现代有机合成的新概念和新方法

合集下载

有机合成的新方法及应用概述

有机合成的新方法及应用概述

有机合成的新方法及应用概述有机合成是一门重要的化学领域,它涉及合成有机分子的方法和技术。

随着科学技术的不断发展,新的有机合成方法不断涌现,为化学研究和应用提供了更多的可能性。

本文将概述一些有机合成的新方法及其应用。

一、金属催化有机合成方法金属催化有机合成方法是近年来发展迅速的领域之一。

金属催化反应可以在温和的条件下高效地构建复杂的有机分子结构。

例如,铂催化的氢化反应可以将不饱和化合物转化为饱和化合物,这在制药和材料科学中具有广泛的应用。

铜催化的偶联反应可以将两个有机分子连接在一起,形成新的有机化合物。

这些金属催化反应为有机合成提供了高效、可控的方法。

二、光催化有机合成方法光催化有机合成方法是近年来备受关注的领域。

光催化反应利用可见光或紫外光的能量激发分子中的电子,从而促使有机反应发生。

光催化反应具有反应条件温和、选择性高的特点。

例如,光催化的氧化反应可以将有机底物氧化为羧酸,这在合成有机化合物和环境保护中具有重要意义。

光催化反应还可以用于合成光敏材料和光电器件等领域。

三、生物催化有机合成方法生物催化有机合成方法利用酶或细胞等生物催化剂来促进有机反应的进行。

生物催化反应具有高效、高选择性和环境友好的特点。

例如,酶催化反应可以将底物选择性地转化为目标产物,避免了传统合成方法中的副反应和废物产生。

生物催化反应在药物合成、食品工业和环境保护等领域有着广泛的应用。

四、多组分反应有机合成方法多组分反应有机合成方法是一种将多个反应物同时参与反应,构建复杂有机分子的方法。

多组分反应具有高效、高收率和多样性的特点。

例如,多组分反应可以将多个底物一步合成为多种不同的产物,为合成化学和药物发现提供了新的思路。

多组分反应还可以用于合成多肽、多糖等生物大分子,具有重要的生物医学应用价值。

总之,有机合成的新方法不断涌现,为化学研究和应用带来了新的机遇和挑战。

金属催化、光催化、生物催化和多组分反应等方法在有机合成中发挥着重要的作用。

精细有机合成的新方法和新技术

精细有机合成的新方法和新技术

精细有机合成的新方法和新技术在有机化学领域,精细有机合成技术一直以来受到广泛的关注。

近年来,随着新材料、新药物的不断涌现,精细有机合成技术也得到了持续的发展和创新。

本文将介绍一些新的精细有机合成方法和技术,包括化学反应过程的精确控制、环境友好的催化剂、氢气合成的先进技术等。

一、精确控制化学反应过程化学反应中,反应物的种类、浓度、溶剂、温度、反应时间等因素会影响反应的速率、选择性和产物质量。

为了得到高质量的产物,精确控制化学反应过程是非常关键的。

其中,反应温度是影响反应速率和选择性的关键因素之一。

低温反应可以提高高反应物间的选择性,而高温反应可以提高反应速率。

一些新的技术和方法已经被应用于温度控制,例如热电效应、微波加热、电子可控陶瓷加热等。

另一个影响化学反应过程的关键因素是反应物浓度。

高浓度可以提高反应速率,但也容易造成争夺反应物而导致副反应的产生。

对反应物浓度的控制是通过使用微量反应来实现的。

微量反应在反应过程中控制了反应物的精确配比,产生了更高的选择性和高质量产物。

微液滴逐个处理技术和微通道技术是常用的微量反应方法。

二、环境友好的催化剂传统催化剂在有机合成的过程中,常常需要大量的溶剂和高温高压条件,这不仅浪费能源,而且产生了大量的废弃物,对环境造成了影响。

因此,环境友好的催化剂显得尤为重要。

近年来,一些新的催化剂被提出并应用于有机合成中,例如绿色催化剂、生物催化剂等。

其中,绿色催化剂是指那些使用天然有机物、小分子化合物、无机盐等环境友好的催化剂。

这些催化剂不仅能够提高反应的速率和选择性,而且可溶于水、酒精、甚至绿色溶剂如DMSO。

这些催化剂在与溶剂的混合中,形成稳定的包裹形态,从而在增加反应速率的同时,促进水解反应,并保证产品纯度。

此外,生物催化剂是一类在正常温度和压力下,利用微生物、酶体细胞等生物体进行的有机合成反应。

这些生物催化剂可以在极度温和的条件情况下,实现高选择性的合成。

三、氢气合成的先进技术氢气是一种环境友好的燃料,因此氢气合成技术已经被广泛研究和应用于有机合成领域。

有机合成化学的新技术

有机合成化学的新技术

有机合成化学的新技术有机合成化学是化学领域中最受关注的分支之一。

其应用广泛,包括制药、农药、精细化工、高分子材料等多个领域。

近年来,随着技术的不断进步和发展,人们也在不断寻找有机合成化学新技术,以使有机合成化学更加高效和可持续。

一、催化合成催化合成是指通过催化剂来促进有机物之间的反应。

它通过改变反应的速率、选择性和化学性质来达到更高的效率和选择性。

现代有机合成化学可以使用多种催化剂,如酸催化、金属催化、光催化等。

酸催化是最常见的催化合成技术之一,通常用于加成反应、酯化反应和羰基化反应。

金属催化已广泛应用于加成反应、烯烃反应、氧化反应等多种反应。

光催化作为一种新型的催化合成技术,可以通过光反应来促进有机物之间的反应。

这些催化合成技术可以使化学反应快速、高效地进行,产物纯度较高,反应条件温和,环境友好。

二、微反应技术微反应技术是一种为高效合成化学所设计的新技术。

它在小尺度上实现化学反应,优点是反应时间快、反应体积少、温度控制精确,还能减少化学品的使用。

微反应技术已应用于制药、农药、颜料、染料等领域。

比如,在制药领域,微型反应器能够快速制备药物分子,减少昂贵药物的浪费和环境污染。

三、单一反应中一步多化学键形成的技术单一反应中的一步多化学键形成技术是指在一次反应中实现多条化学键的形成。

它有助于化学反应中多步反应的同步实现,以及减少所需的化学脱水剂,化学杂质和单向反应的情况。

这种技术在有机合成化学领域中的应用非常广泛。

例如,用一种简单、经济的捕存剂来促进格氏偶联反应,可在一次反应中同时形成两条化学键,这样就能够快速制备出目标分子。

四、环境友好的反应条件环境友好的反应条件被广泛应用于有机合成化学的领域中,旨在实现更可持续的有机合成过程。

它要求使用温和的反应条件,除了少量有机溶剂和生物降解性催化剂外,还要使用少量溶剂和低毒催化剂,以减少产生的化学废弃物,从而节约能源和保护环境。

例如,绿色反应中常常利用可再生能源,如太阳能或风能,使得化学合成反应更具有环境友好性。

浅谈现代有机合成的最新进展

浅谈现代有机合成的最新进展

浅谈现代有机合成的最新进展摘要简要介绍现代有机合成的新概念和新方法,从有机合成的新溶剂、微波在有机合成中的应用以及具体的有机合成实例三个方面,综述有机合成新技术、新方法的情况。

关键词有机合成;新技术;微波;无溶剂;进展有机合成是指利用化学方法将原料制备成新的有机物的过程。

现代的有机合成不但能合成自然界存在的结构复杂而多样的有机物,而且能合成大量的自然界中没有的具有独特功能性分子的物质。

有机合成化学发展很快,有关新试剂、新方法、新技术、新理念不断涌现。

1现代有机合成新概念1.1原子经济化原子经济化的概念是美国著名有机化学家B.M.Trost于1991年首先提出的,并将它与选择性归结为合成效率的2个方面。

高效的有机合成应最大限度地利用原料分子中的每一个原子,使之转化到目标分子中,达到零排放。

原子经济化反应有两大优点:一是最大限度地利用原料;二是最大限度地减少了废物的生成,减少了环境污染。

原子经济化反应符合社会发展的需要,是有机合成的发展方。

原子经济化是现代有机合成追求的一个重要目标,也是绿色合成的一个重要指标。

原子经济化原则引导人们在有机合成的设计中经济地利用原子,避免使用保护或离去基团,减少或消除副产物的生成。

当前,提高有机合成原子经济化的主要途径有:开发高选择性和高效的催化剂;开发新的反应介质和试剂,提高反应选择性。

总的来说主要在合成路线和反应条件上做文章。

1.2绿色有机合成绿色化学是化学学科发展的必然选择,是知识经济时代化学工业发展的必然趋势。

绿色有机合成的研究正围绕着反应、原料、溶剂、催化剂的绿色化而展开,而包括基因工程、细胞工程、酶工程和微生物工程在内的生物技术、微波技术、超声波技术以及膜技术等新兴技术也将大大促进绿色有机合成的发展。

实现有机合成的绿色化,一般从以下方面进行考虑:开发、选用对环境无污染的原料、溶剂、催化剂;采用电化学合成技术;尽量利用高效的催化合成,提高选择性和原子经济性,减少副产物的生成;设计新型合成方法和新的合成路线,简化合成步骤;开发环保型的绿色产品;发展应用无危险性的化学药品等。

新兴领域的有机合成方法探索

新兴领域的有机合成方法探索

新兴领域的有机合成方法探索有机合成是一门重要的化学领域,涉及到有机化合物的合成和设计。

随着科技的不断进步,新兴领域的有机合成方法也在不断探索和发展。

本文将探讨一些在新兴领域中被广泛研究和应用的有机合成方法。

一、金属有机催化金属有机催化是近年来备受关注的一种有机合成方法。

它利用金属催化剂催化有机反应,可以实现高效、高选择性的有机合成。

例如,钯催化的交叉偶联反应(Cross-Coupling Reaction)被广泛应用于有机合成中。

这种反应可以将两个有机分子通过共价键连接起来,从而合成更复杂的有机化合物。

此外,铜催化的氧化反应(Copper-Catalyzed Oxidation)和铁催化的碳氢键活化反应(Iron-Catalyzed C-H Activation)等也是金属有机催化的重要应用。

二、可见光催化可见光催化是一种绿色环境友好的有机合成方法。

传统的有机合成方法中常常需要高能紫外光的照射,而可见光催化则可以利用可见光进行反应。

这种方法不仅具有高效、高选择性的特点,还可以减少对环境的污染。

例如,可见光催化的氧化反应可以利用可见光激发催化剂的电子,从而实现有机物的氧化转化。

此外,可见光催化还可以用于光催化水分解和光催化二氧化碳还原等重要反应。

三、生物催化生物催化是一种利用酶或细胞进行有机合成的方法。

与传统的化学催化相比,生物催化具有更高的选择性和更温和的反应条件。

例如,酶催化的还原反应可以将酮或醛转化为相应的醇,而且反应条件温和,不需要使用有毒的还原剂。

此外,细胞催化也可以用于有机合成,例如利用微生物进行底物选择性转化和产物生成。

四、流动合成流动合成是一种在流动反应系统中进行有机合成的方法。

与传统的批量反应相比,流动合成具有更高的反应效率和更好的控制性能。

通过精确控制反应温度、反应时间和反应物浓度等参数,可以实现高产率、高选择性的有机合成。

此外,流动合成还可以实现连续生产,提高反应的可扩展性和工业化程度。

有机合成中的新反应与新策略

有机合成中的新反应与新策略

有机合成中的新反应与新策略有机合成是一门关于有机化合物的合成方法与路径的学科,是现代有机化学的核心内容之一。

在有机合成的领域,新反应和新策略的不断涌现和发展,为有机化学家们提供了更广阔的创新空间和更高效的合成工具。

本文将探讨有机合成中的一些新反应和新策略的应用与进展。

一、新反应1. 金属催化反应金属催化反应是有机合成中的一大创新。

通过引入稀土金属、过渡金属等催化剂,可以加速反应速率,提高反应的选择性和收率。

例如,Pd-Cu的交叉偶联反应(Cross-Coupling Reaction)是一种应用广泛的金属催化合成方法,通过控制催化剂的选择和反应条件的调节,可以合成出多种复杂的有机分子结构。

