七年级数学《三角形》教案 新人教版
新人教版七年级数学下册(五四制)《三角形全等的判定(1)》教案

18.2 三角形全等的判定第1课时一、教学目标 (一)学习目标1.经历探索三角形全等条件的过程,体验分类讨论的数学思想,体会利用操作、归纳获得数学结论的过程.2.经历探索利用 “边边边”判定两个三角形全等的过程,体会从特殊到一般的数学思维过程. 3.掌握三角形全等的判定“边边边”,初步体会并运用综合推理证明命题,掌握作一个角等于已知角的方法. (二)学习重点1.指导学生分析问题,寻找判定三角形全等的条件. 2.三角形全等的“边边边”条件的探索和运用. (三)学习难点1.理解证明的基本过程,初步学会证三角形全等的格式. 2.会用尺规作一个角等于已知角. 二、教学设计 (一)课前设计 1.预习任务(1)三边分别相等的两个三角形全等(可以简写成“边边边”或“SSS”) (2)利用尺规作一个角等于已知角.其作法的根据是 边边边 . 2.预习自测(1)如图,AB=AD ,CB=CD ,则________≌_________. 根据是________.DCBA【知识点】全等三角形的判定:边边边 【思路点拨】图中的隐含条件公共边“AC=AC” 【答案】△ABC ,△ADC , 边边边 或SSS(2)如图,线段AD 与BC 交于点O ,且AC=BD ,AD=BC ,则下面的结论中不正确的是( ) A .△ABC ≌△BAD B .∠C=∠D C .∠CAB=∠DBA D .OB=ODOD CBA【知识点】全等三角形的判定:边边边,全等三角形的性质.【思路点拨】由题中两个条件和公共边可证得两个三角形全等,再根据全等三角形的性质得对应边相等. 【解题过程】由AC=BD ,AD=BC ,AB=BA,可证得△ABC ≌△BAD ,故A 正确;由△ABC ≌△BAD ,可得∠C=∠D ,故B 正确;由△ABC ≌△BAD ,可得∠CAB=∠DBA ,故C 正确;OB 和OD 不是△ABC 和△BAD 的对应边,故D 不正确. 故选:D(3)将下列推理过程补充完整.如图,AB=CD ,BF=DE ,E 、F 是AC 上两点,且AE=CF . 求证:∠B=∠D.FEDC BA证明:∵AE=CF ∴AE+EF=CF+EF 即______=________. 在△ABF 和△CDE 中,⎪⎩⎪⎨⎧_______________________∴△ABF ≌△CDE ( ) ∴____________________.【知识点】全等三角形的判定定理:边边边,全等三角形的性质.【思路点拨】利用等式的性质,等式两边同时加上EF,可得AF=CE,再得△ABF≌△CDE,最后由全等三角形的性质得∠B=∠D.【答案】AF,CE,AB=CD,BF=DE,AF=CE,SSS,∠B=∠D(二)课堂设计1.知识回顾(1)能够完全重合的两个三角形叫做全等三角形.(2)全等三角形的性质:全等三角形的对应边相等,全等三角形的对应角相等.2.问题探究探究一:探索三角形全等的条件●活动①创设情境,提出问题问题:两个三角形全等,是否一定需要六个条件呢?如果只满足六个条件中的一部分,是否也能保证两个三角形全等呢?【设计意图】问题的提出使学生产生浓厚的兴趣,激发他们的探究欲望.●活动②建立模型,探索发现1.两个三角形满足六个条件中的一个条件,两个三角形全等吗?一个条件有几种情况?学生经过交流得出:一条边或一个角.2.(1)让学生画一个一边长为3cm的三角形,画后剪下来看与同桌的三角形能否重合. (2)让学生画一个一个角为30°的三角形,画后剪下来看与同桌的三角形能否重合.只给定一条边相等:只给定一个角相等:3.通过上面的操作,你得到了什么结论?学生讨论后得出结论.结论:两个三角形一条件相等不一定全等.【设计意图】学生动手操作,通过实践、自主探索、交流,获得新知,同时也渗透了分类讨论的思想.●活动③1.两个三角形满足六个条件中的两个条件时两个三角形全等吗?两个条件有几种情况?学生分组交流讨论.结论:一条边和一个角相等、两个角相等、两条边相等.2.让学生画一个一边长为3cm和一个角为30°三角形,画好后剪下来看与同桌的三角形能否重合?①3cm3cm 3cm30︒30︒30︒3.让学生画一个两个角分别为30°和50°的三角形,画好后剪下来看与同桌的三角形能否重合.②50︒50︒30︒30︒4.让学生画一个两边分别为3cm和5cm的三角形,画好后剪下来看与同桌的三角形能否重合.5.通过上面的操作,你得到了什么结论?学生通过画一画,比一比,得出结论.结论:两个三角形两个条件相等不一定全等.【设计意图】学生动手操作自主探索、交流,获得新知,明确两条件不能判定两个三角形全等,为探究后面三个条件判定两个三角形全等作铺垫.探究二:探索三角形全等的判定“边边边”.1.师问:前面通过探究一个条件或两个条件的两个三角形不一定全等,那么当满足三个条件的两个三角形是否全等,三个条件有几种情况?学生分组讨论后,每组选代表发言.结论:三内角、三条边、两边一内角、两内角一边.师问:三个内角相等全等吗?请举例说明.通过学生的回答,全班明白三个内角相等的两个三角形不一定全等.2.画一个三角形的三条边长分别为3cm 、4cm 、5cm .画好后剪下来看与同桌的三角形能否重合.3.任意画一个△ABC ,根据前面作法,同样可以作出一个△A′B′C′,使AB=A′B′、AC=A′C′、BC=B′C′.将△A′B′C′剪下,观察两个三角形能否重合. 4.通过上面的操作,你得到了什么结论?学生经过特殊到一般的思想,通过画一画,比一比,得出结论. 结论:两个三角形满足三条边相等时,这个两个三角形全等。
新人教版数学全等三角形教案(全章)

第1课时全等三角形第2课时三角形全等的判定(1)第3课时三角形全等的判定(2)教学目标1、会用尺规作一个角等于已知角,并了解它在尺规作图中的简单应用。
2、掌握作已知角的平分线的方法及步骤。
教学重点用尺规作一个角等于已知角,作已知角的平分线。
教学难点规范使用尺规,规范使用作图语言,规范的按照步骤作出图形。
教学互动设计设计意图一、创设情境导入新课前面我们用量角器画一个角等于已知角和画一个已知角∠AOB的平分线OC,怎样用尺规来作一个角等于已知角和作已知角的平分线呢?由具体的问题引入,激发学生的学生兴趣二、合作交流解读探究【问题1】作一个角等于已知角。
已知如图,∠AOB求作:∠A’O’B’,使∠A’O’B’=∠AOB教师在黑板上作图,同时写出作法:①作射线O’A’。
②以O点为圆心,以任意长为半径画弧,交OA于点C,交OB于点D。
③以O’为圆心,以OC长为半径画弧,交O’A’于点C。
④以C’为圆心,以CD长为半径画弧,交前面的弧于点D’。
⑤过点D’作射线O’B’,∠A’O’B’ 就是所求作的角。
只用无刻度的直尽和圆规作图的方法称为尺规作图。
问:你能验证你所作的角与已知角相等吗?【问题2】作一个已知角∠AOB的平分线OC。
分析:假如∠AOB的平分线OC已经画出,在前面角的平分线的研究中,我们用折线的实验发现:如果有OE=OD,那么CE=CD.这个实验也启发我们:如果有OE=OD,CE=CD,那么OC平分∠AOB吗?用“SSS”公理易证△OEC≌△ODC,∠EOC=∠DOC,即OC平分∠AOB.于是容易看出,要作∠AOB的平分线OC,在于怎样才能找到起关键作用的点C?怎样确定点C呢?不难看出,为了确定C点,必须先找点E、D.以O为圆心,任意长为半径作弧,分别交OA、OB于D、E,那么OD=OE吗?再分别以D、E为圆心,适当的长度为半径作弧,设两弧交于点C,那么CD=CE吗?而D、E为圆心,“适当”的长度为半径作弧,两弧有一交点时,怎样的长度才“适当”呢?已知:∠AOB,如图学生探索作图方法通过示范,使学生明白如何利用尺规作一个角等于已知角。
七年级下册初一数学 《三角形》教案

