t t f x <<,此时方程(())0f f x =恰有四个不同实数解,所以充分性不成立.所以“02b f f ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭”是“方程()0f x =有两个不同实数解且方程(())0f f x =恰有两个不同实数解”的必要不充分条件.故选:C.5.(2021·全国高三专题练习)若当x ∈(1,2)时,函数y =(x -1)2的图象始终在函数y =log a x 的图象的下方,则实数a 的取值范围是___________.【答案】1<a ≤2.【解析】在同一个坐标系中画出两个函数的图象,结合图形,列出不等式组,求得结果.【详解】如图,在同一平面直角坐标系中画出函数y =(x -1)2和y =log a x 的图象.由于当x ∈(1,2)时,函数y =(x -1)2的图象恒在函数y =log a x 的图象的下方,则1log 21a a >⎧⎨⎩…,解得1<a ≤2.故答案为:1<a ≤2.6.(2020·山东省微山县第一中学高一月考)若不等式220ax x a ++<对任意x ∈R 恒成立,则实数a 的取值范围是_________.【答案】(,1)-∞-【解析】∵不等式220ax x a ++<对任意x ∈R恒成立,∴函数22y ax x a =++的图象始终在x 轴下方,∴20440a a <⎧⎨∆=-<⎩,解得1a <-,故答案为:(,1)-∞-.7.(2021·全国高三专题练习)已知当()0,x ∈+∞时,不等式9x -m ·3x +m +1>0恒成立,则实数m 的取值范围是________.【答案】(,2-∞+【解析】先换元3x =t ,()1,t ∈+∞,使f (t )=t 2-mt +m +1>0在()1,t ∈+∞上恒成立,再利用二次函数图象特征列限定条件,计算求得结果即可.【详解】令3x =t ,当()0,x ∈+∞时,()1,t ∈+∞,则f (t )=t 2-mt +m +1>0在()1,t ∈+∞上恒成立,即函数在()1,t ∈+∞的图象在x 轴的上方,而判别式()()224144m m m m ∆=--+=--,故2440m m ∆=--<或()0121110m f m m ∆≥⎧⎪⎪≤⎨⎪=-++≥⎪⎩,解得2m <+.故答案为:(,2-∞+.8.(2021·浙江高一期末)已知函数2()1(0)f x ax x a =-+≠,若任意1x 、2[1,)x ∈+∞且12x x ≠,都有()()12121f x f x x x ->-,则实数a 的取值范围是___________.【答案】[)1,+∞【解析】本题首先可令12x x >,将()()12121f x f x x x ->-转化为()()1122f x x f x x ->-,然后令()()g x f x x =-,通过函数单调性的定义得出函数()g x 在[1,)+∞上是增函数,最后分为0a =、0a ≠两种情况进行讨论,结合二次函数性质即可得出结果.【详解】因为任意1x 、2[1,)x ∈+∞且12x x ≠,都有()()12121f x f x x x ->-,所以令12x x >,()()12121f x f x x x ->-即()()1212f x f x x x ->-,()()1122f x x f x x ->-,令()()221g x f x x ax x =-=-+,则函数()g x 在[1,)+∞上是增函数,若0a =,则()21g x x =-+,显然不成立;若0a ≠,则0212a a>⎧⎪-⎨-≤⎪⎩,解得1a ≥,综合所述,实数a 的取值范围是[)1,+∞,故答案为:[)1,+∞.9.(2021·四川成都市·高三三模(理))已知函数21,0()2,0x x f x x x x --≤⎧=⎨-+>⎩,若()()12f x f x =,且12x x ≠,则12x x -的最大值为________.【答案】134【解析】由()()12f x f x =得,212221x x x =--,把12x x -转化为212212231x x x x x x -=-=-++,利用二次函数求最值.【详解】()y f x =的图像如图示:不妨令12x x <,由图像可知,10x ≤,20x >由()()22121221221221f x f x x x x x x x =⇒--=-+⇒=--,由212212231x x x x x x -=-=-++当232x =时,12max134x x -=.故答案为:134.10.(2021·浙江高一期末)已知函数2()24f x kx x k =-+.(Ⅰ)若函数()f x 在区间[2,4]上单调递减,求实数k 的取值范围;(Ⅱ)[2,4]x ∀∈,()0f x ≥恒成立,求实数k 的取值范围.【答案】(Ⅰ)1(,]4-∞;(Ⅱ)1[,)2+∞【解析】(Ⅰ)由题意讨论0k =,0k >与0k <三种情况,求出函数的对称轴,结合区间,列不等式求解;(Ⅱ)利用参变分离法得24k x x≥+在[2,4]上恒成立,令4()f x x x =+,根据单调性,求解出最值,即可得k 的取值范围.【详解】(Ⅰ)当0k =时,()2f x x =-,在区间[2,4]上单调递减,符合题意;当0k >时,对称轴为1x k=,因为()f x 在区间[2,4]上单调递减,所以14k ≥,得14k ≤,所以104k <≤;当0k <时,函数()f x 在区间[2,4]上单调递减,符合题意,综上,k 的取值范围为1(,]4-∞.(Ⅱ)[2,4]x ∀∈,()0f x ≥恒成立,即[2,4]x ∀∈,22244x k x x x≥=++恒成立,令4()f x x x=+,可知函数()f x 在[2,4]上单调递增,所以()4f x ≥,所以max 2142x x ⎛⎫ ⎪= ⎪⎪+⎝⎭,所以12k ≥,故k 的取值范围为1[,)2+∞1.(2020·山东省高三二模)已知函数()()21f x x m x m =+--,若()()0ff x …恒成立,则实数m 的范围是( )A.3,3⎡--+⎣B.1,3⎡--+⎣C .[]3,1-D.3⎡⎤-+⎣⎦【答案】A 【解析】()()()()211f x x m x m x m x =+--=-+,(1)1m >-,()()0ff x ≥恒成立等价于()f x m ≥或()1f x ≤-恒成立,即()()21f x x m x m m =+--≥或()()211f x x m x m =+--≤-(不合题意,舍去)恒成立;即01m ∆≤⎧⎨>-⎩,解得(1,3m ∈--+,(2)1m =-恒成立,符合题意;(3)1m <-,()()0ff x ≥恒成立等价于()f x m ≤(不合题意,舍去)或()1f x ≥-恒成立,等价于1m ∆≤⎧⎨<-⎩,解得[)3,1m ∈--.综上所述,3,3m ⎡∈--+⎣,故选:A.2.(2021·浙江高三二模)已知()22f x x x =-,对任意的1x ,[]20,3x ∈.方程()()()()12f x f x f x f x m -+-=在[]0,3上有解,则m 的取值范围是( )A .[]0,3B .[]0,4C .{}3D .{}4【答案】D 【解析】对任意的1x ,[]20,3x ∈.方程()()()()12f x f x f x f x m -+-=在[]0,3上有解,不妨取取练提升()11f x =-,()23f x =,方程有解m 只能取4,则排除其他答案.【详解】2()(1)1f x x =-- ,[0,3]x ∈,则min ()1f x =-,max ()3f x =.要对任意的1x ,[]20,3x ∈.方程()()()()12f x f x f x f x m -+-=在[]0,3上都有解,取()11f x =-,()23f x =,此时,任意[0,3]x ∈,都有()()()()124m f x f x f x f x =-+-=,其他m 的取值,方程均无解,则m 的取值范围是{}4.故选:D.3.(2020·浙江省高三二模)已知函数()321,020a x x f x x ax x ⎧-≤⎪=⎨-+->⎪⎩的图象经过三个象限,则实数a 的取值范围是________.【答案】2a <或3a >.【解析】当0x ≤时,3()||11f x a x =-≤-,此时函数图象经过第三象限,当02x <<时,2()(1)2f x x a x =-++,此时函数图象恒经过第一象限,当2[(1)]40a =--->V 且10a +>,即3a >时,函数图像经过第一、四象限,当2x ≥时,2()(1)2f x x a x =---,此时函数图象恒经过第一象限,当(2)0f <,即2a >时,函数图像经过第一、四象限, 综上所述:2a <或3a >.4.