轴的强度校核
机械设计中轴的强度设计与校核
机械设计中轴的强度设计与校核轴是在机械设施中的主要构成零件之一。
全部在机械设施上,用于作展转运动的传动零件,都要先把其装入于轴上才能够把运动和动力传达出去,与此同时,还要经过轴承和机架联接,因此就构成了一个以轴为基准的组合体—轴系零件。
因为在不一样的机器里,轴发挥的作用常常不一样。
而轴的构造主假如由以下的要素决定的:轴在整个设施中的安装地点和发挥的作用,轴上安装的全部零件的种类和大小,载荷的性质、大小、方向和详细散布状况,以及轴的加工流程等。
进行合理的轴的构造设计就要保证:轴上全部零件能够合理地部署,在合理的受力的状况下,轴能够进一步提升强度和刚度;轴和轴上零件要有比较固定的工作地点;轴上零件能够方便地进行装拆调整。
一般来说,在设计时,我们首当其冲的就是考虑轴的作用。
依据作用,为轴选择相应的资料,一般轴的毛坯主假如由圆钢、锻造或焊接获取,因为锻造质量难以保证轴有足够的强度和刚度,因此轴极少会采纳铸件作毛坯。
轴的构成部分有三大块。
轴上被支承,安装轴承的部分叫轴颈;支承轴上零件,安装轮毂的部分称为轴头;联络轴头和轴颈的部分称为轴身。
轴颈上安装转动轴承时,直径尺寸必定要依据转动轴承的国标尺寸来选择,尺寸公差和表面粗拙度必定要依据国家规定的标准来选用;轴头的尺寸必定要联合轮毂的尺寸来做出选择,轴身尺寸确准时要尽可能地保证轴颈与轴头的过渡合理,特别是要根绝截面尺寸变化过大,与此同时,还要有较好的工艺性。
假如在设计时,我们从装置能否简单这一角度来考虑:则合理的设计非定位轴肩,使轴上不一样零件在安装时尽可能减少不用要的配合面;为了保证简单装置,轴端要设计成45°的倒角;在装键的轴段,要保证键槽凑近轴与轮毂先接触的直径变化处,以保证在安装时,零件上的键槽与轴上的键简单瞄准;采纳过盈配合时,考虑到装置的方便性,直径变化能够用于锥面过渡等。
2.轴的强度校核方法2.1 强度校核的定义:强度校核实质上就是对轴的资料或设施的力学性能做好检测工作,并改良轴的设计的一种方式,而且这类方式是不会损坏资料和设计性能的。
轴的强度校核例题及方法
1.2 轴类零件的分类根据承受载荷的不同分为:1)转轴:定义:既能承受弯矩又承受扭矩的轴2)心轴:定义:只承受弯矩而不承受扭矩的轴3)传送轴:定义:只承受扭矩而不承受弯矩的轴4)根据轴的外形,可以将直轴分为光轴和阶梯轴;5)根据轴内部状况,又可以将直轴分为实心轴和空。
1.3轴类零件的设计要求1.3.1、轴的设计概要⑴轴的工作能力设计。
主要进行轴的强度设计、刚度设计,对于转速较高的轴还要进行振动稳定性的计算。
⑵轴的结构设计。
根据轴的功能,轴必须保证轴上零件的安装固定和保证轴系在机器中的支撑要求,同时应具有良好的工艺性。
一般的设计步骤为:选择材料,初估轴径,结构设计,强度校核,必要时要进行刚度校核和稳定性计算。
1.3.2、轴的材料轴是主要的支承件,常采用机械性能较好的材料。
常用材料包括:碳素钢:该类材料对应力集中的敏感性较小,价格较低,是轴类零件最常用的材料。
常用牌号有:30、35、40、45、50。
采用优质碳素钢时应进行热处理以改善其性能。
受力较小或不重要的轴,也可以选用Q235、Q255等普通碳钢。
45钢价格相对比较便宜,经过调质(或正火)后,可得到较好的切削性能,而且能获得较高的强度和韧性等综合机械性能,淬火后表面硬度可达45-52HRC,是轴类零件的常用材料。
合金钢具有更好的机械性能和热处理性能,可以适用于要求重载、高温、结构尺寸小、重量轻等使用场合的轴,但对应力集中较敏感,价格也较高。
设计中尤其要注意从结构上减小应力集中,并提高其表面质量。
40Cr等合金结构钢适用于中等精度而转速较高的轴类零件,这类钢经调质和淬火后,具有较好的综合机械性能。
轴承钢GCr15和弹簧钢65Mn,经调质和表面高频淬火后,表面硬度可达50-58HRC,并具有较高的耐疲劳性能和较好的耐磨性能,可制造较高精度的轴。
精密机床的主轴(例如磨床砂轮轴、坐标镗床主轴)可选用38CrMoAIA氮化钢。
这种钢经调质和表面氮化后,由于此钢氮化层硬度高,耐磨性好,而且能保持较软的芯部,因此耐冲击韧性好,还具备一定的耐热性和耐蚀性。
轴的强度校核方法
轴的强度校核方法摘要轴是机械中非常重要的零件,用来支承回转运动零件,如带轮、齿轮、蜗轮等,同时实现同一轴上不同零件间的回转运动和动力的传递。
轴的设计时应考虑多方面因素和要求,其中主要问题是轴的选材、结构、强度和刚度。
其中对于轴的强度校核尤为重要,通过校核来确定轴的设计是否能达到使用要求,最终实现产品的完整设计。
本文根据轴的受载及应力情况采取相应的计算方法,对于1、仅受扭矩的轴2、仅受弯矩的轴3、既承受弯矩又承受扭矩的轴三种受载情况的轴的强度校核进行了具体分析,并对如何精确计算轴的安全系数做了具体的简绍.校核结果如不满足承载要求时,则必须修改原结构设计结果,再重新校核.轴的强度校核方法可分为四种:1)按扭矩估算2)按弯矩估算3)按弯扭合成力矩近视计算4)精确计算(安全系数校核)关键词:安全系数;弯矩;扭矩目录第一章引言-——---————-————--—--—-—————-————-—--—-- 11.1轴的特点——————-—--—-—-————-—————-——-—--—--——-—-——-——-11.2轴的种类---————-————--——-——————-—-—-—--———-———---—-——11.3轴的设计重点———-—-—————-——-———-----—--—-—--———-————-—1第二章轴的强度校核方法———-——---————-—--—-—--——--——42。
1强度校核的定义--—————-———————-------—----———-——————42.2轴的强度校核计算—--———--—---————--—————--———---———-42。
3几种常用的计算方———-———--————-———---—-—-—-—-———————52。
3。