三角形【考点四:全等三角形的概念和性质】【基础知识】1._________________的两个图形叫做全等形.2.把两个全等的三角形重合到一起,____________叫做对应顶点;叫做对应边;___________叫做对应角.记两个三角形全等时,通常把表示_____________的字母写在_________上.3.全等三角形的对应边_________,对应角_________,这是全等三角形的重要性质.4.如果ΔABC≌ΔDEF,则AB的对应边是______,AC的对应边是______,∠C 的对应角是_____,∠DEF的对应角是_________.图1-1 图1-5 图1-65.如图1-1所示,ΔABC≌ΔDCB.(1)若∠D=74°,∠DBC=38°,则∠A=_____,∠ABC=_____;(2)如果AC=DB,请指出其他的对应边_________________;(3)如果ΔAOB≌ΔDOC,请指出所有的对应边_____________,对应角_____________.6.下列命题中,真命题的个数是()①全等三角形的周长相等②全等三角形的对应角相等③全等三角形的面积相等④面积相等的两个三角形全等A.4 B.3 C.2 D.17.如图1-5,△ABC≌△AEF,若∠ABC和∠AEF是对应角,则∠EAC等于()A.∠ACB B.∠CAF C.∠BAF D.∠BAC8.如图1-6,△ABC≌ΔADE,若∠B=80°,∠C=30°,∠DAC=35°,则∠EAC的度数为()A.40° B.35° C.30° D.25°9.已知:如右图所示,以B为中心,将Rt△EBC绕B点逆时针旋转90°得到△ABD,若∠E=35°,求∠ADB的度数.【综合运用】10.如图1-8,△ABE和△ADC是△ABC分别沿着AB,AC翻折180°形成的若∠1∶∠2∶∠3=28∶5∶3,则∠α的度数为______.图1-811.已知:如图1-9,△ABC≌△DEF,∠A=85°,∠B=60°,AB=8,EH=2.(1)求∠F的度数与DH的长;(2)求证:AB∥DE.图1-912.如图1-10,AB⊥BC,ΔABE≌ΔECD.判断AE与DE的关系,并证明你的结论.图1-10【考点五:三角形全等的判定条件1——“边边边”】【基础知识】1.全等三角形判定方法1——“边边边”(即______)指的是_______________________________.2.已知:如图,△RPQ中,RP=RQ,M为PQ的中点.求证:RM平分∠PRQ.分析:要证RM平分∠PRQ,即∠PRM=_________,只要证_________≌_________证明:∵ M为PQ的中点(已知),∴___________=___________在△_________和△_________中,∴______≌______().∴∠PRM=______(____________________________________).即RM平分∠PRQ.3.已知:如图,AB=DE,AC=DF,BE=CF.求证:∠A=∠D.分析:要证∠A=∠D,只要证_________≌_________.证明:∵BE=CF (),∴BC=______.在△ABC和△DEF中,∴______≌______().∴∠A=∠D (______).4.如图,CE=DE,EA=EB,CA=DB,求证:△ABC≌△BAD.证明:∵CE=DE,EA=EB,∴______+______=______+______,即______=______.在△ABC和△BAD中,∴△ABC≌△BAD ().【综合运用】5.已知:如图2-4,AD=BC.AC=BD.试证明:∠CAD=∠DBC.图2-46.画一画.已知:如图2-5,线段a、b、c.求作:ΔABC,使得BC=a,AC=b,AB=c.图2-57.“三月三,放风筝”.下图是小明制作的风筝,他根据DE=DF,EH=FH,不用度量,就知道∠DEH=∠DFH.请你用所学的知识证明.8.画一画,想一想:利用圆规和直尺可以作一个角等于已知角,你能说明其作法的理论依据吗?【考点六:三角形全等的判定条件2——“边角边”】【基础知识】1.全等三角形判定方法2——“边角边” (即_______)指的是______________________________.2.已知:如图,AB、CD相交于O点,AO=CO,OD=OB.求证:∠D=∠B.分析:要证∠D=∠B,只要证______≌______证明:在△AOD与△COB中,∴△AOD≌△______ ().∴∠D=∠B ().3.已知:如图,AB∥CD,AB=CD.求证:AD∥BC.分析:要证AD∥BC,只要证∠______=∠______,又需证______≌______.证明:∵ AB∥CD (),∴∠______=∠______ (),在△______和△______中,∴ Δ______≌Δ______()∴∠______=∠______ ()∴ ______∥______()【综合运用】4.已知:如图,AB=AC,∠BAD=∠CAD.求证:∠B=∠C.5.已知:如图,AB=AC,BE=CD.求证:∠B=∠C.6.已知:如图,AB=AD,AC=AE,∠1=∠2.求证:BC=DE.7.如图,将两个一大、一小的等腰直角三角尺拼接(A、B、D三点共线,AB=CB,EB=DB,∠ABC=∠EBD=90°),连接AE、CD,试确定AE与CD的位置与数量关系,并证明你的结论.【考点七:三角形全等的判定条件3——“角边角”, 判定条件4——“角角边”】【基础知识】1.(1)全等三角形判定方法3——“角边角”(即______)指的是__________________________;(2)全等三角形判定方法4——“角角边” (即______)指的是_________________________.2.已知:如图,PM=PN,∠M=∠N.求证:AM=BN.分析:∵PM=PN,∴要证AM=BN,只要证PA=______,只要证______≌______.证明:在△______与△______中,∴△______≌△______ ().∴PA=______ ().∵PM=PN (),∴PM-______=PN-______,即AM=______.3.已知:如图4-2,AC BD.求证:OA=OB,OC=OD.分析:要证OA=OB,OC=OD,只要证______≌______.证明:∵ AC∥BD,∴∠C=______.在△______与△______中,∴______≌______ ().∴ OA=OB,OC=OD ().4.能确定△ABC≌△DEF的条件是()A.AB=DE,BC=EF,∠A=∠E B.AB=DE,BC=EF,∠C=∠EC.∠A=∠E,AB=EF,∠B=∠D D.∠A=∠D,AB=DE,∠B=∠E 5.如图,已知△ABC的六个元素,则下面甲、乙、丙三个三角形中,和△ABC 全等的图形是()A.甲和乙 B.乙和丙 C.只有乙 D.只有丙6.AD是△ABC的角平分线,作DE⊥AB于E,DF⊥AC于F,下列结论错误的是()A.DE=DF B.AE=AF C.BD=CD D.∠ADE=∠ADF7.阅读下题及一位同学的解答过程:如图,AB和CD相交于点O,且OA=OB,∠A=∠C.那么△AOD与△COB全等吗? 若全等,试写出证明过程;若不全等,请说明理由.答:△AOD≌△COB.证明:在△AOD和△COB中,∴△AOD≌△COB (ASA).问:这位同学的回答及证明过程正确吗? 为什么?【综合运用】8.已知:如图,AB⊥AE,AD⊥AC,∠E=∠B,DE=CB.求证:AD=AC.9.已知:如图,在△MPN中,H是高MQ和NR的交点,且MQ=NQ.求证:HN=PM.10.已知:AM是ΔABC的一条中线,BE⊥AM的延长线于E,CF⊥AM于F,BC=10,BE=4.求BM、CF的长.【提高练习】11.已知:如右图,AE=DF,∠A=∠D,欲证ΔACE≌ΔDBF,需要添加条件_____________,证明全等的理由是______;或添加条件______________,证明全等的理由是_______;也可以添加条件______________,证明全等的理由是_______.12.如图,已知ΔABC≌ΔA'B'C',AD、A'D'分别是ΔABC和ΔA'B'C'的角平分线.(1)请证明AD=A'D';(2)把上述结论用文字叙述出来;(3)你还能得出其他类似的结论吗?13.如图4-10,在△ABC中,∠ACB=90°,AC=BC,直线l经过顶点C,过A、B两点分别作l的垂线AE、BF,E、F为垂足.(1)当直线l不与底边AB相交时,求证:EF=AE+BF.图4-10(2)如图4-11,将直线l绕点C顺时针旋转,使l与底边AB交于点D,请你探究直线l在如下位置时,EF、AE、BF之间的关系.①AD>BD;②AD=BD;③AD<BD.图4-11【小结——知识梳理】1.判定和性质判定边角边(SAS、角边角(ASA 角角边(AAS、边边边(SSS性质对应边相等,对应角相等对应中线相等,对应高相等,对应角平分线相等注:①判定两个三角形全等必须有一组边对应相等;②全等三角形面积相等.2.证题的思路:【基础练习】1.下列命题中正确的有()个①三个内角对应相等的两个三角形全等;②三条边对应相等的两个三角形全等;③有两角和一边分别相等的两个三角形全等;④等底等高的两个三角形全等.A.1 B.2 C.3 D.42.如右图,AB=CD,AD=CB,AC、BD交于O,图中有()对全等三角形.A.2 B.3 C.4 D.53.如右图,若AB=CD,DE=AF,CF=BE,∠AFB=80°,∠D =60°,则∠B的度数是()A.80° B.60° C.40° D.20°4.如右图,△ABC中,若∠B=∠C,BD=CE,CD=BF,则∠EDF=()A.90°-∠A B.C.180°-2∠A D.5.下列各组条件中,可保证△ABC与△A'B'C'全等的是()A.∠A=∠A',∠B=∠B',∠C=∠C' B.AB=A'B',AC=A'C',∠B=∠B' C.AB=C'B',∠A=∠B',∠C=∠C' D.CB=A'B',AC=A'C',BA=B'C' 6.如右图,已知MB=ND,∠MBA=∠NDC,下列条件不能判定△ABM≌△CDN的是()A.∠M=∠N B.AB=CDC.AM=CN D.AM∥CN【综合运用】7.已知:如图,AD=AE,AB=AC,∠DAE=∠BAC.求证:BD=CE.8.已知:如图,AC与BD交于O点,AB∥DC,AB=DC.(1)求证:AC与BD互相平分;(2)若过O点作直线l,分别交AB、DC于E、F两点,求证:OE=OF.9.如图,E在AB上,∠1=∠2,∠3=∠4,那么AC等于AD吗? 为什么?【考点八:三角形全等的应用】1.如图7-1,小明与小敏玩跷跷板游戏.如果跷跷板的支点O (即跷跷板的中点)到地面的距离是50 cm,当小敏从水平位置CD下降40 cm时,小明这时离地面的高度是多少? 请用所学的全等三角形的知识说明其中的道理.图7-12.如图7-2,工人师傅要在墙壁的O处用钻打孔,要使孔口从墙壁对面的B点处打开,墙壁厚是35 cm,B点与O点的铅直距离AB长是20 cm,工人师傅在旁边墙上与AO水平的线上截取OC=35 cm,画CD⊥OC,使CD=20 cm,连接OD,然后沿着DO的方向打孔,结果钻头正好从B点处打出,这是什么道理呢? 请你说出理由.图7-23.如图7-3,公园里有一条“Z”字形道路ABCD,其中AB∥CD,在AB、BC、CD三段路旁各有一只小石凳E,F,M,且BE=CF,M在BC的中点,试判断三只石凳E,M,F恰好在一直线上吗? 为什么?图7-34.在一池塘边有A、B两棵树,如图7-4.试设计两种方案,测量A、B两棵树之间的距离.方案一:方案二:图7-45.如图,有两个长度相同的滑梯,左边滑梯的高度AC与右边滑梯水平方向的长度DF相等,∠CBA=32°,求∠EFD的度数.【考点九:用尺规作三角形】【知识回顾】1.已知:a,求作:AB,使AB=a. 2.已知:∠,求作:∠AOB,使∠AOB=∠.ax【作一个三角形与已知三角形全等】1.已知三角形的两边及其夹角,求作这个三角形.已知:线段a,c,∠α.求作:ΔABC,使得BC= a,AB=c,∠ABC=∠α.ac作法与过程:1.作一条线段BC=a;2.以B为顶点,BC为一边,作角∠DBC=∠a;3.在射线BD上截取线段BA=c;[来源 :4.连接AC,ΔABC就是所求作的三角形.2.已知三角形的两角及其夹边,求作这个三角形.α已知:线段∠α,∠β,线段 c .求作:ΔABC,使得∠A=∠α,∠B=∠β,AB=c.βc作法:1.作____________=∠α;2.在射线______上截取线段_________=c;3.以_____为顶点,以_____为一边,作∠______=∠β,_____交_____于点____.ΔABC就是所求作的三角形.3.已知三角形的三边,求作这个三角形.已知:线段a,b,c.a求作:Δ ABC ,使得 AB = c , AC = b , BC = a . m bc。
七年级下册人教版数学教案:三角形的高