(2020·陕西省西安中学高三其他(理))记{},max ,,,m m nm n n m n ≥⎧=⎨<⎩函数{}22()max 44(1),ln (1)f x x ax a x a =-+--<有且只有一个零点,则实数a 的取值范围是_________.【答案】12a <【解析】令()()2244(1)0g x x ax a x =-+-->,因为1a <,则()2(1)651(5)0ln1g a a a a =-+-=---<=,所以(1)ln10f ==,即1是函数()f x 的零点,因为函数()g x 的对称轴为122a x =<,所以根据题意,若函数()f x 有且只有一个零点,则二次函数()g x 没有零点,22(4)16(1)0a a ∆=--<,解得12a <.故答案为:12a <5.(2021·浙江高三专题练习)已知函数()21,()2f x x x a b a b R =+-+∈,若[1,1]x ∈-时,()1f x ≤,则12a b +的最大值是___________.【答案】12-【解析】根据函数()21,()2f x x x a b a b R =+-+∈,分1a >,1a <-和11a -≤≤三种情况讨论,分别求得其最大值,即可求解.【详解】由题意,函数()21,()2f x x x a b a b R =+-+∈,当1a >时,()211,[1,1]22f x x x a b x =-++∈-,因为()1f x ≤,可得(1)11()14f f -≤⎧⎪⎨≥-⎪⎩,所以1122115216a b a b ⎧+≤-⎪⎪⎨⎪+≥-⎪⎩,所以15111622a b -≤+≤-;当1a <-时,()211,[1,1]22f x x x a b x =+-+∈-,因为()1f x ≤,可得()max 11(1)1122f x f a b ==+-+≤,所以1122b a ≤-,所以113222a b a +=-≤-;当11a -≤≤时,()21,[1,1]2f x x x a b x =+-+∈-,由()1f x ≤知,()max (1)1112f f x a b =+--+=,因为11a -≤≤,所以10a --≤,所以()max (1)1112f f x a b =+--+=,所以1122a b +≤-,综上可得,12a b +的最大值是12-.故答案为:12-6.(2021·浙江高三期末)已知函数()()21sin sin ,22bf x x x a a b R =+-+∈,若对于任意x ∈R ,均有()1f x ≤,则+a b 的最大值是___________.【答案】1-【解析】首先讨论1a ≥、1a ≤-时()f x 的最值情况,由不等式恒成立求+a b 的范围,再讨论11a -<<并结合()f x 的单调情况求+a b 的范围,最后取它们的并集即可知+a b 的最大值.【详解】当sin a x ≥时,211()(sin )4216a b f x x +=-+-,当sin a x <时,211()(sin 4216b a f x x -=++-,令sin [1,1]t x =∈-,则()()2211,4216{11(),()4216a b t a t g t b a t a t +⎛⎫-+-≥ ⎪⎝⎭=-++-<∴当1a ≥时,14t =有min 1()216a b g t +=-;1t =-有max 3()22a b g t +=+;由x ∈R 有()1f x ≤,有131121622a b a b ++-≤-<+≤,故1518a b -≤+≤-;当1a ≤-时,14t =-有min 1()216b a g t -=-;1t =有max 3()22b a g t -=+;由x ∈R 有()1f x ≤,有131121622b a b a ---≤-<+≤,故1518b a -≤-≤-,即3a b +≤-;当11a -<<时,()2211(),(1)4216{11,(1)4216a b t t a g t b a t a t +-+--<<=-⎛⎫++-≤< ⎪⎝⎭,∴1(1,)4a ∈--:()g t 在(1,)a -上递减,1[,)4a -上递减,1[,1]4-上递增;11[,]44a ∈-:()g t 在(1,)a -上递减,[,1)a 上递增;1(,1)4a ∈:()g t 在1(1,]4-上递减,1[,)4a 上递增,[,1)a 上递增;∴综上,()g t 在(1,1)-上先减后增,则(1)1(1)1g g ≤⎧⎨-≤⎩,可得1a b +≤-∴1a b +≤-恒成立,即+a b 的最大值是-1.故答案为:1-.7.(2020·武汉外国语学校(武汉实验外国语学校)高一期中)已知函数2()3(,)f x ax bx a b R =++∈,且()0f x ≤的解集为[1,3].(1)求()f x 的解析式;(2)设()()41xh x f x x =+-,在定义域范围内若对于任意的12x x ,,使得()()12h x h x M -≤恒成立,求M 的最小值.【答案】(1)2()43f x x x =-+;(2.【解析】(1)代入方程的根,求得参数值.(2)使不等式恒成立,根据函数单调性求得函数的最值,从而求得参数的值.【详解】解:(1)由题意(1)30(3)9330f a b f a b =++=⎧⎨=++=⎩解得14a b =⎧⎨=-⎩2()43f x x x ∴=-+(2)由题意max ()()minM h x h x - (2)(),2xh x x R x =∈+当0()0x h x ==当10()2x h x x x≠=+,令2()g x x x=+,当0,()x g x >…,当x =取等号,当0,()x g x <≤-当x =取等号,()(,)g x ∴∈-∞-⋃+∞()(0)h x x ⎡⎫⎛∈⋃≠⎪ ⎢⎪ ⎣⎭⎝综上,()h x ⎡∈⎢⎣M ⎛∴= ⎝…min M ∴=8.(2021·浙江高一期末)设函数()()2,f x x ax b a b R =-+∈.(1)若()f x 在区间[]0,1上的最大值为b ,求a 的取值范围;(2)若()f x 在区间[]1,2上有零点,求2244a b b +-的最小值.【答案】(1)[)1,+∞;(2)45.【解析】(1)对实数a 的取值进行分类讨论,分析函数()f x 在区间[]0,1上的单调性,求得()max f x ,再由()max f x b =可求得实数a 的取值范围;(2)设函数()f x 的两个零点为1x 、2x ,由韦达定理化简()22222221222222241414144a x x x x x x b b x +-=+⎛⎫=+--⎪++⎝⎭,设()22224124g x x =⎛⎫+- ⎪⎝⎭,由[]21,2x ∈结合不等式的基本性质求出()2g x 的最小值,即为所求.【详解】(1)二次函数()2f x x ax b =-+的图象开口向上,对称轴为直线2a x =.①当02a≤时,即当0a ≤时,函数()f x 在区间[]0,1上单调递增,则()()max 11f x f a b ==-+;②当012a <<时,即当02a <<时,函数()f x 在0,2a ⎡⎫⎪⎢⎣⎭上单调递减,在,12a ⎛⎤⎥⎝⎦上单调递增,()0f b = ,()11f a b =-+,所以,(){}max 1,01max ,1,12a b a f x b a b b a -+<<⎧=-+=⎨≤<⎩;③当12a≥时,即当2a ≥时,函数()f x 在区间[]0,1上单调递减,则()()max 0f x f b ==.综上所述,()max 1,1,1a b a f x b a -+<⎧=⎨≥⎩.所以,当()f x 在区间[]0,1上的最大值为b ,实数a 的取值范围是[)1,+∞;(2)设函数()f x 的两个零点为1x 、2x ,由韦达定理可得1212x x ax x b +=⎧⎨=⎩,所以,()()22222222222212121211221212122444424142a b b x x x x x x x x x x x x x x x x x +-=++-=-++=+-+()222222222212222222241414141x x x x x x x x x x ⎛⎫=+-+-≥- ⎪+++⎝⎭,设()242222222222422222444144141124x x g x x x x x x x =-===++⎛⎫++- ⎪⎝⎭,由212x ≤≤可得221114x ≤≤,所以,()2222445124g x x =≥⎛⎫+- ⎪⎝⎭.此时,21x =,由212241x x x =+可得115x =.所以,当115x =,21x =时,2244a b b +-取最小值45.9.(2020·全国高一单元测试)已知函数f (x )=9x ﹣a ⋅3x +1+a 2(x ∈[0,1],a ∈R ),记f (x )的最大值为g (a ).