1按扭转强度条件计算——-——-—-———---—-—-———-—-----———52。
3。
2按弯曲强度条件计算—————-—-———--——-———-—-——-————--62。
轴的强度校核(例题一)
1. 将外载荷分解到水平面和垂直面。求垂直面支撑反
力FV和水平面支撑反力FH ;
2. 作垂直弯矩MV图和弯矩MH图 ;
3. 作合成弯矩M图; M =
M
2 H
+
MV2
4. 作转矩T图;
5. 弯扭合成,作当量弯矩Me图; Me = M 2 + (αT )2
6. 计算危险截面轴径: d ≥ 3 Me
mm
0.1[σ−1b]
d2 Fr Fa FA =Fa
F1v M’av Mav
F2v
5) 绘制水平面的弯矩图
Ft
F1H
MaH F2H
M aH = F1H ⋅ LM/a2V = 8700 × 0.193 / 2
F
= 840 N ⋅ m
F1F F2F
6) 求F力产生的弯矩图
a
M 2F = FM⋅ KaV = 4500 × 0.206
10)计算危险截面处轴的直径 选45钢,调质,σb =650 MPa, [σ-1b] =60 MPa
d
≥
3
Me
0 .1[σ −1b ]
=3
1600 × 10 3 0.1 × 60
= 64 .4 mm
求考虑到键槽对轴的削弱,将d值增大4%,故得:
d ≈ 67 mm 符合直径系列。
按弯扭合成强度计算轴径的一般步骤:
a
L/2 a L
1 Ft Fr Fa 2
P247
K F
解:1) 求垂直面的支反力和轴
a
P247
向力
对2点取矩
d
F1v
=
Fr
⋅L
2 − Fa L
⋅ d2
2 = 2123
13-5轴的强度校核计算
小结: 1轴的强度校核计算 2 轴的刚度校核 作业:P228.7
e
" C2
=615.7(Nm) , [
M
e 3
1
]b
=59MPa,
[ ]b
M W
e
615 . 7 10 0 . 1 70
3
3
= 18.0MPa <
0 .1d
1
=
59MPa (2)剖面 D 处虽然仅受转矩,但其直径较小,则该剖面也 为危险剖面。
M
D
M W
( T )
M
2
T
' RA
F RB
'
=(Fa2d2/2+71 Fr2)/142=2011(N)
3)画弯矩图(如图 b、c、d) 剖面 C 处的弯矩 水 平 面 上 的 弯 矩 : MC = 71
FRA×10-3=71×2923.5×10-3=207.6(Nm) 垂
' RA
直
面
上
的
弯
矩
:
M
' C1
=
71 F ×10-3=71×139×10-3=9.87(Nm)
H7/k6; 滚动轴承 内圈与轴的配合
图 12-31
采用基孔制,轴得尺寸公差为 k6。 3、确定各段轴径直径和长度 如图所示。 轴径:从联轴器开始向左取 ф 55→ф 62→ф 65→ф 70→ф 80→ф 70→ф 65 轴长:取决于轴上零件得宽度及他们得相对位臵。选用 7213C 轴承,其宽度为 23mm;齿轮端面至箱体壁间得距离取 a=15mm;考虑到箱体得铸造误差,装配时留有余地,取滚动 轴承与箱体内边距 s=5mm;轴承处箱体凸缘宽度,应按箱盖与
新版轴的强度校核方法-新版-精选.pdf
另外,实际中,由于减速器输入轴通过联轴器与电动机轴相联结,
则外伸段轴径与电动机轴径不能相差太大, 否则难以选择合适的联轴
器,取
d' min
0.8d电动机轴 ,查表,取 d电动机轴
38mm, 则:
d' min
0.8d电动机轴
0.8 * 38 30.4mm
综合考虑,可取
d' min
32mm
通过上面的例子, 可以看出, 在实际运用中, 需要考虑多方面实
8
依次确定式中的各个参数:
根据减速器输出轴的受力条件,已知:
Ft 8430N Fr 3100N Fa 1800N Fr 2v 3160N Fr1v 787 N Fr 2H 5480N Fr1H 2860N T 1429.49 N m
根据图分析可得:
M H Fr 2H L1 5480 93.5 512400N mm
际因素选择轴的直径大小。
2.2.2 按弯曲强度条件计算:
由于考虑启动、 停车等影响, 弯矩在轴截面上锁引起的应力可视
为脉动循环变应力。
则
ca
其中:
M ≤[ 0 ] 1.7[ -1 ]
W
M 为轴所受的弯矩, N·mm
2
W 为危险截面抗扭截面系数 ( mm3 ) 具体数值查机械设计手册 B19.3-15 ~17.
( 2)做出弯矩图 在进行轴的校核过程中最大的难度就是求剪力和弯矩, 画出剪力 图和弯矩图,因此在此简单介绍下求剪力和弯矩的简便方法。 横截面上的剪力在数值上等于此横截面的左侧或右侧梁段上所
3
有竖向外力(包括斜向外力的竖向分力)的代数和 。外力正负号的
规定与剪力正负号的规定相同。 剪力符号: 当截面上的剪力使考虑的
轴的设计计算校核
轴的设计、计算、校核以转轴为例,轴的强度计算的步骤为:一、轴的强度计算1、按扭转强度条件初步估算轴的直径机器的运动简图确定后,各轴传递的P和n为已知,在轴的结构具体化之前,只能计算出轴所传递的扭矩,而所受的弯矩是未知的;这时只能按扭矩初步估算轴的直径,作为轴受转矩作用段最细处的直径dmin,一般是轴端直径;根据扭转强度条件确定的最小直径为:mm式中:P为轴所传递的功率KWn为轴的转速r/minAo为计算系数,若计算的轴段有键槽,则会削弱轴的强度,此时应将计算所得的直径适当增大,若有一个键槽,将d