初三数学二次函数知识点总结
九年级数学二次函数知识点
![九年级数学二次函数知识点](https://img.taocdn.com/s3/m/6cc06cbfbdeb19e8b8f67c1cfad6195f312be801.png)
九年级数学二次函数知识点二次函数是数学中的一个重要知识点,它在实际生活中有着广泛的应用。
了解和掌握二次函数的相关知识对于理解高中数学和解决实际问题都具有重要意义。
本文将从定义、性质、图像和应用等方面介绍九年级数学中的二次函数知识点。
一、定义和表示方式二次函数是指由形如y=ax²+bx+c的函数所表示的函数关系。
其中,a、b、c是已知实数,且a ≠ 0。
其中,a称为二次项系数,b 称为一次项系数,c称为常数项。
二次函数的一般形式可以表示为y=f(x)=ax²+bx+c。
二、性质1. 对称性:二次函数的图像关于过抛物线的对称轴对称,对称轴方程为x=-b/2a。
2. 开口方向:当a>0时,抛物线开口向上;当a<0时,抛物线开口向下。
3. 最值点:二次函数的最值点即为抛物线的顶点,对应的坐标为(-b/2a,f(-b/2a))。
4. 零点:二次函数的零点即为方程f(x)=0的解,可以通过解一元二次方程求得。
5. 判别式:一元二次方程ax²+bx+c=0的判别式Δ=b²-4ac,当Δ>0时,方程有两个不相等的实根;Δ=0时,方程有两个相等的实根;Δ<0时,方程无实根。
三、图像二次函数的图像是一个抛物线,根据开口方向和顶点的位置可以确定其形状。
当a>0时,抛物线开口向上,顶点位于抛物线的最低点;当a<0时,抛物线开口向下,顶点位于抛物线的最高点。
通过对二次函数的系数a、b、c进行调整,可以改变抛物线的形状、位置和大小。
四、应用二次函数在现实生活中有着广泛的应用。
以下列举几个常见的应用场景:1. 物体自由落体运动:物体自由落体运动的高度随时间的变化可以用二次函数进行建模,通过解一元二次方程可以求得物体的落地时间和最大高度等信息。
2. 弹射问题:弹射物体的轨迹可以用二次函数进行描述。
3. 平抛问题:平抛运动物体的轨迹也可以用二次函数进行建模,通过解一元二次方程可以求得物体的着地点和最大飞行距离等信息。
初中数学中考复习二次函数知识点总结归纳整理
![初中数学中考复习二次函数知识点总结归纳整理](https://img.taocdn.com/s3/m/6efddbc985868762caaedd3383c4bb4cf7ecb797.png)
初中数学中考复习二次函数知识点总结归纳整理二次函数是中学数学中非常重要的一个内容,也是中考数学中的重点。
下面是对初中数学中考复习二次函数知识点的总结和归纳整理。
一、二次函数的定义1. 二次函数的一般形式:y = ax² + bx + c,其中a、b、c为常数,且a ≠ 0。
2.二次函数的图像为抛物线,开口方向与a的正负有关。
-当a>0时,抛物线开口向上。
-当a<0时,抛物线开口向下。
二、二次函数的性质1.对称轴:二次函数的对称轴与抛物线的开口方向垂直,其方程为x=-b/2a。
2.顶点:二次函数的顶点位于对称轴上,其坐标为(-b/2a,f(-b/2a))。
-当a>0时,顶点是抛物线的最低点。
-当a<0时,顶点是抛物线的最高点。
3. 判别式:对于二次函数y = ax² + bx + c,其判别式Δ = b² -4ac表示方程ax² + bx + c = 0的根的情况。
-当Δ>0时,方程有两个不相等的实根。
-当Δ=0时,方程有两个相等的实根。
-当Δ<0时,方程没有实根。
4.单调性:-当a>0时,二次函数在对称轴左侧单调递增,右侧单调递减。
-当a<0时,二次函数在对称轴左侧单调递减,右侧单调递增。
三、二次函数的图像特征1.a的正负决定了抛物线的开口方向。
2.,a,的大小决定了抛物线的陡峭程度,a,越大抛物线越陡峭。
3.当b=0时,抛物线经过原点。
4.当c=0时,抛物线经过x轴。
5.当a>0时,函数值在顶点处取得最小值。
6.当a<0时,函数值在顶点处取得最大值。
四、二次函数的方程求解1. 解二次方程ax² + bx + c = 0的一般步骤:- 利用判别式Δ = b² - 4ac判断方程的根的情况。
-若Δ>0,方程有两个不相等的实根,可以用求根公式x₁=(-b+√Δ)/2a和x₂=(-b-√Δ)/2a求解。
初中数学二次函数最全知识点总结
![初中数学二次函数最全知识点总结](https://img.taocdn.com/s3/m/6a1e965254270722192e453610661ed9ad515531.png)
初中数学二次函数最全知识点总结二次函数是数学中一个重要的函数概念,在初中阶段也有着广泛的应用。
下面是关于初中数学二次函数最全的知识点总结,供你参考。
一、基本形式二次函数的基本形式为:y = ax² + bx + c,其中a、b、c为常数且a ≠ 0。
二、图像特征1.抛物线:二次函数的图像是一个抛物线,可以开口向上或向下。
2.拉伸:a确定了抛物线的开口方向和形状,绝对值越大,抛物线越“瘦长”,绝对值越小,抛物线越“圆胖”。
3.对称性:二次函数的图像关于直线x=-b/2a对称。
4.顶点坐标:直线x=-b/2a与抛物线的交点即为抛物线的顶点坐标。
5. 零点:二次函数的零点是指函数图像与x轴交点的横坐标,即解方程ax² + bx + c = 0。
三、顶点坐标的确定1.顶点坐标的横坐标x=-b/2a。
2.代入x值可以得到顶点坐标的纵坐标y=f(-b/2a)。
四、二次函数的方程及解法1. 二次函数方程一般形式:ax² + bx + c = 0。
2.解法一:使用因式分解法,将方程化为(x-m)(x-n)=0的形式,其中m和n为实数。
3. 解法二:使用配方法,对方程ax² + bx + c = 0进行化简,得到(ax + p)² + q = 0的形式,其中p和q为实数。
4. 解法三:使用求根公式,根据公式x = (-b ± √(b² - 4ac)) / 2a求得方程的根。
五、二次函数的特殊情况1.完全平方式:当二次函数的方程形式为(x+m)²=0时,说明抛物线的顶点坐标为(-m,0),且抛物线开口向上。
2.切线与二次函数的关系:二次函数的切线与函数图像的交点为切点,其斜率等于函数的导数值,切线的方程可以通过点斜式得到。
3. 线性函数与二次函数的关系:当二次函数的系数a = 0时,二次函数化为线性函数,即y = bx + c。
六、二次函数的应用1.模型拟合:二次函数可以用来拟合一些实际问题的数学模型,如抛物线运动问题、图像反演等。
九年级二次函数全部知识点
![九年级二次函数全部知识点](https://img.taocdn.com/s3/m/b5d871093868011ca300a6c30c2259010302f375.png)
九年级二次函数全部知识点二次函数是数学中的一种重要的函数类型,它在实际生活中有着广泛的应用。
九年级是初中阶段的最后一年,二次函数是九年级数学的重要内容之一。