(Ⅰ)求g (a )解析式;(Ⅱ)若对于任意t ∈[﹣2,2],任意a ∈R ,不等式g (a )≥﹣m 2+tm 恒成立,求实数m 的范围.【答案】(Ⅰ)g (a )=22499,3431,3a a a a a a ⎧-+≤⎪⎪⎨⎪-+>⎪⎩;(Ⅱ)m ≤﹣52或m ≥52.【解析】(Ⅰ)令u =3x ∈[1,3],得到f (x )=h (u )=u 2﹣3au +a 2,分类讨论即可求出,(Ⅱ)先求出g (a )min =g (32)=﹣54,再根据题意可得﹣m 2+tm ≤﹣54,利用函数的单调性即可求出.【详解】解:(Ⅰ)令u =3x ∈[1,3],则f (x )=h (u )=u 2﹣3au +a 2.当32a≤2,即a ≤43时,g (a )=h (u )min =h (3)=a 2﹣9a +9;当322a>,即a >43时,g (a )=h (u )min =h (1)=a 2﹣3a +1;故g (a )=22499,3431,3a a a a a a ⎧-+≤⎪⎪⎨⎪-+>⎪⎩;(Ⅱ)当a≤43时,g (a )=a 2﹣9a +9,g (a )min =g (43)=﹣119;当a 43>时,g (a )=a 2﹣3a +1,g (a )min =g (32)=﹣54;因此g (a )min =g (32)=﹣54;对于任意任意a ∈R ,不等式g (a )≥﹣m 2+tm 恒成立等价于﹣m 2+tm ≤﹣54.令h (t )=mt ﹣m 2,由于h (t )是关于t 的一次函数,故对于任意t ∈[﹣2,2]都有h (t )≤﹣54等价于5(2)45(2)4h h ⎧-≤-⎪⎪⎨⎪≤-⎪⎩,即2248504850m m m m ⎧+-≥⎨--≥⎩,解得m ≤﹣52或m ≥52.10.(2021·全国高一课时练习)已知函数()22(0)f x ax ax b a =-+>,在区间[]0,3上有最大值16,最小值0.设()()f xg x x=.(1)求()g x 的解析式;(2)若不等式()22log log 0g x k x -⋅≥在[]4,16上恒成立,求实数k 的取值范围;【答案】(1)()148g x x x ⎛⎫=+- ⎪⎝⎭(0)x ≠;(2)(,1]-∞.【解析】(1)由二次函数的性质知()f x 在()0,1上为减函数,在()1,3上为增函数,结合其区间的最值,列方程组求,a b ,即可写出()g x 解析式;(2)由题设得222184()4log log k x x≤-+在[]4,16x ∈上恒成立,即k 只需小于等于右边函数式的最小值即可.【详解】(1)∵()2(1)f x a x b a =-+-(0a >),即()f x 在()0,1上为减函数,在()1,3上为增函数.又在[]0,3上有最大值16,最小值0,∴(1)0f b a =-=,(3)316f a b =+=,解得4a b ==,∴()148g x x x ⎛⎫=+- ⎪⎝⎭(0)x ≠;(2)∵()22log log 0g x k x -≥∴22214log 8log log x k x x ⎛⎫+-≥ ⎪⎝⎭,由[]4,16x ∈,则[]2log 2,4x ∈,∴222221814(44(1)log log log k x x x ≤-+=-,设21log t x =,11,42t ⎡⎤∈⎢⎥⎣⎦,∴()24(1)h t t =-在11,42⎡⎤⎢⎥⎣⎦上为减函数,当12t =时,()h t 最小值为1,∴1k ≤,即(,1]k ∈-∞.1.(浙江省高考真题)若函数()2f x =x ax b ++在区间[0,1]上的最大值是M,最小值是m,则M m -的值练真题( )A .与a 有关,且与b 有关B .与a 有关,但与b 无关C .与a 无关,且与b 无关D .与a 无关,但与b 有关【答案】B 【解析】因为最值在2(0),(1)1,()24a a fb f a b f b ==++-=-中取,所以最值之差一定与b 无关,选B .2.(2018·浙江高考真题)已知λ∈R,函数f (x )=x ―4,x ≥λx 2―4x +3,x <λ,当λ=2时,不等式f (x )<0的解集是___________.若函数f (x )恰有2个零点,则λ的取值范围是___________.【答案】 (1,4) (1,3]∪(4,+∞) 【解析】由题意得x ≥2x ―4<0 或x <2x 2―4x +3<0,所以2≤x <4或1<x <2,即1<x <4,不等式f (x )<0的解集是(1,4),当λ>4时,f (x )=x ―4>0,此时f (x )=x 2―4x +3=0,x =1,3,即在(―∞,λ)上有两个零点;当λ≤4时,f (x )=x ―4=0,x =4,由f (x )=x 2―4x +3在(―∞,λ)上只能有一个零点得1<λ≤3.综上,λ的取值范围为(1,3]∪(4,+∞).3.(北京高考真题)已知0x ≥,0y ≥,且1x y +=,则22x y +的取值范围是_____.【答案】1[,1]2【解析】试题分析:22222(1)221,[0,1]x y x x x x x +=+-=-+∈,所以当01x =或时,取最大值1;当12x = 时,取最小值12.因此22x y +的取值范围为1[,1]2.4.(2018·天津高考真题(理))已知0a >,函数222,0,()22,0.x ax a x f x x ax a x ⎧++≤=⎨-+->⎩若关于x 的方程()f x ax=恰有2个互异的实数解,则a 的取值范围是______________.【答案】(48),【解析】分析:由题意分类讨论0x ≤和0x >两种情况,然后绘制函数图像,数形结合即可求得最终结果.详解:分类讨论:当0x ≤时,方程()f x ax =即22x ax a ax ++=,整理可得:()21x a x =-+,很明显1x =-不是方程的实数解,则21x a x =-+,当0x >时,方程()f x ax =即222x ax a ax -+-=,整理可得:()22x a x =-,很明显2x =不是方程的实数解,则22x a x =-,令()22,01,02x x x g x x x x ⎧-≤⎪⎪+=⎨⎪>⎪-⎩,其中211211x x x x ⎛⎫-=-++- ⎪++⎝⎭,242422x x x x =-++--原问题等价于函数()g x 与函数y a =有两个不同的交点,求a 的取值范围.结合对勾函数和函数图象平移的规律绘制函数()g x 的图象,同时绘制函数y a =的图象如图所示,考查临界条件,结合0a >观察可得,实数a 的取值范围是()4,8.5.(2020·江苏省高考真题)已知关于x 的函数(),()y f x y g x ==与()(,)h x kx b k b =+∈R 在区间D 上恒有()()()f x h x g x ≥≥.(1)若()()222 2()f x x x g x x x D =+=-+=∞-∞+,,,,求h (x )的表达式;【答案】(1)()2h x x =;【解析】(1)由题设有2222x x kx b x x -+≤+≤+对任意的x ∈R 恒成立.令0x =,则00b ≤≤,所以0b =.因此22kx x x ≤+即()220x k x +-≥对任意的x ∈R 恒成立,所以()220k ∆=-≤,因此2k =.故()2h x x =.6.(浙江省高考真题(文))设函数2(),(,)f x x ax b a b R =++∈.(1)当214a b =+时,求函数()f x 在[1,1]-上的最小值()g a 的表达式;(2)已知函数()f x 在[1,1]-上存在零点,021b a ≤-≤,求b 的取值范围.【答案】(1)222,2,4(){1,22,2,24a a a g a a a a a ++≤-=-<≤-+>;(2)[3,9--【解析】(1)当214a b =+时,2()()12a f x x =++,故其对称轴为2a x =-.当2a ≤-时,2()(1)24a g a f a ==++.当22a -<≤时,()()12a g a f =-=.当2a >时,2()(1)24a g a f a =-=-+.综上,222,2,4(){1,22,2,24a a a g a a a a a ++≤-=-<≤-+>(2)设,s t 为方程()0f x =的解,且11t -≤≤,则{s t ast b+=-=.由于021b a ≤-≤,因此212(11)22t ts t t t --≤≤-≤≤++.当01t ≤≤时,222222t t t b t t --≤≤++,由于222032t t --≤≤+和212932t t t --≤≤-+,所以293b -≤≤-.当10t -≤≤时,222222t t t b t t --≤≤++,由于22202tt--≤<+和2302t tt--≤<+,所以30b-≤<.综上可知,b的取值范围是[3,9--.。

