(完整版)图像分割-数字图像处理
图像数字处理图像分割
![图像数字处理图像分割](https://img.taocdn.com/s3/m/87cbcf59a9114431b90d6c85ec3a87c241288a5a.png)
图像数字处理图像分割图像分割是图像数字处理中的一项重要技术,它将图像中的像素点划分成多个区域,以便更好地理解和分析图像。
在本文中,我将介绍图像分割的原理、常用方法及其应用领域。
一、图像分割的原理图像分割的目标是将图像划分成一系列具有相似特征的区域,使得每个区域内的像素点具有相同或相似的属性。
它的基本原理是通过寻找像素点之间的差异来确定区域边界。
常用的图像分割方法包括阈值分割、边缘检测和区域生长等。
阈值分割是最简单的分割方法,它根据像素点的灰度值与预设的阈值进行比较,将像素点分为不同的区域。
边缘检测通过检测图像中的边缘信息来进行分割,常用的方法有Sobel算子和Canny算子。
区域生长是利用像素之间的相似性来逐步迭代地合并像素点,直到形成连续的区域。
二、常用的图像分割方法1. 基于阈值的分割方法:阈值分割是最简单且常用的分割方法之一。
它根据像素点的灰度值与预设的阈值进行比较,将像素点分为不同的区域。
常用的阈值分割方法有全局阈值分割和自适应阈值分割。
2. 基于边缘检测的分割方法:边缘检测是一种常用的图像分割方法,它通过检测图像中的边缘信息来进行分割。
常用的边缘检测方法有Sobel算子、Canny算子等。
3. 基于区域生长的分割方法:区域生长方法是利用像素之间的相似性来逐步迭代地合并像素点,直到形成连续的区域。
它常用于分割具有明显纹理特征的图像。
三、图像分割的应用领域图像分割在计算机视觉、医学影像处理、遥感图像分析等领域具有广泛的应用。
以下列举几个典型的应用领域:1. 目标检测与识别:图像分割可以帮助检测和识别图像中的目标物体,如人脸识别、车辆检测等。
2. 医学影像处理:在医学影像中,图像分割可以帮助医生准确地定位和分析病变区域,如肿瘤检测、血管分割等。
3. 遥感图像分析:遥感图像通常包含大量的地物信息,通过图像分割可以将不同类型的地物区分开来,如土地利用分类、城市区域划分等。
4. 视频分析:图像分割在视频分析中扮演重要角色,可以提取视频中的运动目标,如行人检测、行为分析等。
数字图像处理图像分割课件
![数字图像处理图像分割课件](https://img.taocdn.com/s3/m/87b5fe4a773231126edb6f1aff00bed5b9f373ef.png)
基于Mumford-Shah模 …
该方法可以获得更准确、更平 滑的分割结果,并且可以更好 地处理噪声和细节。此外,它 还可以更好地处理形状约束和 边界条件。
基于Mumford-Shah模 …
该方法需要更多的计算资源和 时间来处理每个时间点的水平 集,并且可能难以处理大规模 的形状变化和复杂的形状约束 。
响。
图像分割还可以帮助缩小处理和 分析的规模,提高处理效率,并 为后续的图像分析提供可靠的预
处理结果。
图像分割的分类
01
02
03
04
按照处理方式
图像分割可以分为阈值法、区 域生长法、边缘检测法、图切
割法等。
按照应用领域
图像分割可以分为医学图像分 割、遥感图像分割、人脸识别
等。
按照分割对象
图像分割可以分为二维图像分 割和三维图像分割。
该方法具有能够处理复杂的图像内容和噪声等优点,但也可能需要更多的计算资源和时间。
07
实例展示与结果分析
基于阈值的图像分割实例
总结词
简单、快速、有效的图像分割方法
详细描述
基于阈值的图像分割是一种基本的图像分割方法,通过设置不同的阈值将图像分 割成不同的区域。其优点是简单、快速、有效,适用于简单背景和对比明显的图 像。但是,对于复杂背景和低对比度图像,分割效果较差。
些方法可以自动适应不同图像的特点,且能够根据图像内容的变化自适
应调整阈值。
03
自适应阈值
根据图像的局部特征自适应地设置阈值,例如基于区域生长的方法、基
于边缘检测的方法等。这些方法能够更好地适应图像的局部特征,提高
分割的精度和鲁棒性。
阈值法的优缺点
优点
阈值法简单易行,适用于简单背景和 对比度较高的图像;对于实时性要求 较高的应用场景,阈值法具有较快的 处理速度。
数字图像处理之图像分割
![数字图像处理之图像分割](https://img.taocdn.com/s3/m/3bcd31187375a417876f8f34.png)
直方图阈值法matlab实现
• 函数:im2bw,全局阈值函数 • BW=im2bw(I ,level); • BW=im2bw(I ,map ,level); • BW=im2bw(RGB ,level); • 分别将灰度图像、索引图像、彩色图像转
化为二值图像, • level,为归一化阈值
例子
6.2.4 自适应阈值
自适应阈值是由Chow和Kaneko提出,它是一种基于区域统计特征 的分块域值方法。其算法原理是:将一幅图像划分为3535或6565的 互不重叠的图像块,求出每个子图像块的直方图及阈值,子图像的中心 像素点就使用求出的阈值,而区域内的其它像素点的阈值通过插值的方 法“自适应”地确定。
在利用阈值方法来分割灰度图像时一般都对图像有一定的假设。基于 一定的图像模型的。最常用的模型:
