6脉冲、12脉冲可控硅整流器原理与区别

合集下载

6脉冲与12脉冲整流

6脉冲与12脉冲整流

6脉冲与12脉冲整流6脉冲、12脉冲整流器原理与区别摘要:本文从理论推导、实测数据分析、谐波分析和改善对策、性能对比四个方面详细阐述6脉冲和12脉冲整流器的原理和区别。

对大功率UPS的整流技术有一个深入全面的剖析。

一、理论推导1、6脉冲整流器原理:6脉冲指以6个可控硅(晶闸管)组成的全桥整流,由于有6个开关脉冲对6个可控硅分别控制,所以叫6脉冲整流。

当忽略三相桥式可控硅整流电路换相过程和电流脉动,假定交流侧电抗为零,直流电感为无穷大,延迟触发角a为零,则交流侧电流傅里叶级数展开为:xLx (jHiiat--sin S M--dn7at + —siiillai + —一-—smlT^t一- del 知5 7 11 13 1719(1-1)由公式(1-1 )可得以下结论:电流中含6K?1(k为正整数)次谐波,即5、7、11、13.??等各次谐波,各次谐波的有效值与谐波次数成反比,且与基波有效值的比值为谐波次数的倒数。

桥1的网侧电流傅立叶级数展开为:■ Ij ■ tiuird ' wEdar- '、血_01 * ' Mtd lor * ' fiitl 如+ . .}iA n 45 7 11 1317 IPf(1-2)600 0 400,0200 0 W 0.0 ^200,0-400.0 600 0 400 O 200,0 £ 0.0 -200 0 -4 00 0图1.1计算机仿真的6脉冲A 相的输入电压、电流波形2、12脉冲整流器原理:12脉冲是指在原有6脉冲整流的基础上,在输入端、增加移相变压器后在增加一组流器,使直流母线电流由 12个可控硅整流完成,因此又称为12脉冲整流。

6脉冲整F 图所示I 和II 两个三相整流电路就是通过变压器的不同联结构成12相整流电路。

12脉冲整流器示意图(由 2个6脉冲并联组成)桥II 网侧线电压比桥I 超前30?,因网侧线电流比桥I 超前30?:加=丄、++krf + —soil Ajtf + —'iijl-ci# + — ud^ + I(1-3)故合成的网侧线电流A - ijx+hjA~x(siii at + — suillot+ ?suii3<it< p="">真11 13(1-4)可见,两个整流桥产生的5、7、17、19、…次谐波相互抵消,注入电网的只有 12k?1 (k 为正整数)次谐波,即11、13、23、25等各次谐波,且其有效值与与谐波次数成反比,而与基波有效值的比值为谐波次数的倒数。

6脉冲12脉冲可控硅整流器原理与区别

6脉冲12脉冲可控硅整流器原理与区别

6脉冲12脉冲可控硅整流器原理与区别6脉冲和12脉冲可控硅整流器是一种用于交流电转直流电的电力电子装置。

它们的主要原理和区别如下:1.原理可控硅整流器是一种半电压型整流装置,通过控制可控硅的导通角,改变可控硅导通时间的方式,将交流电转换成直流电。

可控硅整流器的主要控制参数有触发脉冲角度和触发脉冲宽度。

6脉冲可控硅整流器的原理是在单相交流电源上,通过两组互相相差60°的三相整流方式,使得输出的直流电压带有6个整流脉动。

12脉冲可控硅整流器的原理是通过两个直流电枢和两组互相相差30°的三相整流方式,在一个周期内产生12个整流脉动,从而减小了脉动幅值,得到了更平滑的直流输出电压。

2.区别2.1.输出电压波形6脉冲可控硅整流器的输出电压波形带有6个整流脉动,脉动幅值较大,相对于12脉冲可控硅整流器而言,输出的直流电压波动较大。

12脉冲可控硅整流器通过在一个周期内产生12个整流脉动,脉动幅值较小,输出的直流电压波动较小。

相对于6脉冲可控硅整流器而言,得到了更平滑的直流输出电压。

2.2.输出电流波形6脉冲可控硅整流器的输出电流波形带有6个整流脉动,脉动幅值较大。

12脉冲可控硅整流器的输出电流波形带有12个整流脉动,脉动幅值更小。

2.3.效率12脉冲可控硅整流器相对于6脉冲可控硅整流器而言,由于输出电压波动更小,脉动幅值更小,因此具有更高的效率。

2.4.成本12脉冲可控硅整流器相对于6脉冲可控硅整流器而言,由于结构复杂性更高,需要控制电路和相应的控制技术,所以成本更高。

综上所述,12脉冲可控硅整流器相对于6脉冲可控硅整流器来说,输出的直流电压和电流波动更小,效率更高,但成本也更高。

在实际应用中,可根据需求和成本的考虑来选择合适的可控硅整流器。

脉冲与12脉冲区别

脉冲与12脉冲区别

大功率UPS 6脉冲与12脉冲可控硅整流器原理与区别一、理论推导1、6脉冲整流器原理:6脉冲指以6个可控硅(晶闸管)组成得全桥整流,由于有6个开关脉冲对6个可控硅分别控制,所以叫6脉冲整流、当忽略三相桥式可控硅整流电路换相过程与电流脉动,假定交流侧电抗为零,直流电感为无穷大,延迟触发角a为零,则交流侧电流傅里叶级数展开为:(1-1)由公式(1-1)可得以下结论:电流中含6K?1(k为正整数)次谐波,即5、7、11、13.。

.等各次谐波,各次谐波得有效值与谐波次数成反比,且与基波有效值得比值为谐波次数得倒数。

图1。

1计算机仿真得6脉冲A相得输入电压、电流波形2、12脉冲整流器原理:12脉冲就是指在原有6脉冲整流得基础上,在输入端、增加移相变压器后在增加一组6脉冲整流器,使直流母线电流由12个可控硅整流完成,因此又称为12脉冲整流、下图所示I与II两个三相整流电路就就是通过变压器得不同联结构成12相整流电路。