min增大5%,若同一剖面有两个键槽,则增大10%;以dmin为基础,考虑轴上零件的装拆、定位、轴的加工、整体布局、作出轴的结构设计;在轴的结构具体化之后进行以下计算;2、按弯扭合成强度计算轴的直径l绘出轴的结构图2绘出轴的空间受力图3绘出轴的水平面的弯矩图4绘出轴的垂直面的弯矩图5绘出轴的合成弯矩图6绘出轴的扭矩图7绘出轴的计算弯矩图8按第三强度理论计算当量弯矩:式中:α为将扭矩折合为当量弯矩的折合系数,按扭切应力的循环特性取值:a扭切应力理论上为静应力时,取α=;b考虑到运转不均匀、振动、启动、停车等影响因素,假定为脉动循环应力,取α=;c对于经常正、反转的轴,把扭剪应力视为对称循环应力,取α=1因为在弯矩作用下,转轴产生的弯曲应力属于对称循环应力;9校核危险断面的当量弯曲应力计算应力:式中:W为抗扭截面摸量mm3,;为对称循环变应力时轴的许用弯曲应力,;如计算应力超出许用值,应增大轴危险断面的直径;如计算应力比许用值小很多,一般不改小轴的直径;因为轴的直径还受结构因素的影响;一般的转轴,强度计算到此为止;对于重要的转轴还应按疲劳强度进行精确校核;此外,对于瞬时过载很大或应力循环不对称性较为严重的轴,还应按峰尖载荷校核其静强度,以免产生过量的塑性变形;二、按疲劳强度精确校核按当量弯矩计算轴的强度中没有考虑轴的应力集中、轴径尺寸和表面品质等因素对轴的疲劳强度的影响,因此,对于重要的轴,还需要进行轴危险截面处的疲劳安全系数的精确计算,评定轴的安全裕度;即建立轴在危险截面的安全系数的校核条件;安全系数条件为:式中:为计算安全系数;、分别为受弯矩和扭矩作用时的安全系数;、为对称循环应力时材料试件的弯曲和扭转疲劳极限;、为弯曲和扭转时的有效应力集中系数,为弯曲和扭转时的表面质量系数;、为弯曲和扭转时的绝对尺寸系数;、为弯曲和扭转时平均应力折合应力幅的等效系数;、为弯曲和扭转的应力幅;、为弯曲和扭转平均应力;S为最小许用安全系数:~用于材料均匀,载荷与应力计算精确时;~用于材料不够均匀,载荷与应力计算精确度较低时;~用于材料均匀性及载荷与应力计算精确度很低时或轴径>200mm时;三、按静强度条件进行校核静强度校核的目的在于评定轴对塑性变形的抵抗能力;这对那些瞬时过载很大,或应力循环的不对称性较为严重的的轴是很有必要的;轴的静强度是根据轴上作用的最大瞬时载荷来校核的;静强度校核时的强度条件是:式中:——危险截面静强度的计算安全系数;——按屈服强度的设计安全系数;=~,用于高塑性材料≤制成的钢轴;=~,用于中等塑性材料=~制成的钢轴;=~2,用于低塑性材料制成的钢轴;=2~3,用于铸造轴;——只考虑安全弯曲时的安全系数;——只考虑安全扭转时的安全系数;式中:、——材料的抗弯和抗扭屈服极限,MPa ;其中=~;Mmax、Tmax——轴的危险截面上所受的最大弯矩和最大扭矩,;Famax——轴的危险截面上所受的最大轴向力,N;A——轴的危险截面的面积,m;W、W T——分别为危险截面的抗弯和抗扭截面系数,m;四、轴的设计用表表1 轴的常用材料及其主要力学性能材料牌号热处理毛坯直径mm硬度HBS抗拉强度极限σb屈服强度极限σs弯曲疲劳极限σ-1剪切疲劳极限τ-1许用弯曲应力σ-1备注Q235A 热轧或锻后空冷≤100400~42022517010540用于不重要及受载荷不大的轴>100~250375~39021545正火回火≤10170~21759029522514055应用最广泛>100~300162~217570285245135调质≤200217~2556403552751556040Cr 调质≤100>100~300241~28673568554049035535520018570用于载荷较大,而无很大冲击的重要轴40CrNi 调质≤100>100~300270~300240~27090078573557043037026021075用于很重要的轴38SiMnMo 调质≤100>100~300229~286217~26973568559054036534521019570用于重要的轴,性能近于40CrNi38CrMoAlA 调质≤60>60~100>100~160293~321277~302241~27793083578578568559044041037528027022075用于要求高耐磨性,高强度且热处理氮化变形很小的轴20Cr 渗碳淬火回火≤60渗碳56~62HRC64039030516060用于要求强度及韧性均较高的轴3Cr13调质≤100≥24183563539523075用于腐蚀条件下的轴1Cr18Ni9Ti 淬火≤100≤19253019519011545用于高低温及腐蚀条件下的轴180110100~200490QT600-3190~270600370215185用于制造复杂外形的轴QT800-2245~335800480290250表2 零件倒角C与圆角半径R的推荐值直径d>6~10>10~18>18~30>30~50>50~80>80~120>120~180 C或R表3 轴常用几种材料的和A0值轴的材料Q2351Cr18Ni9Ti354540Cr,35SiMn,2Cr13,20CrMnTi 12~2012~2520~3030~4040~52A0160~135148~125135~118118~107107~98表4 抗弯抗扭截面模量计算公式。
轴的强度校核方法
轴的强度校核方法轴是指承受转矩或轴向载荷的机械零件,其强度校核是为了保证轴在工作过程中不产生变形、断裂等失效情况,从而确保机械系统的可靠运行。
轴的强度校核方法可以分为理论计算方法和实验测试方法两类。
一、理论计算方法1.强度校核理论基础:强度校核的理论基础是材料力学和工程力学,其中最基本的理论是应力和应变的关系,即胡克定律。
按照强度校核的要求,轴的应力必须小于其材料的抗拉强度,即σ<σt。
其中,σ为轴上的应力值,σt为材料的抗拉强度。
2.强度校核方法:强度校核方法根据所受力的不同可以分为两类:弯曲强度校核和扭转强度校核。
-弯曲强度校核:弯曲强度校核是指轴在承受弯曲力矩时的强度校核。
轴在工作过程中往往会受到弯曲力矩的作用,而产生弯曲应力。
弯曲强度校核需要计算轴的最大弯曲应力值σb和抗拉强度σt比较,其中σb计算公式为:σb=(M*c)/I其中,M为轴所受的弯曲力矩,c为轴上一点到中性轴的距离,I为轴的截面惯性矩。
-扭转强度校核:扭转强度校核是指轴在受扭矩作用时的强度校核。
轴在工作过程中也会受到扭矩的作用,而产生扭转应力。
扭转强度校核需要计算轴的最大扭转应力值τt和剪切强度τs比较,其中τt计算公式为:τt=(T*r)/J其中,T为轴所受的扭矩,r为轴的半径,J为轴的极限挠率。
