高一数学常用公式及知识点总结

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高一数学常用公式及知识点总结

一、集合

1、N 表示 N+(或N*)表示 Z 表示 R 表示 Q 表示

2、含有n 个元素的集合,其子集有 个,真子集有 个,非空子集 有 个,非空真子集有 个。 二、基本初等函数 1、指数幂的运算法则

m n a a = m n a a ÷=

()m n a = ()m a

b

=

n m

a = m a -= ()m a

b =

2、对数运算法则及换底公式(01

a a >≠且,M>0,N>0) log log a a M N += log log a a M N -= log n a M = log a N a = log a

b = log a a = log log a a a b = 1log a = 3、对数与指数互化:log a M N =⇔

4、基本初等函数图象

(3)幂函数的图像和性质

(1)指数函数(0,1)x a a y a >≠= (2)对数函数(0,1)log a a a x y >≠= (当a e =时,y= ;当10a =时,y= )

a>1时的图像

0

a>1时的图像 0

图像恒过点 ,且不与 轴相交。

图像恒过点 ,且不与 轴相交。

解析式 y x =

2y x =

3y x =

1y x -=

2y x -=

12

y x =

图像

定义域 值域 奇偶性 单调性

三、函数的性质 1、奇偶性

(1)对于定义域内任意的x ,都有()()f x f x -=,则()f x 为 函数,图

像关于 对称;

(2)对于定义域内任意的x ,都有()()f x f x -=-,则()f x 为 函数,图

像关于 对称; 2、单调性

设1122,[,],x a b x x x <∈,那么

12()()0()[,]f f f x x a b x -<⇔在上是 函数;(即

1212

()()

0f x f x x x ->-)

12()()0()[,]f f f x x a b x ->⇔在上是 函数。(即

1212()()

0f x f x x x -<-) 3、周期性

对于定义域内任意的x ,都有

()()f x T f x +=,则()f x 的周期为 ;

四、三角函数、三角恒等变换和解三角形 1、三角函数 (1)、三角函数的定义:______________________________________________

三角函数值在各象限的符号

sin a cos a tan a

(2)、同三角函数的基本关系

平方关系: 22sin cos a a += 商数关系:tan a = (3)、特殊角的三角函数值表 公式一:sin(2)a k π+= cos(2)a k π+= tan(2)a k

π+=

公式二:sin()a π+= cos()a π+= tan()a π+= 公式三:sin()a -= cos()a -= tan()a -= 公式四:sin()a π-= cos()a π-= tan()a π-=

公式五:2

sin(

)a π

-= 2

cos()a π

-=

公式六:2sin()a π+= 2

cos()a π

+=

(记忆口诀:奇变偶不变,符号看象限。奇偶指2

π

的奇偶数倍,变与不变指三角

函数名称的变化,若变则是正弦变余弦,正切变余切;符号是根据角的范围以及三角函数在四个象限的正负来判断新三角函数的符号(无论a 是多大的角,都将a 看成锐角))

a 的角度 0 30 45 60 90 120 135 150 180 270 360

a 的弧度 sina cosa tana

方法途径二:

sin y x = 图像各点横坐标伸长或缩短到原来的1ω

,纵坐标不变,得

到 ,图像上各点向左或向右平移

ϕ

ω

个单位,得到 ,图像各点纵坐标伸长或缩短到原来的A 倍,横坐标不变,得到 ; 2、三角恒等变换 (7)、两角和与差的正弦、余弦和正切

(异名同号)():sin()S αβαβ++= ():sin()S αβαβ--=

(同名异号)():cos()C αβαβ++= ():cos()C αβαβ--=

():tan()T αβαβ++= ():tan()T αβαβ--=

(8)、二倍角公式

2:sin 2S αα=

2:cos2C αα= = = 2:tan 2T αα=

(9)、辅助角公式

222222(

sin cos )sin cos a b

a b x x a b a b

a x

b x +++++=

2222(sin cos cos sin )sin()(tan )

a b x x b

a b x a

ϕϕϕϕ=++=++=

3、解三角形 (10)、正弦定理: = = =2R

(R 为三角形的外接圆半径)

用角表示边:a= ,b= ,c= 用边表示角:sinA=__________,sinB=__________,sinC=__________

(11)、余弦定理:2a = ,2b = ,

2c =

求角:cos A = ,cos B = ,

cos C =

(12)、三角形面积公式:S = = =

相关文档
最新文档