本文将介绍九年级二次函数的全部知识点,包括定义、图像、性质、解析式等,希望能够帮助同学们更好地掌握这一知识。
一、二次函数的定义二次函数是一种形式为f(x) = ax² + bx + c的函数,其中a、b、c是常数,并且a ≠ 0。
二次函数中的自变量x是实数,函数值f(x)也是实数。
二次函数的定义域是所有实数集合。
二、二次函数的图像二次函数的图像是一个抛物线,对称轴是垂直于x轴的一条直线。
当a > 0时,抛物线开口朝上;当a < 0时,抛物线开口朝下。
三、二次函数的顶点及最值二次函数的顶点是抛物线的最高点或最低点,其坐标为(h,k),其中h是对称轴的横坐标,k是对称轴与抛物线的交点的纵坐标。
当a > 0时,k为函数的最小值;当a < 0时,k为函数的最大值。
四、二次函数的对称性二次函数的图像关于对称轴是对称的,即对称轴两侧的点关于对称轴上的点有对应关系。
这个对称性质使得我们可以通过观察对称轴两侧的点来了解抛物线的整体形态。
五、二次函数的零点二次函数的零点就是使得函数值等于零的横坐标。
要求二次函数的零点,可以使用因式分解、配方法和求根公式等方法。
六、二次函数和一次函数的关系一次函数是二次函数的特例,当a = 0时,二次函数就变成一次函数。
因此,可以说二次函数是一次函数的推广,二次函数的图像也可以视为一次函数图像的变形。
七、二次函数的解析式二次函数的一般形式是f(x) = ax² + bx + c,其中a、b、c是常数。
根据二次函数的性质,可以通过零点、顶点等信息来确定二次函数的解析式。
八、二次函数的平移和压缩二次函数的平移可以通过改变解析式中的常数来实现,例如改变c可以实现平移,改变a和b可以实现压缩或拉伸。
初中数学二次函数知识点总结
![初中数学二次函数知识点总结](https://img.taocdn.com/s3/m/fe15788eba4cf7ec4afe04a1b0717fd5360cb220.png)
初中数学二次函数知识点总结1. 二次函数的定义二次函数是一个数学函数,其一般形式为f(x) = ax² + bx + c,其中a、b和c为常数,且a 不等于0。
在这个函数中,x是自变量,f(x)是因变量,a、b和c分别为二次项、一次项和常数项的系数。
二次函数的图像通常是一个开口朝上或者朝下的抛物线。
2. 二次函数的图像特征二次函数的图像通常是一个抛物线,其开口的方向取决于二次项的系数a的正负。
当a大于0时,抛物线开口朝上;当a小于0时,抛物线开口朝下。
另外,二次函数的图像还有一个顶点,可以通过公式(-b/2a, f(-b/2a))来求得。
3. 二次函数的性质二次函数有一些重要的性质,其中最重要的就是顶点坐标的计算方法。
具体来说,可以通过求出二次函数的导数,然后令导数等于0来求得函数的极值点。
另外,二次函数还有一个重要的特点,就是它的图像是对称的。
具体来说,二次函数的图像关于顶点对称。
4. 二次函数的解析式二次函数的解析式一般可以写成一般式f(x) = ax² + bx + c,也可以写成顶点式f(x) = a(x-h)² + k,其中(h, k)为顶点的坐标。
通过解析式,可以方便地求得二次函数的相关性质,比如顶点坐标、根的个数和方向等。
5. 二次函数与二次方程二次函数与二次方程有着密切的关系。
事实上,二次函数的图像就是二次方程y = ax² + bx + c的图像。
二次函数的图像是由二次方程y = ax² + bx + c的解析式所确定的。
而二次方程则可以通过求解二次函数的零点来求得。
6. 二次函数的应用二次函数在现实生活中有着广泛的应用。
比如,物体的自由落体运动、抛物线的轨迹、天桥的设计等都可以通过二次函数来描述和求解。
另外,二次函数还可以用来描述一些生活中的变化规律,比如描绘人口增长、销售额变化等。
以上就是初中数学二次函数的知识点总结,希望可以帮助学生更好地掌握这一重要的数学概念。
初三数学_二次函数_知识点总结
![初三数学_二次函数_知识点总结](https://img.taocdn.com/s3/m/0c8c3ce80242a8956bece4b6.png)
二次函数一、二次函数概念:1.二次函数的概念:一般地,形如2=++(a b cy ax bx ca≠),,是常数,0的函数,叫做二次函数。
这里需要强调:和一元二次方程类似,二次项系数0a≠,而b c,可以为零.二次函数的定义域是全体实数.(因此:二次函数应满足两个条件:①二次项的系数不等于0,②x 最高项的指数是2)2. 二次函数2=++的结构特征:y ax bx c⑴等号左边是函数,右边是关于自变量x的二次式,x的最高次数是2.⑵a b c,,是常数,a是二次项系数,b是一次项系数,c是常数项.二、二次函数的基本形式1. 二次函数基本形式:2=的性质:y ax①,a 的绝对值决定开口的大小(a 的绝对值越大,抛物线的开口越小,a 的绝对值越小,抛物线的开口越大)②a 的符号决定开口的方向(a>0,开口向上,a<0开口向下)2. 2=+的性质:y ax c上加下减。
(c>0,将2=的图像向下移=向上移动,c<0将2y axy ax动=3.()2y a x h =-的性质:左加右减。
4.()2y a x h k=-+的性质:三、二次函数图象的平移 1. 平移步骤:方法一:⑴ 将抛物线解析式转化成顶点式()2y a x h k=-+,确定其顶点坐标()h k ,;⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下:【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位2. 平移规律在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”.概括成八个字“左加右减,上加下减”.方法二:⑴c bx ax y ++=2沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2变成m c bx ax y +++=2(或m c bx ax y -++=2)⑵c bx ax y ++=2沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2变成c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2) 四、二次函数()2y a x h k =-+与2y ax bx c =++的比较从解析式上看,()2y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即22424b ac b y a x a a -⎛⎫=++⎪⎝⎭,其中2424b ac b h k a a-=-=,.五、二次函数2y ax bx c =++图象的画法五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴的交点()0c ,、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点).