假设图像由具有单峰灰度分布的目标和背景组成,处于目标或背景内 部相邻象素间的灰度值是高度相关的,但处于目标和背景交界处两边的象 素在灰度值上有很大的差别。
如果一幅图像满足这些条件,它的灰度直方图基本上可看作是由分别 对应目标和背景的两个单峰直方图混合构成的。
• 一般的图像很难获得灰度的概率密度函数以及 先验概率,在一些特殊的应用场合,如文字、乐 谱等图像,可以从大量图像得到一个统计规律, 获得符号部分在全图像中的百分比,以此为基础, 结合直方图谷点分析,可以得到近似最优
• 的结果
若选为Zt分割门限,则将背景象素错认为是目标象素的概率
是:
E1 Zt
• 对i =1,2,…,N,Ri是连通的区域。
• 其中P(Ri)是对所有在集合Ri中元素的逻辑谓词,φ代表空 集。
图像分割—引言
图像分割的基本策略:
• 把像素按灰度划分到各个物体对应的 区域中去;
[课件]数字图像处理 第八讲 图像分割PPT
![[课件]数字图像处理 第八讲 图像分割PPT](https://img.taocdn.com/s3/m/6a1cf84b7e21af45b307a87a.png)
图像分割
拉普拉斯(Laplacian)算子是不依赖于边缘方向的 二阶微分算子。它是一个标量而不是向量,具有旋 转不变即各向同性的性质,在图像处理中经常被用 来提取图像的边缘。其表示式为
f x ,y f x ,y f x ,y 2 2 x y
2 2 2
f(x-1,y-1) f(x-1,y)
f(x,y-1) f(x,y-1) f(x,y) f(x,y) f(x,y+1)
f(x+1,y-1) f(x+1,y) f(x+1,y+1)
图像分割
选取适当的门限TH,作如下判断:G[f(x,y)]>TH, (x,y)为阶跃状边缘点。
二、Sobel梯度算子(3×3个像素) 先做加权平均,再作微分,即
2
图像增强
f(x-1,y)
f(x,y-1)
f(x,y)
f(x,y+1)
f(x+1,y)
图像分割
当拉普拉斯算子输出出现过零点时就表明有边 缘存在。该算子有两个缺点:其一就是边缘方向信 息的丢失,其二它是二阶差分,双倍加强了图像中 噪声的影响。
改进的LOG算法:
在进行拉普拉斯运算前先进行平滑去噪,然后 再提取边缘。平滑去噪采用高斯滤波器,然后与拉 普拉斯边缘检测合并在一起,形成LOG(Laplacian Of Gaussian)。
图像分割
对于数字图像,可用一阶差分替代一阶微分:
f f x,yf x x ,y 1 ,y x f x f f x,yf x,y x ,y 1 y f y
此时梯度的幅度可表示为:
G f x , y f x , y f x , y x y
数字图像处理与分析图像分割(课堂PPT)
![数字图像处理与分析图像分割(课堂PPT)](https://img.taocdn.com/s3/m/aac703a1a417866fb94a8ebb.png)
13
梯度算子
一幅数字图像的一阶导数是基于各种二维梯度的近似值。图像f(x,y)在位
置(x,y)的梯度定义为下列向量:
f
F
G x
G
y
x
f
y
(10.1.3)
向量的大小:
图10.7中第一列的图 像分割显示了分割左 右黑白区域的4个斜 坡边缘的特写图。分 别被均值为0且 σ=0.0,0.1,1.0,10.0 的随机高斯噪声污染。 第二列是一阶导数图 像和灰度级剖面线。 第三列为二阶导数图 像和灰度级剖面线。
图10.7
12
这个例子很好的说明了导数对于噪声的敏感性。 那么为了对于有意义的边缘点进行分类,必须使得与 这个点相联系的灰度级变换比在这一点的背景上的变 换更为有效才行。即所作的变换应该更有利于区分边 缘点。比如,如果噪声严重的话,就要慎用导数变换。
的特征,那么特征值的分界点就是一个门限。
3
8.1 间断检测
间断检测技术包括点检测,线检测和边界检测三种。寻找间断最 一般的方法是模板检测。计算模板所包围区域的灰度级与模板系 数的乘积之和。
图像中任意点的模板响应公式(3×3模板):
Rw1z1w2z2 w9z9
9
wizi i1 图10.1 3*3模板
可以看到,
(a)
(1)图中水平和垂直的部
分都被去掉了,并且在(b)
中所有原图中接近-450的部
分产生了最强响应。
(2)加了门限之后,在(c) 中有孤立点,可以使用点检 测模板检测,然后删除,或 者使用下一章的形态学腐蚀 法删除。
数字图像处理图像分割
![数字图像处理图像分割](https://img.taocdn.com/s3/m/bb20a111842458fb770bf78a6529647d26283402.png)
如果检测结果小于给定的阈值,就把两个区域合并。
5.3 区域分割
2 分裂合并法 实际中常先把图像分成任意大小且不重叠的区域,然后再
合并或分裂这些区域以满足分割的要求,即分裂合并法.一致 性测度可以选择基于灰度统计特征(如同质区域中的方差),假
设阈值为T ,则算法步骤为: ① 对于任一Ri,如果 V (Ri ) T ,则将其分裂成互不重叠的四
3 影响因素
多特征阈值分割
a 灰度及平均灰度(3×3区)二维直方图
--若集中于对角线区则表示灰度均匀 平均灰度
区。
边界
--若远离对角线者(灰度与平均灰度 不同)是区域边界。
背景
(近对角线构成直方图有明显峰值及阈 值,远离对角线者可用灰度平均值作为 阈值,用于区分两个区)。