《二次函数》精编测试题及参考答案(提高)

《二次函数》精编测试题及参考答案(提高)

二次函数精编测试题及参考答案(提高)一、选择题1.下列是二次函数的是()A.y=2x-1B. y=x2-(x-1)2C.y=x(x+1)-7D.y=1 x22.若二次函数y=(k-2)x2-3x+4与x轴有两个交点,则k的取值范围是()A.k≠2B.k≠4116C.k<4116且k≠2 D.k>4116且k≠23.将抛物线y=2x2-4x+1向左平移2022个单位,再向下平移2023个单位,则平移后抛物线的解析式为()A.y=2(x-1)2-1B.y=2(x+2021)2-2024C.y=2(x-2022)2-2024D.y=2(x-2024)2+20224.关于二次函数y=3x2+1的说法中,错误的是()A.抛物线顶点(0,1)B.当x>1时,y随x的增大而增大C.图象经过点(1,4)D.图象的对称轴是直线x=15.如果三点P1(1,y1),P2(3,y2)和P3(4,y3)在抛物线y=-x2+6x+c的图象上,那么y1,y2与y3之间的大小关系是()A y1<y3<y2 B.y3<y2<y1 C.y3<y1<y2 D.y1<y2<y36.根据下表中二次函数y=ax2+bx+c的自变量x与函数值y的对应值,判断方程ax2+bx+c=0(a≠0a,b,c为常数)的一个解x的范围可能是()A.6<x<6.17B.6.17<x<6.18C.6.18<x<6.19D.6.19<x<6.207.向空中抛一枚物体,第x秒时的高度为y米,且高度与时间的关系为y=ax2+bx+c(a≠0),若此物体在第6秒与第15秒时的高度相等,则下列时间中物体所在的高度最高是()A.第6秒B.第10秒C.第14秒D.第15秒8.如图,函数y=kx 2-2x+1和y=k(x-1)(k 是常数,且k ≠0)在同一平面直角坐标系的图象可能是( ) 9.三孔桥的三个桥孔呈抛物线形,两小孔形状、大小完全相同.当水面刚好淹没小孔时,大孔水面宽度为10米,孔顶离水面1.5米;当水位下降,大孔水面宽度为14米时,单个小孔的水面宽度为4米.当大孔水面宽度为20米时,单个小孔的水面宽度为( )A.2√3B. 4√3C. 5√2D. 6√310.如图,在四边形DEFG 中,∠E=∠F= 90°,∠DGF=45°,DE=1,FG=3,Rt △ABC 的直角顶点C 与点G 重合,另一个顶点B(在点C 左侧)在射线FG 上,且BC=1,AC=2,将△ABC 沿GF 方向平移,点C 与点F 重合时停止.设CG 的长为x,△ABC 在平移过程中与四边形DEFG 重叠部分的面积为y,则下列图象能正确反映y 与x 函数关系的是( )11.对于二次函数y=12x 2-6x+21,有以下结论:①当x>5时,y 随x 的增大而增大;②当x=6时,y 有最小值3;③图象与x 轴有两个交点;④图象是由抛物线y=12x 2先向左平移6个单位长度,再向上平移3个单位长度得到的.其中结论正确的个数为( )A.1B.2C.3D.412.如图,抛物线y=ax2+bx+c(a≠0)的对称轴是直线x=-1,则下列结论: ①abc<0;②(4a+c)2<(2b)2;③若(x1,y1)和(x2,y2)是抛物线上的两点,则当|x1+1|>|x2+1|时,y1<y2;④抛物线的顶点坐标为(-1,m),则关于x的方程ax2+bx+c=m-1无实数根.其中正确结论的个数是()A.1B.2C.3D.4二、填空题13.二次函数y=3(x-3)2+2顶点坐标为_________.14.已知抛物线y=ax2+x+c与x轴交点的横坐标为-1,则a+c的值是_______.15.如图,在一幅长50cm,宽30cm的矩形风景画的四周镶一条金色纸边,制成一幅矩形挂画,设整个挂画总面积为ycm2,金色纸边的宽为xcm,则y与x的关系式是_____________.第15题第16题第17题16.如图,有一座拱桥洞呈抛物线形状,这个桥洞的最大高度为16m,跨度为40m,现把它的示意图放在如图的平面直角坐标系中,则抛物线对应的函数关系式为________________.17.如图,把抛物线y=12x2平移得到抛物线m,抛物线m经过点A(-6,0)和原点O(0,0),它的顶点为P,它的对称轴与抛物线y=12x2交于点Q,则图中阴影部分的面积为_________.18.如图,在平面直角坐标系中,抛物线y=x2的图象如图所示,已知A点坐标为(1,1),过点A作AA1∥x轴交抛物线于点A1,过点A1作A1A2∥OA交抛物线于点A2,过点A2作A2A3∥x轴交抛物线于点A3,过点A3作A3A4∥OA交抛物线于点A4,…,依次进行下去,则点A2023的坐标是_____________.三、解答题19.已知函数y=(m2+2m)x2+mx+m+1,(1)当m为何值时,此函数是一次函数.(2)当m为何值时,此函数是二次函数.20.如图,一农户要建一矩形猪舍,猪舍的一边利用长12m的住房墙,另外三边用27m长的建筑材料围成,为了方便进出,在垂直于住房墙的一边留一个1m宽的门.所围成矩形猪舍的长、宽分别为多少时,猪舍的面积y最大,最大面积是多少?21.如图,已知直线y1=kx+n与抛物线y2=-x2+bx+c相交于A(4,0)和B(0,2).(1)求直线和抛物线解析式;(2)当y1>y2时,求x的取值范围;(3)若直线上方的抛物线有一点C,S△ABC=6,求点C的坐标.22.某公司计划购进一批原料加工销售,已知该原料的进价为6.2万元/吨,加工过程中原料的质量有20%的损耗,加工费m(万元)与原料的质量x(吨)之间的关系为m=50+0.2x,销售价y(万元/吨)与原料的质量x(吨)之间的关系如图所示.(1)求y与x之间的函数关系式;(2)设销售收入为P(万元),求P与x之间的函数关系式;(3)当原料的质量x为多少吨时,所获销售利润最大,最大销售利润是多少万元?23.抛物线y=-x2+bx+c经过点A(-3,0)和点C(0,3).(1)求抛物线的函数解析式,并写出顶点D的坐标;(2)若过顶点D的直线将△ACD的面积分为1:2两部分,并与x轴交于点Q,求点Q的坐标.参考答案一、选择题1-5 CCBDA 6-10 CBBCB 11-12 AC二、填空题13.(3,2)14. 115.y=4x2+160x+150016.y=−125(x−20)2+1617. 13.518.(-1012,10122)三、解答题19(1)m=-2 (2)m≠0且m≠-220.设宽为x,y=-2x2+28x,当宽为8米,长为12米时,面积最大,最大是96平方米。