3.动载荷和疲劳强度校核:在实际工作中,轴往往还会承受动载荷并产生疲劳应力,因此需要对轴进行动载荷和疲劳强度校核。
动载荷强度校核需要考虑轴在受动载荷作用下的应力变化情况,疲劳强度校核需要考虑轴在工作过程中的疲劳寿命。
动载荷和疲劳强度校核方法与静载荷强度校核方法类似,但需要考虑应力的变化规律。
二、实验测试方法1.材料强度测试:2.离心试验:离心试验是指将轴样品固定在离心试验机上,并施加拉力或扭矩进行加载,观察轴的变形情况,以评估轴的强度性能。
3.振动试验:振动试验是指给轴样品施加振动载荷,观察轴的疲劳寿命。
振动试验可以模拟轴在实际工作环境中的振动情况,从而评估轴的疲劳性能。
轴强度校核
1•轴I的强度校合(1)求作用在齿轮上的力F ri F t1tan20 3381.3 tan 20 1230.69N(2)求轴承上的支反力垂直面内:F NV1 917N F NV2314N水平面内:F NH1 2518N F NH2 863N(1)画受力简图与弯矩图VH根据第四强度理论且忽略键槽影响M70MPaF ti2T id i2 138633823381.30N9.2 10 6F a F t tan 9967 tan 14 2485N(2)求轴承上的支反力水平面内:F NV 1 (85 118 97) F r3 97 F 「2 (118 97) F a3 号求得 F NV 1 162NF NV2 (85 118 97) F r3 (118 85) F a F r2 85W3旦)32(MM 2°.7叮 2,(1)求作用在齿轮上的力 F t2 F t1 3381.30N F r2 F r1 1230.69NF t3 2T n 2 588023 9967Nd 3118F r3Ftan a . cos9967tan 20cos14.6所以轴的强度足够2.校合轴II 的强度3739Ncal1.93 105 10 39.2 10 625.69Mpa170MPaca22.34 105 10 330.1 0.04520.69Mpa170MPaF NHI (85 118 97) F t2 (118 97) F t3 97 求得 F NH 1 =5646N F NH 2 (85 118 97) F t3 (85 118) F t 2 85求得 F NH 2 =7700N(2) 画受力简图与弯矩图I MV I(4)按弯扭合成应力校核轴的强度在两个轴承处弯矩有最大值,所以校核这两处的强度求得F N V2 垂直面内:-2670N 51%t -------------- 1t3「r~3J “ r ■皂F L :fTT*r I H I 1 N “iHt.......... muR t^r-TrrrnTfHiE■miF t3[irnrrmTf 卜 NHffNHi?F" NV1M 2( T)2ca70MP a3W 出 1.25 10 5328.042(0.75 5・88)262.4Mpa截面A 左侧的扭矩T 为T T 2 588023N ?mm 截面A 上的弯曲应力M ‘b 18.4MPabW截面A 上的扭转切应力截面III 左侧抗弯截面系数 W 0.1d 3 0.1 503 12500mm 2抗扭截面系数W0.2d 3 0.2 503225000mm截面A 左侧的弯矩 M 为M 58802338 97230359N ?mmA 面与B 面 W精确校核轴的疲劳强度 1) 判断:危险面为 2) 对截面III 一 M 2( T)2cal一 M 2( T)2ca25.4120.75 (5.88)259Mpa轴的材料为40Cr,调质处理查表15-1 得 B 735Mpa, S540Mpa,i200Mpa,r 2.5 D 50由一——0.05 ,———d 50 d 45查得叫二2.04a i—1H60查得材料的敏性系数为叮二0血,|叫二网应力集中系数为k t= l + %(£ ■ 1)= 1-510查得表面质量系数TW查得尺寸系数为f- = 07J;查得扭转尺寸系数为计算得综合系数为取40Cr的特征系数为叭=取趴二计算安全系数=2------- = 10.43心叫+ %%S a S i 10,43 X 83 5BWt23.52MPa叫=0*17.2355Mpa F. = 0.00故可知截面III 左侧安全 截面A 右侧抗弯截面系数 W 0.1d 30.1 453 9112.5mm 2抗扭截面系数W0.2d 30.2 453 18225mm 2截面A 左侧的弯矩 M 为M 588023 59 357664N?mm97截面A 左侧的扭矩T 为T T 2 588023N ?mm截面上的弯曲应力Mb39MPabW截面上的扭转切应力b 一 32MPa bWt轴的材料为45钢,调质处理查得尺寸系数为"皿;查得扭转尺寸系数为S = 计算得综合系数为取40Cr 的特征系数为% = 0,1—02计算安全系数心%十%%二 64U4kkk-=0.8— = 2.78过盈配合处的亠,查得 6=3.48,并取厂r a杳得 % = 640WPa r ! = lfiSMPa疗i = 275阳皿查得表面质量系数'趴=0,057 1= 0.056.12 X 5.^6, ==5尼5 冷 £ = 15 J&.12 4-5,36故可知截面A 左侧安全 综上,截面A 两侧均安全综合以上分析,轴强度合格 轴III 的强度校合 (1)求作用在齿轮上的力由前面计算可知作用在齿轮四上的力的大小等于作用在齿轮三上的力,即: F r4 F r3 3739N F t4 F t3 9967N F a4 F a3 2485NFNVI (203 100) F r4100F a4 d4 2F NV 2 (203 100) F a4 虫 2F r4100求得 F NVI =1542NFNV2=926N水平面内:F NHI (203 100) F t4 100F NH 2 (203 100) F t4 203求得 F NHI 3290NF NHI 6678N(3) 画受力简图与弯矩图⑵求轴承上的支反力I (4)校合齿轮处截面。
轴疲劳强度校核.