第26课时三角形的高、中线与角平分线〔教学目标〕1、经历画图的过程,认识三角形的高、中线与角平分线;2、会画三角形的高、中线与角平分线;3、了解三角形的三条高所在的直线,三条中线,三条角平分线分别交于一点.〔重点难点〕三角形的高、中线与角平分线是重点;三角形的角平分线与角的平分线的区别,画钝角三角形的高是难点.〔教学过程〕一、导入新课我们已经知道什么是三角形,也学过三角形的高。
三角形的主要线段除高外,还有中线和角平分线值得我们研究。
二、三角形的高请你在图中画出△ABC的一条高并说说你画法。
ABD C从△ABC的顶点A向它所对的边BC所在的直线画垂线,垂足为D,所得线段AD叫做△ABC的边BC上的高,表示为AD⊥BC 于点D。
注意:高与垂线不同,高是线段,垂线是直线。
请你再画出这个三角形AB 、AC边上的高,看看有什么发现?三角形的三条高相交于一点。
如果△ABC是直角三角形、钝角三角形,上面的结论还成立吗?现在我们来画钝角三角形三边上的高,如图。
显然,上面的结论成立。
请你画一个直角三角形,再画出它三边上的高。
上面的结论还成立。
三、三角形的中线如图,我们把连结△ABC 的顶点A 和它的对边BC 的中点D ,所得线段AD 叫做△ABC 的边BC 上的中线,表示为BD=DC 或BD=DC =1/2BC 或2BD=2DC=BC.D C B A请你在图中画出△ABC 的另两条边上的中线,看看有什么发现?三角的三条中线相交于一点。
如果三角形是直角三角形、钝角三角形,上面的结论还成立吗?请画图回答。
上面的结论还成立。
四、三角形的角平分线如图,画∠A 的平分线AD ,交∠A 所对的边BC 于点D ,所得ABC OD E F线段AD 叫做△ABC 的角平分线,表示为∠BAD=∠CAD 或∠BAD=∠CAD =1/2∠BAC 或2∠BAD=2∠CAD =∠BAC 。
21D C B A思考:三角形的角平分线与角的平分线是一样的吗?三角形的角平分线是线段,而角的平分线是射线,是不一样的。
初中初一数学下册《全等三角形》教案、教学设计