2. 偶联反应偶联反应是有机合成中的一种重要策略,通过将两个分子中的不同部分连接起来形成新的单一分子。

不同的偶联反应方式具有不同的特点和适用范围,如:烯烃与烯烃的烯烃偶联反应、芳香环与芳香环的芳香偶联反应等。

偶联反应在药物合成和材料科学等领域具有重要的应用价值。

3. 环化反应环化反应是有机合成中的一种常见反应类型,通过构建有机分子中的环状结构,可合成出多种天然产物和药物分子。

环化反应多种多样,如环烷化反应、环氧化反应等。

其中,多元环化反应成为当前的研究热点之一,通过合理设计反应条件和催化剂,可以实现高效、高选择性的环化合成。

二、新策略1. 自由基反应传统有机合成中,自由基反应受到一定的限制,但随着自由基化学的发展,自由基反应在有机合成中的应用逐渐受到重视。

自由基反应具有反应条件温和、选择性高等优点,可用于构建复杂分子骨架和生成手性化合物等。

2. 多组分反应多组分反应利用多个反应物直接进行反应,形成一个包含多种结构的化合物。

多组分反应具有高度的化学多样性和高效性,可用于合成多样化的有机分子。

例如,自由基多组分反应被广泛应用于药物发现和环境友好型化学品的合成中。

3. 生物催化合成生物催化合成是指利用生物催化剂(如酶、细胞等)进行有机化合物的合成。

现代有机合成方法与技术

现代有机合成方法与技术

现代有机合成方法与技术
现代有机合成方法与技术是有机化学的关键领域之一,它是指使用化学反应和技术制备有机化合物的方法。

这些方法可以用于制备药物、材料、化学品和其他有机化合物。

以下是现代有机合成的几种方法和技术:
1. 催化反应:催化剂可以促进反应速率并控制反应选择性,使得有机合成更加高效和可持续。

例如,交叉偶合反应、氢化反应等。

2. 新型反应剂:新型反应剂可以开发新的反应途径,使得有机合成更加多样化。

例如,金属有机化合物、有机催化剂等。

3. 绿色化学:绿色化学是一种可持续的有机合成方法,利用可再生和环保的反应剂和溶剂,减少对环境的损害。

例如,使用水为溶剂代替有机溶剂、使用生物质资源代替石油化学品等。

4. 微反应技术:微反应技术利用微流控技术和微芯片技术,将反应器缩小到微米级别,使得反应更加快速和高效。

这项技术在药物研究和高通量合成方面大有用处。

5. 新型配体和手性催化剂:新型配体和手性催化剂可以实现高效、高选择性的
不对称合成,用于制备手性药物和材料。

例如,手性金属有机催化剂、天然产物手性配体等。

6. 生物法合成:生物法合成利用生物催化剂和酶催化反应,实现有机合成。

该方法具有高选择性、高效率、无污染等优点,在药物合成和工业生产中应用广泛。

总之,现代有机合成方法和技术不断创新和发展,为有机化学的发展和应用提供了广阔的发展空间。

现代有机合成方法与技术

现代有机合成方法与技术

现代有机合成方法与技术现代有机合成方法与技术是有机化学领域中一个重要的研究方向,它涉及到有机化合物的设计、合成和应用等方面。

随着科技的不断发展和化学工业的迅猛发展,人们对于高效、经济、环保和可持续的有机合成方法的需求越来越大。

因此,现代有机合成方法与技术的研究成为人们关注的焦点之一。

现代有机合成方法与技术的研究主要包括以下几个方面:1. 催化有机合成:催化剂可以加速反应速度、提高产率和选择性,是有机合成中的关键技术之一。

催化有机合成方法包括金属催化、酶催化、光催化和电催化等。

其中,金属催化方法广泛应用于碳-碳键和碳-氧键的合成,酶催化主要应用于手性有机合成中,光催化和电催化则是近年来兴起的研究热点,可以实现无需传统的高温高压条件下的合成反应。

2. 新型反应开发:为了提高合成效率和减少环境污染,研究人员通过不断开发新的有机反应来满足需求。

如多组分反应、串联反应、多组份反应、单电子转移反应等。

这些反应在特定的条件下,可以实现多个反应步骤的一次性完成,从而大大提高合成效率。

3. 绿色合成:绿色合成是现代有机合成方法与技术研究的重要方向之一。

绿色合成强调合成过程中对环境的友好性,包括采用环境友好的溶剂、催化剂和反应条件,减少废物的生成以及回收和再利用废物等。

绿色合成不仅可以减少对环境的负面影响,还可以提高合成过程的经济效益。

4. 自由基反应:自由基反应在现代有机合成中扮演着重要角色。

自由基反应具有反应条件温和、适应性广泛、反应底物丰富等优点。

近年来,自由基反应在手性合成、多组分合成等方面得到广泛应用。

5. 理论计算辅助有机合成:随着计算机技术的发展,理论计算在有机合成中的应用越来越广泛。

理论计算可以帮助有机化学家预测反应的可能性和选择性,优化反应条件,设计新的反应路线,从而节省实验时间和成本。

总之,现代有机合成方法与技术的研究对于有机化学和化学工业的发展具有重要意义。

通过不断开发新的合成方法和技术,可以提高有机合成的效率、降低成本、减少对环境的污染,为新药物的研发和化工工艺的改进提供可靠支持。

现代有机合成新技术

现代有机合成新技术

现代有机合成新技术
现代有机合成领域一直在不断发展和创新,涌现出许多新技术和方法。

以下是一些现代有机合成的新技术:
1. 点击化学:点击化学是一种高效的合成方法,通过在化合物之间进行高度特异性的反应,快速构建复杂的有机结构。

它可以用于药物合成、材料科学等领域。

2. 可持续合成:可持续合成注重使用环境友好的反应条件和可再生原料,以减少废物产生和能源消耗。

绿色合成和催化技术的发展是实现可持续有机合成的重要方向。

3. 金属有机催化:金属有机催化是一种利用金属化合物作为催化剂来促进有机反应的技术。

它可以提供高效、选择性和多样性的反应途径,对于合成复杂有机分子具有重要意义。

4. C-H键活化:C-H键活化是一种在有机分子中直接将C-H键转化为新的化学键的方法。

这种技术可以避免使用预功能化的底物,减少反应步骤,提高合成效率。

5. 生物催化:生物催化利用酶或微生物催化剂来促进有机合成反应。

它具有高效、特异性和环境友好等优点,可以用于制备药物、特殊化学品和精细化学品等。

6. 光化学合成:光化学合成利用光能激发分子发生化学反应。

光化学反应具有高选择性、无需使用强氧化剂或还原剂等优点,可以用于合成天然产物和功能分子。

7. 单分子合成:单分子合成是一种逐步构建分子的方法,通过控制反应分子的位置和反应条件,一步步构建出目标分子的结构。

这些新技术的出现和发展为有机合成领域带来了更高的
效率、选择性和环境友好性,推动了新药物、新材料和化学品的合成与研究。

有机合成中的新策略与方法

有机合成中的新策略与方法

有机合成中的新策略与方法近年来, 有机合成领域不断涌现出新的策略与方法, 为有机化学家们提供了更多的选择和可能性。

这些新进展使得有机合成更高效、更绿色、更可持续, 有助于解决传统有机合成中的瓶颈问题。

以下将介绍几种新的有机合成策略与方法。

一、金属催化有机合成金属催化有机合成是一种利用金属催化剂促进有机反应的方法。

金属催化反应可以在较温和的条件下进行, 同时具有高效和选择性的优点。

例如, 钯催化的交叉偶联反应(Pd-catalyzed Cross-Coupling Reaction)在有机合成中得到了广泛应用。

这种反应可以将碳-碳键或碳-氮键形成新的键, 极大地拓展了有机合成的范围。

二、可再生原料的利用随着可再生能源的重要性日益凸显, 有机化学家们开始探索将可再生原料应用于有机合成中的新方法。

例如, 生物质转化为化学品的合成过程中, 基于碳-氧键活化的一系列反应被广泛研究。

这些反应可以将生物质转化为高附加值的有机化合物, 同时减少对传统石油资源的依赖。

三、光化学与电化学的应用光化学与电化学在有机合成中的应用正在成为新的研究热点。

光化学和电化学反应可以实现非常温和的条件下的反应控制, 同时还能节省能源。

例如, 光催化还原和光催化氧化反应能够在光照条件下完成, 避免了传统有机合成中需高温、高压条件下的不足。

四、多组件反应多组件反应(Multicomponent Reactions, MCRs)是一种将多个反应物一次性加入反应体系中, 经过多步反应形成目标产物的方法。