12脉冲整流器示意图(由2个6脉冲并联组成)桥1得网侧电流傅立叶级数展开为:(1-2)桥II网侧线电压比桥I超前30?,因网侧线电流比桥I超前30?(1—3)故合成得网侧线电流(1-4)可见,两个整流桥产生得5、7、17、19、、、、次谐波相互抵消,注入电网得只有12k?1(k为正整数)次谐波,即11、13、23、25等各次谐波,且其有效值与与谐波次数成反比,而与基波有效值得比值为谐波次数得倒数。

图1.2 计算机仿真得12脉冲UPS A相得输入电压、电流波形二、实测数据分析。

以上计算为理想状态,忽略了很多因数,如换相过程、直流侧电流脉动、触发延迟角,交流侧电抗等。

因此实测值与计算值有一定出入。

理论计算谐波表:某型号大功率UPS谐波实测数据表:从以上两表对比可得,6脉整流器谐波含量最大为5次谐波、12脉整流器强度最大为11次谐波,与理论计算结果一致、6脉5次谐波实测值较计算值偏大,12脉11次谐波实测值与计算值相同。

UPS_6脉冲整流器、12脉冲整流器和IGBT整流器技术区别

UPS_6脉冲整流器、12脉冲整流器和IGBT整流器技术区别

UPS 6脉冲整流器、12脉冲整流器和IGBT 整流器技术区别6脉冲指以6个可控硅(晶闸管)组成的全桥整流,由于有6个开关脉冲对6个可控硅分别控制,所以叫6脉冲整流。

三相桥式整流电路忽略换相过程和电流脉动,假定交流侧电抗为零,直流电感为无穷大,延迟触发角a 为零,则交流侧电流傅里叶级数展开为:iA=2⨯31/2/π⨯Id( sinwt -1/5sin5wt -1/7sin7wt +1/11sin11wt +1/13sin13wt -1/17Sin17wt -1/19sinwt +…) (1-1)由此可得以下简洁的结论:电流中含6k ±1(k 为正整数)次谐波,各次谐波有效值与谐波次数成反比,且与基波有效值的比值为谐波次数的倒数。

2、12脉冲整流器12脉冲是指在原有6脉冲整流的基础上,在输入端增加移相变压器后在增加一组6脉冲整流器,使直流母线电流由12个可控硅整流完成,因此又称为12脉冲整流。

下图所示I 和II 两个三相整流电路就是通过变压器的不同联结构成12相整流电路。

电池及 逆变器 输入电池及 逆变器 输入 II桥1的网侧电流傅立叶级数展开为:iIA=iIa=2⨯31/2/π⨯Id( sinwt-1/5sin5wt-1/7sin7wt+1/11sin11wt+1/13sin13wt-1/17Sin17wt-1/19sinwt+…) (1-2)桥II网侧线电压比桥I超前30︒,因网侧线电流比桥I超前30︒。

iIA=2⨯31/2/π⨯Id( sinwt+1/5sin5wt+1/7sin7wt+1/11sin11wt+1/13sin13wt+1/17Sin17wt+1/19sinwt+…) (1-3)故合成的网侧线电流iA=iIA+iIIA=4⨯31/2/π(sinwt+1/11sinwt+1/13sin13wt+…)可见,两个整流桥产生的5、7、17、19、…次谐波相互抵消,注入电网的只有12k±1(k为正整数)次谐波,且其有效值与与谐波次数成反比,而与基波有效值的比值为谐波次数的倒数。

6脉冲与12脉冲整流

6脉冲与12脉冲整流

6脉冲、12脉冲整流器原理与区别摘要:本文从理论推导、实测数据分析、谐波分析和改善对策、性能对比四个方面详细阐述6脉冲和12脉冲整流器的原理和区别。

对大功率UPS的整流技术有一个深入全面的剖析。

一、理论推导1、6脉冲整流器原理:6脉冲指以6个可控硅(晶闸管)组成的全桥整流,由于有6个开关脉冲对6个可控硅分别控制,所以叫6脉冲整流。

当忽略三相桥式可控硅整流电路换相过程和电流脉动,假定交流侧电抗为零,直流电感为无穷大,延迟触发角a为零,则交流侧电流傅里叶级数展开为:xLx (jHiiat--sin S M--dn7at + —siiillai + —一-—smlT^t一- del 知5 7 11 13 1719(1-1)由公式(1-1 )可得以下结论:电流中含6K?1(k为正整数)次谐波,即5、7、11、13.••等各次谐波,各次谐波的有效值与谐波次数成反比,且与基波有效值的比值为谐波次数的倒数。

桥1的网侧电流傅立叶级数展开为:■ Ij ■ tiuird ' wEdar- '、血_01 * ' Mtd lor * ' fiitl 如+ . .}iA n 45 7 11 1317 IPf(1-2)600 0 400,0200 0 W 0.0 ^200,0-400.0 600 0 400 O 200,0 £ 0.0 -200 0 -4 00 0图1.1计算机仿真的6脉冲A 相的输入电压、电流波形2、12脉冲整流器原理:12脉冲是指在原有6脉冲整流的基础上,在输入端、增加移相变压器后在增加一组 流器,使直流母线电流由 12个可控硅整流完成,因此又称为12脉冲整流。

6脉冲整F 图所示I 和II 两个三相整流电路就是通过变压器的不同联结构成 12相整流电路。

12脉冲整流器示意图(由 2个6脉冲并联组成)桥II 网侧线电压比桥I 超前30?,因网侧线电流比桥I 超前30?:加=丄、++krf + —soil Ajtf + —'iijl-ci# + — ud^ + I(1-3)故合成的网侧线电流A - ijx+hjA~x(siii at + — suillot+ ™suii3<it真11 13(1-4)可见,两个整流桥产生的 5、7、17、19、…次谐波相互抵消,注入电网的只有 12k?1 (k 为正整数)次谐波,即11、13、23、25等各次谐波,且其有效值与与谐波次数成反比,而与基 波有效值的比值为谐波次数的倒数。