为了巩固学生对全等三角形知识的掌握,培养其几何思维和应用能力,特此布置以下作业:
1.基础题:完成课本第50页第1、2、3题,要求学生在解答过程中明确全等三角形的判定方法,注意步骤的规范性和解答的清晰性。
2.提高题:完成课本第51页第4、5题,引导学生运用全等三角形的性质和判定方法解决实际问题,提高学生的几何解题能力。
6.课后作业,拓展提升:布置适量的课后作业,涵盖基本知识和拓展提升部分,使学生在巩固知识的基础上,提高自己的能力。
7.评价反馈,激励进步:及时对学生的学习情况进行评价,关注学生的情感需求,激发学生的学习积极性,鼓励学生在原有基础上不断进步。
8.教学反思,持续改进:课后对教学过程进行反思,了解学生的学习情况,针对存在的问题,调整教学方法,以提高教学效果。
5.针对学生个体差异,教师应关注学生的情感需求,鼓励学生积极参与课堂讨论,培养自信心,提高学习积极性。
三、教学重难点和教学设想
(一)教学重点
1.全等三角形的定义及其性质。
2.全等三角形的判定方法:SSS、SAS、ASA。
3.应用全等三角形的性质和判定方法解决实际问题。
(二)教学难点
1.全等三角形判定方法的灵活运用。
3.设计丰富的课堂练习,巩固学生对全等三角形性质与判定的理解,提高学生的实际操作能力。
4.组织学生进行小组合作学习,培养学生团队协作能力,激发学生的思维碰撞。
5.引导学生运用已学的知识解决实际问题,培养学生的创新意识和解决问题的能力。
(三)情感态度与价值观
1.培养学生对数学学习的兴趣,增强学生对几何美的感受,激发学生学习数学的内在动力。
(二)讲授新知,500字
在讲授新知环节,我会首先给出全等三角形的定义,并通过动态几何软件或实物模型,演示两个全等三角形的形成过程。我会强调全等三角形的三个关键性质:对应角相等、对应边相等、对应边角相等。接着,我会详细讲解SSS、SAS、ASA三种判定方法,并通过示例和图示,让学生清晰地理解每种方法的适用条件和操作步骤。我会鼓励学生在听讲过程中积极思考,提出疑问,并及时解答学生的困惑。
七年级数学下册《三角形的三边关系》教案 新人教版

(A)5cm(B)4cm(C)3cm(D)2cm
4.△ABC中,AB=AC=8,则_____<BC<_____.
5.下列线段不能组成三角形的是( )
A.a=5,b=3,c=3 B.a=6,b=3,c=8 C.a=6,b=8,c=10 D.a=9,b=4,c=5
4.三角形具有稳定性.生活中有很多你熟悉的三角形,播放图片.
三.实践应用
【基础训练】
1.下列长度的各组线段能否组成一个三角形?
(1)15cm、10cm、7cm; (2)4cm、5cm、10cm; (3)3cm、8cm、5cm;(4)4cm、5cm、6cm.
2.一个三角形的两条边长分别为3cm和9cm,Βιβλιοθήκη 能确定该三角形第三条边长的范围___.
三角形的三边关系:
三角形的任何两边的和大于第三边.
各组学生展示作图过程
学以致用:
1. (背景资料:姚明身高2.26米,体重140.6 kg,腿长约1.30米)
2.一片绿草如荫,草坪上写着“爱护草坪,请勿踩踏”但草坪还是被人们踩出了一条小路,这是为什么呢?
板 书 设 计
9.1 三角形的三边关系
a+b>c例:——
6.一个等腰三角形的周长为18厘米,其中一边长为4厘米,求其它两边的长是___ ___.
7.三角形的两边长分别为5cm,3cm,则这三角形的周长可能为 ( )
(A)13cm(B)16cm(C)10cm(D)不确定.
四.检测反馈
1.在△ABC中,AB=6,BC=11,则AC的长应满足.
2.下列线段不能组成三角形的是( )
能力目标:经历动手操作、探索发现、猜想验证,发现揭示并初步应用三角形三边关系即“三角形的任何两边之和大于第三边”的活动过程,发展空间观念,培养初步的逻辑思维能力、动手操作能力,体验“做数学”“用数学”的乐趣。
2024年新课标人教版七年级下全册数学教案

2024年新课标人教版七年级下全册数学教案一、教学内容本节课选自2024年新课标人教版七年级下册数学教材第五章《三角形的初步认识》,具体内容包括:5.1三角形的定义及性质,5.2三角形的分类,5.3三角形的周长和面积。
二、教学目标1. 知识目标:使学生掌握三角形的定义,理解三角形的性质,掌握三角形的分类,掌握三角形周长和面积的计算方法。
2. 能力目标:培养学生运用三角形知识解决实际问题的能力,提高学生的空间想象力和逻辑思维能力。
3. 情感目标:激发学生对数学学习的兴趣,培养学生的合作意识和探究精神。
三、教学难点与重点重点:三角形的定义及性质,三角形的分类,三角形周长和面积的计算方法。
难点:三角形性质的理解,三角形面积公式的推导。
四、教具与学具准备教具:三角板、直尺、圆规、多媒体设备。
学具:三角板、直尺、圆规、练习本。
五、教学过程1. 导入:通过展示生活中的三角形实物,引导学生发现三角形的特征,从而引出本节课的主题。
2. 新课导入:(2)三角形的性质:引导学生通过画图、观察、思考,发现三角形的性质,如内角和等于180°等。
(3)三角形的分类:根据三角形的边长和角度,将三角形分为不等边三角形、等腰三角形、等边三角形、直角三角形等。
(4)三角形周长和面积的计算:通过实例讲解,引导学生掌握三角形周长和面积的计算方法。
3. 例题讲解:讲解典型例题,巩固所学知识,引导学生运用所学知识解决实际问题。
4. 随堂练习:设计有针对性的练习题,让学生当堂巩固所学知识。
六、板书设计1. 三角形的定义:由三条线段首尾顺次连接所围成的图形。
2. 三角形的性质:内角和等于180°,两边之和大于第三边等。
3. 三角形的分类:不等边三角形、等腰三角形、等边三角形、直角三角形等。
4. 三角形周长和面积的计算方法。
七、作业设计1. 作业题目:(3)应用题:运用三角形的周长和面积知识,解决实际问题。
2. 答案:见附页。
《三角形全等的判定(角边角)》教案(高效课堂)2022年人教版数学精品