对于形状复杂的轴,如曲轴、凸轮轴 等,也采用球墨铸铁或高强度铸造材料来 进行铸造加工,易于得到所需形状,而且 具有较好的吸振性能和好的耐磨性,对应 力集中的敏感性也较低。 同时应该知道,在一般工作温度下, 各种碳钢和合金钢的弹性模量相差不大, 故在选择钢的种类和热处理方法时,所依 据的主要是强度和耐磨性,而不是轴的弯 曲刚度和扭转刚度等。 轴的常用材料见教材。
一、拟订轴上零件的装配方案
在进行结构设计时,首先应按传动简 图上所给出的各主要零件的相互位置关系 拟订轴上零件的装配方案。
轴上零件的装配方案不同,轴的结构 形状也不同。在实际设计过程中,往往拟 订几种不同的装配方案进行比较,从中选 出一种最佳方案。
如图所示为一 单级圆柱齿轮内减 速器简图。其输出 轴上装有齿轮、联 轴器和滚动轴承。 可以采用如下的装 配方案:将齿轮、 左端轴承和联轴器 从轴的左端装配, 右端轴承从轴的右 端装配。
d0 其中: ,即空心轴内外径之比。 d
按照上式计算得到的直径,一 般作为轴的最小直径。如果在该处 有键槽,则应考虑它对轴的削弱程 度。一般的,有一个键槽直径增加 5%,两个键槽直径增大10%,最 后需要将轴径圆整为标准值。
2、按照经验公式估算 对于一般减速器装置中的轴,一 般也可以用经验公式来估算轴的最小 直径。对于高速级输入轴的最小轴径 可按与其相联的电动机轴径D估算, d=(0.8~1.2)D;相应各级低速轴的 最小直径可按同级齿轮中心距a估算, d=(0.3~0.4)a。
1、直轴 直轴按外形可以分为光轴和阶梯轴,如图所示。阶 梯轴便于轴上零件的拆装和定位。 轴一般做成实心的,但为了减轻重量或满足某种功 能,则可以做成空心轴。所以按轴的结构可以分为实心 轴和空心轴,如图所示。
图12-2
轴的强度校核方法
轴的强度校核⽅法第⼆章轴的强度校核⽅法常⽤的轴的强度校核计算⽅法进⾏轴的强度校核计算时,应根据轴的具体受载及应⼒情况,采取相应的计算⽅法,并恰当地选取其许⽤应⼒。
对于传动轴应按扭转强度条件计算。
对于⼼轴应按弯曲强度条件计算。
对于转轴应按弯扭合成强度条件计算。
2.2.1按扭转强度条件计算:这种⽅法是根据轴所受的扭矩来计算轴的强度,对于轴上还作⽤较⼩的弯矩时,通常采⽤降低许⽤扭转切应⼒的办法予以考虑。
通常在做轴的结构设计时,常采⽤这种⽅法估算轴径。
实⼼轴的扭转强度条件为:由上式可得轴的直径为为扭转切应⼒,MPa 式中:T 为轴多受的扭矩,N ·mmT W 为轴的抗扭截⾯系数,3mmn 为轴的转速,r/minP 为轴传递的功率,KWd 为计算截⾯处轴的直径,mm为许⽤扭转切应⼒,Mpa ,][r τ值按轴的不同材料选取,常⽤轴的材料及][r τ值见下表:表1 轴的材料和许⽤扭转切应⼒空⼼轴扭转强度条件为: dd 1=β其中β即空⼼轴的内径1d 与外径d 之⽐,通常取β=这样求出的T τ[]T τ直径只能作为承受扭矩作⽤的轴段的最⼩直径。
例如,在设计⼀级圆柱齿轮减速器时,假设⾼速轴输⼊功率P1=,输⼊转速n1=960r/min ,则可根据上式进⾏最⼩直径估算,若最⼩直径轴段开有键槽,还要考虑键槽对轴的强度影响。
根据⼯作条件,选择45#钢,正⽕,硬度HB170-217,作为轴的材料,A0值查表取A0=112,则因为⾼速轴最⼩直径处安装联轴器,并通过联轴器与电动机相连接,设有⼀个键槽,则:另外,实际中,由于减速器输⼊轴通过联轴器与电动机轴相联结,则外伸段轴径与电动机轴径不能相差太⼤,否则难以选择合适的联轴器,取电动机轴d d 8.0'min =,查表,取mm d 38=电动机轴,则:综合考虑,可取mm d 32'min =通过上⾯的例⼦,可以看出,在实际运⽤中,需要考虑多⽅⾯实际因素选择轴的直径⼤⼩。
轴的强度校核方法
轴的强度校核方法摘要轴是机械中非常重要的零件,用来支承回转运动零件,如带轮、齿轮、蜗轮等,同时实现同一轴上不同零件间的回转运动和动力的传递。
轴的设计时应考虑多方面因素和要求,其中主要问题是轴的选材、结构、强度和刚度。
其中对于轴的强度校核尤为重要,通过校核来确定轴的设计是否能达到使用要求,最终实现产品的完整设计。
本文根据轴的受载及应力情况采取相应的计算方法,对于1、仅受扭矩的轴2、仅受弯矩的轴3、既承受弯矩又承受扭矩的轴三种受载情况的轴的强度校核进行了具体分析,并对如何精确计算轴的安全系数做了具体的简绍。
校核结果如不满足承载要求时,则必须修改原结构设计结果,再重新校核。
轴的强度校核方法可分为四种:1)按扭矩估算2)按弯矩估算3)按弯扭合成力矩近视计算4)精确计算(安全系数校核)关键词:安全系数;弯矩;扭矩目录第一章引言--------------------------------------- 11.1轴的特点---------------------------------------------1 1.2轴的种类---------------------------------------------1 1.3轴的设计重点-----------------------------------------1第二章轴的强度校核方法----------------------------42.1强度校核的定义-------------------------------------4 2.2轴的强度校核计算-----------------------------------4 2.3几种常用的计算方-----------------------------------5 2.3.1按扭转强度条件计算-------------------------------5 2.3.2按弯曲强度条件计算-------------------------------6 2.3.3按弯扭合成强度条件计算---------------------------7 2.3.4精确计算(安全系数校核计算)----------------------9 2.4 提高轴的疲劳强度和刚度的措施---------------------12第三章总结------------------------------------------13参考文献--------------------------------------------14第一章引言1.1轴的特点:轴是组成机械的主要零件之一。
轴结构设计和强度校核
一、轴的分类按承受的载荷不同, 轴可分为:转轴——工作时既承受弯矩又承受扭矩的轴。
如减速器中的轴。
虚拟现实。
心轴——工作时仅承受弯矩的轴。
按工作时轴是否转动,心轴又可分为:转动心轴——工作时轴承受弯矩,且轴转动。
如火车轮轴。
固定心轴——工作时轴承受弯矩,且轴固定。
如自行车轴。
虚拟现实。
传动轴——工作时仅承受扭矩的轴。
如汽车变速箱至后桥的传动轴。