画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点.六、二次函数2y ax bx c =++的性质1. 当0a >时,抛物线开口向上,对称轴为2bx a=-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,. 当2b x a<-时,y 随x 的增大而减小;当2b x a>-时,y 随x 的增大而增大;当2bx a=-时,y 有最小值244ac b a-.2. 当0a <时,抛物线开口向下,对称轴为2b x a=-,顶点坐标为2424b ac b aa ⎛⎫-- ⎪⎝⎭,.当2b x a <-时,y 随x 的增大而增大;当2bx a>-时,y 随x的增大而减小;当2bx a=-时,y 有最大值244ac b a-.七、二次函数解析式的表示方法1. 一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠);2. 顶点式(又称为对称式):2()y a x h k =-+(a ,h ,k 为常数,0a ≠);3. 两根式(又称为两点式):12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标).注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化. 八、二次函数的图象与各项系数之间的关系 1. 二次项系数a二次函数2y ax bx c =++中,a 作为二次项系数,显然0a ≠. ⑴ 当0a >时,抛物线开口向上,a 的值越大,开口越小,反之a 的值越小,开口越大;⑵ 当0a <时,抛物线开口向下,a 的值越小,开口越小,反之a 的值越大,开口越大.总结起来,a 决定了抛物线开口的大小和方向,a 的正负决定开a 的大小决定开口的大小.2. 一次项系数b :在二次项系数a 确定的前提下,b 决定了抛物线的对称轴.⑴ 在0a >的前提下,当0b >时,02ba-<,即抛物线的对称轴在y 轴左侧; 当0b =时,02ba-=,即抛物线的对称轴就是y 轴; 当0b <时,02ba->,即抛物线对称轴在y 轴的右侧. ⑵ 在0a <的前提下,结论刚好与上述相反,即 当0b >时,02ba->,即抛物线的对称轴在y 轴右侧; 当0b =时,02ba-=,即抛物线的对称轴就是y 轴; 当0b <时,02ba-<,即抛物线对称轴在y 轴的左侧. 总结起来,在a 确定的前提下,b 决定了抛物线对称轴的位置.ab 的符号的判定:对称轴ab2-=在y 轴左边则0>ab ,在y 轴的右侧则0<ab ,概括的说就是“左同右异” 3. 常数项c⑴ 当0c >时,抛物线与y 轴的交点在x 轴上方,即抛物线与y 轴交点的纵坐标为正;⑵ 当0c =时,抛物线与y 轴的交点为坐标原点,即抛物线与y 轴交点的纵坐标为0;⑶ 当0c <时,抛物线与y 轴的交点在x 轴下方,即抛物线与y 轴交点的纵坐标为负.总结起来,c 决定了抛物线与y 轴交点的位置.总之,只要a b c ,,都确定,那么这条抛物线就是唯一确定的. 二次函数解析式的确定:根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况:1. 已知抛物线上三点的坐标,一般选用一般式(三点式);2. 已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式(对称式);3. 已知抛物线与x 轴的两个交点的横坐标,一般选用两根式(两点);4. 已知抛物线上纵坐标相同的两点,常选用顶点式. 九、二次函数与一元二次方程:1. 二次函数与一元二次方程的关系(二次函数与x 轴交点情况): 一元二次方程20ax bx c ++=是二次函数2y ax bx c =++当函数值0y =时的特殊情况.图象与x 轴的交点个数:① 当240b ac ∆=->时,图象与x 轴交于两点()()1200A x B x ,,,12()x x ≠,其中的12x x ,是一元二次方程()200ax bx c a ++=≠的两根.这两点间的距离21AB x x =-. 二次函数与x 轴两个交点的距离)② 当0∆=时,图象与x 轴只有一个交点; ③ 当0∆<时,图象与x 轴没有交点.1'当0a >时,图象落在x 轴的上方,无论x 为任何实数,都有0y >;2'当0a <时,图象落在x 轴的下方,无论x 为任何实数,都有0y <.2. 抛物线2y ax bx c =++的图象与y 轴一定相交,交点坐标为(0,)c ; 十、函数的应用二次函数应用⎧⎪⎨⎪⎩刹车距离何时获得最大利润最大面积是多少注:在实际应用中凡是需要求最大,最小(或极值)问题一般都要考虑用二次函数的最大值或最小值二次函数考查重点与常见题型1.考查二次函数的定义、性质,有关试题常出现在选择题中,如: 已知以x 为自变量的二次函数2)2(22--+-=m m x m y 的图像经过原点, 则m 的值是2.综合考查正比例、反比例、一次函数、二次函数的图像,习题的特点是在同一直角坐标系内考查两个函数的图像,试题类型为选择题,如:如图,如果函数b kx y +=的图像在第一、二、三象限内,那么函数12-+=bx kx y 的图像大致是( )A B C D 3.考查用待定系数法求二次函数的解析式,有关习题出现的频率很高,习题类型有中档解答题和选拔性的综合题,如:已知一条抛物线经过(0,3),(4,6)两点,对称轴为35=x ,求这条抛物线的解析式。
九年级数学二次函数知识点归纳
![九年级数学二次函数知识点归纳](https://img.taocdn.com/s3/m/2c9738eb112de2bd960590c69ec3d5bbfd0adaf8.png)
九年级数学二次函数知识点归纳九年级数学二次函数知识点1一、基本概念1.方程、方程的解(根)、方程组的解、解方程(组)2.分类:二、解方程的依据—等式性质1.a=b←→a+c=b+c2.a=b←→ac=bc(c≠0)三、解法1.一元一次方程的解法:去分母→去括号→移项→合并同类项→系数化成1→解。
2.元一次方程组的解法:⑴基本思想:“消元”⑵方法:①代入法②加减法四、一元二次方程1.定义及一般形式:2.解法:⑴直接开平方法(注意特征)⑵配方法(注意步骤—推倒求根公式)⑶公式法:⑷因式分解法(特征:左边=0)3.根的判别式:4.根与系数顶的关系:逆定理:若,则以为根的一元二次方程是:5.常用等式:五、可化为一元二次方程的方程1.分式方程⑴定义⑵基本思想:⑶基本解法:①去分母法②换元法(如,)⑷验根及方法2.无理方程⑴定义⑵基本思想:⑶基本解法:①乘方法(注意技巧!!)②换元法(例,)⑷验根及方法3.简单的二元二次方程组由一个二元一次方程和一个二元二次方程组成的二元二次方程组都可用代入法解。
六、列方程(组)解应用题一概述⑴审题。