目标 边界
灰度
3 影响因素 多特征阈值分割 b 灰度与灰度梯度图
5.4 Hough变换
Hough变换是一种检测、定位直线和解析曲线的有效 方法。它是把二值图变换到Hough参数空间,在参数空间 用极值点的检测来完成目标的检测。下面以直线检测为例, 说明Hough变换的原理。
域,直到区域不能进一步扩张; Step4:返回到步骤1,继续扫描直到所有像素都有归属,则结束整
个生长过程。
5.3 区域分割
1 区域生长法 区域生长法生长准则
基于区域灰度差方法
讨论:生长准则与欠分割或过分割现象
10477 10477 01555 20565 22564
11577 11577 11555 21555 22555
C1的平均值:1
m
ipi
iT 1 w1
(T )
1 w(T )
m
其中, ipi w00 w11 是整体图像的灰度平均值
第8章 图象分割(08) 数字图像处理课件
![第8章 图象分割(08) 数字图像处理课件](https://img.taocdn.com/s3/m/91903e3b0029bd64783e2cde.png)
第8章 图像分割
Log算子边缘检测
第8章 图像分割
8.2.3 算法的特点 • Roberts算子采用对角线方向相邻像素之差近似 检测边缘,定位精度高,在水平和垂直方向效果较 好,但对噪声敏感。 • Sobel算子利用像素的上、下、左、右邻域的灰 度加权算法进行边缘检测。该方法提供较为精确的 边缘方向信息,而且对噪声具有平滑作用,能产生 较好的检测效果。但是增加了计算量,而且也会检 测伪边缘。
所以分割算法可据此分为2大类: 利用区域间灰度不连续性的基于边界的算法; 利用区域内灰度相似性的基于区域的算法。
第8章 图像分割
图像分割方法的分类: 现今,对一些经典方法和新出现的方法进行总
结,可将图像分割方法分为四类: 边缘检测方法 阈值分割方法 区域提取方法 结合特定理论工具的分割方法。
第8章 图像分割
(1)基于边缘的分割方法: 图像最基本的特征是边缘,它是图像局部特性不
连续(或突变)的结果。例如,灰度值的突变、颜色的 突变、纹理的突变等。
边缘检测方法是利用图像一阶导数的极值或二 阶导数的过零点信息来提供判断边缘点的基本依据, 经典的边缘检测方法是构造对图像灰度阶跃变化敏感 的差分算子来进行图像分割,如Robert算子、Sobel算 子、Prewitt算子、Laplacian算子等。
另外,还没有制定出选择适用分割算法的标准。
第8章 图像分割
8.2 边 缘 检 测 的 分 割 方 法
8.2.1 原理及算法
目的:检测出局部特性的不连续性,再将它们连成 边界,这些边界把图像分成不同的区域。
图像边缘对图像识别和计算机分析十分有用,边缘 能勾画出目标物体,使观察者一目了然;边缘蕴含了 丰富的内在信息(如方向、阶跃性质、形状等),是 图像识别中重要的图像特征之一。
(完整版)数字图像处理简答题及答案
![(完整版)数字图像处理简答题及答案](https://img.taocdn.com/s3/m/171d571002d8ce2f0066f5335a8102d276a261f7.png)
(完整版)数字图像处理简答题及答案1、数字图像处理的主要研究内容包含很多⽅⾯,请列出并简述其中的4种。
①图像数字化:将⼀幅图像以数字的形式表⽰。
主要包括采样和量化两个过程。
②图像增强:将⼀幅图像中的有⽤信息进⾏增强,同时对其⽆⽤信息进⾏抑制,提⾼图像的可观察性。
③图像的⼏何变换:改变图像的⼤⼩或形状。
④图像变换:通过数学映射的⽅法,将空域的图像信息转换到频域、时频域等空间上进⾏分析。
⑤图像识别与理解:通过对图像中各种不同的物体特征进⾏定量化描述后,将其所期望获得的⽬标物进⾏提取,并且对所提取的⽬标物进⾏⼀定的定量分析。
如要从⼀幅照⽚上确定是否包含某个犯罪分⼦的⼈脸信息,就需要先将照⽚上的⼈脸检测出来,进⽽将检测出来的⼈脸区域进⾏分析,确定其是否是该犯罪分⼦。
4、简述数字图像处理的⾄少4种应⽤。
①在遥感中,⽐如⼟地测绘、⽓象监测、资源调查、环境污染监测等⽅⾯。
②在医学中,⽐如B超、CT机等⽅⾯。
③在通信中,⽐如可视电话、会议电视、传真等⽅⾯。
④在⼯业⽣产的质量检测中,⽐如对⾷品包装出⼚前的质量检查、对机械制品质量的监控和筛选等⽅⾯。
⑤在安全保障、公安⽅⾯,⽐如出⼊⼝控制、指纹档案、交通管理等。
5、简述图像⼏何变换与图像变换的区别。
①图像的⼏何变换:改变图像的⼤⼩或形状。
⽐如图像的平移、旋转、放⼤、缩⼩等,这些⽅法在图像配准中使⽤较多。
②图像变换:通过数学映射的⽅法,将空域的图像信息转换到频域、时频域等空间上进⾏分析。
⽐如傅⾥叶变换、⼩波变换等。
6、图像的数字化包含哪些步骤?简述这些步骤。
图像的数字化主要包含采样、量化两个过程。
采样是将空域上连续的图像变换成离散采样点集合,是对空间的离散化。
经过采样之后得到的⼆维离散信号的最⼩单位是像素。
量化就是把采样点上表⽰亮暗信息的连续量离散化后,⽤数值表⽰出来,是对亮度⼤⼩的离散化。
经过采样和量化后,数字图像可以⽤整数阵列的形式来描述。
7、图像量化时,如果量化级⽐较⼩会出现什么现象?为什么?如果量化级数过⼩,会出现伪轮廓现象。
(完整版)数字图像处理课后题答案