固定心轴转动心轴转轴传动轴二、轴的材料轴的材料主要是碳钢和合金钢。
钢轴的毛坯多数用轧制圆钢和锻件,有的则直接用圆钢。
由于碳钢比合金钢价廉,对应力集中的敏感性较低,同时也可以用热处理或化学热处理的办法提高其耐磨性和抗疲劳强度,故采用碳钢制造尤为广泛,其中最常用的是45号钢。
合金钢比碳钢具有更高的力学性能和更好的淬火性能。
因此,在传递大动力,并要求减小尺寸与质量,提高轴颈的耐磨性,以及处于高温或低温条件下工作的轴,常采用合金钢。
必须指出:在一般工作温度下(低于200℃),各种碳钢和合金钢的弹性模量均相差不多,因此在选择钢的种类和决定钢的热处理方法时,所根据的是强度与耐磨性,而不是轴的弯曲或扭转刚度。
但也应当注意,在既定条件下,有时也可以选择强度较低的钢材,而用适当增大轴的截面面积的办法来提高轴的刚度。
各种热处理(如高频淬火、渗碳、氮化、氰化等)以及表面强化处理(如喷丸、滚压等),对提高轴的抗疲劳强度都有着显著的效果。
高强度铸铁和球墨铸铁容易作成复杂的形状,且具有价廉,良好的吸振性和耐磨性,以及对应力集中的敏感性较低等优点,可用于制造外形复杂的轴。
轴的常用材料及其主要力学性能见表。
三、轴的结构设计轴的结构设计包括定出轴的合理外形和全部结构尺寸。
轴的结构主要取决于以下因素:轴在机器中的安装位置及形式;轴上安装的零件的类型、尺寸、数量以及和轴联接的方法;载荷的性质、大小、方向及分布情况;轴的加工工艺等。
由于影响轴的结构的因素较多,且其结构形式又要随着具体情况的不同而异,所以轴没有标准的结构形式。
轴的强度校核方法
轴的强度校核方法
轴的强度校核是工程设计中的重要环节,其目的是确保轴能够承受工作条件下的受力,并不产生过度弯曲或断裂的现象。
轴的强度校核方法可以根据不同的应用背景和需求而有所不同,下面将介绍几种常见的轴的强度校核方法。
1.强度计算法:
强度计算法是最常用的校核方法之一,通过应力与材料的允许应力值进行比较,判断轴的强度是否满足要求。
这种方法适用于轴的受力分布较均匀,且形状规则的情况。
计算的核心步骤是确定轴的截面尺寸和应力分布,并且要考虑到加载的动态条件。
2.基于理论公式的校核方法:
根据轴的受力特点和材料性能,可以应用一些基于理论公式的校核方法,如蒙弗赛尔公式、纳迦公式等。
这些公式是基于应力、材料和几何形状之间的关系建立的,通过将轴的尺寸和材料强度带入公式中,计算轴的强度。
3.材料试验法:
对于特殊情况下的轴,如复合材料轴或特殊工况下的轴,可以采用材料试验法进行强度校核。
这种方法通过对轴材料进行拉伸、压缩、弯曲等试验,获取材料的强度参数,并结合轴的几何尺寸进行强度分析。
试验法能够充分考虑材料的非线性、破坏等特点,对于复杂工况下的轴强度校核非常有效。
4.有限元分析方法:
有限元分析是一种计算机辅助工程分析方法,可以模拟轴在受力条件下的应力分布情况。
通过将轴的几何模型进行离散化,并应用合适的边界条件和加载条件,可以计算出轴在不同点上的应力分布。
有限元分析方法适用于复杂几何形状和非均匀应力分布的轴的强度校核。
总之,轴的强度校核方法需要基于具体的工程应用和材料特性进行选择。
在实际设计中,常常需要综合考虑多种校核方法,以确保轴的强度满足设计要求并具有良好的可靠性。
齿轮轴强度校核
齿轮轴强度校核
齿轮轴的强度校核需要考虑齿轮的工作负载、齿轮材料、齿轮的几何形状和尺寸等因素。
以下是一个简单的齿轮轴强度校核步骤:
1. 确定齿轮的工作负载,包括转矩、转速和工作时间等参数。
2. 确定齿轮材料的机械性能参数,如抗拉强度、屈服强度、韧性和硬度等。
3. 计算齿轮的几何参数,如模数、压力角、齿数、齿宽、齿顶高度、齿根高度等。
4. 根据齿轮的几何参数和工作负载,计算齿轮轴的弯曲应力和扭转应力。
5. 根据齿轮材料的机械性能参数和齿轮轴的应力计算齿轮轴的安全系数。
以上是齿轮轴强度校核的基本步骤,实际计算中还需要考虑其他因素,如表面硬度、疲劳寿命等。
如果您需要更详细的计算方法和具体参数,建议您咨询专业的机械工程师。
轴键强度校核公式
轴的强度校核:1.按扭转强度条件计算:τT=TW T≈9550000P n0.2d3≤[τT]式中:τT–––––––扭转切应力,MP a;T–––––––轴所受的扭矩,N·mm;W T–––––––轴的抗扭截面系数,mm3;n–––––––轴的转速,r/min;P–––––––轴传递的功率,kW;d–––––––计算截面处轴的直径,mm;[τT] –––––––许用扭转切应力,MP a。
2.按弯扭合成强度条件计算:σca=MW2+4αT2W2=M2+αT2W≤σ−1式中:σca–––––––轴的计算应力,MP a;M–––––––轴所受的弯矩,N·mm;T–––––––轴所受的扭矩,N·mm;W–––––––轴的抗弯截面系数,mm3;[σ−1]–––––––对称循环变应力时轴的许用弯曲应力。
键的强度校核:1.平键连接强度计算:普通平键连接强度条件:σp=2T×103kld≤σp导向平键连接和花间连接的强度条件:p=2T×103kld≤p式中:T–––––––传递的扭矩,N·m;k–––––––键与轮毂键槽的接触高度,k=0.5h,此处h为键的高度,mm;l–––––––键的工作长度,mm,圆头平键l=L−b,平头平键l=L,这里L为键的公称长度,mm;b为键的宽度,mm;d–––––––轴的直径,mm;σp–––––––键、轴、轮毂三者中最弱材料的许用挤压应力,MP a;p–––––––键、轴、轮毂三者中最弱材料的许用压力,MP a。
2.花键连接强度计算静连接σp=2T×103ψzhld m≤σp动连接p=2T×103ψzhld m≤p式中:ψ–––––––载荷分配不均系数,与齿数多少有关,一般取ψ=0.7~0.8,齿数多时取偏小值;z–––––––花键的齿数;l–––––––齿的工作长度,mm;h–––––––花键齿侧面的工作高度,矩形花键,h=D−d2−2C,此处D为外花键大径,d为内花键小径,C为倒角尺寸,单位为mm;渐开线花键,α=30°,h=m,α=45°,h=0.8m,m为模数。
轴的强度校核方法之欧阳歌谷创编
轴的强度校核方法欧阳歌谷(2021.02.01)摘要轴是机械中非常重要的零件,用来支承回转运动零件,如带轮、齿轮、蜗轮等,同时实现同一轴上不同零件间的回转运动和动力的传递。
轴的设计时应考虑多方面因素和要求,其中主要问题是轴的选材、结构、强度和刚度。
其中对于轴的强度校核尤为重要,通过校核来确定轴的设计是否能达到使用要求,最终实现产品的完整设计。
本文根据轴的受载及应力情况采取相应的计算方法,对于1、仅受扭矩的轴2、仅受弯矩的轴3、既承受弯矩又承受扭矩的轴三种受载情况的轴的强度校核进行了具体分析,并对如何精确计算轴的安全系数做了具体的简绍。
校核结果如不满足承载要求时,则必须修改原结构设计结果,再重新校核。