MCRs具有高效和多样性的特点, 在有机合成中具有重要应用价值。

例如, Ugi反应和Povarov反应等多组件反应已被广泛研究和应用。

总结有机合成中的新策略与方法为有机化学家们提供了更广阔的发展空间。

金属催化、可再生原料的利用、光化学与电化学的应用以及多组件反应等新策略与方法, 为有机合成的高效、绿色和可持续发展提供了坚实的基础。

随着科学技术的不断进步和创新, 我们相信将会有更多的新策略和方法出现在有机合成的研究领域, 为有机化学发展贡献更多的力量。

有机化学中的新型合成方法

有机化学中的新型合成方法

有机化学中的新型合成方法有机化学是一门应用广泛的化学学科,常常用于合成药物、材料和生物活性分子等。

在有机化学中,不断涌现出新的合成方法,有助于提高化合物的产率和选择性。

让我们来看看有机化学中的新型合成方法。

一、光化学合成法光化学合成法采用光学激发来促进化学反应。

光化学合成法的特点在于能够实现无需使用任何催化剂的化学反应。

这种方法被广泛用于形成有机化合物的键合,如羰基、烯醇和环丙烷等。

光化学反应的优点在于产率和选择性高,而且容易控制。

此外,光照的反应条件也很温和。

现今越来越多的有机化学家在进行物质的设计合成时候,常常会选择光化学合成法。

二、微波辅助化学合成法微波辅助合成法是利用微波辐射对反应溶液进行加热,以加速一个化学反应。

这种方法可以缩短合成周期、提高产率和选择性。

由于总反应时间减少,物质的价值得到了提高,同时,反应条件也大幅降低,使得反应过程对于对环境保护有更大的友好性。

微波辅助合成法可以进行多种反应,如控制性的碳-碳键形成和化学量子点的制备等。

以碳-碳键形成为例,微波辅助反应能够增加反应物子级的交换,导致选择性增高,减小产物杂质的生成,从而比常规方法更加有效。

三、流动化学流动化学是一种新型的合成方法,通过在管内对反应物进行混合,加快反应,通过连续流传方式的化学反应实现了产率高、强度大、重现性好等特点。

流动化学在有机化学合成领域已经得到了广泛应用。

它可以用于高效生成化学催化剂,异构化反应和芳香化反应等。

另外,利用流动化学技术结合微观流动设备,可以更好地控制反应温度,消除杂质生成大大提高产品质量。

流动化学因其快速的反应和有效的选择性而成为现代有机化学中一个越来越重要的工具。

结论总的来说,新型有机合成法为我们展示了其在快速高效地合成过程中的重要性。

但是这些方法都需要我们非常谨慎地使用,因为它们同样具有潜在的缺陷,例如反应器中热点的自然变化或其他非均质性因素。

因此,在使用新型有机合成法时,我们需要对加工材料进行全面的测试和评估,以确保这些新技术的安全性和可靠性。

综述有机合成中的新策略与方法

综述有机合成中的新策略与方法

综述有机合成中的新策略与方法有机合成是有机化学领域的核心内容之一,它是指通过化学反应将简单的有机化合物转化为复杂的有机分子的过程。

随着科学技术的不断发展,有机合成领域也不断涌现出新的策略和方法,为有机化学家们提供了更多的选择和可能性。

本文将综述有机合成中的一些新策略与方法,探讨它们在有机合成中的应用和意义。

一、催化剂的应用催化剂在有机合成中起着至关重要的作用,它能够加速反应速率、提高产率和选择性。

近年来,一些新型催化剂的开发为有机合成领域注入了新的活力。

例如,金属有机催化剂在碳-碳键形成反应中展现出了巨大的潜力。

铜催化的C-C偶联反应、铂催化的氢化反应以及钯催化的交叉偶联反应等都成为了有机合成中的重要方法。

二、可持续发展的有机合成在现代社会中,可持续发展已经成为了一个重要的关键词。

有机合成领域也在积极探索可持续发展的方法。

例如,绿色化学合成策略的提出,强调在有机合成中尽量减少或避免对环境的污染。

通过使用可再生资源、开发高效的催化剂、减少废物产生等手段,有机合成可以更加环保和可持续。

三、基于计算的有机合成随着计算机技术的飞速发展,计算化学在有机合成中的应用也越来越广泛。

通过计算化学方法,可以预测反应的活性、选择性和产率等参数,从而指导实验设计和优化。

这种基于计算的有机合成方法不仅提高了合成效率,还减少了试错成本,为有机合成研究提供了新的思路和方法。

四、多组分反应的应用多组分反应是指在同一反应体系中同时参与多个反应物的反应。

这种反应方式不仅可以高效地构建多个化学键,还可以通过一步反应合成多个目标产物。

多组分反应在药物合成和天然产物合成中得到了广泛应用。

例如,Ugi反应、Passerini反应和Petasis反应等都是重要的多组分反应方法。

五、手性合成的新方法手性合成是有机合成中的重要内容之一,它是指合成手性化合物的过程。

手性化合物在药物合成、材料科学等领域具有重要的应用价值。

近年来,一些新的手性合成方法被提出,例如不对称催化反应、手性配体的设计和合成等。

有机合成化学的新方法与新应用

有机合成化学的新方法与新应用

有机合成化学的新方法与新应用有机合成化学是一门致力于构建复杂有机分子的科学,是现代有机化学的核心内容。

它的目的是利用各种化学反应将无机物或简单有机物通过不同的化学转化,最终形成复杂有机分子。

近年来,随着科学技术的不断进步,有机合成化学的新方法和新应用层出不穷,这为有机合成学家在构建复杂有机分子的过程中提供了更为丰富的手段和更广阔的思路。

一、化学催化新方法在有机合成中的应用化学催化是指通过小分子催化剂或催化性能较好的金属催化剂促进化学反应的过程。

这种方法能够大幅提高反应效率,降低反应中所需的温度和压力,减少副产物产生。

在有机合成中,化学催化发挥了重要作用,例如在C-C键的形成中使用了金属催化剂,如铜催化的C-H氧化反应和锌催化的C-N键形成反应。

另外,通过催化剂的优化设计和改良,可以使得反应具有更强的选择性和特异性,从而能够控制产物的结构,提高反应的合成效率和化学收率。

二、先进反应条件下的新反应与应用近年来,随着新材料、新催化剂的不断涌现,有机合成反应也在不断进步,一些新的先进反应条件被引入到有机合成中,如微波辅助合成、超音波辅助合成等。

这些新的反应条件虽然需要的设备和条件相对较为复杂,但它们能够大幅缩短反应时间,控制反应物和产物之间的化学反应速率,使得反应更加高效、选择性更加精确、产物纯度更高。

这些新反应还被应用于药物合成、有机薄膜制备等各个领域,推进了有机合成化学的深入发展。

三、新建筑单元新合成方法及其应用新建筑单元指的是一类在有机合成中常常用到的分子结构。

它们不仅能够作为重要的结构基石被应用于许多领域,例如药物化学、光电化学、材料化学等,而且还能够作为分子的新建筑单元被扩展和建立新的化合物。

新建筑单元通常需要先进的合成手段和技术,以创造出可控制的化学反应、产物结构的高效性及-selectivity,例如可控原子转移反应和重复单元化学反应等。

综观以上几大应用领域,可发现有机化学合成的新方法和应用端口很多,从单体的设计,到反应条件的升级,再到化学反应的创新,都有其方便化、更加精准和高效的思路。

有机合成的新化学方法

有机合成的新化学方法

有机合成的新化学方法有机合成是研究有机分子合成的学科,随着化学技术的日益发展,有机合成中也涌现出了许多新的方法和技术。

本文将就有机合成的新化学方法进行探讨。

一、金属有机催化剂金属有机催化剂是一种新型的催化剂,它利用金属作为催化剂来促进有机化合物之间的反应。

金属有机催化剂具有活性高、反应速率快等特点,已经逐渐成为有机合成的研究热点。

其中,金属有机催化剂的反应机理比较特殊,常见的金属有机催化剂反应有:C-C键生成、氧化反应、还原反应等,特别是对于C-C键生成反应的催化效果,多数情况下能够达到催化剂少量、化学效率高的情况。

二、不对称有机合成方法不对称有机合成方法是利用不对称性质来促进反应的一种新型合成方法,现在已成为有机合成领域中的重要研究方向。

在不对称有机合成方法中,通常采用的还是手性配体在有机反应中的作用,从而实现有机反应的不对称性质。

在具体的实验过程中,在催化剂、试剂和温度等方面都需要与手性配体相对应。

三、膦酸催化反应膦酸催化反应是一种利用膦酸为催化剂醚合成和酯交换反应的化学方法,只需要少量催化剂即可完成反应,常用于绿色化学中。

膦酸催化反应的实验条件和催化剂选择也较为灵活,可以在温和的条件下进行反应。

四、纳米金催化合成方法纳米金催化合成方法是一种利用金属纳米颗粒为催化剂来促进有机物合成的新方法,纳米金催化剂活性高、催化效果显著,对于复杂有机物合成也具有比较高的承受能力。

此外,纳米金催化合成方法的反应过程难以观察,因此需要进行条件调整和反应路线的优化工作。

五、控制性自由基反应控制性自由基反应是指用自由基生成反应控制自由基反应中产生的自由基的种类和位置,从而将反应定向化的技术,这种方法应用广泛,如环状合成、烯烃重排等反应中都有应用。

其中控制性自由基反应的反应条件有:温度、反应时间、催化剂等多个因素。

六、烯烃-炔烃复合物的制备方法烯烃-炔烃复合物是一种新型有机化合物,利用新型金属有机催化剂实现烯烃和炔烃之间的复合反应,以引入新的C-C键等官能基团,从而使反应产物具有新的物化性质。

现代有机合成新理念新技术

现代有机合成新理念新技术

Composition
p-Xylene/CO2(s) Dioxane/CO2(s) Cyclohexane/CO2(s) Benzene/CO2(s) Formamide/CO2(s) Crushed Ice Ice/Salt Ethylene Glycol/CO2(s) Cycloheptane/CO2(s) Benzyl alcohol/CO2(s) Tetrachloroethylene/CO2(s)
现代有机合成新理念和新技术
现代合成策略和合成理念
• 原子经济性
• 一瓶多组分反应
• 多米诺(串联)反应
• 生物或有机催化 • 高分子负载催化 • 电化学合成 • 组合化学合成
现代有机合成新理念和新技术
能量提ห้องสมุดไป่ตู้方式
• 机械研磨(mechanical milling, MM)
• 微波(microwave irradiation, MWI)
Temperature
-56 -60 -77 -77 -83 -83.6 -89 -94 -94.6 -95.1 -98
Composition
n-Octane/CO2(s) Isopropyl Ether/CO2(s) Acetone/CO2(s) Butyl Acetate/CO2(s) Propyl Amine/CO2(s) Ethyl Acetate/Liq N2 n-Butanol/Liq N2 Hexane/Liq N2 Acetone/Liq N2 Toluene/Liq N2 Methanol/Liq N2
• 超声波(ultrasound, US)
现代有机合成新理念和新技术
反应介质
• 水相反应 • 无溶剂 • 离子液体 • 超临界二氧化碳(ScCO2)

有机合成中的新方法与新催化剂

有机合成中的新方法与新催化剂

有机合成中的新方法与新催化剂近年来,有机合成领域不断涌现出新的方法和催化剂,为化学家们提供了更多的选择和工具,以便合成出更复杂、高效和环保的有机分子。

本文将介绍几种有机合成中的新方法和新催化剂,探讨它们在有机合成中的应用和优势。

一、C-H键活化C-H键活化是一种新颖且高效的有机反应方法,可以将一些稳定的C-H键转化为C-X键(X为其他原子或基团)。

传统方法中,C-H键是相对不活跃的,然而通过引入新的催化剂,如过渡金属催化剂或有机小分子催化剂,C-H键活化的反应可以高效进行。

例如,利用过渡金属催化剂,可以实现烃类的傅—克反应、碳—碳偶联反应和环化反应,为有机合成提供了更多选择和可能性。

二、单一反应多步合成传统的有机合成往往需要多步反应才能得到目标分子,反应步骤繁琐且易发生副反应。

而近年来,单一反应多步合成技术的发展使得有机分子的合成更为高效和简便。

这种技术通过将多步反应的中间体附着在固相反应柱上,以自动化流程完成多步合成的各个步骤,从而实现快速、高产和高纯度的有机分子的合成。

三、可见光催化传统的有机合成催化剂通常需要紫外光的激发才能发挥催化作用,对催化剂的选择和使用有一定的限制。

而近年来,可见光催化得到了快速发展,以可见光为能量源的催化剂可以实现各种有机反应,如氧化反应、加氢反应和偶联反应等。

这种新型催化剂具有选择性高、反应底物范围广和环境友好等优势,为有机合成带来了新的方法和策略。

四、不对称催化对于有机合成领域而言,对不对称合成的需求非常迫切,因为手性分子在医药、材料科学和有机电子学等领域具有重要的应用价值。

不对称催化作为一种重要的手性质子催化剂,可以有效实现不对称合成。

目前,已经有许多新型的手性催化剂被开发出来,如金属催化剂、有机小分子催化剂和酶催化剂等。

这些催化剂在不对称合成领域的应用大大提高了合成效率和产物的手性纯度。

综上所述,有机合成中的新方法和新催化剂为有机化学家们提供了更多的机会和选择。

新型有机合成方法的研究与应用

新型有机合成方法的研究与应用

新型有机合成方法的研究与应用有机合成是化学学科中的重要分支,它研究有机化合物的合成方法和反应规律。

有机化合物在生产和生活中广泛应用,因此有机合成方法的研究和发展具有重要的科学意义和实际价值。

近年来,随着化学合成技术的不断发展和改进,新型有机合成方法层出不穷,为有机化合物合成提供了更多的选择和手段。

1. 光催化合成法光催化合成法是一种利用光能激发反应分子的能级、活化反应底物的方法。

该方法因其绿色、高效、可控的优势,成为有机合成领域的新热点。

目前,该方法已被应用于多种化合物的合成中,如α-氨基酸、光响应材料、有机金属配合物等。

利用光催化合成可以避免传统合成方法中需要添加大量的溶剂和还原剂的问题,从而节约了能源和保护了环境。

2. 天然产物合成法天然产物合成法是指以天然产物为模板,通过结构和反应分子的合成方式,合成类似于天然产物的合成物。

它具有天然产物的结构清晰、生物活性强等优势。

目前该方法已成功应用于天然药物和生物碱的合成中,如氨基葡萄糖和生防剂等。

天然产物合成法的优势在于可以减少反应步骤,提高合成效率,缩短合成时间。

3. 原子经济合成法原子经济合成法是指在合成过程中最大限度地利用反应底物,减少无用废物的产生,从而达到经济和环境友好的目的。

该方法采用小分子化合物,结构短小,反应活性高,反应底物的利用效率达到最大。

目前该方法已被应用于多种化物合成中,如醇和酯物的合成等。

原子经济合成法的优势在于可以降低合成成本,提高产品质量,对环境友好。

4. 金属催化合成法金属催化合成法是指利用金属作为催化剂,通过促进反应体系的反应速率和控制反应的选择性,完成有机化合物的合成。

该方法具有反应条件温和、产物纯度高、选择性好等优势。

目前该方法已被广泛应用于有机化合物的合成中,如烃类、醛类和酮类化合物等。

金属催化合成法有助于化学合成的实现,可引导更为高效、环境友好的化学合成。

总之,新型有机合成方法的研究和应用为有机化合物的合成提供了更多的选择和手段,其中光催化合成法、天然产物合成法、原子经济合成法以及金属催化合成法等已经显示出明显的优势。