三角形全等的判定一、教学目标知识技能1掌握三角形全等的“ASA和AAS”条件。
2.能初步应用ASA和AAS”条件判定两个三角形全等.数学思考1.使学生经历探索三角形全等条件的过程,体会利用操作、归纳获得数学结论的过程.2.在探索三角形全等条件及其运用过程中,能够进行有条理的思考并进行简单的推理.解决问题会用ASA和AAS”条件证明两个三角形全等.情感态度1.通过探索和实际的过程体会数学思维的乐趣,激发应用数学的意识.2.通过合作交流,培养合作意识,体验成功的喜悦.二、教学方法探究式、讨论式三、教学手段多媒体辅助教学。
四、教学过程Ⅰ、创设情境,引入新课一天, 小明的妈妈叫他去玻璃店画一块三角形玻璃,小明不小心把画的三角形玻璃打碎成了三块,他为了省事,他从打碎的三块玻璃中选一块去,小明想法能办得到吗?若能,你认为小明应该拿哪块玻璃去呢?为什么?【师生行为】教师通过(Flash课件)展示视频内容,提出情境问题.学生独立思考,发表自己的见解。
【设计意图】创设性的设计问题,变“教教材”为“用教材”.①使学生快速集中精力,调整听课状态.②知识的呈现过程与学生已有的生活密切联系起来,学有用的数学,激发学生的学习兴趣。
③使学生产生认知上的冲突,从而引入本课课题,明确本节课的探究方向,激发学习欲望。
Ⅱ、实践操作、探索新知问题1、如图,△ABC是任意一个三角形,画△A1B1C1 ,使A1B1=AB,∠A1=∠A,∠B1=∠B把画得△A1B1C1剪下来放在△ABC进行比较,它们是否重合?问题2、如图,△ABC是任意一个三角形,画△A1B1C1,使A1C1=AC, ∠A1=∠A,∠B1=∠B,请你猜测△A1B1C1与△ABC是否全等?若它们全等,你能用"ASA"来证明你猜测结论成立吗?【师生行为】教师提出问题,学生思考问题,动手实践、小组讨论、交流.学生在探索过程中,难免有困难,教师要鼓励学生争论和启发引导下及时作出正确的结论。
2024年最全面新人教版七年级数学下册教案全册精华版

2024年最全面新人教版七年级数学下册教案全册精华版一、教学内容1. 第五章:相交线与平行线5.1:相交线5.2:平行线的判定5.3:平行线的性质2. 第六章:平面几何初步6.1:三角形的内角和6.2:三角形的性质6.3:全等三角形6.4:等腰三角形6.5:平行四边形二、教学目标1. 理解并掌握相交线和平行线的性质及判定方法。
2. 掌握三角形内角和定理及三角形的性质,学会运用全等三角形的判定。
3. 培养学生的空间想象能力和逻辑思维能力。
三、教学难点与重点1. 教学难点:相交线与平行线的判定和应用全等三角形的判定方法等腰三角形的性质和应用2. 教学重点:掌握三角形内角和定理理解并运用全等三角形的判定四、教具与学具准备1. 教具:三角板、直尺、圆规、量角器2. 学具:练习本、铅笔、三角板、直尺五、教学过程1. 实践情景引入:引导学生观察教室内的平行线和相交线,激发兴趣提问学生:在生活中,你们还见过哪些平行线和相交线?2. 例题讲解:讲解相交线和平行线的判定方法通过例题,展示三角形内角和定理的应用讲解全等三角形的判定方法及等腰三角形的性质3. 随堂练习:让学生独立完成练习题,巩固所学知识引导学生互相讨论,解决问题4. 知识拓展:介绍平面几何的发展历程拓展平行线和相交线在实际生活中的应用六、板书设计1. 相交线与平行线的判定方法2. 三角形内角和定理3. 全等三角形的判定方法4. 等腰三角形的性质七、作业设计1. 作业题目:练习相交线和平行线的判定计算三角形的内角和判断全等三角形运用等腰三角形的性质解决问题2. 答案:八、课后反思及拓展延伸1. 教学反思:分析学生的学习情况,调整教学方法2. 拓展延伸:鼓励学生课后观察生活中的几何图形,发现数学之美推荐相关书籍和资料,激发学生的学习兴趣组织实践活动,提高学生的实际操作能力重点和难点解析1. 教学难点与重点的确定2. 实践情景引入的设计3. 例题讲解的深度和广度4. 随堂练习的针对性和有效性5. 知识拓展的适时性和适度性6. 作业设计的系统性和层次性7. 课后反思及拓展延伸的实践性一、教学难点与重点的确定(1)难点解析:相交线与平行线的判定和应用是学生容易混淆的部分,需通过直观的教具演示和实际例题讲解,帮助学生建立清晰的概念。
人教版数学七年级上册《《全等三角形》》教学设计

人教版数学七年级上册《《全等三角形》》教学设计一. 教材分析《全等三角形》是人教版数学七年级上册的教学内容,主要介绍全等三角形的概念、性质和判定方法。
通过本节课的学习,使学生理解全等三角形的定义,掌握全等三角形的性质,学会用SSS、SAS、ASA、AAS四种方法判定两个三角形全等。
教材通过丰富的图形和实例,引导学生探索、发现全等三角形的性质和判定方法,培养学生的观察能力、推理能力和思维能力。
二. 学情分析七年级的学生已经学习了平面图形的性质、三角形的知识,对图形的观察和推理有一定的基础。
但全等三角形的概念和判定方法较为抽象,学生需要通过大量的实例和练习来理解和掌握。
此外,学生的数学思维能力和逻辑表达能力参差不齐,需要在教学过程中给予不同的学生不同的指导和帮助。
三. 教学目标1.知识与技能:理解全等三角形的定义,掌握全等三角形的性质,学会用SSS、SAS、ASA、AAS四种方法判定两个三角形全等。
2.过程与方法:通过观察、操作、推理等过程,培养学生的观察能力、推理能力和思维能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的团队合作意识和自主学习能力。
四. 教学重难点1.教学重点:全等三角形的定义,SSS、SAS、ASA、AAS四种判定方法。
2.教学难点:全等三角形的判定方法的灵活运用,对复杂图形的分析与判断。
五. 教学方法1.情境教学法:通过丰富的图形和实例,激发学生的学习兴趣,引导学生主动探索。
2.启发式教学法:在教学过程中,提问引导学生思考,培养学生的推理能力和思维能力。
3.合作学习法:学生进行小组讨论和合作,培养学生的团队合作意识和交流能力。
4.实践操作法:让学生动手操作,加深对全等三角形性质和判定方法的理解。
六. 教学准备1.教学PPT:制作精美的教学PPT,展示全等三角形的图形和实例。
2.教学卡片:准备全等三角形的判定方法的教学卡片,方便学生学习和记忆。
3.练习题:准备适量的练习题,用于巩固和检验学生的学习效果。
七年级数学《三角形-复习》教学设计