二次函数测试题及答案

二次函数测试题及答案

二次函数测试题及答案一、选择题1. 下列哪个选项不是二次函数的一般形式?A. y = ax^2 + bx + cB. y = 3x^2 - 2x + 1C. y = 5x^2 + 3D. y = 2x答案:D2. 二次函数y = ax^2 + bx + c的顶点坐标是:A. (-b, c)B. (-b/2a, c)C. (-b/2a, 4ac - b^2 / 4a)D. (-b/a, 4ac - b^2 / 4a)答案:C3. 若二次函数y = ax^2 + bx + c的图象开口向上,则a的取值范围是:A. a > 0B. a < 0C. a = 0D. a ≠ 0答案:A二、填空题4. 二次函数y = x^2 - 2x + 1的顶点坐标是_________。

答案:(1, 0)5. 当a > 0时,二次函数y = ax^2 + bx + c的图象与x轴的交点个数最多为_______。

答案:2三、解答题6. 已知二次函数y = 2x^2 - 4x + 3,求其顶点坐标。

解:首先,我们可以将二次函数写成顶点形式:y = 2(x - 1)^2 + 1。

因此,顶点坐标为(1, 1)。

7. 某二次函数的图象经过点(1, 1)和(2, 4),且对称轴为直线x = 2。

求该二次函数的解析式。

解:设二次函数的解析式为y = a(x - 2)^2 + k。

将点(1, 1)代入得:1 = a(1 - 2)^2 + k1 = a + k将点(2, 4)代入得:4 = a(2 - 2)^2 + k4 = k由上述两个方程组可得a = -3,k = 4。

因此,该二次函数的解析式为y = -3(x - 2)^2 + 4。

四、应用题8. 某工厂生产一种产品,其成本函数为C(x) = 0.5x^2 - 10x + 100,其中x表示产品数量。

求该工厂生产多少件产品时,平均成本最低。

解:平均成本为C(x)/x = 0.5x - 10 + 100/x。

二次函数的练习题及答案

二次函数的练习题及答案

二次函数的练习题及答案一、选择题:1. 若二次函数y=ax^2+bx+c的图像开口向上,且与x轴有交点,则a 和b应满足的条件是()。

A. a>0, b>0B. a<0, b<0C. a>0, b^2>4acD. a<0, b^2>4ac2. 二次函数y=-x^2+4x-1的顶点坐标是()。

A. (1,4)B. (2,3)C. (-2,3)D. (2,-3)3. 对于二次函数y=ax^2+bx+c,当x=-1时,函数值最大,那么a的取值范围是()。

A. a>0B. a<0C. a=0D. 无法确定二、填空题:1. 已知二次函数y=2x^2-8x+3,当x=______时,函数值最小。

2. 若二次函数y=-3x^2-6x+5的图像与x轴的交点坐标为(x1,0),(x2,0),则x1+x2=______。

三、解答题:1. 已知二次函数y=-2x^2+4x+1,求出当x取何值时,函数值y最大,并求出最大值。

2. 已知二次函数y=3x^2-6x+2,求出函数与x轴的交点坐标。

四、应用题:1. 某工厂生产一种产品,其生产成本与产品数量的关系可以近似为二次函数:C(x)=0.5x^2-100x+3000,其中x代表产品数量,C(x)代表成本。

求出当生产多少件产品时,成本最低,并求出最低成本。

2. 某公司计划在一块长为60米的空地上建一个矩形花园,花园的长和宽之和为30米。

设花园的长为x米,求出花园的面积最大时的长和宽,并求出最大面积。

答案:一、选择题:1. C2. B3. B二、填空题:1. 22. -2三、解答题:1. 当x=1时,函数值y最大,最大值为3。

2. 函数与x轴的交点坐标为(1,0)和(2,0)。

四、应用题:1. 当生产200件产品时,成本最低,最低成本为2000元。

2. 花园的长为15米,宽为15米时,面积最大,最大面积为225平方米。

2021年高考数学真题分类汇编 2.3 二次函数与幂函数 文

2021年高考数学真题分类汇编 2.3 二次函数与幂函数 文

精品文档
2021年高考数学真题分类汇编 2.3 二次函数与幂函数文
考点一二次函数
1.(xx北京,8,5分)加工爆米花时,爆开且不糊的粒数占加工总粒数的百分比称为“可食用率”.在特定条件下,可食用率p与加工时间t(单位:分钟)满足函数关系p=at2+bt+c(a,b,c是常数),下图记录了三次实验的数据.根据上述函数模型和实验数据,可以得到最佳加工时间为( )
A.3.50分钟
B.3.75分钟
C.4.00分钟
D.4.25分钟
答案 B
2.(xx浙江,9,5分)设θ为两个非零向量a,b的夹角.已知对任意实数t,|b+ta|的最小值为1.( )
A.若θ确定,则|a|唯一确定
B.若θ确定,则|b|唯一确定
C.若|a|确定,则θ唯一确定
D.若|b|确定,则θ唯一确定
答案 B v37603 92E3 鋣22145 5681 嚁 jg26972 695C 楜21167 52AF 劯e 31799 7C37 簷S38581 96B5 隵32245 7DF5 緵31075 7963 祣
实用文档。

二次函数的练习题及答案

二次函数的练习题及答案

二次函数的练习题及答案二次函数是高中数学中的重要内容,也是考试中常考的知识点之一。

掌握好二次函数的相关概念和解题方法,对于提高数学成绩和解决实际问题都有很大的帮助。

本文将通过一些练习题和答案的形式,帮助读者巩固和加深对二次函数的理解。

1. 练习题一:已知二次函数y = ax^2 + bx + c的图像经过点(1,4)和(2,1),求a、b、c的值。

解法:根据已知条件,将点(1,4)和(2,1)带入二次函数的方程,得到两个方程:a +b +c = 44a + 2b + c = 1解这个方程组,可以得到a、b、c的值。