6脉冲与12脉冲区别

6脉冲与12脉冲区别

大功率UPS 6脉冲与12脉冲可控硅整流器原理与区别一、理论推导1、6脉冲整流器原理:6脉冲指以6个可控硅(晶闸管)组成得全桥整流,由于有6个开关脉冲对6个可控硅分别控制,所以叫6脉冲整流。

当忽略三相桥式可控硅整流电路换相过程与电流脉动,假定交流侧电抗为零,直流电感为无穷大,延迟触发角a为零,则交流侧电流傅里叶级数展开为:(1—1)由公式(1-1)可得以下结论:电流中含6K?1(k为正整数)次谐波,即5、7、11、13、、、等各次谐波,各次谐波得有效值与谐波次数成反比,且与基波有效值得比值为谐波次数得倒数。

图1、1 计算机仿真得6脉冲A相得输入电压、电流波形2、12脉冲整流器原理:12脉冲就是指在原有6脉冲整流得基础上,在输入端、增加移相变压器后在增加一组6脉冲整流器,使直流母线电流由12个可控硅整流完成,因此又称为12脉冲整流。

下图所示I与II两个三相整流电路就就是通过变压器得不同联结构成12相整流电路。

12脉冲整流器示意图(由2个6脉冲并联组成)桥1得网侧电流傅立叶级数展开为:(1-2)桥II网侧线电压比桥I超前30?,因网侧线电流比桥I超前30?(1—3)故合成得网侧线电流(1-4)可见,两个整流桥产生得5、7、17、19、、、、次谐波相互抵消,注入电网得只有12k?1(k为正整数)次谐波,即11、13、23、25等各次谐波,且其有效值与与谐波次数成反比,而与基波有效值得比值为谐波次数得倒数。

图1、2 计算机仿真得12脉冲UPSA相得输入电压、电流波形二、实测数据分析。

以上计算为理想状态,忽略了很多因数,如换相过程、直流侧电流脉动、触发延迟角,交流侧电抗等。

因此实测值与计算值有一定出入。

理论计算谐波表:某型号大功率UPS谐波实测数据表:从以上两表对比可得,6脉整流器谐波含量最大为5次谐波、12脉整流器强度最大为11次谐波,与理论计算结果一致。

6脉5次谐波实测值较计算值偏大,12脉11次谐波实测值与计算值相同。

6脉动整流与12脉动整流

6脉动整流与12脉动整流

6脉冲与12脉冲可控硅整流器原理与区别一、理论推导1、6脉冲整流器原理:6脉冲指以6个可控硅(晶闸管)组成得全桥整流,由于有6个开关脉冲对6个可控硅分别控制,所以叫6脉冲整流、当忽略三相桥式可控硅整流电路换相过程与电流脉动,假定交流侧电抗为零,直流电感为无穷大,延迟触发角a为零,则交流侧电流傅里叶级数展开为:(1—1)由公式(1-1)可得以下结论:电流中含6K?1(k为正整数)次谐波,即5、7、11、13。

等各次谐波,各次谐波得有效值与谐波次数成反比,且与基波有效值得比值为谐波次数得倒数。

图1、1 计算机仿真得6脉冲A相得输入电压、电流波形2、12脉冲整流器原理:12脉冲就是指在原有6脉冲整流得基础上,在输入端、增加移相变压器后在增加一组6脉冲整流器,使直流母线电流由12个可控硅整流完成,因此又称为12脉冲整流。

下图所示I与II两个三相整流电路就就是通过变压器得不同联结构成12相整流电路、12脉冲整流器示意图(由2个6脉冲并联组成)桥1得网侧电流傅立叶级数展开为:(1—2)桥II网侧线电压比桥I超前30?,因网侧线电流比桥I超前30?(1—3)故合成得网侧线电流(1—4)可见,两个整流桥产生得5、7、17、19、.。

次谐波相互抵消,注入电网得只有12k?1(k为正整数)次谐波,即11、13、23、25等各次谐波,且其有效值与与谐波次数成反比,而与基波有效值得比值为谐波次数得倒数、图1。

2 计算机仿真得12脉冲UPS A相得输入电压、电流波形二、实测数据分析。

以上计算为理想状态,忽略了很多因数,如换相过程、直流侧电流脉动、触发延迟角,交流侧电抗等。

因此实测值与计算值有一定出入。

理论计算谐波表:某型号大功率UPS谐波实测数据表:从以上两表对比可得,6脉整流器谐波含量最大为5次谐波、12脉整流器强度最大为11次谐波,与理论计算结果一致。

6脉5次谐波实测值较计算值偏大,12脉11次谐波实测值与计算值相同。

UPS_6脉冲整流器、12脉冲整流器和IGBT整流器技术区别

UPS_6脉冲整流器、12脉冲整流器和IGBT整流器技术区别

UPS_6脉冲整流器、12脉冲整流器和IGBT整流器技术区别UPS 6脉冲整流器、12脉冲整流器和IGBT 整流器技术区别6脉冲指以6个可控硅(晶闸管)组成的全桥整流,由于有6个开关脉冲对6个可控硅分别控制,所以叫6脉冲整流。

三相桥式整流电路忽略换相过程和电流脉动,假定交流侧电抗为零,直流电感为⽆穷⼤,延迟触发⾓a 为零,则交流侧电流傅⾥叶级数展开为:iA=2?31/2/π?Id( sinwt -1/5sin5wt -1/7sin7wt +1/11sin11wt +1/13sin13wt -1/17Sin17wt -1/19sinwt +…) (1-1)由此可得以下简洁的结论:电流中含6k ±1(k 为正整数)次谐波,各次谐波有效值与谐波次数成反⽐,且与基波有效值的⽐值为谐波次数的倒数。