B 、 3cm, 5cm, 9cmC 、 14cm, 9cm, 6cmD 、 5cm, 6cm, 11cm2.下面四个图形中,线段BE 是⊿ABC 的高的图是( )3.三角形一个外角小于与它相邻的内角,这个三角形是( )A .直角三角形B .锐角三角形C .钝角三角形D .属于哪一类不能确定4.如图,在直角三角形ABC 中,AC ≠AB ,AD 是斜边上的高,DE ⊥AC ,DF ⊥AB ,垂足分别为E 、F ,则图中与∠C(∠C 除外)相等的角的个数是( )第4题图第2A B CD于O,则∠AOC+∠DOB=()第6题图A、900B、1200C、1600D、1800题组三:1、已知两条线段的长分别是3cm、8cm ,要想拼成一个三角形,且第三条线段a的长为奇数,问第三条线段应取多少长?2、有两边相等的三角形一边的长是5 cm,另一边的长是8cm,求它的周长3、指导复习题7第3、6、7、9、10拓展思维1、如图:D是△ABC中BC 边上一点,试说明2AD<AB+BC+AC。
2、有一六边形,截去一三角形,内角和会发生怎样变化?请画图说明。
活动5推荐作业,补充升华必做题:习题复习题7第2、8题选做题:习题:设计出多边形镶嵌的图案吗?【师生互动】提示:由AC+CD>AD与AB+BD>AD相加可得。
【课件展示】六边形,截去一三角形,内角和会发生怎样变化?【设计意图】鼓励学生能用所学知识,解决实际问题。
【设计意图】为使学生的主体作用得以有效发挥,尊重学生的个体差异,为不同学生的发展创造条件,作业层推荐、分类要求。
B AD CB。
人教版数学七年级上册《三角形全等的判定(1)SSS》教学设计

人教版数学七年级上册《三角形全等的判定(1)SSS》教学设计一. 教材分析《三角形全等的判定(1)SSS》是人教版数学七年级上册的教学内容。
本节内容主要介绍三角形全等的判定方法之一——SSS(Side-Side-Side,即边边边)。
通过本节课的学习,学生能够理解SSS判定法的含义,掌握其证明过程,并能够运用SSS判定法判断两个三角形是否全等。
二. 学情分析七年级的学生已经掌握了二年级时的平面几何知识,包括图形的性质、图形的相互关系等。
但是,对于全等形和全等三角形的概念,学生可能还比较陌生。
因此,在教学过程中,需要引导学生从实际例子出发,理解全等三角形的概念,并掌握SSS判定法。
三. 教学目标1.知识与技能:使学生理解全等三角形的概念,掌握SSS判定法,并能运用SSS判定法判断两个三角形是否全等。
2.过程与方法:通过观察、操作、思考、交流等活动,培养学生的空间想象能力、逻辑思维能力和创新能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的团队协作精神,使学生感受到数学在生活中的应用。
四. 教学重难点1.重点:SSS判定法的概念及其证明过程。
2.难点:如何判断两个三角形是否全等,以及如何运用SSS判定法解决实际问题。
五. 教学方法1.情境教学法:通过生活实例引入全等三角形的概念,激发学生的学习兴趣。
2.启发式教学法:在讲解SSS判定法时,引导学生主动思考、提问,提高学生的逻辑思维能力。
3.合作学习法:学生进行小组讨论,培养学生的团队协作精神。
4.实践操作法:让学生动手操作,提高学生的动手能力。
六. 教学准备1.教具:三角板、尺子、彩色粉笔。
2.教学课件:全等三角形的图片、动画、实例等。
3.练习题:与本节课内容相关的练习题。
七. 教学过程1.导入(5分钟)利用生活实例,如折纸、拼图等,引导学生思考:什么是全等三角形?全等三角形的性质是什么?2.呈现(10分钟)通过课件展示全等三角形的图片,让学生观察并总结全等三角形的特征。
初中数学《认识三角形》教案

初中数学《认识三角形》教案第2课时三角形的中线、角平分线、高教学目的掌握三角形的角平分线、中线、高线的概念,并会画出任意三角形的角平分线、中线、高线,特别注意钝角三角形高的画法.让学生从实践中得到三角形的三条中线、角平分线、高分别交于一点,直角三角形三条高的交点就是直角顶点,钝角三角形有两条高位于三角形的外部.重点、难点1.重点:三角形角平分线、中线、高的概念及其画法. 2.难点:钝角三角形高的画法.教学过程一、复习提问1.什么叫角平分线?如何画一个角的平分线?2.已知A、B分别是直线l上和直线l外一点,分别过点A、点B画直线l的垂线.l A3.三角形按角分类可分为哪几种?二、新授今天我们要学习三角形中的三种重要线段中线、角平分线和高.1.三角形的中线:三角形的一个顶点与它的对边中点的连线叫三角形的中线.如图,点D是BC边的中点,即AD是△ABC 的中线.问:三角形有几条中线?若已知AD是三角形的中线,你可得到什么结论?2.三角形的角平分线:三角形内角的平分线与对边的交点和这个内角顶点之间的线段叫三角形的角平分线.如图,2,那么CE是△ABC的角平分线.问:三角形有几条角平分线?三角形的角平分线和角平分线有什么不同?3.三角形的高:过三角形顶点作对边的垂线,垂足与顶点间的线段叫三角形的高.如图BFAC,垂足为F,则BF是△ABC的高,三角形有3条高.例1.如图△ABC,边BC上的高画得对吗?为什么?[分析]根据三角形高的概念,BC边上的高应是BC边所对的顶点 A向BC作垂线,顶点A与垂足间的线段,所以(1),(2),(4)都错了,只有(3)是对的.4.做一做:让学生拿出昨天做的三个锐角三角形. (1)分别画出中线、角平分线、高.(2)你能用折纸的办法得到这些线段吗?试一试.(只要求折出一条中线、一条高,一条角平分线)(3)把锐角三角形换成直角三角形、钝角三角形再试一试.将你的结果与同伴进行交流.5.议一议:(1)一个三角形中三条中线(高、角平分线)之间的位置关系怎样?[三条中线交于一点,三条角平分线交于一点,三条高所在的直线交于一点](2)一个三角形的三条中线(角平分线)的交点与三角形有怎样的位置关系?[三条中线(角平分线)相交于一点,这一点在三角形内部](3)直角三角形的三条高,它们有怎样的位置关系?钝角三角形呢?[直角三角形有一条高在三角形内部,另外两条就是直角三角形的两条直角边,三条高的交点就是直角三角形的直角顶点,钝角三角形有一条高在形内,两条高在形外,三条高所在的直线的交点在形外.](4)你能折出钝角三角形的三条高吗?三、巩固练习教科书第62页练习.第l题也可以让学生剪下一个等腰三角形,用折纸的方法验证底边上的高、中线、角平分线互相重合.四、小结:1.三角形的三种重要线段中线、高、角平分线的概念. 2.三角形的中线、高、角平分线的画法. 3.三角形的三条中线(高、角平分线)之间的位置关系以及它们与三角形间的位置关系.五、作业补充作业。
2024年新课标人教版七年级下全册数学精彩教案

2024年新课标人教版七年级下全册数学精彩教案一、教学内容本教案依据2024年新课标人教版七年级下册数学教材,具体内容包括第八章《一元一次不等式组》的第1节《不等式组的定义》和第2节《不等式组的解法》,第九章《平面几何图形》的第1节《三角形》。
二、教学目标1. 理解不等式组的定义,掌握不等式组的解法。
2. 掌握三角形的基本概念,能够识别和绘制不同类型的三角形。
3. 培养学生的逻辑思维能力和解决问题的能力。
三、教学难点与重点教学难点:不等式组的解法,三角形分类。
教学重点:不等式组的定义,三角形的基本性质。
四、教具与学具准备1. 教具:PPT,黑板,粉笔。
2. 学具:学生用书,练习本,直尺,圆规。
五、教学过程1. 导入:通过PPT展示现实生活中的不等式组问题,引发学生思考。
实践情景:小明要买书,每本书的价格是x元,他带的钱不少于20元,不超过30元。
请问x的取值范围是多少?分析:解这个实际问题,我们需要用到不等式组。
2. 知识讲解:讲解不等式组的定义,结合教材第八章第1节。
通过例题讲解,解析不等式组的解法,教材第八章第2节。
3. 随堂练习:让学生独立完成教材第八章第2节的练习题。
对学生进行个别指导,解答疑问。
4. 知识拓展:进入第九章,讲解三角形的基本概念,结合教材第九章第1节。
引导学生通过观察和思考,识别和绘制不同类型的三角形。
对不等式组和三角形的基本概念进行回顾。
强调重点和难点。
六、板书设计1. 不等式组的定义和性质。
2. 不等式组的解法步骤。
3. 三角形的分类及基本性质。
七、作业设计1. 作业题目:教材第八章第2节练习题第1、3、5题。
教材第九章第1节练习题第2、4、6题。
2. 答案:课后附上详细答案。
八、课后反思及拓展延伸1. 反思:通过作业和随堂练习,了解学生对不等式组和三角形知识的掌握情况,及时调整教学方法。
2. 拓展延伸:鼓励学生在课后通过网络资源和课外书籍,了解不等式组和三角形在生活中的应用,增强数学与现实生活的联系。
七年级数学《三角形的内角》教案