现代有机合成的新概念和新方法

现代有机合成的新概念和新方法

现代有机合成的新概念和新方法摘要: 概念和方法是有机合成化学发展的基础, 新的概念和方法的产生和发展可为有机合成开拓新的研究领域和发展方向. 介绍现代有机合成中一些新概念和新方法, 结合具体的有机合成反应实例阐述有机合成在这些概念和方法方面取得的新成果和进展, 现代有机合成发展方向和应重视的研究领域.关键词: 现代有机合成; 新概念; 新方法; 进展The new concept and new method of the modern organic synthesisAbstract: Concept andmethod are the bases of the development of organic synthesis chemistry. New concept and newmethod can exploit new research fields and development orientations for modern synthesis. This paper introduces somenew concept and new methods in modern organic synthesis, revealing the new achievement and improvement in thesconcept and methods by giving some instances of organic synthesis reaction, summarizing the development orientationsand the fields the modern organic synthesis should lay emphasis on.Key words: modern organic synthesis; new conception; new method; development有机合成化学作为有机化学的一个分支, 已经有一百多年的历史. 现代的有机合成不但能合成大量的结构复杂而多样的次生生物代谢物和基因、蛋白质等复杂的生命物质, 而且能合成大量的自然界中没有的具有独特功能性分子的物质. 现代有机合成不只是合成什么的问题, 更重要的是如何合成和怎样合成的问题. 有机合成与21 世纪的三大发展学科: 材料科学、生命科学和信息科学有着密切的联系, 为三大学科的发展提供理论、技术和材料的支持. 新世纪有机合成将进一步在这三大学科领域中发挥作用并开辟新的领域. 随着生命科学和材料科学的发展, 尤其进入后基因组时代后, 需要有机合成快速提供各种具有特定生理和材料功能的有机分子, 而要获得有新结构的功能类型分子往往取决于新的合成方法, 新的方法往往又取决于新的理论和概念. 因此, 21 世纪有机合成的发展, 需要从概念、方法、结构与功能方面入手.1 现代有机合成新概念1.1.1 原子经济性原子经济性的概念是美国著名有机化学家B.M. Brost 于1991 年首先提出的, 并将它与选择性归结为合成效率的两个方面[1]. 认为高效的有机合成应最大限度地利用原料分子中的每一个原子,使之转化到目标分子中, 达到零排放. 原子经济性反应有两大优点: 一是最大限度地利用原料; 二是最大限度地减少了废物的生成, 减少了环境污染.原子经济性反应符合社会发展的需要, 是有机合成的发展方向[2] . 原子经济性是现代有机合成追求的一个重要目标, 也是绿色合成的一个重要指标.原子经济性原则引导人们在有机合成的设计中经济地利用原子, 避免使用保护基或离去集团,减少或消除副产物的生成. 当前, 提高有机合成原子经济性的主要途径有开发高选择性、高效的催化剂; 开发新的反应介质和试剂, 提高反应选择性; 总的来说主要在合成路线和反应条件上做文章.最近, 在原子经济性反应方面取得了很大进展. 例如: 用传统的氯醇法合成环氧乙烷, 其原子利用率仅为25%,而采用乙烯催化环氧化方法可一步合成, 原子利用率可达到100%, 产率达99% .反应如下:Noyori 等使用新型介质超临界二氧化碳, 用二氧化碳和氢气合成了甲酸, 这被认为是最理想的反应之一[3] . Hoffmann-La Roche 公司开发的抗帕金森药物的合成是一个羰基化反应, 采用传统的多步合成反应路线, 以2-甲基-5-乙基吡啶为起点经8 步合成, 产率约为8% ; 而用钯催化羰基化反应,从2, 5-二氯吡啶出发, 可一步合成, 原子利用率达100%, 生产规模可达3 000 t[4] .1.1.2 组合合成组合合成的概念是在组合化学的基础上发展起来的, 并开创了新领域. 它可以在短时间内将不同结构的模块以键合方式系统地、反复地进行连接, 形成大批相关的化合物( 亦称化学库) . 通过对库进行快速性能筛选, 找出具有最佳目标性能化合物的结构, 与传统化合物的单独合成及结构性能测定相比, 简化并缩短了发现具有目标性能化合物的过程[5] . 如对催化剂进行选择和改进传统研究方法仍依靠实验摸索、偶然发现的, 不仅工作量大而且效率不高, 组合合成大大提高了有机合成选择的目标性和效率, 对于有机合成中的催化合成有重要意义. 事实证明组合合成是用于催化合成研究的一种有效手段. 组合合成反映了化学家在研究观念上出现的重大飞跃, 它打破了逐一合成、逐一纯化、逐一筛选的传统研究模式, 使大规模化学合成与药物快速筛选成为可能.组合合成提供了一种迅速达到分子多样性的捷径. 目前, 这方面的发展迅速, 现已从肽库发展到了有机小分子库, 并已筛选出许多药物的先导化合物[6] . 组合合成在催化反应体系的选择、药物化学中先导化合物的筛选以及材料化学中显示了广阔的前景. 目前, 组合合成的趋势是要求高效,以最少的化合物筛选取得最多的正确信息.固相和液相组合合成以及有效组合合成的介入, 对先导化合物筛选和药物筛选等方面起了积极推动作用. 另外, 在组合合成中应用高分子微珠方法, 可使每一个高分子珠球含有的450 Lmol 的分子进行反应, 反应后对其中的10%进行纯化、分析与结构确定, 其余的可用于各种靶点的筛选与化合物库的建设之用. 组合化学在催化反应中的应用, 尤其在不对称催化反应中的应用已显示很好的结果, Kagan 及Mikami 等已成功将组合化学用于不对称催化反应的开发[7]. 另一方面就是应用组合化学合成一系列化合物, 提供多样性的化合物库, 以展示有机合成方法学的能力及发展新型先导化合物[8] . 虽然绝大部分组合合成是集中在非手性小分子上, 但也有应用组合合成建立不对称合成的手性化合物库, 用于药物筛选的报道[9]. 最近, 美国的Curran 教授等发展了氟相组合化学以及相应的氟相分离技术, 进一步推动了组合化学特别是液相组合化学的发展[10] .1.1.3 不对称合成不对称合成是研究对映体纯和光学纯化合物的高选择性合成, 已成为现代有机合成中最受重视的领域之一. 不对称合成尤其是过渡金属催化的不对称合成是合成手性药物的有效手段, 因为不对称合成必须有手性源才能完成, 在当量的不对称反应中必须有当量的手性源, 而用于手性源的化合物非常昂贵, 故在生产中用当量的手性源化合物是不合算的. 获得单一手性分子的一个重要途径是外消旋体的拆分, 但原子经济性较差, 最大产率也只有50%; 而催化的不对称合成利用催化量的过渡金属和与之相配的手性配体, 用很少量的手性配体可合成大量的手性化合物, 有很好的原子经济性. 因此, 合成单一手性分子, 催化的不对称合成应该是首选的.经过近十年的飞速发展, 催化的不对称合成取得了很大进展. 其中, 不对称氢化反应研究得较深入. 据估计在已工业化的所有不对称合成反应中有70% 的反应属于不对称氢化反应. 目前, 由于出现了一系列新配体[11] , 不对称氢化反应正向常温、常压和高选择性、高反应速率、重复使用和更具环保意识的方向发展; 同时, 反应底物的范围也不断扩大. 一个进展就是已解决了C C 双键和C O 双键的选择性氢化问题: Noyori 在乙二胺和氢氧化钾共存下, 用RuCl2( PhP) 3 为催化剂可以在C C 键存在下选择性的氢化C O 键, 这一高选择性的氢化反应已实现[ 12] . 对碳) 杂原子连接的不对称反应的研究还处在初级阶段, 但对难于氢化的C N 键的不对称氢化已取得了成功[ 13].最近, Buchwald 等用C N 键插入T-i H 键而形成T-i N 键时的立体环境, 从而实现了对C N 键的不对称氢化[ 14]. 另一方面, 手性中毒( 不对称活化) 概念的产生和发展, 使催化不对称合成中手性配体昂贵的问题有了解决方法. 利用配位化合物的手性识别原理, 使廉价的对映纯的非活性配体和外消旋的活性配体之间的相互作用, 拆分了外消旋的活性配体, 从而起到不对称催化的作用[ 15].这是不对称催化发展的一个方向. 下面是手性中毒示原理:除此之外, 还发展了不对称放大, 去对称化反应等新概念、方法和技术, 大大促进了不对称合成反应的发展. 不对称合成的发展, 不仅在医药上得到应用, 并且推动了有机合成、配位化学、分析分离技术和高分子材料等领域的发展.1.1.4 绿色合成绿色化学的概念在20 世纪90 年代初由化学家提出[ 16], 十几年来, 绿色化学的概念、目标、基本原理和研究领域等已经逐步明确, 初步形成一个多学科交叉的新的研究领域. 绿色合成是绿色化学的一个方面, 其以绿色化学的基本理论和目标为指导, 以和/ 环境友好0为基础和出发点. 绿色合成采用绿色环保型的合成路线和工艺, 避免使用对环境有害的溶剂、原料和催化剂, 消除或尽可能减少有毒产物的生成, 实现整个合成过程对环境的友好性. 当前, 实现有机合成的绿色化, 一般从以下方面进行考虑: 开发、选用对环境无污染原料、溶剂、催化剂; 采用电化学合成技术; 尽量利用高效的催化合成, 提高选择性和原子经济性, 减少副产物的生成; 设计新型合成方法和新的合成路线, 简化合成步骤; 开发环保型的绿色产品; 发展应用无危险性的化学药品.关于绿色合成的报道很多, 其中有对传统合成方法的改进, 有新的合成反应的出现. 例如, 对于Friede-l Crafts 酰化反应合成药物中, 用传统的催化剂无水AlCl3 来催化中间体对氯二苯甲酮, 生产1 t 酰化物产生3 t 酸性富铝废弃物, 而采用新开发的环境友好催化剂envirocat EPZG, 催化剂用量为原来的10% , 产率可达70% ,HCl 的排放量减少了3/ 4, 无酸性富铝生成, 只产生极少量的邻位产物[ 17]. 反应如下:甲基丙烯酸甲脂是一种重要的高分子单体,传统的工业合成方法以丙酮腈醇为原料, 反应中要使用过量的浓硫酸和有剧毒的氢氰酸, 结果产生大量的硫酸氢铵废弃物, 原子利用率只有46% ,对环境危害很大. Shell 公司发展的丙炔-钯催化甲氧羰基化一步合成法, 区域选择性和反应回收率均大于99% , 原子利用率高达100% , 催化剂的转化活性高达每小时每克催化剂催化10 万摩尔底物, 是一种高效的环境友好流程[ 18] .Noyori 发展了一种直接用30% 双氧水氧化环己烯制得己二酸的方法, 只生成己二酸和水, 是一种不用有机溶剂和不含卤素的绿色过程[ 19].Burk 小组报道了以超临界二氧化碳为溶剂可以提高催化不对称氢化反应的对映选择性, 产率达95%, 是一个典型的绿色有机合成[ 20] .2 现代有机合成的新方法有机合成的发展一方面得益于有机金属试剂的开发与应用, 另一方面得益于新的反应方式, 如自由基反应、卡宾反应、环加成反应与高效合成反应等. 这里就一些新方法给出若干实例.2.1.1 自由基反应自由基化学已为有机合成提供了许多新方法.主要表现在以下4 个方面: 新型自由基原子转移供体, 如(MeSi)、SiH; 成环模型, 跨环环化反应; 在分子内自由基加成反应中自由基加成的模式, 即endo/exo 型; 自由基加成反应立体选择性的控制[ 21] .在多烯烃的体系内串联式自由基加成反应为多环化合物的合成提供了高效方法[ 22] .跨环成环反应为许多用其它方法难以合成的并环化合物的合成提供了新方法[ 23].在自由基加成反应中立体化学的控制一直是自由基反应在有机合成中应用的瓶颈, 主要是因为自由基的高反应活性. 最近, 美国的Sibi 和Porter 教授等利用Lewis 酸对化合物的羰基配位,用杂环中的手性中心来控制自由基加成反应的立体化学, 为光学活性的酰胺化合物的合成提供了方法[ 24]另一方面, 从合理设计的底物出发, 自由基反应已成为可控制的, 是在中性条件下进行高选择性反应的一种有效手段[ 25] . 选择适宜的自由基引发剂可使自由基反应在室温下进行, 糖碳苷化反应中自由基作为引发剂比AIBN 作为引发剂得到更高的立体选择性.2.1.2 光、电、微波促进的有机合成反应新型物理手段在有机合成中的应用受到化学家的关注, 这方面的发展也很快. 主要是对光催化、电催化、微波催化等方面的研究. 光催化反应,具有洁净无污染, 反应速度快等特点. 光学活性的有机催化剂( 不含金属) 的设计是当今研究的一个新领域[ 26] . Charette 等发现在碳) 碘键与二乙基锌交换反应中, 在没有光照的情况下, 48 h 后锌试剂2 的产率小于10% , 而当用GE 日光灯( 275 W)作为光源进行光催化时, 发现在3 h 内锌试剂2 的产率为90% [ 27] .电化学过程是洁净技术的重要组成部分, 是到达绿色合成的有效手段, 在洁净合成中有独特的魅力. 有机电合成一般可避免有毒试剂的使用,通常在常温、常压下进行. 有机合成中一类非常重要的碳) 碳键形成的反应是自由基反应, 实现自由基环化的常规方法之一是使用过量的三丁基锡烷, 不过这种方法原子使用率低, 还产生有毒且难以除去的锡试剂, 而用维生素B12催化的电还原方法完全可以避免这方面的问题. 应用天然、无毒、手性的维生素B12为催化剂的电催化反应, 可产生自由基类中间体, 从而实现了在温和、中性条件下的自由基环化[ 28] . 下面的反应是一个例子.近年来, 微波辐射技术在有机合成有很好的应用, 微波催化不仅有效地提高反应速率、反应转化率和选择性, 而且体现出节能、环保等诸多优点, 微波在有机合成中的应用已引起人们的兴趣.近年来, 关于微波催化的有机合成的报道很多, 较多的是关于脂类有机物的微波催化. 如1, 3-二苯基烯丙基醋酸脂3 在P-烯丙基钯作为催化剂的情况下与丙二酸脂在手性配体存在下, 经微波促进反应, 亲核取代产物4 的产率可达77% ~ 87%[ 29] .又如由邻苯二酚与氯代异丁烯通过烷基化反应合成邻异丁烯氧基苯酚, 采用传统加热方法, 反应速度慢, 需时25 h 产物收率为50%[ 30], 而李军等采用微波辐射合成该产品, 只需115 min 产物收率可达68%[ 31] .2.1.3 高效合成方法2.1.3.1.1一瓶多步串联反应生物体内的化学合成是高度有序、高效进行的, 许多转化涉及多步连锁式、多米诺骨牌式反应. 由于串联反应一般经历一些活性中间体, 如碳正离子、碳负离子、自由基或卡宾等, 这样就发生了一个反应可以启动另一个反应, 因此多步反应可连续进行, 无须分离出中间体, 不产生相应的废弃物, 可免去各步后处理和分离带来的消耗和污染[ 32, 33]. 此外, 金属催化往往可产生活性中间体, 进而在一瓶内进行多步连续反应, 这类反应叫串联反应( tanderm react ion) . 在一个反应瓶内连续进行的多步串联反应以合成复杂分子, 也是一类环境友好反应. 阳离子串联反应, 自由基串联反应, 金属催化的串联反应是几类具有代表性的串联反应.早期的一个著名的例子是角鲨烯的生源合成及其仿生合成, 属阳离子串联反应[ 34] . 多种不同反应组合及其系列反应, 也是串联反应的有效方式. Boger 小组用二唑作为双烯进行的[ 4+ 2] 环加成- 失氮- [ 3+ 2] 环加成串联反应, 在一瓶反应中合成了长春花朵灵的前体, 产率达70% , 建立了5 个环和6 个手性中心[ 35] . 通过多米诺式的[ 3+ 2] 环加成-Wagner-Meerwein 重排-Friede-l Crafts 烷基化- 消除反应系列, 可实现多环体系的一瓶合成, 在报道的两例中, 产率分别达到47% 和25%[ 36] .Heathcock 研究了交让木( yuzuriha) 类生物碱的合成, 建立了用简单的一瓶反应把角鲨烯衍生物转化为二氢原交让木碱的简单方法[ 37]. 整个过程形成5 个环, 4 个碳) 碳键, 2 个碳) 氢键和8 个手性中心..Corey 小组报道阳离子引发的串联反应, 用于aspidophytine 的对映选择性合成, 这个一瓶反应的产率达到66%[ 38] .2.1.3.1.2一瓶多组分反应一瓶多组分反应也是一类高效的方法, 这类反应涉及至少3 种不同的原料, 每个反应都是下一步反应所必需的, 而且原料分子的主体部分都融进最终产物中[ 39] . Mannich反应( 三组分) 和Ugi( 四组分) 都是有名的例子. 