理解题意。
弄清问题中已知量是什么,未知量是什么,问题给出和涉及的相等关系是什么。
⑵设元(未知数)。
①直接未知数②间接未知数(往往二者兼用)。
一般来说,未知数越多,方程越易列,但越难解。
⑶用含未知数的代数式表示相关的量。
⑷寻找相等关系(有的由题目给出,有的由该问题所涉及的等量关系给出),列方程。
一般地,未知数个数与方程个数是相同的。
⑸解方程及检验。
⑹答案。
综上所述,列方程(组)解应用题实质是先把实际问题转化为数学问题(设元、列方程),在由数学问题的解决而导致实际问题的解决(列方程、写出答案)。
在这个过程中,列方程起着承前启后的作用。
因此,列方程是解应用题的关键。
二常用的相等关系1.行程问题(匀速运动)基本关系:=vt⑴相遇问题(同时出发):+=;⑵追及问题(同时出发):若甲出发t小时后,乙才出发,而后在B处追上甲,则⑶水中航行:;2.配料问题:溶质=溶液某浓度溶液=溶质+溶剂3.增长率问题:4.工程问题:基本关系:工作量=工作效率某工作时间(常把工作量看着单位“1”)。
初三数学二次函数知识点总结
![初三数学二次函数知识点总结](https://img.taocdn.com/s3/m/09842499f78a6529657d5314.png)
初三数学 二次函数 知识点总结一、二次函数概念:1.二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。
这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数.2. 二次函数2y ax bx c =++的结构特征:⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2. ⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项.二、二次函数的基本形式1. 二次函数基本形式:2y ax =的性质: a 的绝对值越大,抛物线的开口越小。
2. 2y ax c=+上加下减。
3.()2y a x h =-的性质:左加右减。
4. ()2y a x h k =-+的性质:三、二次函数图象的平移1. 平移步骤:方法一:⑴ 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下:【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位2. 平移规律在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”. 方法二:⑴c bx ax y ++=2沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2变成m c bx ax y +++=2(或m c bx ax y -++=2)⑵c bx ax y ++=2沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2变成c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2)四、二次函数()2y a x h k =-+与2y ax bx c =++的比较从解析式上看,()2y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即22424b ac b y a x a a -⎛⎫=++ ⎪⎝⎭,其中2424b ac b h k a a -=-=,.五、二次函数2y ax bx c =++图象的画法五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴的交点()0c ,、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点).画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点.六、二次函数2y ax bx c =++的性质1. 当0a >时,抛物线开口向上,对称轴为2bx a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2b x a <-时,y 随x 的增大而减小;当2b x a >-时,y 随x 的增大而增大;当2bx a=-时,y 有最小值244ac b a-.2. 当0a <时,抛物线开口向下,对称轴为2b x a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2bx a <-时,y 随x 的增大而增大;当2b x a >-时,y 随x 的增大而减小;当2bx a=-时,y 有最大值244ac b a -.七、二次函数解析式的表示方法1. 一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠);2. 顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠);3. 两根式:12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标).注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.八、二次函数的图象与各项系数之间的关系1. 二次项系数a二次函数2y ax bx c =++中,a 作为二次项系数,显然0a ≠.⑴ 当0a >时,抛物线开口向上,a 的值越大,开口越小,反之a 的值越小,开口越大; ⑵ 当0a <时,抛物线开口向下,a 的值越小,开口越小,反之a 的值越大,开口越大.总结起来,a 决定了抛物线开口的大小和方向,a 的正负决定开口方向,a 的大小决定开口的大小. 2. 一次项系数b在二次项系数a 确定的前提下,b 决定了抛物线的对称轴. ⑴ 在0a >的前提下,当0b >时,02ba-<,即抛物线的对称轴在y 轴左侧; 当0b =时,02ba-=,即抛物线的对称轴就是y 轴; 当0b <时,02ba->,即抛物线对称轴在y 轴的右侧. ⑵ 在0a <的前提下,结论刚好与上述相反,即 当0b >时,02ba->,即抛物线的对称轴在y 轴右侧; 当0b =时,02ba-=,即抛物线的对称轴就是y 轴; 当0b <时,02ba-<,即抛物线对称轴在y 轴的左侧. 总结起来,在a 确定的前提下,b 决定了抛物线对称轴的位置.ab 的符号的判定:对称轴abx 2-=在y 轴左边则0>ab ,在y 轴的右侧则0<ab ,概括的说就是“左同右异” 总结:3. 常数项c⑴ 当0c >时,抛物线与y 轴的交点在x 轴上方,即抛物线与y 轴交点的纵坐标为正; ⑵ 当0c =时,抛物线与y 轴的交点为坐标原点,即抛物线与y 轴交点的纵坐标为0; ⑶ 当0c <时,抛物线与y 轴的交点在x 轴下方,即抛物线与y 轴交点的纵坐标为负. 