2、12脉冲整流器12脉冲是指在原有6脉冲整流的基础上,在输⼊端增加移相变压器后在增加⼀组6脉冲整流器,使直流母线电流由12个可控硅整流完成,因此⼜称为12脉冲整流。

下图所⽰I 和II 两个三相整流电路就是通过变压器的不同联结构成12相整流电路。

电池及逆变器输⼊电池及逆变器输⼊ II桥1的⽹侧电流傅⽴叶级数展开为:iIA=iIa=2?31/2/π?Id( sinwt-1/5sin5wt-1/7sin7wt+1/11sin11wt+1/13sin13wt-1/17Sin17wt-1/19sinwt+…) (1-2)桥II⽹侧线电压⽐桥I超前30?,因⽹侧线电流⽐桥I超前30?。

iIA=2?31/2/π?Id( sinwt+1/5sin5wt+1/7sin7wt+1/11sin11wt+1/13sin13wt+1/17Sin17wt+1/19sinwt+…) (1-3)故合成的⽹侧线电流iA=iIA+iIIA=4?31/2/π(sinwt+1/11sinwt+1/13sin13wt+…)可见,两个整流桥产⽣的5、7、17、19、…次谐波相互抵消,注⼊电⽹的只有12k±1(k为正整数)次谐波,且其有效值与与谐波次数成反⽐,⽽与基波有效值的⽐值为谐波次数的倒数。

12脉冲整流

12脉冲整流

大功率UPS 6脉冲与12脉冲可控硅整流器的区别艾默生网络能源有限公司UPS 产品部 温顺理一、理论推导 1.6脉冲整流器原理:6脉冲指以6个可控硅(晶闸管)组成的全桥整流,由于有6个开关脉冲对6个可控硅分别控制,所以叫6脉冲整流。

当忽略三相桥式可控硅整流电路换相过程和电流脉动,假定交流侧电抗为零,直流电感为无穷大,延迟触发角a 为零,则交流侧电流傅里叶级数展开为:(1)由公式(1)可得以下结论:电流中含6K ±1(k 为正整数)次谐波,即5、7、11、13…等各次谐波,各次谐波的有效值与谐波次数成反比,且与基波有效值的比值为谐波次数的倒数。

2.12脉冲整流器原理:12脉冲是指在原有6脉冲整流的基础上,在输入端、增加移相变压器后在增加一组6脉冲整流器,使直流母线电流由12个可控硅整流完成,因此又称为12脉冲整流。

下图所示I 和II 两个三相整流电路就是通过变压器的不同联结构成12相整流电路。

...)19sin 19117sin 17113sin 13111sin 1117sin 715sin 51(sin 32+--++--⨯⨯⨯=t t t t t t t I i d A ωωωωωωωπ12脉冲整流器示意图(由2个6脉冲并联组成)桥1的网侧电流傅立叶级数展开为:(1-2)桥II 网侧线电压比桥I 超前30︒,因网侧线电流比桥I 超前30︒(1-3)故合成的网侧线电流(1-4)可见,两个整流桥产生的5、7、17、19、…次谐波相互抵消,注入电网的只有12k ±1(k 为正整数)次谐波,即11、13、23、25等各次谐波,且其有效值与与谐波次数成反比,而与基波有效值的比值为谐波次数的倒数。

...)19sin 19117sin 17113sin 13111sin 1117sin 715sin 51(sin 32+--++--⨯⨯⨯=t t t t t t t I i d IA ωωωωωωωπ...)19sin 19117sin 17113sin 13111sin 1117sin 715sin 51(sin 32+++++++⨯⨯⨯=t t t t t t t I i d IIA ωωωωωωωπ...)13sin 13111sin 111(sin 34t t t I i i i d IIA IA A ωωωπ++⨯⨯⨯=+=二、实测数据分析。

本质不同 两种可控硅整流器运行原理简析

本质不同 两种可控硅整流器运行原理简析

本质不同两种可控硅整流器运行原理简析
在平时的工作中,可控硅整流器作为一种常用到的重要元件,在工程师们的设计方案中出现频率是很高的。

其中,6脉冲可控硅整流器和12脉冲可控硅整流器都非常受欢迎。

那幺,这两种整流器可以通用吗?二者有哪些不同呢?在今天的文章中,小编将会从他们的运行原理入手,为大家简析一下他们的不同之处。

 首先要为大家介绍的是6脉冲可控硅整流器的运行工作原理。

这里所谓的6脉冲,指的是以6个可控硅组成的全桥整流,由于有6个开关脉冲对6个可控硅分别控制,所以我们一般称之为6脉冲整流。

这种6脉冲整流器的基础结构如图1所示。

 图1 6脉冲整流器
 这里我们以图1所示的6脉冲整流器运行结构为基础,来对它的运行特点进行简要分析。

我们暂时忽略三相桥式可控硅整流电路换相过程和电流脉动,假定交流侧电抗为零,直流电感为无穷大,延迟触发角a为零,则交流侧电流傅里叶级数展开可以计公式为:
 由上文中的公式,我们可以得出以下一个结论,那就是在6脉冲整流器的电流中,含6K(k为正整数)次谐波,即5、7、11、13...等各次谐波,各次谐波的有效值与谐波次数成反比,且与基波有效值的比值为谐波次数的倒数。

 图2 计算机仿真的6脉冲A相的输入电压、电流波形。

6脉动整流与12脉动整流

6脉动整流与12脉动整流

6脉冲与12脉冲可控硅整流器原理与区别一、理论推导1、6脉冲整流器原理:6脉冲指以6个可控硅(晶闸管)组成的全桥整流,由于有6个开关脉冲对6个可控硅分别控制,所以叫6脉冲整流。