2. 练习题二:已知二次函数y = ax^2 + bx + c的图像与x轴有两个交点,且交点的横坐标分别为2和5,求a、b、c的值。

解法:根据已知条件,可以得到两个方程:4a + 2b + c = 025a + 5b + c = 0同样地,解这个方程组,可以得到a、b、c的值。

3. 练习题三:已知二次函数y = ax^2 + bx + c的图像经过点(-1,0),且在点(2,3)处的切线斜率为4,求a、b、c的值。

解法:根据已知条件,可以得到两个方程:a -b +c = 04a + 2b + c = 3同样地,解这个方程组,可以得到a、b、c的值。

通过以上几个练习题,我们可以看到,解二次函数的题目,关键在于将已知条件转化为方程,然后通过解方程组得到未知数的值。

这是一个基本的解题思路,需要我们熟练掌握。

除了解题方法,我们还可以通过一些图像来加深对二次函数的理解。

例如,我们可以画出二次函数y = x^2 + x - 2的图像,观察图像的开口方向、顶点位置以及与x轴的交点等特征。

这样可以帮助我们更好地理解二次函数的性质和特点。

此外,二次函数还有一些重要的应用,例如在物理学中,二次函数可以用来描述自由落体运动的轨迹;在经济学中,二次函数可以用来描述成本、收益等与产量之间的关系。

通过了解这些应用,我们可以将抽象的数学知识与实际问题联系起来,提高数学的应用能力。

全国名校高考数学优质试题汇编(附详解):二次函数综合问题

全国名校高考数学优质试题汇编(附详解):二次函数综合问题

一元二次函数专题汇总一元二次函数的区间最值问题,核心是对函数对称轴与给定区间的相对位置关系的讨论。

一般分为:对称轴在区间的左边,中间,右边三种情况. 是指已知二次函数和定义域区间,求其最值。

对称轴与定义域区间的相互位置关系的讨论往往成为解决这类问题的关键。

此类问题包括以下四种情形:(1)轴定,区间定;(2)轴定,区间变; (3)轴变,区间定;(4)轴变,区间变。

2. 轴动区间定1.求函数)(a x x y --=在]1,1[-∈x 上的最大值。

3. 轴定区间动 2. 设函数的定义域为,对任意,求函数的最小值的解析式。

3 (优质试题)20. (本小题满分14分)已知113a ≤≤, 若函数()22f x ax x =-在[]1,3上的最大值为()M a ,最小值为()N a , 令()()()g a M a N a =-. (1)求()g a 的表达式;(2)若关于a 的方程()0g a t -=有解, 求实数t 的取值范围.2. 轴动区间定1.求函数)(a x x y --=在]1,1[-∈x 上的最大值。

1解析:函数4)2(22a a x y +--=图象的对称轴方程为2a x =,应分121≤≤-a ,12-<a ,12>a即22≤≤-a ,2-<a 和2>a 这三种情形讨论,下列三图分别为(1)2-<a ;由图可知max ()(1)f x f =- (2)a ≤-22≤;由图可知max ()()2af x f =(3) 2>a 时;由图可知max ()(1)f x f =∴⎪⎪⎩⎪⎪⎨⎧>≤≤--<-=2,)1(22,)2(2,)1(a f a a f a f y 最大;即⎪⎪⎩⎪⎪⎨⎧>-≤≤--<+-=2,122,42,)1(2a a a a a a y 最大3. 轴定区间动2. 设函数的定义域为,对任意,求函数的最小值的解析式。

(完整版)高中二次函数练习题

(完整版)高中二次函数练习题

二次函数专题一、选择题1.若函数y =(x +1)(x -a )为偶函数,则a 等于( )A .-2B .-1C .1D .22.若f (x )=x 2-ax +1有负值,则实数a 的取值范围是( )A .a >2或a <-2B .-2<a <2C .a ≠±2D .1<a <33.若f (x )=x 2-x +a ,f (-m )<0,则f (m +1)的值为( )A .正数B .负数C .非负数D .与m 有关4.已知函数y =ax 2+bx +c ,如果a >b >c ,且a +b +c =0,则它的图象是( )5.已知函数f (x )=x 2+ax +b ,且f (x +2)是偶函数,则f (1),f (52),f (72)的大小关系是( )A .f (52)<f (1)<f (72)B .f (1)<f (72)<f (52)C .f (72)<f (1)<f (52)D .f (72)<f (52)<f (1)二、填空题6.已知函数f (x )=x 2-2x +2的定义域和值域均为[1,b ],则b =________.7.方程x 2-mx +1=0的两根为α、β,且α>0,1<β<2,则实数m 的取值范围是________.8.已知定义在区间[0,3]上的函数f (x )=kx 2-2kx 的最大值为3,那么实数k 的取值范围为________.三、解答题9.求下列二次函数的解析式:(1)图象顶点坐标为(2,-1),与y 轴交点坐标为(0,11);(2)已知二次函数f (x )满足f (0)=1,且f (x +1)-f (x )=2x .10.已知函数f (x )=x 2-4ax +2a +6(a ∈R ).(1)若函数的值域为[0,+∞),求a 的值;(2)若函数值为非负数,求函数f (a )=2-a |a +3|的值域.11.已知函数f (x )=ax 2+2x +c (a 、c ∈N *)满足:①f (1)=5;②6<f (2)<11.(1)求a 、c 的值;(2)若对任意的实数x ∈[12,32],都有f (x )-2mx ≤1成立,求实数m 的取值范围.。