总结起来,c 决定了抛物线与y 轴交点的位置.总之,只要a b c ,,都确定,那么这条抛物线就是唯一确定的.二次函数解析式的确定:根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况:1. 已知抛物线上三点的坐标,一般选用一般式;2. 已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;3. 已知抛物线与x 轴的两个交点的横坐标,一般选用两根式;4. 已知抛物线上纵坐标相同的两点,常选用顶点式.九、二次函数图象的对称二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达 1. 关于x 轴对称2y ax bx c =++关于x 轴对称后,得到的解析式是2y ax bx c =---;()2y a x h k =-+关于x 轴对称后,得到的解析式是()2y a x h k =---;2. 关于y 轴对称2y ax bx c =++关于y 轴对称后,得到的解析式是2y ax bx c =-+;()2y a x h k =-+关于y 轴对称后,得到的解析式是()2y a x h k =++;3. 关于原点对称2y ax bx c =++关于原点对称后,得到的解析式是2y ax bx c =-+-; ()2y a x h k =-+关于原点对称后,得到的解析式是()2y a x h k =-+-;4. 关于顶点对称(即:抛物线绕顶点旋转180°)2y ax bx c =++关于顶点对称后,得到的解析式是222b y ax bx c a=--+-;()2y a x h k =-+关于顶点对称后,得到的解析式是()2y a x h k =--+.5. 关于点()m n ,对称 ()2y a x h k =-+关于点()m n ,对称后,得到的解析式是()222y a x h m n k =-+-+-根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此a 永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式.十、二次函数与一元二次方程:1. 二次函数与一元二次方程的关系(二次函数与x 轴交点情况):一元二次方程20ax bx c ++=是二次函数2y ax bx c =++当函数值0y =时的特殊情况. 图象与x 轴的交点个数:① 当240b ac ∆=->时,图象与x 轴交于两点()()1200A x B x ,,,12()x x ≠,其中的12x x ,是一元二次方程()200ax bx c a ++=≠的两根.这两点间的距离21AB x x =-.② 当0∆=时,图象与x 轴只有一个交点; ③ 当0∆<时,图象与x 轴没有交点.1' 当0a >时,图象落在x 轴的上方,无论x 为任何实数,都有0y >; 2' 当0a <时,图象落在x 轴的下方,无论x 为任何实数,都有0y <.2. 抛物线2y ax bx c =++的图象与y 轴一定相交,交点坐标为(0,)c ;3. 二次函数常用解题方法总结:⑴ 求二次函数的图象与x 轴的交点坐标,需转化为一元二次方程;⑵ 求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式;⑶ 根据图象的位置判断二次函数2y ax bx c =++中a ,b ,c 的符号,或由二次函数中a ,b ,c 的符号判断图象的位置,要数形结合;⑷ 二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与x 轴的一个交点坐标,可由对称性求出另一个交点坐标. ⑸ 与二次函数有关的还有二次三项式,二次三项式2(0)ax bx c a ++≠本身就是所含字母x 的二次函数;下面以0a >时为例,揭示二次函数、二次三项式和一元二次方程之间的内在联系:二次函数图像参考:y=-2x 2y=3(x+4)22y=3x 2十一、函数的应用二次函数应用⎧⎪⎨⎪⎩刹车距离何时获得最大利润最大面积是多少二次函数考查重点与常见题型1. 考查二次函数的定义、性质,有关试题常出现在选择题中,如:已知以x 为自变量的二次函数2)2(22--+-=m m x m y 的图像经过原点, 则m 的值是2. 综合考查正比例、反比例、一次函数、二次函数的图像,习题的特点是在同一直角坐标系内考查两个函数的图像,试题类型为选择题,如: 如图,如果函数b kx y +=的图像在第一、二、三象限内,那么函数12-+=bx kx y 的图像大致是( )3. 考查用待定系数法求二次函数的解析式,有关习题出现的频率很高,习题类型有中档解答题和选拔性的综合题,如: 已知一条抛物线经过(0,3),(4,6)两点,对称轴为35=x ,求这条抛物线的解析式。
史上最全初三数学二次函数知识点归纳总结
![史上最全初三数学二次函数知识点归纳总结](https://img.taocdn.com/s3/m/8631200a10661ed9ad51f359.png)
二次函数知识点归纳及相关典型题第一部分 基础知识1.定义:一般地,如果c b a c bx ax y ,,(2++=是常数,)0≠a ,那么y 叫做x 的二次函数.2.二次函数2ax y =的性质(1)抛物线2ax y =的顶点是坐标原点,对称轴是y 轴.(2)函数2ax y =的图像与a 的符号关系.①当0>a 时⇔抛物线开口向上⇔顶点为其最低点;②当0<a 时⇔抛物线开口向下⇔顶点为其最高点.(3)顶点是坐标原点,对称轴是y 轴的抛物线的解析式形式为2ax y =)(0≠a .3.二次函数 c bx ax y ++=2的图像是对称轴平行于(包括重合)y 轴的抛物线.4.二次函数c bx ax y ++=2用配方法可化成:()k h x a y +-=2的形式,其中ab ac k a b h 4422-=-=,.5.二次函数由特殊到一般,可分为以下几种形式:①2ax y =;②k ax y +=2;③()2h x a y -=;④()k h x a y +-=2;⑤c bx ax y ++=2.6.抛物线的三要素:开口方向、对称轴、顶点.①a 的符号决定抛物线的开口方向:当0>a 时,开口向上;当0<a 时,开口向下;a 相等,抛物线的开口大小、形状相同.②平行于y 轴(或重合)的直线记作h x =.特别地,y 轴记作直线0=x .7.顶点决定抛物线的位置.几个不同的二次函数,如果二次项系数a 相同,那么抛物线的开口方向、开口大小完全相同,只是顶点的位置不同.8.求抛物线的顶点、对称轴的方法(1)公式法:a b ac a b x a c bx ax y 442222-+⎪⎭⎫ ⎝⎛+=++=,∴顶点是),(a b ac a b 4422--,对称轴是直线a b x 2-=. (2)配方法:运用配方的方法,将抛物线的解析式化为()k h x a y +-=2的形式,得到顶点为(h ,k ),对称轴是直线h x =.