当忽略三相桥式可控硅整流电路换相过程和电流脉动,假定交流侧电抗为零,直流电感为无穷大,延迟触发角a为零,则交流侧电流傅里叶级数展开为:(1-1)由公式(1-1)可得以下结论:电流中含6K?1(k为正整数)次谐波,即5、7、11、13...等各次谐波,各次谐波的有效值与谐波次数成反比,且与基波有效值的比值为谐波次数的倒数。

图1.1 计算机仿真的6脉冲A相的输入电压、电流波形2、12脉冲整流器原理:12脉冲是指在原有6脉冲整流的基础上,在输入端、增加移相变压器后在增加一组6脉冲整流器,使直流母线电流由12个可控硅整流完成,因此又称为12脉冲整流。

下图所示I和II两个三相整流电路就是通过变压器的不同联结构成12相整流电路。

12脉冲整流器示意图(由2个6脉冲并联组成)桥1的网侧电流傅立叶级数展开为:(1-2)桥II网侧线电压比桥I超前30?,因网侧线电流比桥I超前30?(1-3)故合成的网侧线电流(1-4)可见,两个整流桥产生的5、7、17、19、...次谐波相互抵消,注入电网的只有12k?1(k为正整数)次谐波,即11、13、23、25等各次谐波,且其有效值与与谐波次数成反比,而与基波有效值的比值为谐波次数的倒数。

图1.2 计算机仿真的12脉冲UPS A相的输入电压、电流波形二、实测数据分析。

以上计算为理想状态,忽略了很多因数,如换相过程、直流侧电流脉动、触发延迟角,交流侧电抗等。

因此实测值与计算值有一定出入。

理论计算谐波表:某型号大功率UPS谐波实测数据表:从以上两表对比可得,6脉整流器谐波含量最大为5次谐波、12脉整流器强度最大为11次谐波,与理论计算结果一致。

6脉5次谐波实测值较计算值偏大,12脉11次谐波实测值与计算值相同。

6脉冲和12脉冲的区别

6脉冲和12脉冲的区别

6脉冲、12脉冲可控硅整流器的技术比较
一、6脉冲整流器技术原理
6脉冲是指以6个可控硅(晶闸管)组成的全整流桥,由于有6个开关脉冲对6个可控硅分别进行控制,所以叫6脉冲整流。

整流原理及整流波形如下所示:
二、12脉冲整流器技术原理
12脉冲是指在原有6脉冲的基础上,在输入端增加了移相变压器之后再增加一组之后以6脉冲整流器,使得整流由12脉冲整流器完成,因此叫12脉冲整流。

三、6脉冲整流器以及12脉冲整流器的谐波分析理论计算谐波表:
某型号大功率UPS谐波实测数据表:
四、6脉冲整流器与12脉冲整流器的比较
五、结论
终上所述,12脉冲整流器比12脉冲整流器具有更好的谐波抑制功能,对电网的干扰更少,从而大大减少设备因电网干扰而导致的停机、误跳闸风险以及寿命的减少等,但由于结构及控制更复杂,增加了1组6脉冲整流器以及移相变压器,导致成本上升较多。

12脉冲整流器的适应环境更加广泛,在恶劣的环境下更具有应有优势!。

6脉冲、12脉冲可控硅整流器原理与区别

6脉冲、12脉冲可控硅整流器原理与区别

6脉冲、12脉冲可控硅整流器原理与区别6脉冲、12脉冲可控硅整流器原理与区别摘要:本文从理论推导、实测数据分析、谐波分析和改善对策、性能对比四个方面详细阐述6脉冲和12脉冲整流器的原理和区别。

对大功率UPS的整流技术有一个深入全面的剖析。

一、理论推导1、6脉冲整流器原理:6脉冲指以6个可控硅(晶闸管)组成的全桥整流,由于有6个开关脉冲对6个可控硅分别控制,所以叫6脉冲整流。

当忽略三相桥式可控硅整流电路换相过程和电流脉动,假定交流侧电抗为零,直流电感为无穷大,延迟触发角a为零,则交流侧电流傅里叶级数展开为:由公式(1-1)可得以下结论:电流中含6K?1(k为正整数)次谐波,即5、7、11、13...等各次谐波,各次谐波的有效值与谐波次数成反比,且与基波有效值的比值为谐波次数的倒数。

图1.1 计算机仿真的6脉冲A相的输入电压、电流波形2、12脉冲整流器原理:12脉冲是指在原有6脉冲整流的基础上,在输入端、增加移相变压器后在增加一组6脉冲整流器,使直流母线电流由12个可控硅整流完成,因此又称为12脉冲整流。

下图所示I和II两个三相整流电路就是通过变压器的不同联结构成12相整流电路。

12脉冲整流器示意图(由2个6脉冲并联组成桥1的网侧电流傅立叶级数展开为:桥II网侧线电压比桥I超前30?,因网侧线电流比桥I超前30?故合成的网侧线电流可见,两个整流桥产生的5、7、17、19、...次谐波相互抵消,注入电网的只有12k?1(k为正整数)次谐波,即11、13、23、25等各次谐波,且其有效值与与谐波次数成反比,而与基波有效值的比值为谐波次数的倒数。

图1.2 计算机仿真的12脉冲UPS A相的输入电压、电流波形二、实测数据分析。

以上计算为理想状态,忽略了很多因数,如换相过程、直流侧电流脉动、触发延迟角,交流侧电抗等。

因此实测值与计算值有一定出入。

理论计算谐波表:某型号大功率UPS谐波实测数据表:从以上两表对比可得,6脉整流器谐波含量最大为5次谐波、12脉整流器强度最大为11次谐波,与理论计算结果一致。

UPS 6脉与12脉区别

UPS 6脉与12脉区别

大功率UPS 6脉冲与12脉冲可控硅整流器的区别一、理论推导 1.6脉冲整流器原理:6脉冲指以6个可控硅(晶闸管)组成的全桥整流,由于有6个开关脉冲对6个可控硅分别控制,所以叫6脉冲整流。