二次函数典型例题50题

二次函数典型例题50题

选择1.二次函数y=(x-3)(x+2)的图象的对称轴是的图象的对称轴是 ( ) A.x=3 B.x=-2 C.x=-12D.x=122. 抛物线y=2x 2-5x+3与坐标轴的交点共有与坐标轴的交点共有 ( ) A . 1个 B. 2个 C. 3个 D. 4个3.二次函数y= a (x+m)2-m (a ≠0)0) 无论m 为什么实数,图象的顶点必在为什么实数,图象的顶点必在 ( ) A.直线y=-x 上 B. 直线y=x 上 C.y 轴上轴上 D.x 轴上轴上4. 如图2,抛物线,OA=OC ,下列关系中正确的是,下列关系中正确的是 ( ) A .ac+1=b B .ab+1=c C .bc+1=a D .b a+1=c 5.如图6,是二次函数的图象在x 轴上方的一部分,若这段图象与x 轴所围成的阴影部分面积为S ,则S 取值最接近(取值最接近( ). A.4 B.163 C.2π D.86.如图7,记抛物线21y x =-+的图象与x 正半轴的交点为A ,将线段OA 分成n 等份,设分点分别为1P ,2P ,…1n P -,过每个分点作x 轴的垂线,分别与抛物线交于点2y ax bx c =++2122y x =-+1Q ,2Q ,…1n Q -,再记直角三角形11OPQ ,122P P Q 的面积分别为1S ,2S ,这样就有21312n S n -=,22342n S n -=,…;记121n W S S S -=+++…,当n 越来越大时,你猜想W 最接近的常数是(接近的常数是( )A. 23B. 12C. 13D.147.定义[]为函数的特征数, 下面给出特征数为下面给出特征数为 [2m ,1 – m , –1– m] 的函数的一些结论:的函数的一些结论:① 当m = – 3时,函数图象的顶点坐标是(,); ② 当m > 0时,函数图象截x 轴所得的线段长度大于;③ 当m < 0时,函数在x >时,y 随x 的增大而减小;的增大而减小; ④ 当m ¹ 0时,函数图象经过同一个点. 其中正确的结论有(其中正确的结论有( ) A. ①②③④①②③④ B. ①②④①②④ C. ①③④①③④ D. ②④②④8. (2010宿迁改编)如图11,在矩形ABCD 中,中, AB=4,BC=6,当直角三角板MPN 的直角顶点P 在BC 边上移动时,直角边线段MP=25且始终经过点A ,设直角三角板的另一直角边PN 与CD 相交于点Q .BP=x ,CQ=y ,那么y 与x 之间的函数图象大致是(的函数图象大致是( ),,a b c 2y ax bx c =++31382341xyO2.25 6 3 C xyO3 6 4 B 2.25 x yO6 3 A D 2 xyO2 9. 已知点11()x y ,,均在抛物线上,下列说法中正确的是(上,下列说法中正确的是( ))A .若,则B .若,则C .若,则D .若,则10. 不论x 为何值为何值,,函数y=ax 2+bx+c(a +bx+c(a≠≠0)0)的值恒大于的值恒大于0的条件是的条件是( ) ( ) A.a>0,A.a>0,△△>0 B.a>0, B.a>0, △△<0 C.a<0, C.a<0, △△<0 D.a<0, D.a<0, △△<0 11. 若抛物线22y x x a=++的顶点在x 轴的下方,则a 的取值范围是(的取值范围是() A.1a > B.1a < C.1a ≥ D.1a ≤12.12.若一次函数若一次函数的图像过第一、三、四象限的图像过第一、三、四象限,,则函数( ))A.A.有最大值有最大值B.. B..有最大值有最大值C.C.有最小值有最小值D. D.有最小值有最小值有最小值1313.二次函数.二次函数2y ax bx c =-+的图象过点(的图象过点(-1-1-1,,0).则a b c b c c a a b+++++的值是(是( ))A A、、-3B 、3C 、12D 、12- 14.14.已知二次函数已知二次函数()2211y kx k x =+--与x 轴交点横坐标为()1212,,x x x x <.给出下列结论:下列结论:①当2x =-时,1y =;②当2x x >时,0y >;③方程()22110kx k x +--=有两不相等的实数根12,x x .④121,1x x <->-.⑤22114k x x k +-=.其中正确的结论是(论是( ))22()x y ,21y x =-12y y =12x x =12x x =-12y y =-120x x <<12y y >120x x <<12y y >A A、①③、①③、①③B 、①②③、①②③C 、①③⑤、①③⑤D 、①②③④、①②③④1515.已知二次函数.已知二次函数2y ax bx c =++,且0,0a a b c <-+>,则一定有(,则一定有( )) A A、、240b ac -> B 、240b ac -= C 、240b ac -< D 、240b ac -£16. 16. 已知已知1a <-,点()()1231,,,,(1,)a y ay a y -+都在函数2y x =的图象上,则( )) A A、、123y y y << B B、、132y y y <<C 、321y y y <<D 、213y y y <<17. 17. 二次函数二次函数2y ax b =+与一次函数y ax b =+在同一坐标系中的图象,可能是( ))18.18.如图所示,抛物线如图所示,抛物线2y x bx c =++与x 轴交于A 、B 两点与y 轴交于点C ,45OBC Ð=°.则下列各式成立的是(.则下列各式成立的是()) A A、、10b c --=B 、10b c +-=C C、、10b c -+=D 、10b c ++= 19.抛物线抛物线图像向右平移图像向右平移22个单位再向下平移个单位再向下平移33个单位,个单位,所得图像的解析式所得图像的解析式为,则b 、c 的值为的值为A . b=2 A . b=2,, c=2 B. b=2 c=2 B. b=2,,c=0C . b= -2 C . b= -2,,c=-1 D. b= -3c=-1 D. b= -3,, c=220若抛物线22y x x a =++图像于x 轴的交点位于Y 轴两侧,则a 的取值范围为的取值范围为填空21. 21. 如图,二次函数如图,二次函数c bx ax y ++=2的图象开口向上,图象经过点(的图象开口向上,图象经过点(-1-1-1,,2)和()和(11,0),且与y 轴交于负半轴.给出四个结论:①轴交于负半轴.给出四个结论:①abc abc abc<<0;②2a+b >0;③a+c=1;;③a+c=1; ④a>④a>11.其中正确结论的序号是确结论的序号是 ( ( (将你认为正确结论的序号都填上将你认为正确结论的序号都填上将你认为正确结论的序号都填上) ) ) ..c bx x y ++=2322--=x x y 0 xy A 0 xyB 0 xyC 0 xyD A B C O xy22. 已知函数y=(m-1)x 2+2x+m,当m= 时,图象是一条直线;当m 时,图象是抛物线;当m 时,抛物线过坐标原点.时,抛物线过坐标原点.23. 把二次函数的图象向左平移2个单位,再向上平移1个单位,所得到的图象对应的二次函数关系式是2)1(2-+=x y 则原二次函数的解析式为则原二次函数的解析式为24. .24. .二次函数的图象顶点坐标为(二次函数的图象顶点坐标为(二次函数的图象顶点坐标为(22,1),形状开口与抛物线y= - 2x 2相同,这个函数解析式为析式为________________________。

二次函数测试题及答案

二次函数测试题及答案

二次函数测试题及答案一、选择题(每小题 3 分,共 30 分)1、二次函数 y = x²+ 2x 3 的图象的顶点坐标是()A (-1,-4)B (1,-4)C (-1,4)D (1,4)答案:A解析:对于二次函数 y = ax²+ bx + c 的顶点坐标公式为(b/2a, (4ac b²)/4a),在函数 y = x²+ 2x 3 中,a = 1,b = 2,c =-3,所以顶点横坐标为 b/2a =-2/(2×1) =-1,纵坐标为(4ac b²)/4a = 4×1×(-3) 2²/(4×1) =(-12 4)/4 =-16/4 =-4,所以顶点坐标为(-1,-4)。

2、抛物线 y =-2(x 1)²+ 3 的开口方向、对称轴和顶点坐标分别是()A 开口向下,对称轴为 x =-1,顶点坐标为(1,3)B 开口向下,对称轴为 x = 1,顶点坐标为(1,3)C 开口向上,对称轴为 x =-1,顶点坐标为(-1,3)D 开口向上,对称轴为 x = 1,顶点坐标为(-1,3)答案:B解析:在抛物线 y = a(x h)²+ k 中,当 a < 0 时,开口向下,对称轴为 x = h,顶点坐标为(h,k)。

在抛物线 y =-2(x 1)²+ 3 中,a =-2 < 0,所以开口向下,对称轴为 x = 1,顶点坐标为(1,3)。

3、把抛物线 y = x²向左平移 1 个单位,然后向上平移 3 个单位,则平移后抛物线的解析式为()A y =(x 1)²+ 3B y =(x + 1)²+ 3C y =(x 1)² 3D y =(x + 1)² 3答案:B解析:抛物线平移遵循“上加下减,左加右减”的原则。

抛物线 y =x²向左平移 1 个单位得到 y =(x + 1)²,然后向上平移 3 个单位得到y =(x + 1)²+ 3。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2010年高考数学二次函数精选习题汇编一、选择题1.(2010福建福州)已知二次函数y =Ax 2+Bx +C 的图象如图所示,则下列结论正确的是( )A .a >0B .c <0C .b 2-4ac <0 D .a +b +c >03.(2010 山东莱芜)二次函数c bx ax y ++=2的图象如图所示,则一次函数a bx y +=的 图象不经过A .第一象限B .第二象限C .第三象限D .第四象限4.(2010年贵州毕节)函数2y ax b y ax bx c =+=++和在同一直角坐标系内的图象大致是( )5.(2010年贵州毕节)把抛物线y =x 2+bx +c 的图象向右平移3个单位,再向下平移2个单位,所得图象的解析式为y =x 2-3x +5,则( )A .b =3,c =7B .b =6,c =3C .b =-9,c =-5D .b =-9,c =2110.(2010湖北鄂州)二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,下列结论①a 、b 异号;②当x =1和x=3时,函数值相等;③4a +b =0,④当y =4时,x 的取值只能为0.结论正确的个数有( ) 个A .1 B.2 C.3 D.4(第9题图)2.(2010湖南郴州)将抛物线y =x 2+1向下平移2个单位,•则此时抛物线的解析式是_____________.【答案】 y =x 2-13.(2010江苏扬州)y =2x 2-bx +3的对称轴是直线x =1,则b 的值为__________. 【答案】44.(2010山东泰安)将y=2x 2-12x-12变为y=a (x-m )2+n 的形式,则m·n= . 【答案】-905.(2010湖北襄樊)将抛物线212y x =-向上平移2个单位,再向右平移1个单位后,得到的抛物线的解析式为____________..【答案】21(1)2x --+或2132x x -++ 6y x y x x +=-++则满足,0332的最大值为 .723x mx -+的图象与x 轴的交点如图所示,根据图中信 8.(2010安徽蚌埠)已知抛物线bx x y +=221经过点A(4,0)。