![(完整版)数字图像处理课后题答案](https://img.taocdn.com/s3/m/d2dd619e52ea551811a68756.png)
1. 图像处理的主要方法分几大类?答:图字图像处理方法分为大两类:空间域处理(空域法)和变换域处理(频域法)。
空域法:直接对获取的数字图像进行处理。
频域法:对先对获取的数字图像进行正交变换,得到变换系数阵列,然后再进行处理,最后再逆变换到空间域,得到图像的处理结果2. 图像处理的主要内容是什么?答:图形数字化(图像获取):把连续图像用一组数字表示,便于用计算机分析处理。
图像变换:对图像进行正交变换,以便进行处理。
图像增强:对图像的某些特征进行强调或锐化而不增加图像的相关数据。
图像复原:去除图像中的噪声干扰和模糊,恢复图像的客观面目。
图像编码:在满足一定的图形质量要求下对图像进行编码,可以压缩表示图像的数据。
图像分析:对图像中感兴趣的目标进行检测和测量,从而获得所需的客观信息。
图像识别:找到图像的特征,以便进一步处理。
图像理解:在图像分析的基础上得出对图像内容含义的理解及解释,从而指导和规划行为。
3. 名词解释:灰度、像素、图像分辨率、图像深度、图像数据量。
答:像素:在卫星图像上,由卫星传感器记录下的最小的分立要素(有空间分量和谱分量两种)。
通常,表示图像的二维数组是连续的,将连续参数 x,y ,和 f 取离散值后,图像被分割成很多小的网格,每个网格即为像素 图像分辨率:指对原始图像的采样分辨率,即图像水平或垂直方向单位长度上所包含的采样点数。
单位是“像素点/单位长度”图像深度是指存储每个像素所用的位数,也用于量度图像的色彩分辨率.图像深度确定彩色图像的每个像素可能有的颜色数,或者确定灰度图像的每个像素可能有的灰度级数.它决定了彩色图像中可出现的最多颜色数,或灰度图像中的最大灰度等级(图像深度:位图图像中,各像素点的亮度或色彩信息用二进制数位来表示,这一数据位的位数即为像素深度,也叫图像深度。
图像深度越深,能够表现的颜色数量越多,图像的色彩也越丰富。
)图像数据量:图像数据量是一幅图像的总像素点数目与每个像素点所需字节数的乘积。
数字图像处理---图像分割
![数字图像处理---图像分割](https://img.taocdn.com/s3/m/1ee5081ff02d2af90242a8956bec0975f465a47c.png)
数字图像处理---图像分割图像分割概述图像分析概念:对图像中感兴趣的⽬标进⾏检测和测量,以获得它们的客观信息,从⽽建⽴对图像的描述步骤:1. 图像分割2. 特征识别3. 对象分类4. 建⽴联系概述图像分割概念:将图像划分为互不重叠的区域并提取感兴趣⽬标的技术基本策略:基于灰度值的两个基本特性:不连续性和相似性通过检测不连续性先找边,后确定区域通过检测相似性,在⼀定阈值下找到灰度值相似区域,区域外轮廓即为对象边界⽅法基于边缘的分割⽅法:先提取区域边界,再确定边界限定区域区域分割:确定每个像素归属区域,从⽽形成区域图区域⽣长:将属性接近的连通像素聚集成区域分裂-合并分割:即存在图像划分,也存在图像合并边缘检测算⼦---边缘分割法边缘定义:图像中像素灰度有阶跃变化或屋顶变化的像素的集合分类:阶跃状屋顶状特点:属于⾼频信号区域往往为闭合连线边缘检测流程滤波⇒增强⇒检测⇒定位边缘检测算⼦基本思想:计算局部微分算⼦⼀阶微分:⽤梯度算⼦进⾏运算特点:对于阶跃状变化会出现极⼤值(两侧都是正值,中间最⼤)对于屋顶状变化会过零点(两侧符号相反)不变部分为0⽤途:检测图像中边的存在注意事项:由于结果图中存在负值,因此需要处理后使⽤处理⽅法:取绝对值加最⼩值阈值法⼆阶微分:通过拉普拉斯算⼦计算特点:对于阶跃状变化会过零点(两侧符号相反)对于屋顶状变化会出现负极⼤值(两侧都是正值,中间最⼩)不变部分为0⽤途:检测图像中边的存在常⽤边缘检测算⼦Roberts 算⼦Prewitt 算⼦Sobel 算⼦Kirsch 算⼦Laplacian 算⼦Marr 算⼦交叉⽅向⼀阶锐化问题:锐化处理结果对具有矩形特征的物体的边缘提取较为有效,但是对于不规则形状的边缘提取,则存在信息上的缺损解决思想:利⽤⽆⽅向的锐化算法交叉微分算⼦交叉Roberts 算⼦公式:f ′x =|f (x +1,y +1)−f (x ,y )|f ′y =|f (x +1,y )−f (x ,y +1)|模板:f ′x =−1001,f ′y =01−1特点:算法简单,对噪声敏感,效果较梯度算⼦较好交叉Prewitt 算⼦模板:d ′x =011−101−1−10,d ′y =−1−10−101011特点:与Sobel 相⽐有⼀定抗⼲扰性,图像效果较⼲净交叉Sobel 算⼦模板:d ′x =012−101−2−10,d ′y =−2−10−101012特点:锐化的边缘信息较强kirsch 算⼦(⽅向算⼦)模板:特点在计算边缘强度的同时可以得到边缘⽅向各⽅向间的夹⾓为45°分析取其中最⼤的值作为边缘强度,与之对应的⽅向作为边缘⽅向若取最⼤值绝对值,则仅需要前四个模板即可Nevitia 算⼦[][][][][][]特点:各⽅向间的夹⾓为30°Laplacian算⼦同图像增强中的Laplacian算⼦优点:各向同性、线性和位移不变对细线和孤⽴点检测效果较好缺点对噪声敏感,有双倍加强作⽤不能检测出边缘⽅向常产⽣双像素边缘使⽤之前需要对图像进⾏平滑Marr算⼦在Laplacian算⼦基础上发展⽽来平滑函数采⽤⾼斯正态分布函数h(x,y)=e−x2+y2 2σ2σ为⽅差⽤h(x,y)对图像f(x,y)平滑克表⽰为g(x,y)=h(x,y)∗f(x,y) *代表卷积令r表⽰从原点出发的径向距离,即r2=x2+y2利⽤⾼斯-拉普拉斯滤波器(LOG滤波器)▽2h=(r2−2σ2σ4)e−r22σ2即可利⽤⼆阶导数算⼦过零点的性质,确定图像中阶跃边缘的位置在该算⼦中σ越⼩边缘位置精度越⾼,边缘细节变化越多;σ越⼤平滑作⽤越⼤,但是细节损失越⼤,边缘点定位精度越低过程1. 