最近Ugi 报道了一个七组分反应[ 40] , 产物的回收率达到43%. 一瓶多组分反应也可用于复杂分子的合成.2.1.3.1.3多反应中心多向反应具有多反应中心的底物也可以在一瓶完成多步反应[ 41] . 双向或多向反应也可以是高效的.3 展望现代有机合成正朝着高选择性、原子经济性和环境保护型三大趋势发展, 重点在于开发绿色合成路线及新的合成工艺, 寻找高选择性、高效的催化剂, 简化反应步骤, 开发和应用环境友好介质, 包括水、超临界流体、离子液体、氟碳相等, 以代替传统反应介质, 减少污染. 合成方法学研究成为有机合成的研究热点, 成为从化学原理入手发展新概念、新反应、新方法的突破口, 重点是对立体可控制的自由基反应的研究及组合化学在有机合成方法学发展中的应用, 合成具有独特功能的分子, 包括具有特殊性能的材料、生理活性分子和天然产物, 尤其对海洋生物源中新生物活性物质的发现与合成成为有机合成在新世纪的重要发展方向. 目前, 不对称合成的研究虽然取得了很大的进展, 今后仍旧是有机合成研究的热点问题之一,尤其对催化的不对称合成反应的研究、研制和发现新配体及手性催化剂是研究催化不对称合成的重要方面. 另外, 分子器件、分子识别、分子组装和化学生物学、合成生物学、化学材料学的研究将更进一步推进有机合成的发展, 使其融入国际科技飞速发展的潮流.参考文献[ 1] Trost BM. Atom economy in chemical reaction[ J] . Science, 1991( 254) : 1 469- 1 476.[ 2] Murai S A. Activation of unreactive bonds and organic synthesis[M] . Berlin: Springer-Verlag, 1999. [ 3] Jessop P G, Ikariya T, Noyori R, et al. Enzymatic interesterification in supercritical carb dioxide[ J] . Nature, 1994( 368) : 230-235.[ 4] Schmid R. Synthesis of carbonyl compounds[ J] . Chimia, 1996( 50) : 108- 112.[ 5] 任军, 冯杰, 孙冬梅, 等. 组合化学在多相催化领域中的应用[ J] . 工业催化, 2002( 6) : 1- 7.REN Jun, FENG Jie, SUN Dong-mei, et al. Application of building- up chemistry in the multiphase catalyst field[ J] . I ndustrialCatalyst, 2002( 6) : 1- 7.[ 6] Thompson L A, Ellman J A. Application of combinatorial technologies to drug discovery[ J] . Chem Rev , 1996( 96) : 553- 556.[ 7] Mikami K, Toshinob K, Satoru M, et al. Implications for the role cinchona akaloids in enantioselective hydrogenation[ J] . Chem ,2001( 19) : 544- 548.[ 8] Balkenhohl F, Lansky A, Zechel C, et al. Platinu m- catalyzed enantioselective hydrogenation[ J] . Chem Int Ed Engl. 1996( 35) :2 288- 2 296.[ 9] Beraza P, Suto M J. Effects of mixtures of modifiers on optical yield inenantioselective hydrogenation[ J] . D DT , 2000( 5) : 360-367.[ 10] Luo Z, Zhang Q, Oderaotoshi Y, et al. Recent advances in catalytic asymmetric reactions promoted by transition metal complexes[ J] . Science, 2001( 291) : 1 766- 1 770.[ 11] 林国强, 陈耀全, 陈新滋, 等. 手性合成) ) ) 不对称反应及其应用[M] , 北京: 科学出版社, 2000.3 16 广州大学学报(自然科学版) 第3 卷LIN Guo- qiang , CHEN Yao- quan, CHEN Xin- zi, et al. Handcharacter synthesis ) asymmetrical reaction and its application[M] ,Beijing: Science Press, 2000.[ 12] Ohkuma T, Ooka H, Ikariya T, et al. Asymmetric synthesis of naprox cn by supported aqueous- phase catalysis[ J] . Am ChemSoc, 1995( 117) : 10 415- 10 420.[ 13] Willoughby C A, Buchwald S L. Design and synthesis of a heterogeneous asymmetric catalyst[ J] . Am Chem Soc, 1994( 116) : 11701- 11 709.[ 14] Sinn H, Kaminsky W. Green processing using ionic liquids and carbon dioxide [ J] . Am Chem Soc, 1996( 118) : 263- 268.[ 15] 丁奎岭, 林国强. 有机化学[M] . 北京: 科学出版社, 2000.DING Ku-i ling, LIN Guo- qiang. Organic Chemistry[M] . Beijing: Science Press, 2000.[ 16] Anastas P T, Warner J C. Green chemistry theory and practice[M] . Oxford: Oxford Univ Press, 1998. [ 17] Clark J H, Macquarrie D J. Inorganic solid acids and their use in acid catalyzed hydrocarbon reactions[ J] . Chem Soc Rev , 1996( 25) : 301- 310.[ 18] Keijskper J, Amoldy P, Doyle M J, et al. The study of the oligomerization of propene over ZSM- 5 aeolite[ J] . Recl Trav ChimPays-Bas, 1996( 115) : 246- 250.[ 19] Sato K, Aoki M, Noyori R. The centone. s high manganese sour salt dynamics research that oxidize[ J] . Science, 1998( 281) : 1643- 1 648.[ 20] Burk M J, Feng S G, Gross M F, et al. The chiral pool as a source of enatiose lective catalysts and aux illaries isothermal crysta-llization of isoltactic polypropylene in dotriacontane[ J] . Am Chem Soc, 1995( 117) : 8 275- 8 279. [ 21] 杜灿屏, 刘鲁生, 张恒. 21 世纪有机化学发展战略[M] . 北京: 化学工业出版社, 2002.DU Can- ping , LIU Lu-sheng, ZHANG Heng. Stratagies for the development of organic chemistry in the 21st century[M] . Beijing :Chemistry Industry Press, 2002.[ 22] Takasu K, Kurotanag i J-C, Katsumata A, et al. Oxidation kinetics of natural organic matter by sonolysis and ozone[ J] . I haraMTetrahedron, 1999( 40) : 6 276- 6 279.[ 23] Blake A, Hollingworth G J. Oxidation kinetics of natural organic matter by sonolysis and ozone[ J] . Pattenden Synthesis , 1999( 20) : 642- 646.[ 24] Sibi M P, Ji J, Sausker J B, et al. Species in irradiated oxygenated water[ J] . Am Chem Soc, 1999( 121) : 7 515- 7 519.[ 25] Andrew JM, Walton J C. Critical review of rate constants for reaction of bydrated electrons[ J] . Angew Chem I nt Ed Engl , 1997( 36) : 2 220- 2 226.[ 26] Ahrendt K A, Borths C J, MacMillian D W, et al. Substituent conatants for correlation analysis in chemistry and biology[ J] . AmChem Soc, 2000( 122) : 4 240- 4 246.[ 27] Charette A B, Beauchemin A, Marcoux J- F, et al. Selective control during the photoassisted oxidation of 1-butanol titanium dioxid[ J] . Am Chem Soc, 1998( 120) : 5 113- 5 117.[ 28] Hutchinson J H, Pattenden G, Plyers P L. A structural investigation of titanium dioxide photocatalysts[ J] . Tetrahedron Lett , 1987( 28) : 1 310- 1 315.[ 29] Bremberg U, Larhed M, Moberg C, et al. Novel calcium antagonists with potent and long- lasting vasodilative activty[ J] . OrgChem, 1999( 64) : 100- 107.[ 30] 陈卫民, 陈忠, 徐继红, 等. 微波辐射相转移催化合成2- ( 2- 甲氧基苯氧) 乙胺[ J] . 化学世界, 1998( 2) : 86- 89.CHEN We-i min, CHEN Zhong , XU J-i hong, et al. Microwave radiation phase trans transfer catalyst synthesis 2- ( 2-methoxy-phenoxybenzamine)-ethamivan[ J] . Chemistry World , 1998( 2) : 86- 89.[ 31] 李军, 庞军, 曹国英, 等. 微波法合成邻异丁烯氧基苯酚[ J] . 合成化学, 2000( 4) : 321- 325.LI Jun, PANG Jun, CAO Guo- ying, et al. Synthesizing ortho- isobutylene pyrocatechol oxygen phenol[ J] . Synthesis Chemistry ,2000( 4) : 321- 325.[ 32] Tonesh W. Determination for formaldehyde in the presence of bisulfite[ J] . Chem Rew , ( special) , 1996( 96) : 1- 100.[ 33] Jendy K. Simultaneous spectrofluorimetric determination of cerium and cerium by flow injection analysis[ J] . Tetrahedron ( sp ecial) , 1996( 52) : 11 358- 11 657.[ 34] Johnson W S, Plummer M S, Reddy S P, et al. Intravenous infusion in eicosapenoic acid into rabhits[ J] . Am Chem Soc, 1993( 115) : 510- 517.[ 35] Negishi E, Coperet C, Ma S, et al. New strategies in asymmetric synthesis based on Y- alkoxy butenolides[ J] . Chem Rev, 1996( 96) : 362- 366.第4 期苏育志等: 现代有机合成的新概念和新方法 31 7[ 36] Knolker H J, Baum E, Graf R, et al. Synthesis of diastereomerically prue spiro- cyclopropane derivatives containing multichiralcenters[ J] . Angew Chem . I nt Ed Engl , 1999( 38) : 2 582- 2 587.[ 37] Wallace G A, Heathcock C H. Chiral aux iliaries and ligands in asymmetric synthesis[ J] . Org Chem, 2001( 66) : 447- 452.[ 38] He F, Bo X, Altom J D, et al. Chemical toxicity to aquatic species[ J] . Am Chem Soc, 1999( 121) : 6 768- 6 774.[ 39] Bienayme H, Hulme C, Oddon G, et al. Parameter estimation rules that allow accurate prediction of partion[ J] . Chem Eur J ,2000( 6) : 3 315- 3 323.[ 40] Domling A, Ugi L. Nash determination for formaldehyde in the presence of bisulfite[ J] . Angew Chem Int Ed Engl , 1993( 32) :560- 567.[ 41] Crispino G A, Ho P T, Sharpless K B, et al. The stabilization of small concentrations of formaldehyde in aqueous solutions[ J] .Science, 1993( 259) : 61- 67.。