轴的强度校核方法可分为四种:1)按扭矩估算2)按弯矩估算3)按弯扭合成力矩近视计算4)精确计算(安全系数校核)关键词:安全系数;弯矩;扭矩目录第一章引言--------------------------------------- 11.1轴的特点---------------------------------------------11.2轴的种类---------------------------------------------11.3轴的设计重点-----------------------------------------15)轴的强度校核方法----------------------------42.1强度校核的定义-------------------------------------42.2轴的强度校核计算-----------------------------------42.3几种常用的计算方-----------------------------------52.3.1按扭转强度条件计算-------------------------------52.3.2按弯曲强度条件计算-------------------------------62.3.3按弯扭合成强度条件计算---------------------------72.3.4精确计算(安全系数校核计算)----------------------92.4 提高轴的疲劳强度和刚度的措施---------------------12第三章总结------------------------------------------13参考文献--------------------------------------------14第一章引言1.1轴的特点:轴是组成机械的主要零件之一。
机械设计轴的校核
机械设计轴的校核在机械设计中,轴是一种用于传递动力和承受载荷的重要零件。
为了确保轴能够安全可靠地工作,需要进行轴的校核。
轴的校核主要包括轴的强度校核和轴的刚度校核。
首先,进行轴的强度校核。
轴的强度校核是为了保证轴在受到载荷时不会发生破坏。
对于受轴承力和传动力作用的轴来说,一般采用轴的直径来进行强度校核。
强度校核主要根据轴的材料性能参数和外部载荷进行计算,可以采用静力学分析方法。
首先,根据轴承力和传动力的大小,选择合适的材料。
然后,根据轴的直径进行强度计算,主要考虑轴的弯曲应力和挠曲应力。
轴的弯曲应力和挠曲应力必须小于材料的屈服强度,才能保证轴不会发生破坏。
另外,还需要进行轴的刚度校核。
轴的刚度校核是为了保证轴在受到载荷时不会发生过大的变形。
轴的刚度主要与轴的几何形状和材料的弹性模量有关。
刚度校核需要考虑轴在受载荷时的挠曲和扭转变形。
挠曲变形是轴在受到弯曲力时的弯曲程度,扭转变形是轴在受到扭矩时的扭转程度。
为了保证轴的刚度满足要求,可以通过轴的直径、长度和材料的选择来进行优化。
在进行轴的校核时,还需要考虑轴的安全系数。
安全系数可以保证轴在各种工况下都能够安全可靠地工作。
常见的安全系数一般为1.5-2.0,根据实际情况可以进行调整。
安全系数的计算需要考虑轴的材料的强度和刚度,以及轴的受载荷情况。
总之,轴的校核是机械设计中非常重要的一项工作。
通过轴的强度校核和刚度校核,可以确保轴能够安全可靠地工作。
此外,还需要注意轴的安全系数,以保证轴在各种工况下都能够满足要求。
空心圆轴第三强度强度校核
空心圆轴第三强度强度校核
空心圆轴的第三强度强度校核主要是指在轴向受力作用下,轴的表面产生应力集中的情况下,轴壁的第三强度强度是否足够,从而保证轴的强度和安全性。
求解空心圆轴第三强度强度校核可按照以下步骤进行:
1. 确定受力情况:首先需要明确轴在使用过程中所承受的受力情况,包括轴上所受的外力、转矩、自重、惯性力等,以此为基础进行分析。
2. 计算轴壁应力:根据受力情况,利用静力学原理以及材料力学知识计算轴在轴向上的应力分布情况,得到轴壁上的应力大小及分布情况。
3. 判断应力集中情况:根据应力分布情况,判断轴壁是否存在应力集中问题。
如果存在应力集中,则需要进行进一步分析。
4. 计算应力集中系数:根据实际情况,确定轴上应力集中的位置及集中系数。
应力集中系数是指轴上应力集中部位的应力与轴上其他部位的应力之比。
5. 利用第三强度理论计算强度:根据轴的实际情况,利用第三强度理论进行计算,得到轴最大强度和应力集中区域的强度值。
6. 判断是否满足要求:最后根据轴的最大强度与应力集中区域的强度值进行比
较,判断轴的强度是否满足要求。
如果轴的强度不足,则需要进行加强设计或更换材料等措施。
总之,在空心圆轴的设计和使用过程中,第三强度强度校核是非常重要的,需要科学合理地进行计算和分析,以保证轴的强度和安全性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
轴的强度校核方法
摘要
轴是机械中非常重要的零件,用来支承回转运动零件,如带轮、
齿轮、蜗轮等,同时实现同一轴上不同零件间的回转运动和动力的传
递。
轴的设计时应考虑多方面因素和要求,其中主要问题是轴的选材、
结构、强度和刚度。
其中对于轴的强度校核尤为重要,通过校核来确
定轴的设计是否能达到使用要求,最终实现产品的完整设计。
本文根据轴的受载及应.力情况采取相应的计算方法,对于1、仅
受扭矩的轴2、仅受弯矩的轴3、既承受弯矩.又承受扭矩的轴三种受
载情况的轴的强度校核进行了具体分析,并对如何精确计算轴的安个
系数做了具体的简绍。
校核结果如不满足承载要求时,则必须修改原结构设
计结果,再
重新校核。
轴的强度校核方法可分为四种:
1)按扭矩估算
2)按弯矩估算
3)按弯扭合成力矩近视计算
4)精确计算(安全系数校核)
关键词:安全系数;弯矩;扭矩目录
第一章引言一---一-一一-一-一-一一-------一--------一-----一1
1. 1轴的特点------------------------------------------一1
1. 2轴的种类------------------------------------------一1
1. 3轴的设计重点--------------------------------------一1
第二章轴的强度校核方法-------------------------一4
2. 1强度校核的定义-___-_______________________________4
2. 2轴的强度校核计算-_-_______________________________4
2. 3几种常用的计算方-_-_______________________________5
2. 3. 1按扭转强度条件计算-------一---------------一-______5