通过⼆维⾼斯函数对图像进⾏卷积降噪2. ⽤⼆阶导数差分算⼦计算图像强度的⼆阶导数3. 利⽤⼆阶导数算⼦过零点的性质,确定图像中阶跃边缘的位置优点:能快速得到⼀个闭合的轮廓缺点:对噪声敏感Canny边缘检测算⼦最优边缘检测算⼦应有的指标低误判率⾼定位精度抑制虚假边缘过程:1. 计算图像梯度2. 梯度⾮极⼤值抑制3. 双阈值提取边缘点计算图像梯度⾼斯函数的⼀阶导数模板:−11−11,−1−111⾮极⼤值抑制 NMS思想:梯度幅值图像M(x,y),仅保留梯度⽅向上的极⼤值点过程初始化N(x,y)=M(x,y)对每⼀点在梯度⽅向和反梯度⽅向各找n 个点,若M(x,y)⾮最⼤值,则置零,否则保持不变对NMS 结果⼆值化(双阈值提取边缘点)使⽤两个阈值T 1,T 2:T 2>>T 1由T 1得到E 1(x ,y ),低阈值边缘图:更⼤的误检率由T 2得到E 2(x ,y ),⾼阈值边缘图:更可靠边缘连接初始化E (x ,y )=E 2(x ,y )对E (x ,y )中的每个点在E 1(x ,y )中寻找延长部分进⾏连接输出E (x ,y )Canny 边缘检测算⼦步骤1. ⾼斯滤波器平滑2. ⼀阶偏导计算梯度幅值与⽅向3. 对梯度幅值进⾏⾮极⼤值抑制4. 双阈值算法检测连接边缘Canny 边缘检测算⼦优点参数较⼩计算效率⾼得到边缘连续完整双阈值选择T Low =T HIGH ∗0.4曲⾯拟合法出发点:基于差分检测图像边缘的算⼦往往对噪声敏感四点拟合灰度表⾯法⽤⼀平⾯p (x ,y )=ax +by +c 来拟合四邻域像素灰度值定义均⽅差为ε=∑[p (x ,y )−f (x ,y )]2模板a =12−1−111,b =12−11−11特点:先平均后求差分,对噪声由抑制作⽤边缘跟踪出发点:噪声边检测需要归整边缘像素概念:将检测的边缘点连接成线过程:边缘提取连接成线⽅法光栅扫描跟踪法全向跟踪法光栅扫描跟踪法概念:采⽤电视光栅⾏扫描顺序,结合门限检测,对遇到的像素进⾏分析并确定其是否是边缘的跟踪⽅法具体步骤:[][][][]确定检测阈值d(较⾼)超过d的点作为对象点确定跟踪阈值t(较低)确定跟踪邻域扫描下⼀⾏,跟踪邻域内灰度差⼩于t的,接受为对象点若没有对象点,则该曲线跟踪结束重新从下⼀⾏开始利⽤d寻找对象点并进⾏跟踪扫描结束后跟踪结束特征可以不是灰度级跟踪准则根据具体问题灵活运⽤最好再进⾏⼀次其他⽅向的跟踪全向跟踪Hough变化检测法问题:如何连接边界点集基本思想利⽤xoy直⾓坐标系直线y=ax+b,待求极坐标系内点(ρ,θ),已知求点到线的变化ρ=xcosθ+ysinθ原理:过每个点的直线系分别对应极坐标系上的⼀条正弦曲线,如正弦曲线存在共同交点(ρ′,θ′),则必定在平⾯上共线实现:使⽤交点累积器或直⽅图,寻找相交线段最多的参数空间的点,再寻找对应的直线线段特点:对ρ、θ量化过粗会导致直线参数不精确,过细会导致计算量增加获得直线抗噪能⼒强可以⽤来检测直线阈值分割法基本思想:通过阈值T⽣成⼆值图,在四邻域中有背景的像素就是边界像素特点:适⽤于物体与背景有强对⽐的情况下,且物体或背景的灰度较单⼀可以先求背景再求物体可以得到封闭且连通区域的边界通过交互获得阈值通过直⽅图得到阈值基本思想:边界上的点灰度值出现次数较少⽅法:选取直⽅图⾕底的最⼩灰度值作为阈值缺点:会受到噪声⼲扰改进:取两个峰值之间的某个固定位置降噪简单图像的阈值分割判断分析法最佳熵⾃动阈值法复杂图像的阈值分割步骤⾃动平滑直⽅图确定区域类数⾃动搜索多个阈值特征空间聚类k均值聚类步骤任意选取K个初始聚类中⼼值使⽤最⼩距离判别,将新读⼊的像素分⾄K类重新计算中⼼值,等于⼀类元素的平均值重新聚类直⾄新旧差异不⼤区域增长通过像素集合的区域增长实现:根据应⽤选取种⼦选择描述符种⼦根据描述符扩张直⾄没有新的节点加⼊集合简单区域扩张法以未划分点与起点灰度差⼩于阈值T作为描述符优缺点:1. 不好确定阈值2. ⽆法分割缓慢变化边界质⼼区域增长法以未划分点与区域平均灰度值差⼩于阈值T作为描述符分裂合并法实现:1. 对于灰度级不同的区域划分为四个⼦区域2. 若相邻⼦区域所有像素灰度级相同,则合并3. 反复进⾏直⾄不再进⾏新的分裂合并操作Processing math: 100%。
遥感数字图像处理教程11图像分割PPT课件
![遥感数字图像处理教程11图像分割PPT课件](https://img.taocdn.com/s3/m/23499053fd4ffe4733687e21af45b307e871f93f.png)
优点
能够准确提取目标的边缘信息 。
缺点
对噪声和细节较为敏感,容易 产生伪边缘。ቤተ መጻሕፍቲ ባይዱ
基于特定理论的分割
基于特定理论或算法的分割