化学中的有机合成方法

化学中的有机合成方法

化学中的有机合成方法是指有机化合物的合成方法。

有机化合物是由碳原子和氢原子组成的化合物,在化学中占有非常重要的地位。

有机合成方法是指利用合适的原料和试剂,通过合适的反应,合成所需要的有机化合物。

有机合成方法在化工、医药、农药、香料等领域得到广泛应用。

1. 有机合成方法的分类有机合成方法分为传统有机合成方法和新型有机合成方法。

传统有机合成方法指的是在室温条件下或者高温、高压条件下,利用化学反应合成所需要的有机化合物。

新型有机合成方法采用绿色化学原理,采用环保的方法,不使用有毒有害的试剂和溶剂,能够节省能源和材料,对环境友好。

传统有机合成方法的反应可以按照反应类型进行分类,包括加成反应、消除反应、取代反应、缩合反应、重排反应等。

加成反应:加成反应是指一种反应物在另一个反应物中加成。

加成反应一般生成羰基化合物和双键化合物,反应通常是在室温下进行。

消除反应:消除反应是指一种反应物失去分子中某些原子或基团,生成一个偶数个电子的分子,反应通常需要高温。

取代反应:取代反应是指烷烃、芳香烃、卤代烃等在存在催化剂或者酸促进下,发生分子、基团或者原子的取代反应。

缩合反应:缩合反应是指两个或者多个分子中的某些基团相连成为新的分子的反应,包括酯缩合、醛缩合、羟醛缩合等反应。

重排反应:重排反应是指分子内或者分子间的原子或者基团之间的重新排列反应,反应可以是烷基、芳基、卤基、硅基等反应。

2. 新型有机合成方法新型有机合成方法可以分为微波合成、超声波合成和绿色合成等方法。

微波合成是指利用微波辐射加速反应,反应速率快,反应时间短。

微波能量可以使反应物中的分子产生振动和摩擦,增加分子的活动能,从而加速反应的进行。

微波合成广泛应用于有机合成领域,特别是在医药领域,可以大大提高反应速度和产物的收率。

超声波合成是利用超声波辐射加速反应,反应速率快,反应时间短。

超声波能够产生机械振动波,能够加速分子间的相互作用,增强反应物的活性,从而加速反应的进行。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