当忽略三相桥式可控硅整流电路换相过程和电流脉动,假定交流侧电抗为零,直流电感为无穷大,延迟触发角a 为零,则交流侧电流傅里叶级数展开为:(1)由公式(1)可得以下结论:电流中含6K ±1(k 为正整数)次谐波,即5、7、11、13…等各次谐波,各次谐波的有效值与谐波次数成反比,且与基波有效值的比值为谐波次数的倒数。

2.12脉冲整流器原理:12脉冲是指在原有6脉冲整流的基础上,在输入端、增加移相变压器后在增加一组6脉冲整流器,使直流母线电流由12个可控硅整流完成,因此又称为12脉冲整流。

下图所示I 和II 两个三相整流电路就是通过变压器的不同联结构成12相整流电路。

...)19sin 19117sin 17113sin 13111sin 1117sin 715sin 51(sin 32+--++--⨯⨯⨯=t t t t t t t I i d A ωωωωωωωπ12脉冲整流器示意图(由2个6脉冲并联组成)桥1的网侧电流傅立叶级数展开为:(1-2)桥II 网侧线电压比桥I 超前30︒,因网侧线电流比桥I 超前30︒ (1-3)故合成的网侧线电流(1-4)可见,两个整流桥产生的5、7、17、19、…次谐波相互抵消,注入电网的只有12k ±1(k 为正整数)次谐波,即11、13、23、25等各次谐波,且其有效值与与谐波次数成反比,而与基波有效值的比值为谐波次数的倒数。

...)19sin 19117sin 17113sin 13111sin 1117sin 715sin 51(sin 32+--++--⨯⨯⨯=t t t t t t t I i d IA ωωωωωωωπ...)19sin 19117sin 17113sin 13111sin 1117sin 715sin 51(sin 32+++++++⨯⨯⨯=t t t t t t t I i d IIA ωωωωωωωπ...)13sin 13111sin 111(sin 34t t t I i i i d IIA IA Aωωωπ++⨯⨯⨯=+=二、实测数据分析。

6脉冲与12脉冲区别

6脉冲与12脉冲区别

大功率UPS 6脉冲与12脉冲可控硅整流器原理与区别一、理论推导1、6脉冲整流器原理:6脉冲指以6个可控硅(晶闸管)组成的全桥整流,由于有6个开关脉冲对6个可控硅分别控制,所以叫6脉冲整流。

当忽略三相桥式可控硅整流电路换相过程和电流脉动,假定交流侧电抗为零,直流电感为无穷大,延迟触发角a为零,则交流侧电流傅里叶级数展开为:(1-1)由公式(1-1)可得以下结论:电流中含6K?1(k为正整数)次谐波,即5、7、11、13...等各次谐波,各次谐波的有效值与谐波次数成反比,且与基波有效值的比值为谐波次数的倒数。

图1.1 计算机仿真的6脉冲A相的输入电压、电流波形2、12脉冲整流器原理:12脉冲是指在原有6脉冲整流的基础上,在输入端、增加移相变压器后在增加一组6脉冲整流器,使直流母线电流由12个可控硅整流完成,因此又称为12脉冲整流。

下图所示I和II两个三相整流电路就是通过变压器的不同联结构成12相整流电路。

12脉冲整流器示意图(由2个6脉冲并联组成)桥1的网侧电流傅立叶级数展开为:(1-2)桥II网侧线电压比桥I超前30?,因网侧线电流比桥I超前30?(1-3)故合成的网侧线电流(1-4)可见,两个整流桥产生的5、7、17、19、...次谐波相互抵消,注入电网的只有12k?1(k为正整数)次谐波,即11、13、23、25等各次谐波,且其有效值与与谐波次数成反比,而与基波有效值的比值为谐波次数的倒数。

图1.2计算机仿真的12脉冲UPS A相的输入电压、电流波形二、实测数据分析。

以上计算为理想状态,忽略了很多因数,如换相过程、直流侧电流脉动、触发延迟角,交流侧电抗等。

因此实测值与计算值有一定出入。

理论计算谐波表:谐波次数5th 7th11th 13th 17th 19th 23th6脉冲谐波含量20% 14% 9%8% 6% 5% 4%0% 0% 9%8% 0% 0% 4%12脉冲谐波含量某型号大功率UPS谐波实测数据表:谐波次数5th 7th 11th 13th17th 19t23thh6脉冲谐波含量32% 3% 8% 3%4% 2% 2%1% 1% 9% 4% 1% 1% 2%12脉冲谐波含量从以上两表对比可得,6脉整流器谐波含量最大为5次谐波、12脉整流器强度最大为11次谐波,与理论计算结果一致。

UPS 6脉冲整流器、12脉冲整流器和IGBT整流器技术区别

UPS 6脉冲整流器、12脉冲整流器和IGBT整流器技术区别

UPS 6脉冲整流器、12脉冲整流器和IGBT 整流器技术区别6脉冲指以6个可控硅(晶闸管)组成的全桥整流,由于有6个开关脉冲对6个可控硅分别控制,所以叫6脉冲整流。

三相桥式整流电路忽略换相过程和电流脉动,假定交流侧电抗为零,直流电感为无穷大,延迟触发角a 为零,则交流侧电流傅里叶级数展开为:iA=2⨯31/2/π⨯Id( sinwt -1/5sin5wt -1/7sin7wt +1/11sin11wt +1/13sin13wt -1/17Sin17wt -1/19sinwt +…) (1-1)由此可得以下简洁的结论:电流中含6k ±1(k 为正整数)次谐波,各次谐波有效值与谐波次数成反比,且与基波有效值的比值为谐波次数的倒数。