设点C (1,-3),请在抛物线的对称轴上确定一点D,使得CD AD -的值最大,则D 点的坐标为_______。

【答案】﹝2,-6﹞9.(2010江苏盐城)写出图象经过点(1,-1)的一个函数关系式 ▲ . 【答案】y =-x 或y =-1x或y =x 2-2x ,答案不唯一10.(2010山东日照)如图,是二次函数y=ax 2+bx+c 图象的一部分,其对称轴为直线x =1,若其与x 轴一交点为A (3,0),则由图象可知,不等式ax 2+bx+c <0的解集是 .【答案】-1<x <311.(2010浙江宁波) 如图,已知⊙P 的半径为2,圆心P 在抛物线2112y x =-上运动,当⊙P 与x 轴相切时,圆心P 的坐标为 ▲.12.(2010 四川泸州)在平面直角坐标系中,将二次函数y =(x -2)2+2的图像向左平移2个单位,所得图像对应的解析式为 . 【答案】y =x 2+229.(2010湖南常德)如图9, 已知抛物线212y x bx c =++与x 轴交于A (-4,0) 和B (1,0)两点,与y 轴交于C 点.(1)求此抛物线的解析式;(2)设E 是线段AB 上的动点,作EF //AC 交BC 于F ,连接CE ,当△CEF 的面积是△BEF 面积的2倍时,求E 点的坐标;(3)若P 为抛物线上A 、C 两点间的一个动点,过P 作y 轴的平行线,交AC 于Q ,当P 点运动到什么位置时,线段PQ 的值最大,并求此时P 点的坐标.【答案】解:(1)由二次函数212y x bx c =++与x 轴交于(4,0)A -、(1,0)B 两点可得: 221(4)4021102b c b c ⎧--+=⎪⎪⎨⎪⋅++=⎪⎩,. 解得: 322b c ⎧=⎪⎨⎪=-⎩,.故所求二次函数的解析式为213222y x x =+-.xyO BC A图9(2)∵S △CEF =2 S △BEF , ∴1,2BF CF =1.3BF BC = ∵EF //AC , ∴B ,EF BAC BFE BCA ∠=∠∠=∠ , ∴△BEF ~△BAC ,∴1,3BE BF BA BC ==得5,3BE = 故E 点的坐标为(23-,0).(3)解法一:由抛物线与y 轴的交点为C ,则C 点的坐标为(0,-2).若设直线AC 的解析式为y kx b =+,则有20,04b k b -=+⎧⎨=-+⎩. 解得:1,22k b ⎧=-⎪⎨⎪=-⎩.故直线AC 的解析式为122y x =--.若设P 点的坐标为213,222a a a ⎛⎫+- ⎪⎝⎭,又Q 点是过点P 所作y 轴的平行线与直线AC 的交点,则Q 点的坐标为(1,2)2a a --.则有:2131[(2)](2)222PQ a a a =-+----=2122a a --=()21222a -++即当2a =-时,线段PQ 取大值,此时P 点的坐标为(-2,-3) 解法二:延长PQ 交x 轴于D 点,则PD AB ⊥.要使线段PQ 最长,则只须△APC的面积取大值时即可.设P 点坐标为(),00y x ,则有:ACO DPCO S APC ADP S S S =+-梯形 =111()222AD PD PD OC OD OA OC ⋅++⋅-⋅ =()()000001112242222x y y y x --+-+⋅--⨯⨯=0024y x ---=20001322422x x x ⎛⎫-+--- ⎪⎝⎭=2004x x -- =-()22024x ++即02x =-时,△APC 的面积取大值,此时线段PQ 最长,则P 点坐标为(-2,-3)30 .(2010湖南郴州)如图(1),抛物线42y x x =+-与y 轴交于点A ,E (0,b )为y 轴上一动点,过点E 的直线y x b =+与抛物线交于点B 、C .(1)求点A 的坐标; (2)当b =0时(如图(2)),ABE 与ACE 的面积大小关系如何?当4b >-时,上述关BOC 是以b ;若不【答案】(1)将x =0,代入抛物线解析式,得点A 的坐标为(0,-4) (2)当b =0时,直线为y x =,由24y xy xx =⎧⎨=+-⎩解得1122x y =⎧⎨=⎩,2222x y =-⎧⎨=-⎩所以B 、C 的坐标分别为(-2,-2),(2,2)14242ABES=⨯⨯=,14242ACES =⨯⨯= 所以ABEACE S S=当4b >-时,仍有ABEACE SS=成立. 理由如下由24y x b y x x =+⎧⎨=+-⎩,解得11x y b ⎧=⎪⎨=⎪⎩,22x y ⎧=⎪⎨=⎪⎩所以B 、C 的坐标分别为(-b 作BF y ⊥轴,CG y ⊥轴,垂足分别为F 、G ,则而ABE 和ACE 是同底的两个三角形, 所以ABEACE SS=.(3)存在这样的b .因为90BF CG,BEF CEG,BFE CGE =∠=∠∠=∠=︒ 所以BEF CEG ≅所以BE CE =,即E 为BC 的中点所以当OE =CE 时,OBC 为直角三角形 因为GE b b GC =-==所以CE =OE b =b =,解得124,2b b ==-,所以当b =4或-2时,ΔOBC 为直角三角形.31.(2010湖南怀化)图9是二次函数k m x y ++=2)(的图象,其顶点坐标为M(1,-4). (1)求出图象与x 轴的交点A,B 的坐标; (2)在二次函数的图象上是否存在点P ,使MAB PAB S S ∆∆=45,若存在,求出P 点的 坐标;若不存在,请说明理由;(3)将二次函数的图象在x 轴下方的部分沿x 轴翻折,图象的其余部分保持不变, 得到一个新的图象,请你结合这个新的图象回答:当直线)1(<+=b b x y 与此 图象有两个公共点时,b 的取值范围.【答案】解;(1) 因为M(1,-4) 是二次函数k m x y ++=2)(的顶点坐标,所以324)1(22--=--=x x x y 令,0322=--x x 解之得3,121=-=x x . ∴A,B 两点的坐标分别为A (-1,0),B (3,0) (2) 在二次函数的图象上存在点P ,使MAB PAB S S ∆∆=45设),,(y x p 则y y AB S PAB 221=⨯=∆,又8421=-⨯=∆AB S MAB , ∴.5,8452±=⨯=y y 即 ∵二次函数的最小值为-4,∴5=y . 当5=y 时,4,2=-=x x 或.故P 点坐标为(-2,5)或(4,5)……………7分 (3)如图1,当直线)1(<+=b b x y 经过A 点时,可得.1=b ……………8分图9图1当直线)1(<+=b b x y 经过B 点时,可得.3-=b 由图可知符合题意的b 的取值范围为13<<-b。

相关文档
最新文档