现代有机合成的新概念和新方法摘要: 概念和方法是有机合成化学发展的基础, 新的概念和方法的产生和发展可为有机合成开拓新的研究领域和发展方向. 介绍现代有机合成中一些新概念和新方法, 结合具体的有机合成反应实例阐述有机合成在这些概念和方法方面取得的新成果和进展, 现代有机合成发展方向和应重视的研究领域.关键词: 现代有机合成; 新概念; 新方法; 进展The new concept and new method of the modern organic synthesisAbstract: Concept andmethod are the bases of the development of organic synthesis chemistry. New concept and newmethod can exploit new research fields and development orientations for modern synthesis. This paper introduces somenew concept and new methods in modern organic synthesis, revealing the new achievement and improvement in thesconcept and methods by giving some instances of organic synthesis reaction, summarizing the development orientationsand the fields the modern organic synthesis should lay emphasis on.Key words: modern organic synthesis; new conception; new method; development有机合成化学作为有机化学的一个分支, 已经有一百多年的历史. 现代的有机合成不但能合成大量的结构复杂而多样的次生生物代谢物和基因、蛋白质等复杂的生命物质, 而且能合成大量的自然界中没有的具有独特功能性分子的物质. 现代有机合成不只是合成什么的问题, 更重要的是如何合成和怎样合成的问题. 有机合成与21 世纪的三大发展学科: 材料科学、生命科学和信息科学有着密切的联系, 为三大学科的发展提供理论、技术和材料的支持. 新世纪有机合成将进一步在这三大学科领域中发挥作用并开辟新的领域. 随着生命科学和材料科学的发展, 尤其进入后基因组时代后, 需要有机合成快速提供各种具有特定生理和材料功能的有机分子, 而要获得有新结构的功能类型分子往往取决于新的合成方法, 新的方法往往又取决于新的理论和概念. 因此, 21 世纪有机合成的发展, 需要从概念、方法、结构与功能方面入手.1 现代有机合成新概念1.1.1 原子经济性原子经济性的概念是美国著名有机化学家B.M. Brost 于1991 年首先提出的, 并将它与选择性归结为合成效率的两个方面[1]. 认为高效的有机合成应最大限度地利用原料分子中的每一个原子,使之转化到目标分子中, 达到零排放. 原子经济性反应有两大优点: 一是最大限度地利用原料; 二是最大限度地减少了废物的生成, 减少了环境污染.原子经济性反应符合社会发展的需要, 是有机合成的发展方向[2] . 原子经济性是现代有机合成追求的一个重要目标, 也是绿色合成的一个重要指标.原子经济性原则引导人们在有机合成的设计中经济地利用原子, 避免使用保护基或离去集团,减少或消除副产物的生成. 当前, 提高有机合成原子经济性的主要途径有开发高选择性、高效的催化剂; 开发新的反应介质和试剂, 提高反应选择性; 总的来说主要在合成路线和反应条件上做文章.最近, 在原子经济性反应方面取得了很大进展. 例如: 用传统的氯醇法合成环氧乙烷, 其原子利用率仅为25%,而采用乙烯催化环氧化方法可一步合成, 原子利用率可达到100%, 产率达99% .反应如下:Noyori 等使用新型介质超临界二氧化碳, 用二氧化碳和氢气合成了甲酸, 这被认为是最理想的反应之一[3] . Hoffmann-La Roche 公司开发的抗帕金森药物的合成是一个羰基化反应, 采用传统的多步合成反应路线, 以2-甲基-5-乙基吡啶为起点经8 步合成, 产率约为8% ; 而用钯催化羰基化反应,从2, 5-二氯吡啶出发, 可一步合成, 原子利用率达100%, 生产规模可达3 000 t[4] .1.1.2 组合合成组合合成的概念是在组合化学的基础上发展起来的, 并开创了新领域. 它可以在短时间内将不同结构的模块以键合方式系统地、反复地进行连接, 形成大批相关的化合物( 亦称化学库) . 通过对库进行快速性能筛选, 找出具有最佳目标性能化合物的结构, 与传统化合物的单独合成及结构性能测定相比, 简化并缩短了发现具有目标性能化合物的过程[5] . 如对催化剂进行选择和改进传统研究方法仍依靠实验摸索、偶然发现的, 不仅工作量大而且效率不高, 组合合成大大提高了有机合成选择的目标性和效率, 对于有机合成中的催化合成有重要意义. 事实证明组合合成是用于催化合成研究的一种有效手段. 组合合成反映了化学家在研究观念上出现的重大飞跃, 它打破了逐一合成、逐一纯化、逐一筛选的传统研究模式, 使大规模化学合成与药物快速筛选成为可能.组合合成提供了一种迅速达到分子多样性的捷径. 目前, 这方面的发展迅速, 现已从肽库发展到了有机小分子库, 并已筛选出许多药物的先导化合物[6] . 组合合成在催化反应体系的选择、药物化学中先导化合物的筛选以及材料化学中显示了广阔的前景. 目前, 组合合成的趋势是要求高效,以最少的化合物筛选取得最多的正确信息.固相和液相组合合成以及有效组合合成的介入, 对先导化合物筛选和药物筛选等方面起了积极推动作用. 另外, 在组合合成中应用高分子微珠方法, 可使每一个高分子珠球含有的450 Lmol 的分子进行反应, 反应后对其中的10%进行纯化、分析与结构确定, 其余的可用于各种靶点的筛选与化合物库的建设之用. 组合化学在催化反应中的应用, 尤其在不对称催化反应中的应用已显示很好的结果, Kagan 及Mikami 等已成功将组合化学用于不对称催化反应的开发[7]. 另一方面就是应用组合化学合成一系列化合物, 提供多样性的化合物库, 以展示有机合成方法学的能力及发展新型先导化合物[8] . 虽然绝大部分组合合成是集中在非手性小分子上, 但也有应用组合合成建立不对称合成的手性化合物库, 用于药物筛选的报道[9]. 最近, 美国的Curran 教授等发展了氟相组合化学以及相应的氟相分离技术, 进一步推动了组合化学特别是液相组合化学的发展[10] .1.1.3 不对称合成不对称合成是研究对映体纯和光学纯化合物的高选择性合成, 已成为现代有机合成中最受重视的领域之一. 不对称合成尤其是过渡金属催化的不对称合成是合成手性药物的有效手段, 因为不对称合成必须有手性源才能完成, 在当量的不对称反应中必须有当量的手性源, 而用于手性源的化合物非常昂贵, 故在生产中用当量的手性源化合物是不合算的. 获得单一手性分子的一个重要途径是外消旋体的拆分, 但原子经济性较差, 最大产率也只有50%; 而催化的不对称合成利用催化量的过渡金属和与之相配的手性配体, 用很少量的手性配体可合成大量的手性化合物, 有很好的原子经济性. 因此, 合成单一手性分子, 催化的不对称合成应该是首选的.经过近十年的飞速发展, 催化的不对称合成取得了很大进展. 其中, 不对称氢化反应研究得较深入. 据估计在已工业化的所有不对称合成反应中有70% 的反应属于不对称氢化反应. 目前, 由于出现了一系列新配体[11] , 不对称氢化反应正向常温、常压和高选择性、高反应速率、重复使用和更具环保意识的方向发展; 同时, 反应底物的范围也不断扩大. 一个进展就是已解决了C C 双键和C O 双键的选择性氢化问题: Noyori 在乙二胺和氢氧化钾共存下, 用RuCl2( PhP) 3 为催化剂可以在C C 键存在下选择性的氢化C O 键, 这一高选择性的氢化反应已实现[ 12] . 对碳) 杂原子连接的不对称反应的研究还处在初级阶段, 但对难于氢化的C N 键的不对称氢化已取得了成功[ 13].最近, Buchwald 等用C N 键插入T-i H 键而形成T-i N 键时的立体环境, 从而实现了对C N 键的不对称氢化[ 14]. 另一方面, 手性中毒( 不对称活化) 概念的产生和发展, 使催化不对称合成中手性配体昂贵的问题有了解决方法. 利用配位化合物的手性识别原理, 使廉价的对映纯的非活性配体和外消旋的活性配体之间的相互作用, 拆分了外消旋的活性配体, 从而起到不对称催化的作用[ 15].这是不对称催化发展的一个方向. 下面是手性中毒示原理:除此之外, 还发展了不对称放大, 去对称化反应等新概念、方法和技术, 大大促进了不对称合成反应的发展. 不对称合成的发展, 不仅在医药上得到应用, 并且推动了有机合成、配位化学、分析分离技术和高分子材料等领域的发展.1.1.4 绿色合成绿色化学的概念在20 世纪90 年代初由化学家提出[ 16], 十几年来, 绿色化学的概念、目标、基本原理和研究领域等已经逐步明确, 初步形成一个多学科交叉的新的研究领域. 绿色合成是绿色化学的一个方面, 其以绿色化学的基本理论和目标为指导, 以和/ 环境友好0为基础和出发点. 绿色合成采用绿色环保型的合成路线和工艺, 避免使用对环境有害的溶剂、原料和催化剂, 消除或尽可能减少有毒产物的生成, 实现整个合成过程对环境的友好性. 当前, 实现有机合成的绿色化, 一般从以下方面进行考虑: 开发、选用对环境无污染原料、溶剂、催化剂; 采用电化学合成技术; 尽量利用高效的催化合成, 提高选择性和原子经济性, 减少副产物的生成; 设计新型合成方法和新的合成路线, 简化合成步骤; 开发环保型的绿色产品; 发展应用无危险性的化学药品.关于绿色合成的报道很多, 其中有对传统合成方法的改进, 有新的合成反应的出现. 例如, 对于Friede-l Crafts 酰化反应合成药物中, 用传统的催化剂无水AlCl3 来催化中间体对氯二苯甲酮, 生产1 t 酰化物产生3 t 酸性富铝废弃物, 而采用新开发的环境友好催化剂envirocat EPZG, 催化剂用量为原来的10% , 产率可达70% ,HCl 的排放量减少了3/ 4, 无酸性富铝生成, 只产生极少量的邻位产物[ 17]. 反应如下:甲基丙烯酸甲脂是一种重要的高分子单体,传统的工业合成方法以丙酮腈醇为原料, 反应中要使用过量的浓硫酸和有剧毒的氢氰酸, 结果产生大量的硫酸氢铵废弃物, 原子利用率只有46% ,对环境危害很大. Shell 公司发展的丙炔-钯催化甲氧羰基化一步合成法, 区域选择性和反应回收率均大于99% , 原子利用率高达100% , 催化剂的转化活性高达每小时每克催化剂催化10 万摩尔底物, 是一种高效的环境友好流程[ 18] .Noyori 发展了一种直接用30% 双氧水氧化环己烯制得己二酸的方法, 只生成己二酸和水, 是一种不用有机溶剂和不含卤素的绿色过程[ 19].Burk 小组报道了以超临界二氧化碳为溶剂可以提高催化不对称氢化反应的对映选择性, 产率达95%, 是一个典型的绿色有机合成[ 20] .2 现代有机合成的新方法有机合成的发展一方面得益于有机金属试剂的开发与应用, 另一方面得益于新的反应方式, 如自由基反应、卡宾反应、环加成反应与高效合成反应等. 这里就一些新方法给出若干实例.2.1.1 自由基反应自由基化学已为有机合成提供了许多新方法.主要表现在以下4 个方面: 新型自由基原子转移供体, 如(MeSi)、SiH; 成环模型, 跨环环化反应; 在分子内自由基加成反应中自由基加成的模式, 即endo/exo 型; 自由基加成反应立体选择性的控制[ 21] .在多烯烃的体系内串联式自由基加成反应为多环化合物的合成提供了高效方法[ 22] .跨环成环反应为许多用其它方法难以合成的并环化合物的合成提供了新方法[ 23].在自由基加成反应中立体化学的控制一直是自由基反应在有机合成中应用的瓶颈, 主要是因为自由基的高反应活性. 最近, 美国的Sibi 和Porter 教授等利用Lewis 酸对化合物的羰基配位,用杂环中的手性中心来控制自由基加成反应的立体化学, 为光学活性的酰胺化合物的合成提供了方法[ 24]另一方面, 从合理设计的底物出发, 自由基反应已成为可控制的, 是在中性条件下进行高选择性反应的一种有效手段[ 25] . 选择适宜的自由基引发剂可使自由基反应在室温下进行, 糖碳苷化反应中自由基作为引发剂比AIBN 作为引发剂得到更高的立体选择性.2.1.2 光、电、微波促进的有机合成反应新型物理手段在有机合成中的应用受到化学家的关注, 这方面的发展也很快. 主要是对光催化、电催化、微波催化等方面的研究. 光催化反应,具有洁净无污染, 反应速度快等特点. 光学活性的有机催化剂( 不含金属) 的设计是当今研究的一个新领域[ 26] . Charette 等发现在碳) 碘键与二乙基锌交换反应中, 在没有光照的情况下, 48 h 后锌试剂2 的产率小于10% , 而当用GE 日光灯( 275 W)作为光源进行光催化时, 发现在3 h 内锌试剂2 的产率为90% [ 27] .电化学过程是洁净技术的重要组成部分, 是到达绿色合成的有效手段, 在洁净合成中有独特的魅力. 有机电合成一般可避免有毒试剂的使用,通常在常温、常压下进行. 有机合成中一类非常重要的碳) 碳键形成的反应是自由基反应, 实现自由基环化的常规方法之一是使用过量的三丁基锡烷, 不过这种方法原子使用率低, 还产生有毒且难以除去的锡试剂, 而用维生素B12催化的电还原方法完全可以避免这方面的问题. 应用天然、无毒、手性的维生素B12为催化剂的电催化反应, 可产生自由基类中间体, 从而实现了在温和、中性条件下的自由基环化[ 28] . 下面的反应是一个例子.近年来, 微波辐射技术在有机合成有很好的应用, 微波催化不仅有效地提高反应速率、反应转化率和选择性, 而且体现出节能、环保等诸多优点, 微波在有机合成中的应用已引起人们的兴趣.近年来, 关于微波催化的有机合成的报道很多, 较多的是关于脂类有机物的微波催化. 如1, 3-二苯基烯丙基醋酸脂3 在P-烯丙基钯作为催化剂的情况下与丙二酸脂在手性配体存在下, 经微波促进反应, 亲核取代产物4 的产率可达77% ~ 87%[ 29] .又如由邻苯二酚与氯代异丁烯通过烷基化反应合成邻异丁烯氧基苯酚, 采用传统加热方法, 反应速度慢, 需时25 h 产物收率为50%[ 30], 而李军等采用微波辐射合成该产品, 只需115 min 产物收率可达68%[ 31] .2.1.3 高效合成方法2.1.3.1.1一瓶多步串联反应生物体内的化学合成是高度有序、高效进行的, 许多转化涉及多步连锁式、多米诺骨牌式反应. 由于串联反应一般经历一些活性中间体, 如碳正离子、碳负离子、自由基或卡宾等, 这样就发生了一个反应可以启动另一个反应, 因此多步反应可连续进行, 无须分离出中间体, 不产生相应的废弃物, 可免去各步后处理和分离带来的消耗和污染[ 32, 33]. 此外, 金属催化往往可产生活性中间体, 进而在一瓶内进行多步连续反应, 这类反应叫串联反应( tanderm react ion) . 在一个反应瓶内连续进行的多步串联反应以合成复杂分子, 也是一类环境友好反应. 阳离子串联反应, 自由基串联反应, 金属催化的串联反应是几类具有代表性的串联反应.早期的一个著名的例子是角鲨烯的生源合成及其仿生合成, 属阳离子串联反应[ 34] . 多种不同反应组合及其系列反应, 也是串联反应的有效方式. Boger 小组用二唑作为双烯进行的[ 4+ 2] 环加成- 失氮- [ 3+ 2] 环加成串联反应, 在一瓶反应中合成了长春花朵灵的前体, 产率达70% , 建立了5 个环和6 个手性中心[ 35] . 通过多米诺式的[ 3+ 2] 环加成-Wagner-Meerwein 重排-Friede-l Crafts 烷基化- 消除反应系列, 可实现多环体系的一瓶合成, 在报道的两例中, 产率分别达到47% 和25%[ 36] .Heathcock 研究了交让木( yuzuriha) 类生物碱的合成, 建立了用简单的一瓶反应把角鲨烯衍生物转化为二氢原交让木碱的简单方法[ 37]. 整个过程形成5 个环, 4 个碳) 碳键, 2 个碳) 氢键和8 个手性中心..Corey 小组报道阳离子引发的串联反应, 用于aspidophytine 的对映选择性合成, 这个一瓶反应的产率达到66%[ 38] .2.1.3.1.2一瓶多组分反应一瓶多组分反应也是一类高效的方法, 这类反应涉及至少3 种不同的原料, 每个反应都是下一步反应所必需的, 而且原料分子的主体部分都融进最终产物中[ 39] . Mannich反应( 三组分) 和Ugi( 四组分) 都是有名的例子. 