(3)运用抛物线的对称性:由于抛物线是以对称轴为轴的轴对称图形,所以对称轴的连线的垂直平分线是抛物线的对称轴,对称轴与抛物线的交点是顶点.用配方法求得的顶点,再用公式法或对称性进行验证,才能做到万无一失. 9.抛物线c bx ax y ++=2中,c b a ,,的作用(1)a 决定开口方向及开口大小,这与2ax y =中的a 完全一样.(2)b 和a 共同决定抛物线对称轴的位置.由于抛物线c bx ax y ++=2的对称轴是直线a b x 2-=,故:①0=b 时,对称轴为y 轴;②0>a b (即a 、b 同号)时,对称轴在y 轴左侧;③0<ab(即a 、b 异号)时,对称轴在y 轴右侧.(3)c 的大小决定抛物线c bx ax y ++=2与y 轴交点的位置.当0=x 时,c y =,∴抛物线c bx ax y ++=2与y 轴有且只有一个交点(0,c ):①0=c ,抛物线经过原点; ②0>c ,与y 轴交于正半轴;③0<c ,与y 轴交于负半轴.以上三点中,当结论和条件互换时,仍成立.如抛物线的对称轴在y 轴右侧,则0<ab. 10.几种特殊的二次函数的图像特征如下:11.用待定系数法求二次函数的解析式(1)一般式:c bx ax y ++=2.已知图像上三点或三对x 、y 的值,通常选择一般式. (2)顶点式:()k h x a y +-=2.已知图像的顶点或对称轴,通常选择顶点式.(3)交点式:已知图像与x 轴的交点坐标1x 、2x ,通常选用交点式:()()21x x x x a y --=. 12.直线与抛物线的交点(1)y 轴与抛物线c bx ax y ++=2得交点为(0, c ).(2)与y 轴平行的直线h x =与抛物线c bx ax y ++=2有且只有一个交点(h ,c bh ah ++2).(3)抛物线与x 轴的交点二次函数c bx ax y ++=2的图像与x 轴的两个交点的横坐标1x 、2x ,是对应一元二次方程02=++c bx ax 的两个实数根.抛物线与x 轴的交点情况可以由对应的一元二次方程的根的判别式判定: ①有两个交点⇔0>∆⇔抛物线与x 轴相交;②有一个交点(顶点在x 轴上)⇔0=∆⇔抛物线与x 轴相切; ③没有交点⇔0<∆⇔抛物线与x 轴相离. (4)平行于x 轴的直线与抛物线的交点同(3)一样可能有0个交点、1个交点、2个交点.当有2个交点时,两交点的纵坐标相等,设纵坐标为k ,则横坐标是k c bx ax =++2的两个实数根.(5)一次函数()0≠+=k n kx y 的图像l 与二次函数()02≠++=a c bx ax y 的图像G 的交点,由方程组cbx ax y n kx y ++=+=2的解的数目来确定:①方程组有两组不同的解时⇔l 与G 有两个交点; ②方程组只有一组解时⇔l 与G 只有一个交点;③方程组无解时⇔l 与G 没有交点.(6)抛物线与x 轴两交点之间的距离:若抛物线c bx ax y ++=2与x 轴两交点为()()0021,,,x B x A ,由于1x 、2x 是方程02=++c bx ax 的两个根,故acx x a b x x =⋅-=+2121,()()a a acb ac a b x x x x x x x x AB ∆=-=-⎪⎭⎫⎝⎛-=--=-=-=444222122122121第二部分 典型习题1.抛物线y =x 2+2x -2的顶点坐标是 ( D )A.(2,-2)B.(1,-2)C.(1,-3)D.(-1,-3) 2.已知二次函数c bx ax y ++=2的图象如图所示,则下列结论正确的是( C )A.ab >0,c >0 B.ab >0,c <0 C.ab <0,c >0 D.ab <0,c <0第2,3题图 第4题图3.二次函数c bx ax y ++=2的图象如图所示,则下列结论正确的是( D )A .a >0,b <0,c >0B .a <0,b <0,c >0C .a <0,b >0,c <0D .a <0,b >0,c >04.如图,已知中,BC=8,BC 上的高,D 为BC 上一点,,交AB 于点E ,交AC 于点F (EF 不过A 、B ),设E 到BC 的距离为,则的面积关于的函数的图象大致为( D )2482,484EF xEF x y x x -=⇒=-∴=-+ 5.抛物线322--=x x y 与x 轴分别交于A 、B 两点,则AB 的长为 4 .6.已知二次函数11)(2k 2--+=x kx y 与x 轴交点的横坐标为1x 、2x (21x x <),则对于下列结论:①当x =-2时,y =1;②当2x x >时,y >0;③方程011)(22=-+-x k kx 有两个不相等的实数根1x 、2x ;④11-<x ,12>-x ;⑤21x x -,其中所有正确的结论是 ①③④ (只需填写序号).7.已知直线()02≠+-=b b x y 与x 轴交于点A ,与y 轴交于点B ;一抛物线的解析式为()c x b x y ++-=102.(1)若该抛物线过点B ,且它的顶点P 在直线b x y +-=2上,试确定这条抛物线的解析式;(2)过点B 作直线BC ⊥AB 交x 轴交于点C ,若抛物线的对称轴恰好过C 点,试确定直线b x y +-=2的解析式.解:(1)102-=x y 或642--=x x y将0)b (,代入,得c b =.顶点坐标为21016100(,)24b b b +++-,由题意得21016100224b b b b +++-⨯+=-,解得1210,6b b =-=-.(2)22--=x y8.有一个运算装置,当输入值为x 时,其输出值为y ,且y 是x 的二次函数,已知输入值为2-,0,1时, 相应的输出值分别为5,3-,4-.(1)求此二次函数的解析式;(2)在所给的坐标系中画出这个二次函数的图象,并根据图象写出当输出值y 为正数时输入值x 的取值范围. 解:(1)设所求二次函数的解析式为c bx ax y ++=2,则⎪⎪⎩⎪⎪⎨⎧-=++-=+⋅+⋅=+-+-43005)2()2(22c b a c b a c b a ,即⎪⎩⎪⎨⎧-=+=--=1423b a b a c ,解得⎪⎩⎪⎨⎧-=-==321c b a 故所求的解析式为:322--=x x y . (2)函数图象如图所示.由图象可得,当输出值y 为正数时, 输入值x 的取值范围是1-<x 或3>x .9.某生物兴趣小组在四天的实验研究中发现:骆驼的体温会随外部环境温度的变化而变化,而且在这四天中每昼夜的体温变化情况相同.他们将一头骆驼前两昼夜的体温变化情况绘制成下图.请根据图象回答:⑴第一天中,在什么时间范围内这头骆驼的体温是上升的?它的体温从最低上升到最高需要多少时间? ⑵第三天12时这头骆驼的体温是多少? ⑶兴趣小组又在研究中发现,图中10时到 22时的曲线是抛物线,求该抛物线的解 析式.