2.3.2按弯曲强度条件计算-______________________________6
2. 3. 3按弯扭合成强度条件计算-__________________________7
2.3.4精确计算(安全系数校核计算)______________________9
2. 4提高轴的疲劳强度和刚度的措施-_____-___-_-___-12
第三章总结---------------------------------------一13
参考文献-----------------------------------------一14 第一章引言
1. 1轴的特点:
轴是组成机械的主要零件之二。
一切作回转运动的传动零件,都
必须装在轴上刁‘能进行运动及动.力的传递,同时它又通过轴承和机架
联接,由此形成·个以轴为基准的组合体一轴系部件。
1. 2轴的种类
1、根据承受载荷的不同分为:
1)转轴:定义:既能承受弯矩又承受扭矩的轴
2)心轴:定义:只承受弯矩而不承受扭矩的轴
3)传送轴:定义:只承受扭矩而不承受弯矩的轴
z、根据轴的外形,可以将直轴分为光轴和阶梯轴;
3、根据轴内部状况,又可以将直轴分为实心轴和空。
1. 3轴的设一计重点1、轴的设计
W轴的工作能力设计。
主要进行轴的强度设计、刚度设计,对于转速较高的轴还要进行
振动稳定性的计算。
(z>轴的结构设计。
根据轴的功能,轴必须保证轴上零件的安装固定和保证轴系在机
器中的支撑要求,同时应具有良好的工艺性。
般的设计步骤为:选择材料,初估轴径,结构设计,强度校核,
必要时要进行刚度校核和稳定性计算。
2、轴的材料
轴是主要的支承件,常采用机械性能较好的材料。
常用材料包括: 碳素钢:该类材料对应力集中的敏感性较小,价格较低,是轴
类零件最常用的材料。
常用牌号有:30、35、40、45、50。
采用优质碳钢时,一般应进行热
处理以改善其性能。
受.力较小或不重要的轴,也可以选用X235, Q255
等普通碳钢。
合金钢:对于要求重载、高温、结构尺寸小、重量轻等使用场
合的轴,可以选用合金纲。
合金钢具有史好的机械性能和热处理性能,但对应力集中较敏
感,价格也较高。
设计中尤其要汁意从结构上减小应力集中,并提高
其表面质量。
铸铁:对于形状比较复杂的轴,可以选用球}'Ix!_} xW_}a铸铁和高强度的
铸铁。
它们具有较好
的加工性和吸振性,经济性好且对应.力集中不敏感,但铸造质量不易
保·证。
3、轴的结构设计
根据轴在工作中的作用,轴的结构取决于:轴在机器中的安装位
置和形式,轴上零件的类型和尺寸,载荷的性质、大小、方向和分布
状况,轴的加工工艺等多个因素。
合理的结构设计应满足:轴上零件
布置合理,从而轴受力合理有利于提高强度和刚度;轴和轴上零件必
须有准确的工作位置;轴上零件装拆调整方便;轴具有良好的加工工
艺性;节省材料等。
1).轴的组成
轴的毛坯一般采用圆钢、锻造或焊接获得,由于铸造品质不易保
证,较少选用铸造毛坯。
轴主要由三部分组成。
轴上被支承,安装轴承的部分称为轴颈;
支承轴上零件,安装轮毅的部分称为轴头;联结轴头和轴颈的部分称
为轴身。
轴颈上安装滚动轴承时,直径尺寸必须按滚动轴承的国标尺
寸选择,尺寸公差和表面粗糙度须按规定选择;轴头的尺寸要参考轮
毅的尺寸进行选择,轴身尺寸确定时应尽量使轴颈与轴头的过渡合
理,避免截面尺寸变化过大,同时具有较好的工艺性。
2).结构一设计步骤设计中常采用以下的设计步骤:
1。
分析所设计轴的工作状况,拟定轴上零{/l-.的装配方案和轴在机
器中的安装情况。
2.根据已知的轴上近似载荷,初估轴的直径或根据经验确定轴的
某径向尺寸。
3.根据轴上零件受力情况、安装、固定及装配时对轴的表面要求
等确定轴的径向(直径) 尺寸。
4,根据轴上零q/1'.的位置、配合长度、支承结构和形式确定轴的轴向尺寸。
5.考虑加工和装配的工艺性,使轴的结构更合理。
3).零件在轴上的安装
保证轴上零件可靠工作,需要零qll.在工作过程中有准确的位置,
即零件在轴上必须有准确的定位和固定。
零件在轴上的准确位置包括
轴向和周向两个方面。
W零件在轴上的轴向定位和固定
常见的轴向定位和固定的方法采用轴肩、各种挡圈、套筒、圆螺
母、锥端轴头等的多种组合结构。
轴肩分为定位轴肩和非定位轴肩两种。
利用轴肩定位结构简单、
可靠,但轴的直径加大,轴肩处出现应力集中;轴肩过多也不利于加
工。
因此,定位轴肩多在不致过多地增加轴的阶梯数和轴向力较大的
i清况下使用,定位轴肩的高度一般取3-6mm,滚动轴承定位轴肩的高
度需按照滚动轴承的安装尺寸确定。
非定位轴肩多是为了装配合理方
便和径向尺寸过度时采用,轴肩高度无严格限制,一般取为1-2r}} 套筒定位可以避免轴肩定位引起的轴径增大和应.力集中,但受到
套筒长度和与轴的配合因素的影响,不宜用在使套筒过长和高速旋转
的场合。
挡圈的种类较多,且多为标准件,设计中需按照各种挡圈的用途
和l国标来选用。
4.轴的结构工艺性
(1)从装配来考虑:应合理的设计非定位轴肩,使轴上不同零件在安装
过程中尽量减少不必
要的配合面;为了装配方便,轴端应设计45。
的倒角;在装键的轴
段,应使键槽靠近轴
与轮毅先接触的直径变化处,便于在安装时零件上的键槽与轴上的
键容易对准;采用过
盈配合时,为了便于装配,直径变化可用锥面过渡等。
(2)从加工来考虑:当轴的某段须磨削加工或有螺纹时,须设计砂轮越
程槽或退刀槽;根据
表面安装零件的配合需要,合理确定表面粗糙度和加工方法;为改
善轴的抗疲劳强度,减小轴径变化处的应.力集中,应适当增大其过渡圆角半径,但同时
要保证零件的可靠定
位,过渡圆角半径又必须小于与之相配的零件的圆角半径或倒角尺
寸。
轴的设计时应考虑多方面因素和要求,其中主要问题是轴的选
材、结构、强度和刚度。
其中对于轴的强度校核尤为重要,通过校核
来确定轴的设计是否能达到使用要求,最终实现产品的完整设计。
由此看来合理的进行轴的强度校核成为轴设计的主要内容,同时
也是评定轴的设计成败得先决条件。
校核结果如不满足承载要求时,强度校核就是对材料或设备的力学性能进行检测并调节的一种
方式,并且这种方式以不破坏材料或设备性能为一前提。
2. 2轴的强度校核计算:
进行轴的强度校核计算时,应根据轴的具体受载及应.力情况,采
取相应的计算方法,并恰当地选取其许用应力。
对于传动轴应按扭转强度条件计算。
对于心轴应按弯曲强度条件计算
对于转轴应按弯扭合成强度条件
寻+};}.-r}` I}_
rl夕w‘0
2. 3几种常用的计算方法:
2,3.1按扭转强度条件计算:
这种方法是根据轴所受的扭矩来计算州的强度,对于轴上还作用
较小的弯矩时,通常采用降低许用扭转切应.力的办法子以考虑。
通常
在做轴的结构设计时,常采用这种方法估算轴径。