最近Ugi 报道了一个七组分反应[ 40] , 产物的回收率达到43%. 一瓶多组分反应也可用于复杂分子的合成.2.1.3.1.3多反应中心多向反应具有多反应中心的底物也可以在一瓶完成多步反应[ 41] . 双向或多向反应也可以是高效的.3 展望现代有机合成正朝着高选择性、原子经济性和环境保护型三大趋势发展, 重点在于开发绿色合成路线及新的合成工艺, 寻找高选择性、高效的催化剂, 简化反应步骤, 开发和应用环境友好介质, 包括水、超临界流体、离子液体、氟碳相等, 以代替传统反应介质, 减少污染. 合成方法学研究成为有机合成的研究热点, 成为从化学原理入手发展新概念、新反应、新方法的突破口, 重点是对立体可控制的自由基反应的研究及组合化学在有机合成方法学发展中的应用, 合成具有独特功能的分子, 包括具有特殊性能的材料、生理活性分子和天然产物, 尤其对海洋生物源中新生物活性物质的发现与合成成为有机合成在新世纪的重要发展方向. 目前, 不对称合成的研究虽然取得了很大的进展, 今后仍旧是有机合成研究的热点问题之一,尤其对催化的不对称合成反应的研究、研制和发现新配体及手性催化剂是研究催化不对称合成的重要方面. 另外, 分子器件、分子识别、分子组装和化学生物学、合成生物学、化学材料学的研究将更进一步推进有机合成的发展, 使其融入国际科技飞速发展的潮流.参考文献[ 1] Trost BM. Atom economy in chemical reaction[ J] . Science, 1991( 254) : 1 469- 1 476.[ 2] Murai S A. Activation of unreactive bonds and organic synthesis[M] . Berlin: Springer-Verlag, 1999. [ 3] Jessop P G, Ikariya T, Noyori R, et al. Enzymatic interesterification in supercritical carb dioxide[ J] . Nature, 1994( 368) : 230-235.[ 4] Schmid R. Synthesis of carbonyl compounds[ J] . Chimia, 1996( 50) : 108- 112.[ 5] 任军, 冯杰, 孙冬梅, 等. 组合化学在多相催化领域中的应用[ J] . 工业催化, 2002( 6) : 1- 7.REN Jun, FENG Jie, SUN Dong-mei, et al. Application of building- up chemistry in the multiphase catalyst field[ J] . I ndustrialCatalyst, 2002( 6) : 1- 7.[ 6] Thompson L A, Ellman J A. Application of combinatorial technologies to drug discovery[ J] . Chem Rev , 1996( 96) : 553- 556.[ 7] Mikami K, Toshinob K, Satoru M, et al. Implications for the role cinchona akaloids in enantioselective hydrogenation[ J] . Chem ,2001( 19) : 544- 548.[ 8] Balkenhohl F, Lansky A, Zechel C, et al. Platinu m- catalyzed enantioselective hydrogenation[ J] . Chem Int Ed Engl. 1996( 35) :2 288- 2 296.[ 9] Beraza P, Suto M J. Effects of mixtures of modifiers on optical yield inenantioselective hydrogenation[ J] . D DT , 2000( 5) : 360-367.[ 10] Luo Z, Zhang Q, Oderaotoshi Y, et al. Recent advances in catalytic asymmetric reactions promoted by transition metal complexes[ J] . Science, 2001( 291) : 1 766- 1 770.[ 11] 林国强, 陈耀全, 陈新滋, 等. 手性合成) ) ) 不对称反应及其应用[M] , 北京: 科学出版社, 2000.3 16 广州大学学报(自然科学版) 第3 卷LIN Guo- qiang , CHEN Yao- quan, CHEN Xin- zi, et al. Handcharacter synthesis ) asymmetrical reaction and its application[M] ,Beijing: Science Press, 2000.[ 12] Ohkuma T, Ooka H, Ikariya T, et al. Asymmetric synthesis of naprox cn by supported aqueous- phase catalysis[ J] . Am ChemSoc, 1995( 117) : 10 415- 10 420.[ 13] Willoughby C A, Buchwald S L. Design and synthesis of a heterogeneous asymmetric catalyst[ J] . Am Chem Soc, 1994( 116) : 11701- 11 709.[ 14] Sinn H, Kaminsky W. Green processing using ionic liquids and carbon dioxide [ J] . Am Chem Soc, 1996( 118) : 263- 268.[ 15] 丁奎岭, 林国强. 有机化学[M] . 北京: 科学出版社, 2000.DING Ku-i ling, LIN Guo- qiang. Organic Chemistry[M] . Beijing: Science Press, 2000.[ 16] Anastas P T, Warner J C. Green chemistry theory and practice[M] . Oxford: Oxford Univ Press, 1998. [ 17] Clark J H, Macquarrie D J. Inorganic solid acids and their use in acid catalyzed hydrocarbon reactions[ J] . Chem Soc Rev , 1996( 25) : 301- 310.[ 18] Keijskper J, Amoldy P, Doyle M J, et al. The study of the oligomerization of propene over ZSM- 5 aeolite[ J] . Recl Trav ChimPays-Bas, 1996( 115) : 246- 250.[ 19] Sato K, Aoki M, Noyori R. The centone. s high manganese sour salt dynamics research that oxidize[ J] . Science, 1998( 281) : 1643- 1 648.[ 20] Burk M J, Feng S G, Gross M F, et al. The chiral pool as a source of enatiose lective catalysts and aux illaries isothermal crysta-llization of isoltactic polypropylene in dotriacontane[ J] . Am Chem Soc, 1995( 117) : 8 275- 8 279. [ 21] 杜灿屏, 刘鲁生, 张恒. 21 世纪有机化学发展战略[M] . 北京: 化学工业出版社, 2002.DU Can- ping , LIU Lu-sheng, ZHANG Heng. Stratagies for the development of organic chemistry in the 21st century[M] . Beijing :Chemistry Industry Press, 2002.[ 22] Takasu K, Kurotanag i J-C, Katsumata A, et al. Oxidation kinetics of natural organic matter by sonolysis and ozone[ J] . I haraMTetrahedron, 1999( 40) : 6 276- 6 279.[ 23] Blake A, Hollingworth G J. Oxidation kinetics of natural organic matter by sonolysis and ozone[ J] . Pattenden Synthesis , 1999( 20) : 642- 646.[ 24] Sibi M P, Ji J, Sausker J B, et al. Species in irradiated oxygenated water[ J] . Am Chem Soc, 1999( 121) : 7 515- 7 519.[ 25] Andrew JM, Walton J C. Critical review of rate constants for reaction of bydrated electrons[ J] . Angew Chem I nt Ed Engl , 1997( 36) : 2 220- 2 226.[ 26] Ahrendt K A, Borths C J, MacMillian D W, et al. Substituent conatants for correlation analysis in chemistry and biology[ J] . AmChem Soc, 2000( 122) : 4 240- 4 246.[ 27] Charette A B, Beauchemin A, Marcoux J- F, et al. Selective control during the photoassisted oxidation of 1-butanol titanium dioxid[ J] . Am Chem Soc, 1998( 120) : 5 113- 5 117.[ 28] Hutchinson J H, Pattenden G, Plyers P L. A structural investigation of titanium dioxide photocatalysts[ J] . Tetrahedron Lett , 1987( 28) : 1 310- 1 315.[ 29] Bremberg U, Larhed M, Moberg C, et al. Novel calcium antagonists with potent and long- lasting vasodilative activty[ J] . OrgChem, 1999( 64) : 100- 107.[ 30] 陈卫民, 陈忠, 徐继红, 等. 微波辐射相转移催化合成2- ( 2- 甲氧基苯氧) 乙胺[ J] . 化学世界, 1998( 2) : 86- 89.CHEN We-i min, CHEN Zhong , XU J-i hong, et al. Microwave radiation phase trans transfer catalyst synthesis 2- ( 2-methoxy-phenoxybenzamine)-ethamivan[ J] . Chemistry World , 1998( 2) : 86- 89.[ 31] 李军, 庞军, 曹国英, 等. 微波法合成邻异丁烯氧基苯酚[ J] . 合成化学, 2000( 4) : 321- 325.LI Jun, PANG Jun, CAO Guo- ying, et al. Synthesizing ortho- isobutylene pyrocatechol oxygen phenol[ J] . Synthesis Chemistry ,2000( 4) : 321- 325.[ 32] Tonesh W. Determination for formaldehyde in the presence of bisulfite[ J] . Chem Rew , ( special) , 1996( 96) : 1- 100.[ 33] Jendy K. Simultaneous spectrofluorimetric determination of cerium and cerium by flow injection analysis[ J] . Tetrahedron ( sp ecial) , 1996( 52) : 11 358- 11 657.[ 34] Johnson W S, Plummer M S, Reddy S P, et al. Intravenous infusion in eicosapenoic acid into rabhits[ J] . Am Chem Soc, 1993( 115) : 510- 517.[ 35] Negishi E, Coperet C, Ma S, et al. New strategies in asymmetric synthesis based on Y- alkoxy butenolides[ J] . Chem Rev, 1996( 96) : 362- 366.第4 期苏育志等: 现代有机合成的新概念和新方法 31 7[ 36] Knolker H J, Baum E, Graf R, et al. Synthesis of diastereomerically prue spiro- cyclopropane derivatives containing multichiralcenters[ J] . Angew Chem . I nt Ed Engl , 1999( 38) : 2 582- 2 587.[ 37] Wallace G A, Heathcock C H. Chiral aux iliaries and ligands in asymmetric synthesis[ J] . Org Chem, 2001( 66) : 447- 452.[ 38] He F, Bo X, Altom J D, et al. Chemical toxicity to aquatic species[ J] . Am Chem Soc, 1999( 121) : 6 768- 6 774.[ 39] Bienayme H, Hulme C, Oddon G, et al. Parameter estimation rules that allow accurate prediction of partion[ J] . Chem Eur J ,2000( 6) : 3 315- 3 323.[ 40] Domling A, Ugi L. Nash determination for formaldehyde in the presence of bisulfite[ J] . Angew Chem Int Ed Engl , 1993( 32) :560- 567.[ 41] Crispino G A, Ho P T, Sharpless K B, et al. The stabilization of small concentrations of formaldehyde in aqueous solutions[ J] .Science, 1993( 259) : 61- 67.。

相关文档
最新文档