2、12脉冲整流器12脉冲是指在原有6脉冲整流的基础上,在输入端增加移相变压器后在增加一组6脉冲整流器,使直流母线电流由12个可控硅整流完成,因此又称为12脉冲整流。

下图所示I 和II 两个三相整流电路就是通过变压器的不同联结构成12相整流电路。

电池及 逆变器 输入电池及 逆变器 输入 II桥1的网侧电流傅立叶级数展开为:iIA=iIa=2⨯31/2/π⨯Id( sinwt-1/5sin5wt-1/7sin7wt+1/11sin11wt+1/13sin13wt-1/17Sin17wt-1/19sinwt+…) (1-2)桥II网侧线电压比桥I超前30︒,因网侧线电流比桥I超前30︒。

iIA=2⨯31/2/π⨯Id( sinwt+1/5sin5wt+1/7sin7wt+1/11sin11wt+1/13sin13wt+1/17Sin17wt+1/19sinwt+…) (1-3)故合成的网侧线电流iA=iIA+iIIA=4⨯31/2/π(sinwt+1/11sinwt+1/13sin13wt+…)可见,两个整流桥产生的5、7、17、19、…次谐波相互抵消,注入电网的只有12k±1(k为正整数)次谐波,且其有效值与与谐波次数成反比,而与基波有效值的比值为谐波次数的倒数。

工频大功率UPS 6脉冲与12脉冲可控硅整流器原理与区别

工频大功率UPS 6脉冲与12脉冲可控硅整流器原理与区别

大功率UPS 6脉冲与12脉冲可控硅整流器原理与区别------------电源网摘要:本文从理论推导、实测数据分析、谐波分析和改善对策、性能对比四个方面详细阐述6脉冲和12脉冲整流器的原理和区别。

对大功率UPS 的整流技术有一个深入全面的剖析。

一、理论推导1、6脉冲整流器原理:6脉冲指以6个可控硅(晶闸管)组成的全桥整流,由于有6个开关脉冲对6个可控硅分别控制,所以叫6脉冲整流。

当忽略三相桥式可控硅整流电路换相过程和电流脉动,假定交流侧电抗为零,直流电感为无穷大,延迟触发角a 为零,则交流侧电流傅里叶级数展开为:(1-1)由公式(1-1)可得以下结论:电流中含6K ±1(k 为正整数)次谐波,即5、7、11、13…等各次谐波,各次谐波的有效值与谐波次数成反比,且与基波有效值的比值为谐波次数的倒数。

...)19sin 19117sin 17113sin 13111sin 1117sin 715sin 51(sin 32+--++--⨯⨯⨯=t t t t t t t I i d A ωωωωωωωπ图1.1 计算机仿真的6脉冲A 相的输入电压、电流波形2、12脉冲整流器原理:12脉冲是指在原有6脉冲整流的基础上,在输入端、增加移相变压器后在增加一组6脉冲整流器,使直流母线电流由12个可控硅整流完成,因此又称为12脉冲整流。

下图所示I 和II 两个三相整流电路就是通过变压器的不同联结构成12相整流电路。

12脉冲整流器示意图(由2个6脉冲并联组成)桥1的网侧电流傅立叶级数展开为:(1-2)桥II 网侧线电压比桥I 超前30︒,因网侧线电流比桥I 超前30︒...)19sin 19117sin 17113sin 13111sin 1117sin 715sin 51(sin 32+--++--⨯⨯⨯=t t t t t t t I i d IA ωωωωωωωπ(1-3)故合成的网侧线电流(1-4)可见,两个整流桥产生的5、7、17、19、…次谐波相互抵消,注入电网的只有12k ±1(k 为正整数)次谐波,即11、13、23、25等各次谐波,且其有效值与与谐波次数成反比,而与基波有效值的比值为谐波次数的倒数。

6与12脉冲整流器原理

6与12脉冲整流器原理

一、理论推导1、6脉冲整流器原理:6脉冲指以6个可控硅(晶闸管)组成的全桥整流,由于有6个开关脉冲对6个可控硅分别控制,所以叫6脉冲整流。

当忽略三相桥式可控硅整流电路换相过程和电流脉动,假定交流侧电抗为零,直流电感为无穷大,延迟触发角a为零,则交流侧电流傅里叶级数展开为:(1-1)由公式(1-1)可得以下结论:电流中含6K?1(k为正整数)次谐波,即5、7、11、13...等各次谐波,各次谐波的有效值与谐波次数成反比,且与基波有效值的比值为谐波次数的倒数。

图1.1 计算机仿真的6脉冲A相的输入电压、电流波形2、12脉冲整流器原理:12脉冲是指在原有6脉冲整流的基础上,在输入端、增加移相变压器后在增加一组6脉冲整流器,使直流母线电流由12个可控硅整流完成,因此又称为12脉冲整流。

下图所示I和II两个三相整流电路就是通过变压器的不同联结构成12相整流电路。

12脉冲整流器示意图(由2个6脉冲并联组成)桥1的网侧电流傅立叶级数展开为:(1-2)桥II网侧线电压比桥I超前30?,因网侧线电流比桥I超前30?(1-3)故合成的网侧线电流(1-4)可见,两个整流桥产生的5、7、17、19、...次谐波相互抵消,注入电网的只有12k?1(k为正整数)次谐波,即11、13、23、25等各次谐波,且其有效值与与谐波次数成反比,而与基波有效值的比值为谐波次数的倒数。