解:⑴第一天中,从4时到16时这头骆驼的体温是上升的它的体温从最低上升到最高需要12小时 ⑵第三天12时这头骆驼的体温是39℃ ⑶()22102421612≤≤++-=x x x y10.已知抛物线4)334(2+++=x a ax y 与x 轴交于A 、 B 两点,与y 轴交于点C .是否存在实数a ,使得 △ABC 为直角三角形.若存在,请求出a 的值;若不 存在,请说明理由.解:依题意,得点C 的坐标为(0,4).设点A 、B 的坐标分别为(1x ,0),(2x ,0),由04)334(2=+++x a ax ,解得 31-=x ,ax 342-=. ∴ 点A 、B 的坐标分别为(-3,0),(a34-,0). ∴ |334|+-=aAB ,522=+=OC AO AC , =+=22OC BO BC 224|34|+-a. ∴ 9891693432916|334|2222+-=+⨯⨯-=+-=aa a a a AB , 252=AC ,1691622+=aBC . 〈ⅰ〉当222BC AC AB +=时,∠ACB =90°.由222BC AC AB +=,得)16916(259891622++=+-a a a . 解得 41-=a . ∴ 当41-=a 时,点B 的坐标为(316,0),96252=AB ,252=AC ,94002=BC . 于是222BC AC AB +=.∴ 当41-=a 时,△ABC 为直角三角形. 〈ⅱ〉当222BC AB AC +=时,∠ABC =90°.由222BC AB AC +=,得)16916()98916(2522+++-=aa a . 解得 94=a . 当94=a 时,3943434-=⨯=-a ,点B (-3,0)与点A 重合,不合题意.〈ⅲ〉当222AB AC BC +=时,∠BAC =90°.由222AB AC BC +=,得)98916(251691622+-+=+aa a . 解得 94=a .不合题意. 综合〈ⅰ〉、〈ⅱ〉、〈ⅲ〉,当41-=a 时,△ABC 为直角三角形. 11.已知抛物线y =-x 2+mx -m +2.(1)若抛物线与x 轴的两个交点A 、B 分别在原点的两侧,并且ABm 的值;(2)设C 为抛物线与y 轴的交点,若抛物线上存在关于原点对称的两点M 、N ,并且 △MNC 的面积等于27,试求m 的值. 解: (1)A(x 1,0),B(x 2,0) . 则x 1 ,x 2是方程 x 2-mx +m -2=0的两根. ∵x 1 + x 2 =m , x 1·x 2 =m -2 <0 即m <2 ;又AB =∣x 1 — x 2=∴m 2-4m +3=0 .解得:m=1或m=3(舍去) , ∴m 的值为1 . (2)M(a ,b),则N(-a ,-b) . ∵M 、N 是抛物线上的两点,∴222,2.a ma m b a ma m b ⎧-+-+=⎪⎨---+=-⎪⎩①②①+②得:-2a 2-2m +4=0 . ∴a 2=-m +2 . ∴当m <2时,才存在满足条件中的两点M 、N.∴a = .这时M 、N 到y又点C 坐标为(0,2-m ),而S △M N C = 27 , ∴2×12×(2-m∴解得m=-7 .12.已知:抛物线t ax ax y ++=42与x 轴的一个交点为A (-1,0).(1)求抛物线与x 轴的另一个交点B 的坐标;(2)D 是抛物线与y 轴的交点,C 是抛物线上的一点,且以AB 为一底的梯形ABCD 的面积为9,求此抛物线的解析式;(3)E 是第二象限内到x 轴、y 轴的距离的比为5∶2的点,如果点E 在(2)中的抛物线上,且它与点A 在此抛物线对称轴的同侧,问:在抛物线的对称轴上是否存在点P ,使△APE 的周长最小?若存在,求出点P 的坐标;若不存在,请说明理由. 解法一:(1)依题意,抛物线的对称轴为x =-2. ∵ 抛物线与x 轴的一个交点为A (-1,0),∴ 由抛物线的对称性,可得抛物线与x 轴的另一个交点B 的坐标为(-3,0).(2)∵ 抛物线t ax ax y ++=42与x 轴的一个交点为A (-1, 0),∴ 0)1(4)1(2=+-+-t a a .∴ t =3a .∴ a ax ax y 342++=.∴ D (0,3a ).∴ 梯形ABCD 中,AB ∥CD ,且点C 在抛物线a ax ax y 342++= 上,∵ C (-4,3a ).∴ AB =2,CD =4. ∵ 梯形ABCD 的面积为9,∴9)(21=OD CD AB ⋅+.∴ 93)42(21=+a .∴ a ±1.∴ 所求抛物线的解析式为342++=x x y 或342---ax x y =.(3)设点E 坐标为(0x ,0y ).依题意,00<x ,00<y ,且2500=x y .∴ 0025x y =-.①设点E 在抛物线342++=x x y 上,∴340200++=x x y .解方程组⎪⎩⎪⎨⎧34,25020000++==-x x y x y 得⎩⎨⎧-;=,=15600y x ⎪⎪⎩⎪⎪⎨⎧'-'.=,=452100y x ∵ 点E 与点A 在对称轴x =-2的同侧,∴ 点E 坐标为(21-,45). 设在抛物线的对称轴x =-2上存在一点P ,使△APE 的周长最小. ∵ AE 长为定值,∴ 要使△APE 的周长最小,只须PA +PE 最小. ∴ 点A 关于对称轴x =-2的对称点是B (-3,0), ∴ 由几何知识可知,P 是直线BE 与对称轴x =-2的交点. 设过点E 、B 的直线的解析式为n mx y +=,∴ ⎪⎩⎪⎨⎧-.03,4521=+-=+n m n m 解得⎪⎪⎩⎪⎪⎨⎧.23,21==n m ∴ 直线BE 的解析式为2321+=x y .∴ 把x =-2代入上式,得21=y . ∴ 点P 坐标为(-2,21). ②设点E 在抛物线342---x x y =上,∴ 340200---x x y =.解方程组⎪⎩⎪⎨⎧---.34,25020000x x y x y ==- 消去0y ,得03x 23x 020=++. ∴ △<0 . ∴ 此方程无实数根.综上,在抛物线的对称轴上存在点P (-2,21),使△APE 的周长最小. 解法二:(1)∵ 抛物线t ax ax y ++=42与x 轴的一个交点为A (-1,0),∴ 0)1(4)1(2=+-+-t a a .∴ t =3a .∴ a ax ax y 342++=.令 y =0,即0342=++a ax ax .解得 11=-x ,32=-x . ∴ 抛物线与x 轴的另一个交点B 的坐标为(-3,0).(2)由a ax ax y 342++=,得D (0,3a ).∵ 梯形ABCD 中,AB ∥CD ,且点C 在抛物线a ax ax y 342++=上,∴ C (-4,3a ).∴ AB =2,CD =4.∵ 梯形ABCD 的面积为9,∴9)(21=+OD CD AB ⋅.解得OD =3. ∴ 33=a .∴ a ±1.∴ 所求抛物线的解析式为342++=x x y 或342--=-x x y .