7.2.1 三角形的内角活动三变式训练,巩固新知通过训练题目及例题,掌握三角形内角和定理及其运用。
活动四全课小结,内化新知将知识归纳总结,为下节课做好铺垫活动五推荐作业,延展新知分类推荐、分层要求,将探究兴趣由课内延伸到课外;及时捕捉学生学习状况,适时进行有效诊断评价、反馈补救。
教学程序问题与情境师生互动媒体使用与教学评价活动一创设情境,导入新课(2-3分钟)小学时我们学过三角形的内角和是多少度?(学生回答180°)当时我们是通过度量三个内角得出的结论,那么现在大家能不能想个其他的办法验证一下这个结论?【教师活动】引导学生回顾前面已学过的知识,提出问题,导入新课。
【学生活动】思考回答教师提出的问题,尝试寻找验证方法。
【媒体使用】出示课题【设计意图】利用学生熟悉的知识提出问题,激发学生探索新知的兴趣。
活动二诱导尝试,探究新知(17~20分钟)(一)探索三角形内角和定理的推导方法探究:在纸上画一个三角形剪下来,并将它的内角剪开想办法拼合在一起,度量一下这几个角度和是多少度,从这个操作过程中,你能发现证明的思路吗?(二)三角形内角和定理的证明(10~13分钟)根据拼合三角形的两种方法我们怎样证明三角形内角和定理呢?(三)有关概念及数学思想(1~2分钟)1、辅助线:为了证明的需要,在原来的图形上添画的线叫做辅助线。
在平面几何里,辅【教师活动】(1)引导学生动手拆分、拼合三角形的三角,寻找证明思路(两人一组,教师巡查并为不会做的学生作指导)。
(2)结合师生共同探讨的证明思路,一名学生口述,教师板书证明过程,强调书写格式(证法一)。
(3)诱导:你们的想法和他(她)一样吗?还有其它证法吗?哪位同学愿意模仿老师的方式将你的想法展示在黑板上。
(4)提一名与证法一不同的学生板演,引导其它学生按自己的拆拼方法证明三角形内角和定理并纠正板演学生证明中出现的错误。
(5)给出证明(证法二)、辅助线的概念,介绍数学思想中的转化思想。
新人教版七年级数学下册(五四制)《全等三角形》教案