根据特定的理论或算法,如分形理论、小波 变换、遗传算法等,对图像进行分割。
优点
能够针对特定问题提出有效的解决方案。
适用场景
适用于特定领域的图像分割问题。
缺点
实现难度较大,运算量较大。
对复杂场景的应对能力有限
在复杂背景、光照不均、目标遮挡等情况下,现有算法的分割效果不 佳。
未来研究的方向与展望
提升算法泛化能力
研究能够适应不同场景和数据 集的图像分割算法,提高算法 的鲁棒性和泛化能力。
优化算法计算效率
通过算法优化、并行计算等技 术手段,降低计算复杂度,提 高处理速度,满足实时性要求 。
03
遥感数字图像处理中的图像分割
遥感数字图像的特点
数据量大
遥感数字图像通常覆盖大面积区域,产生大量的 数据。
多种波段
多光谱和超光谱遥感图像包含多个波段,提供更 丰富的地物信息。
动态变化
遥感数字图像可以反映地物的动态变化,如城市 扩张、植被生长等。
地理信息丰富
遥感数字图像包含丰富的地理信息,如经纬度、 高程等。
在遥感图像处理中,图像分割 技术尤为重要,因为遥感图像 通常具有较大的尺寸、复杂的 背景和多种类型的目标,需要 采用高效的图像分割方法来提 取有用的信息。
图像分割的应用领域
医学影像分析
在医学领域中,图像分割技术被广泛应用于医学影 像的预处理阶段,如X光片、CT和MRI等影像的分割 ,以便于医生对病变部位的定位和诊断。
算法泛化能力不足
数字图像处理-图像分割课件
![数字图像处理-图像分割课件](https://img.taocdn.com/s3/m/c3a9f4b7988fcc22bcd126fff705cc1755275fb9.png)
xfi,jfi,jfi1,j yfi,jfi,jfi,j1
梯度算子 梯度是图像处理中最为常用的一次微分方法。
图像函数 fx,y在点 x, y 的梯度幅值为
f 2 x
fy2
其方向为 arctgf y
f x
图像经过梯度运算能灵敏地检测出边界, 但是梯度运算 比较复杂。
对于数字图像,可用一阶差分替代一阶微分:
非连续性分割: 首先检测局部不连续性,然后将它们 连接起来形成边界,这些边界把图像分以不同的区域。 这种基于不连续性原理检出物体边缘的方法称为基于 点相关的分割技术
两种方法是互补的。有时将它们地结合起来,以求 得到更好的分割效果。
人眼图像示例
分类—连续性与处理策略 连续性: 不连续性: 边界 相似性: 区域 处理策略: 早期处理结果是否影响后面的处理 并行: 不 串行: 结果被其后的处理利用 四种方法 并行边界;串行边界;并行区域;串行区域
n
(1) Ri
i1
(2)对所有的 i和j, i j, 有Ri R j
(3)对i 1,2,..., n, 有P ( Ri ) true (4)对i j, 有P ( Ri R j ) false (5)对i 1,2,..., n, Ri 是连通的区域
分类—分割依据
相似性分割: 将相似灰度级的像素聚集在一起。形成 图像中的不同区域。这种基于相似性原理的方法也称 为基于区域相关的分割技术
高斯拉普拉斯(LOG)
高斯拉普拉斯(Laplacian of Gaussian, LOG, 或 Mexican hat, 墨西哥草帽)滤波器使用了Gaussian 来进行噪声去除并使用 Laplacian来进行边缘检测
高斯拉普拉斯举例
06_数字图像处理_图像分割
![06_数字图像处理_图像分割](https://img.taocdn.com/s3/m/28124f759b6648d7c1c746d6.png)
一阶微分算子
二阶微分算子 Canny算子
Key Laboratory of Information Fusion Technology
边缘提取的定义
划分不同区域的分界线;
边缘由连续的边缘点组成;
边缘点:在局部范围内的灰度(彩色RGB值等)产
生突变的像素点。
Key Laboratory of Information Fusion Technology
Key Laboratory of Information Fusion Technology
Boundaries of Objects
Sometimes hard even for humans! Key Laboratory of Information Fusion Technology
边界提取
结果: Sobel算子效果比较好,可以产生较好的边缘检测效果, 且噪声影响也比较小。 当使用较大的邻域时,抗噪声的特性会更好,得出的 边缘相对较粗。
Key Laboratory of Information Fusion Technology
拉普拉斯算子(Laplacian)
拉普拉斯(Laplacian)算子是一种二阶导数算子,对一
高斯(Gauss)函数
二维高斯函数定义如下:
1 2 2 1 2 2
G ( x, y )
exp(
( x 2 y 2 ))
高斯函数是一个二维可分解的圆对称函数。
一个二维运算可以分解为两个一维运算,从而以减少计算强
度
Key Laboratory of Information Fusion Technology
图像数据采集与处理
图像分割-数字图像处理
![图像分割-数字图像处理](https://img.taocdn.com/s3/m/c499152ca66e58fafab069dc5022aaea998f41c2.png)