图1.2 计算机仿真的12脉冲UPS A相的输入电压、电流波形二、实测数据分析。

以上计算为理想状态,忽略了很多因数,如换相过程、直流侧电流脉动、触发延迟角,交流侧电抗等。

因此实测值与计算值有一定出入。

理论计算谐波表:某型号大功率UPS谐波实测数据表:从以上两表对比可得,6脉整流器谐波含量最大为5次谐波、12脉整流器强度最大为11次谐波,与理论计算结果一致。

6脉5次谐波实测值较计算值偏大,12脉11次谐波实测值与计算值相同。

三、谐波分析和改良对策谐波可能造成配电线缆、变压器发热,降低通话质量,空气开关误动作,发电机喘振等不良后果;谐波按电流相序分为+序(3k+1次,k为0和正整数)、-序(3k+2次,k为0和正整数)、0序(3k次,k为正整数)。

6脉冲整流器和12脉冲整流器介绍

6脉冲整流器和12脉冲整流器介绍

6脉冲整流器和12脉冲整流器介绍由于不断电系统之输入端需进行交、直流电压转换,而传统UPS 一般均采用可控硅整流器构成的6脉冲整流器整流电路。

此电路的问题在于将造成系统输入功率因数恶化及输入电流谐波失真率增加等负面影响。

对此相关问题,亦可利用功率因数矫正电路技术进行改善。

然而受限于成本因素,目前该项技术仍较适合应用于中低功率型系统。

较大容量之交、直流整流器设计,尚需藉由可控硅整流器予以达成,对此一般可以可采用12脉冲整流器和主动电力滤波器补偿,下文主要介绍6脉冲和12脉冲整流器的结构图1绘出一典型的3相6脉冲整流器架构,当系统处于理想的运转状况下,市电电感L S 可假设为零,且视直流电感L d 足够大使得直流输出电流无涟波成分,今如令整流器触发角为α,则自市电引入之电流i s 可表示为:())sinh()sin(21αωαω-+-=t i t i i h S(1) o h I h i π6=, h =6n ±1, (n=1, 2, 3,…) (2)其中i h 为市电谐波电流。

由上式可看出,3相6脉冲整流器主要之谐波电流成分为5次谐波,而其总谐波含量约为30%。

为达到提高功因及降低谐波成分的目的,可在不断电系统之电源输入侧并联LC 滤波器使用。

至于谐波滤波器之设计方式可根据下式决定:LCf h π21= (3) 其中f h 为谐波频率、L 为滤波电感、C 为电容值。

由于6脉波型整流器所产生之最低阶谐波为5次谐波,目前该型不断电系统机种常采5阶及(或)7阶型滤波器设计。

图1:三相6脉冲整流器 图2:三相12脉冲整流器及均流控制回路 另一方面,为进一步提高相控整流器所产生之谐波电流阶数,亦可采行12脉冲整流技术,其电路架构如图2所示。

主要原理为利用两组变压器将交流电压移相,各自整流后,再于直流侧予以合成,产生12步阶直流涟波效果。

由数学理论推导,12脉冲相控整流器所需引入之市电线电流为:())sin()sin(21αωαωh t h i t i i h S -+-=(4) o h I h i π6=, h =12n ±1, (n=1, 2, 3,…) (5)由(4)、(5)式可看出,12脉冲整流电路所产生之谐波电流最低为11次谐波,其远高于6脉冲整流技术产生之5次谐波,且其总谐波含量亦较6脉冲为低;然而该12脉冲机种需额外加入一输入相移变压器,为有效减少相移变压器的生产成本,变压器可采自耦型设计(如图1所示),惟其需注意系统是否有输出入电压隔离的问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

6脉冲、12脉冲可控硅整流器原理与区别
摘要:本文从理论推导、实测数据分析、谐波分析和改善对策、性能对比四个方面详细阐述6脉冲和12脉冲整流器的原理和区别。

对大功率的整流技术有一个深入全面的剖析。

一、理论推导
1、6脉冲整流器原理:
6脉冲指以6个可控硅(晶闸管)组成的全桥整流,由于有6个开
关脉冲对6个可控硅分别控制,所以叫6脉冲整流。

当忽略三相桥式可控硅整流电路换相过程和电流脉动,假定交流侧电
抗为零,直流电感为无穷大,延迟触发角a为零,则交流侧电流傅里
叶级数展开为:
(1-1)
由公式(1-1)可得以下结论:
电流中含6K?1(k为正整数)
次谐波,即5、7、11、13...等各次
谐波,各次谐波的有效值与谐波次
数成反比,且与基波有效值的比值
为谐波次数的倒数。

图1.1 计算机仿真的6脉冲A相
的输入电压、电流波形
2、12脉冲整流器原理:
12脉冲是指在原有6脉冲整流
的基础上,在输入端、增加移相变
压器后在增加一组6脉冲整流器,
使直流母线电流由12个可控硅整流完成,因此又称为12脉冲整流。

下图所示I和II两个三相整流电路就是通过变压器的不同联结构成12相整流电路。

12脉冲整流器示意图(由2个6脉冲并联组成)
桥1的网侧电流傅立叶级数展开为:
(1-2)
桥II网侧线电压比桥I超前300,
因网侧线电流比桥I超前300
(1-3)
故合成的网侧线电流
(1-4)
可见,两个整流桥产生的5、7、17、19、...次谐波相互抵消,注入电网的只有12k?1(k为正整数)次谐波,即11、13、23、25等各次谐波,且其有效值与谐波次数成反比,而与基波有效值的比值为谐波次数的倒数。

图1.2 计算机仿真的12脉冲UPS A相的
输入电压、电流波形
二、实测数据分析。

以上计算为理想状态,忽略了很
多因数,如换相过程、直流侧电流脉
动、触发延迟角,交流侧电抗等。


此实测值与计算值有一定出入。

理论计算谐波表:
某型号大功率UPS谐波实测数据表:
从以上两表对比可得,6脉整流器谐波含量最大为5次谐波、12脉整流器强度最大为11次谐波,与理论计算结果一致。

相关文档
最新文档