18.1 全等三角形一、教学目标(一)学习目标1.认识全等形、全等三角形的概念和全等三角形的对应元素;2.理解寻找全等三角形中对应元素的方法;3.掌握三角形全等变换方式和性质,利用全等三角形的性质解决简单的问题.(二)学习重点全等三角形的概念、性质.(三)学习难点掌握两个全等三角形的对应边、对应角的寻找规律,能迅速正确地指出两个三角形的对应元素.二、教学设计(一)课前设计1.预习任务能够完全重合的两个图形叫做全等形;完全重合的两个三角形叫做全等三角形;一个图形经过平移、翻折、旋转后位置变化了,但形状大小都没有改变,即平移、翻折、旋转前后的图形全等;把两个全等三角形重合在一起,重合的顶点叫做对应顶点,重合的边叫做对应边,重合的角叫做对应角;全等三角形的对应边相等,对应角相等.2.预习自测(1)下列各图形中,不是全等图形的是()【知识点】全等图形【解题过程】解:A两个图形不能重合,不是全等图形;B、C、D两个图形都能重合,是全等图形.故选A.【思路点拨】能够完全重合的两个图形叫做全等形,由此可判断各选项.【答案】A.(2)下列四个汽车标志图案中,不存在全等图形的标志图案是()【知识点】全等图形【解题过程】解:A、B、D存在全等图形、C不存在全等图形.故选C.【思路点拨】能够完全重合的两个图形叫做全等形,由此可判断各选项.【答案】C.(3)如图,△ABC≌△DEF,∠B=60°,则∠E的度数为()A.30°B.45°C.60°D.90°【知识点】全等三角形的性质.【解题过程】解:∵△ABC≌△DEF,∴∠B=∠E=60°;故选:C.【思路点拨】全等三角形对应角相等.【答案】C.(4)如图,△ABC≌△DEF,BE=4,AE=1,则DE的长是()A.5 B.4 C.3 D.2【知识点】全等三角形的性质.【解题过程】解:∵△ABC≌△DEF,∴AB=DE;∵BE=4,AE=1∴AB=DE=4+1=5故选:A.【思路点拨】全等三角形对应边相等.【答案】A.(二)课堂设计1.知识回顾(1)三角形:由不在同一条直线上的三条线段首尾顺次相接组成的图形.(2)一个图形经过平移、翻折、旋转后,位置变化了,但形状、大小都没有改变.2.问题探究探究一:全等形、全等三角形的概念.●活动①回顾旧知,回忆构成三角形的元素学生活动:(1)三个顶点;(2)三条边;(3)三个内角.【设计意图】通过对旧知识的复习,为新知识的学习作铺垫.●活动②整合旧知,探究全等形、全等三角形的概念.问题1:一位哲人曾经说过:“世界上没有两片完全相同的叶子”,但是在我们的周围却有着好多形状、大小完全相同的图案。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三角形
【知识梳理】
三角形
1、三角形基础知识
三边关系
边角关系
2、三角形的分类
3、等腰三角形
4、三角形的全等
5、三角形的相似
6、直角三角形与锐角三角函数
三线:(高线、中线、角平分线)类:
【能力训练】
1、(07浙江义乌)如图,在△ABC 中,点D 、E 分别是边AB 、AC 的中点,已知DE=6cm ,则BC=_____cm.
2、(07年娄底市)如图,在Rt △ABC 中,∠C =40º, AC ∥BD ,则∠ABD =__________。
B
3、如图(5)BC⊥ED于点M,∠A=27°,∠D=20°,则
∠B= °,∠ACB= °
4、已知三角形三边长为3,4,则第三边为,
若该边为偶数有个。
5、等腰三角形的两边长分别为4和9,则第三边长为.
6、(08重庆)已知一等腰三角形两内角之比为1∶4,则其顶角的度数为() A)200 B)1200 C)200或1200 D)360
7、等腰△ABC中,AB=AC,∠B=60°,则∠A=_____
8、 07年长沙)△ABC中,D,E分别是AB,AC的中点,
当BC=10cm时,DE= cm。
9、现有2cm、4cm、4cm、8cm长的四根木棒,任意选取三根
组成一个三角形,那么可以组成三角形的个数为
().A. 1个 B. 2个 C. 3个 D. 4个
10、如图,ABC
∆中,∠C=90°,∠ABC=60°,BD平分∠ABC,若AD=6,则CD= 。
11、如图,在△ABC中, AB=AC,点D是
BC边的中点,DE⊥AB,DF⊥AC,垂足
分别为E、F.
求证:DE=DF.
12、如图,已知,36,
AB AC A AB
=∠=︒
的中垂线MN交AC于点D,交AB于
点M,有下面4个结论:
①射线BD是ABC
∠的角平分线;
②BCD
∆是等腰三角形;
③ABC
∆∽BCD
∆;
④AM D
∆≌BCD
∆。
(1)判断其中正确的结论是哪几个?
(2)从你认为是正确的结论中选一个
加以证明。
13、化简求值:4()(2)(2)
x y x x y x y
-++-,其中
1
2
2
x y
==-
,
《三角形》2 三角形的全等
证明角相等:
【能力训练】
1、(08天津)下列判断中错误..
的是( ) A. 有两角和一边对应相等的两个三角形全等
B. 有两边和一角对应相等的两个三角形全等
C. 有一边对应相等的两个等边三角形全等
2、如图,AE AD =,要使ABE ACD △≌△,
需添加一个条件是 (只要写一个条件). 3、(08浙江温州)已知:如图,12,.C D AC AD ∠=∠∠=∠=求证:.
4、已知,如图AB =DE ,BF =CE 。
求证:(1)△ABC ≌△DEF ;
O
C
E
A D
B
(2)GF =GC 。
5、如图,AB DE =,AC DF =,AC DF ∥.
求证:ABC DEF △≌△;
6、(湖南怀化)如图,AB AD =,AC AE =,12∠=∠, 求证:BC DE =
7、如图,在等边ABC △中,且
BD AE
=,AD 与CE 交于点F . (1)求证:AD CE =;
(2)求DFC ∠
8、已知:如图,
C
为BE 上一点,点A D ,分别在BE 两侧.AB ED ∥,
AB CE =,
BC ED =.求
证:AC CD =.
9、已知:如图,AB=CD ,BC=AD BE ⊥AC 于E ,DF ⊥AC 于F 求证:BE=DF 10、已知:如图,∠ABC=∠DCB ,AB=DC , 求证:AE=DE
11、已知:如图,点E 是正方形ABCD 的边AB 上任意一点,过点D 作DF DE ⊥交BC 的延长线于点F .求证:DE DF =.
B D E
D
C
A
C
E D
B
A E B
C
F
D 1 2 3
《三角形》3 三角形的相似
角形相似的判定
【能力训练】 ◇相似的性质◇
1、如图,在△ABC 中,DE∥BC,DE 分别与AB 、AC 相交于点D 、E ,若AD=4,DB=2,则DE∶BC 的值为___________ 。
2、 AB :AC=2:5,以AB ,AC 为直径画圆,则小圆面积与大圆面积比为________ 。
3、如图,已知等腰△ABC 的面积为8cm 2
,点D 、E 分别是AB 、AC 边中点,则梯形DBCE 的面积为______ cm 2
.
4、将一副三角板按图叠放,则△AOB 与△DOC 的面积之比等于___________ 。
5、同一时刻,小明身高 1.5米,影长1米,一棵槟榔树影长为5米,树高是 米.
6、如图,为测量学校旗杆的高度,小东用长为3.2m 的竹竿做测量工具.移动竹竿,全竹竿、旗杆顶端的影子恰好落在地面的同一点,此时,竹竿与这一点相距8m ,与旗杆相距22米,则旗杆的高为_____________m
7、两个相似三角形,相似比为7∶2,其中一个三角形的面积是14,则另一三角
A B O
C
D
2m 6m
1.8m
形面积是________。
8、 如图,王芳同学跳起来把一个排球打在离地2m 远的地上,然后反弹碰到墙上,如果她跳起击球时的高度是1.8m ,排球落地点离墙的距离是6m ,假设球一直沿直线运动,球能碰到墙面离地多高的地方?
◇三角形相似的判定◇
9、如图,已知:DE ∥BC,EF ∥AB,则图中有_____对三角形相似.
10、如图,P 是△ABC 中AB 边上的一点,要使△ACP 和△ABC 相似,则可添加一个条件:________________________________
11、 如图,在正方形网格上有6个斜三角形.①△ABC ,②△BCD ,③△BDE ,④△BFG ,⑤△FGH ,⑥△EFK ,其中②~⑥中,与三角形①相似的是 ( ) 12、 如图,在大小为4×4的单位正方形方格中, ∆ABC 的顶点A 、B 、C 在单位正方形的顶点上,请在图中画出一个∆A1B1C1 与∆ABC 相似(相似比不为1),且顶点都在单位正方形的顶点上.
◇三角形相似的应用◇
13、如图,已知正方形ABCD ,P 为DC 上一点(D 、C 除外),连结AP ,将△APD 绕点D 逆时针旋转90°,得到△CED ,直线EC 交直线AP 于G. 求证:AE ·ED=EG ·CE.
14、如图,在矩形ABCD 中,4AB =,10AD =.直角尺的直角顶点P 在AD 上滑动时(点P 与A D ,不重合),一直角边经过点C ,另一直角边AB 交于点E .
求证:“Rt Rt AEP DPC △∽△”
C
B
B
K
A
B
C
P
如图,已知正方形ABCD ,P 为DC 上一点(D 、C 除外),连结AP ,将△APD 绕点D 逆时针旋转90°,得到△CED ,直线EC 交直线AP 于G.
求证:AE ·ED=EG ·CE.
如图,A B D E ,,,四点在
O 上,AE BD ,的延长线相交于点C ,直径AE 为8,12OC =,EDC BAO ∠=∠.
(1)求证:CD CE
AC CB =
;
《三角形》4 直角三角形与三角形函数的应用
面积的2倍)
O
C
E D
B
A
【能力训练】
◇直角三角形及其性质◇
1、如图,64、400分别为所在正方形的面积,则图中字母A 所代表的正方形面积是 _________ 。
2、直角三角形两条直角边的长分别为5、12,则斜边上的高为 。
3、如图,在由24个边长都为1的小正三角形的网格中,点P 是正六边形的一个顶点,以点P 为直角顶点作格点直角三角形(即顶点均在格点上的三角形),请你画出所有可能的Rt △,求出直角三角形的斜边长 .
◇锐角三角函数◇
4、已知△ABC 中,∠C=90º,BC=2,AB=3,则=∠B cos _________。
5、计算
◇ 解三角形及其应用◇
6、已知:Rt △ABC 中,∠C=90°,cosA=,AB=15,则AC 的长是 。
7、已知斜坡的坡角︒=30α,则该斜坡的坡度为 。
8、半径为R 的圆内接正三角形边长是。
9、点
P (3,1)求:(1) PO (2)α∠ 10、如图,天空中有一个静止的广告气球C,从地面A 点测得C 点的仰角为45°,从地面B 点测得C 点的仰角为60°.已知AB=20m.点C 和直线AB 在同一铅垂平面上,求气球离地面的高度(结果保留根号). 11、如图,两建筑物AB 和CD 的水平距离为30米,从A 点测D 点的俯角为30°,测C 点的俯角为60 12、去年山洪暴发,好几所学校被山体滑坡推倒教学楼,为防止滑坡,当坡角不超过45°时,可以保山体不滑坡.某小学紧挨一座山坡,如图示,
BC ∥,斜坡AB 长30米,
60=°.改造后斜坡
BE 与地面
45°角,求AE 至少是多少米?(精0.1米) E
A。