图像分割
3.最优阈值法
由于目标与背景的灰度值往往有部分相同,因而用一个
全局阈值并不能准确地把它们绝对分开,总会出现分割误差。
一部分目标像素被错分为背景,一部分背景像素被错分为目
标。最优阈值法的基本思想就是选择一个阈值,使得总的分
类误差概率最小。
图像分割
假定图像中仅包含两类主要的灰度区域(目标和背景),z
图像分割
图7-2 直方图具有双峰性质的阈值分割
图像分割
1.极小点阈值法
如果将直方图的包络线看作一条曲线,则通过求取曲线
极小值的方法可以找到直方图的谷底点,作为分割阈值。设
p(z)代表直方图,则极小点应满足:
在求极小值点之前,若对直方图进行平滑处理,则效果会
更好。
图像分割
2.迭代阈值法
迭代阈值算法如下:
则(一般用灰度均值和方差来度量),则将其继续分裂成若干个
子区域,否则该子区域不再分裂。如果相邻的两个子区域满
足某个相似性准则,则合并为一个区域。直到没有可以分裂
和合并的子区域为止。通常基于如图7-8所示的四叉树来表
示区域分裂与合并,每次将不满足一致性准则的区域分裂为4
个大小相等且互不重叠的子区域。
图像分割
目标与背景的对比度很小。图7-6(b)为用 Otsu法全局阈值化
的结果,可见左上角的圆形目标未被检测出来。图7-6(c)为所
用的分区网格,它把原始图像均匀地分解为16幅子图像。对
每幅子图像单独使用 Otsu阈值法进行分割,分割结果如图76(d)所示。由图可见,左上角目标被清晰地从背景中分离出来。
图像分割
洼赋予不同的标记;落在未标记点上的雨水将流向更低的邻
数字图像处理-图像分割-讲义PPT
![数字图像处理-图像分割-讲义PPT](https://img.taocdn.com/s3/m/4378720ec5da50e2524d7f3b.png)
图像分割
图像分割概论
图像分割的目的是理解图像的内容,提取出我们感兴趣的对象。 图像分割按照具体应用的要求和具体图像的内容将图像分割成一块块区域。 图像分割是模式识别和图像分析的预处理阶段。 通常图像分割采用聚类方法,假设图像中组成我们所感兴趣对象的像素具有一些相 似的特征,如相同的灰度值、相同的颜色等。 传统的图像分割技术: 基于像素灰度值的分割技术 基于区域的分割技术 基于边界的分割技术 图像的描述,包括边界和区域的描述
在标注一个像素点的纹理特征时很可能是多维数据,如距离、方向、灰度变化等等。
纹理分析的自相关函数方法
自相关函数的定义 若有一幅图像f(i, j), i, j=0, 1, …, N-1, 它的自相关函数为:
f (i, j ) f (i x, j y ) i 0 j 0 f 2 (i, j ) i 0 j 0
对图像区域的操作―数学形态学
灰度阈值分割法
灰度阈值分割法是最古老的分割技术 只能应用于图像中组成感兴趣对象的灰度值是均匀的,并且和背景的灰度值不一样。 事先决定一个阈值,当一个像素的灰度值超过这个阈值,我们就说这个像素属于我们 所感兴趣的对象;反之则属于背景部分。 这种方法的关键是怎样选择阈值,一种简便的方法是检查图像的直方图,然后选择一 个合适的阈值。 如果图像适合这种分割法,那么图像的直方图在表示对象和背景的小范围灰度值附近 出现一个高峰值。适合这种分割法的图像的直方图应是双极模式,我们可以在两个峰 值之间的低谷处找到一个合适的阈值。 单一阈值方法也不适合于由许多不同纹理组成一块块区域的图像。
灰度共生矩阵表示空间灰度值依赖性的概率,这个灰度共生矩阵是对称的; 不仅仅和两个像素之间的距离有关,还跟两个像素之间的空间角度有关。
数字图像处理第九章图像分割(共94张精选PPT)
![数字图像处理第九章图像分割(共94张精选PPT)](https://img.taocdn.com/s3/m/44c5c6d43169a4517623a39f.png)
导数的零交叉点。
分割的关键问题是如何将边缘线段组合成更长的
边缘。
应该注意到,这些定义并不能保证在一幅图像中成功地找
到边缘。它们只是给了一个寻找边缘的形式体系。
边缘检测基本步骤
滤波:改善与噪声有关的边缘检测器的性能;一般滤波
器降噪导致了边缘的损失;增强边缘和降低噪声之间
转换为黑白二值图像,
0
f (x, y) T
g(x, y) =
255 f (x, y) T
以上原理用MATLAB实现很简单,其实是将图像中所有的灰
阶值与T相比较,大于T的返回1,小于T的返回0,我们得到一
个只有0和1的矩阵,将其显示为图像,就是一幅二值图像。
可以用函数im2bw来实现上述操作。
, 具有最大
的k即是最佳阈值.
用h(x,y)对图像f(x,y)的平滑可表示为:
一阶
二阶
边缘和导数
阶跃边缘、脉冲边缘、屋顶边缘的灰度剖面
线及其一阶、二阶导数。
边缘点的判定
判断一个点是否为边缘点的条件:该点的灰度变
化(一阶导数)必须比指定的门限大。
一组这样的依据事先定好的连接准则相连的边缘
点就定义为一条边缘。
希望得到的特点)
(2)一条连接极值点的虚构直线将在边缘中点附近穿过,
该性质对于确定粗边线的中心非常有用。
图象
剖面
1.在ρ、θ的极值范围内对其分别进行m,n等分,设一个二维数组的下标与ρi、θj的取值对应;
边缘检测判据是二阶导数零交叉点并对应一阶导数的峰值.
tr=uint8(r.
(3) 边缘的“宽度”取决于斜坡的长度.
L 1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
典型的图像分析和理解的系统: 系统分为图像输入、预处理、图像分割(image segment)、图像识别、结构句法分析。
图7.1 图像分析系统
分割结果中同一个子区域内的像素应当是连通的
同一个子区域内的任两个像素在该子区域内互相连通。 图像分割
不连续性检测
相似性检测
边界分割 边缘检测 边缘跟踪 Hough变换
BW = [1 1 1 0 0 0 0 0; 1 1 1 0 1 1 0 0; 1 1 1 0 1 1 0 0; 1 1 1 0 0 0 1 0; 1 1 1 0 0 0 1 0; 1 1 1 0 0 0 1 0; 1 1 1 0 0 1 1 0; 1 1 1 0 0 0 0 0];
L4 = bwlabel(BW,4) L8 = bwlabel(BW,8)
区域分割 阈值分割
区域分裂与合并
自适应
图7.2 图像分割算法
7.2 像素的邻域和连通性
1. 4邻域
对一个坐标为 (x, 的y)像素p,它可以有两个水平和两个垂
直的近邻像素。它们的坐标分别是
(x 1, y),(x 1, y),(x, y 1),(x, y 1)
这四个像素称为p 的4邻域。
互为4邻域的像素又称为4连通的。
%给定的二值图像矩阵 %根据4连通准则判定目标 %根据8连通准则判定目标
➢根据4连通准则,得到的目标 是3个: L4 = 1 1 1 0 0 0 0 0 11102200 11102200 11100030 11100030 11100030 11100330 11100000
➢ 根据8连通准则,得到目标 是2个: L8 =1 1 1 0 0 0 0 0 11102200 11102200 11100020 11100020 11100020 11100220 11100000
2. 8邻域
取像素p四周的8个点作为相链接的邻域点,除掉 p本身外,剩下的8个点就是p的8邻域。
互为8邻域的像素又称为8连通的 。
目标和背景的连通性定义必须取不同,否 则会引起矛盾。
00000 01100 01010 01110 00000 图7.3 目标和背景连通性
根据连通性定义图像特征点
• 边界点:如果目标点集S中的点p有邻点在S的补集
• S 中,则p称为S的边界点。边界点集称为边界,
记为S’。 • 边界的内点:目标点集S与边界S’的差S-S’称为S
的内(部)点 • 孤点:没有邻接点的点。 • 封闭曲线:连通域S中所有点都有两个邻点,则称
此连通域为封闭曲线。
【例7.1】根据4/8连通准则在二值图像中判断目标。
解:应用函数bwlabel可以根据4连通或8连通准则,在给定 的二值图像矩阵BW中寻找目标。MATLAB程序:
(a) 原图像
(b) Roberts算子检测
(c) Prewitt算子检测
(d) Sobel算子检测
I = imread('blood1.tif'); • imshow(I); • BW1 = edge(I,'roberts'); • %进行Roberts算子边缘检测,门限值采用默认值 • BW2 = edge(I,'prewitt'); • %进行Prewitt算子边缘检测,门限值采用默认值 • BW3 = edge(I,'sobel'); • %进行Sobel算子边缘检测,门限值采用默认值 • figure,imshow(BW1,[]); • figure,imshow(BW2,[]); • figure,imshow(BW3,[]);
梯度对应于一阶导数,相应的梯度算子就对 应于一阶导数算子。
对于一个连续函数f (x,y),其在(x,y)处的梯度:
f
f
Gx G y
x f
y
(7.2)
常采用小型模板,然后利用卷积运算来近似,
Gx 和 Gy 各自使用一个模板。
1. Roberts算子
1 0 0 1
0 1 1 0
这类算法的时间复杂度和空间复杂度比较大,但是 抗噪声的能力比较强 。
任何一种分割方法都有其局限性。
实际的算法只能根据实际情况选择方法和阈值。
7.4 图像的边缘检测
基于灰度不连续性进行的分割方法。 用差分、梯度、拉普拉斯算子及各种高通滤
波处理方法对图像边缘进行增强,只要再进 行一次门限化的处理,便可以将边缘增强的 方法用于边缘检测。 7.4.1 梯度算子
1 g(x, y) 0
f (x, y) T f (x, y) T
这样得到的是一幅二值图像。
图7.4给出了利用阈值分割图像的实例。
(a)是原图 (b)是对应的直方图 (c)是选择分割阈值为110的结果图。
(a)原图像
110点
(b)直方图
(c)已分割的图
图7.4 阈值分割
7.3.1 全局阈值分割 全局阈值是最简单的图像分割方法。根据不同
的目标,选用最佳的阈值。 1.实验法
需要知道图像的某些特征
2.直方图法
适用于目标和背景的灰度差较大,直方图有明显谷 底的情况。
3.最小误差的方法
要求已知图像像素的概率密度函数和目标像素占整 个图像的百分比(PP138)。
7.3.2 自适应阈值的选取
当照明不均匀、有突发噪声或者背景灰度变化 比较大的时候,可以对图像进行分块处理,对 每一块分别选定一个阈值进行分割,这种与坐 标相关的阈值称为自适应阈值的方法。
2. Prewitt算子
1 0 1 1 0 1 1 0 1
1 1 1
0
0
0
1 1 1
3. Sobel算子
1 0 1 2 0 2 1 0 1
1 2 1
0
0
0
1 2 1
通过算子检测后,还需作二值处理从而找到边界模板中,Sobel算子的检测效果最好。
7.3 图像的阈值分割技术
灰度阈值分割方法。 若图像中目标和背景具有不同的灰度集合, 且两个灰度集合可用一个灰度级阈值T进行分 割,在图像中分割出目标区域与背景区域。
设图像为 f (x, y) ,其灰度集范围是[0,L],在0 和L之间选择一个合适的灰度阈值T。
图像分割方法可由下式描述:
(7.1)
第七章 图像分割
7.1 概 述
图像处理的重要任务就是对图像中的对象进行分析和 理解。
在图像分析中,输出的结果是对图像的描述、分类或其 他的某种结论 。
图像分析主要包括以下几部分内容:
(1)把图像分割成不同的区域,或把不同的目标分开(分 割)。即把图像分成互不重叠的区域并提取出感兴趣目标。
(2)找出各个区域的特征(特征提取)。 (3)识别图像中的内容,或对图像进行分类(识别与分类)。 (4)给出结论(描述、分类或其他的结论)。