(3)同解法一得,P 是直线BE 与对称轴x =-2的交点. ∴ 如图,过点E 作EQ ⊥x 轴于点Q .设对称轴与x 轴的交点为F .由PF ∥EQ ,可得EQ PF BQ BF =.∴ 45251PF=.∴ 21=PF .∴ 点P 坐标为(-2,21). 以下同解法一.13.已知二次函数的图象如图所示.(1)求二次函数的解析式及抛物线顶点M 的坐标.(2)若点N 为线段BM 上的一点,过点N 作x 轴的垂线,垂足为点Q .当点N 在线段BM 上运动时(点N 不与点B ,点M 重合),设NQ 的长为l ,四边形NQAC 的面积为S ,求S 与t 之间的函数关系式及自变量t 的取值范围;(3)在对称轴右侧的抛物线上是否存在点P ,使△PAC 为直角三角形?若存在,求出所有符合条件的点P 的坐标;若不存在,请说明理由;(4)将△OAC 补成矩形,使△OAC 的两个顶点成为矩形一边的两个顶点,第三个顶点落在矩形这一边的对边上,试直接写出矩形的未知的顶点坐标(不需要计算过程).解:(1)设抛物线的解析式)2)(1(-+=x x a y ,∴ )2(12-⨯⨯=-a .∴ 1=a .∴ 22--=x x y .其顶点M 的坐标是⎪⎭⎫ ⎝⎛-4921,.(2)设线段BM 所在的直线的解析式为b kx y +=,点N 的坐标为N (t ,h ),∴ ⎪⎩⎪⎨⎧+=-+=.214920b k b k ,.解得23=k ,3-=b .∴ 线段BM 所在的直线的解析式为323-=x y . ∴ 323-=t h ,其中221<<t .∴ t t s )3322(212121-++⨯⨯=121432+-=t t . ∴ s 与t 间的函数关系式是121432+-=t t S ,自变量t 的取值范围是221<<t . (3)存在符合条件的点P ,且坐标是1P ⎪⎭⎫ ⎝⎛4725,,⎪⎭⎫ ⎝⎛-45232,P . 设点P 的坐标为P )(n m ,,则22--=m m n .222)1(n m PA ++=,5)2(2222=++=AC n m PC ,.分以下几种情况讨论:i )若∠PAC =90°,则222AC PA PC +=.∴ ⎪⎩⎪⎨⎧+++=++--=.5)1()2(222222n m n m m m n ,解得:251=m ,12-=m (舍去). ∴ 点⎪⎭⎫⎝⎛47251,P . ii )若∠PCA =90°,则222AC PC PA +=.∴ ⎪⎩⎪⎨⎧+++=++--=.5)2()1(222222n m n m m m n ,解得:02343==m m ,(舍去).∴ 点⎪⎭⎫ ⎝⎛45232,-P .iii )由图象观察得,当点P 在对称轴右侧时,AC PA >,所以边AC 的对角∠APC 不可能是直角.(4)以点O ,点A (或点O ,点C )为矩形的两个顶点,第三个顶点落在矩形这边OA (或边OC )的对边上,如图a ,此时未知顶点坐标是点D (-1,-2),以点A ,点C 为矩形的两个顶点,第三个顶点落在矩形这一边AC 的对边上,如图b ,此时未知顶点坐标是E ⎪⎭⎫⎝⎛-5251,,F ⎪⎭⎫ ⎝⎛-5854,.图a 图b14.已知二次函数22-=ax y 的图象经过点(1,-1).求这个二次函数的解析式,并判断该函数图象与x 轴的交点的个数.解:根据题意,得a -2=-1.∴ a =1. ∴ 这个二次函数解析式是22-x y =.因为这个二次函数图象的开口向上,顶点坐标是(0,-2),所以该函数图象与x 轴有两个交点.15.卢浦大桥拱形可以近似看作抛物线的一部分.在大桥截面1∶11000的比例图上,跨度AB =5 cm ,拱高OC =0.9 cm ,线段DE 表示大桥拱内桥长,DE ∥AB ,如图(1).在比例图上,以直线AB 为x 轴,抛物线的对称轴为y 轴,以1 cm 作为数轴的单位长度,建立平面直角坐标系,如图(2).(1)求出图(2)上以这一部分抛物线为图象的函数解析式,写出函数定义域;(2)如果DE 与AB 的距离OM =0.45 cm ,求卢浦大桥拱内实际桥长(备用数据:4.12≈,计算结果精确到1米). 解:(1)由于顶点C 在y 轴上,所以设以这部分抛物线为图象的函数解析式为 1092+=ax y . 因为点A (25-,0)(或B (25,0))在抛物线上, 所以109)25(02+=-⋅a ,得12518=-a .因此所求函数解析式为)2525(109125182≤≤-x x y +=-. (2)因为点D 、E 的纵坐标为209, 所以109125182092+-x =,得245±=x . 所以点D 的坐标为(245-,209),点E 的坐标为(245,209). 所以225)245(245=-=-DE . 因此卢浦大桥拱内实际桥长为385227501.011000225≈⨯⨯=(米).16.已知在平面直角坐标系内,O 为坐标原点,A 、B 是x 轴正半轴上的两点,点A 在点B 的左侧,如图.二次函数c bx ax y ++=2(a ≠0)的图象经过点A 、B ,与y 轴相交于点C .(1)a 、c 的符号之间有何关系?(2)如果线段OC 的长度是线段OA 、OB 长度的比例中项,试证a 、c 互为倒数;(3)在(2)的条件下,如果b =-4,34=AB ,求a 、c 的值. 解:(1)a 、c 同号. 或当a >0时,c >0;当a <0时,c <0.(2)证明:设点A 的坐标为(1x ,0),点B 的坐标为(2x ,0),则210x x <<. ∴ 1x OA =,2x OB =,c OC =.据题意,1x 、2x 是方程)0(02≠=a c bx ax ++的两个根. ∴ acx x =⋅21. 由题意,得2OC OB OA =⋅,即22c c ac ==.所以当线段OC 长是线段OA 、OB 长的比例中项时,a 、c 互为倒数.(3)当4-=b 时,由(2)知,0421>==-+aa b x x ,∴ a >0.解法一:AB =OB -OA =21221124)(x x x x x x -+=-,∴ aa ac a c a AB 32416)(4)4(22=-==-.∵ 34=AB , ∴3432=a .得21=a .∴ c =2.解法二:由求根公式,aa a ac x 322416424164±-±-±===,∴ a x 321-=,ax 322+=. ∴ aa a x x OA OB AB 32323212=--=-=-=+. ∵ 34=AB ,∴3432=a ,得21=a .∴ c =2. 17.如图,直线333+-=x y 分别与x 轴、y 轴交于点A 、B ,⊙E 经过原点O 及A 、B 两点. (1)C 是⊙E 上一点,连结BC 交OA 于点D ,若∠COD =∠CBO ,求点A 、B 、C 的坐标; (2)求经过O 、C 、A 三点的抛物线的解析式:(3)若延长BC 到P ,使DP =2,连结AP ,试判断直线PA 与⊙E 的位置关系,并说明理由.解:(1)连结EC 交x 轴于点N (如图).∵ A 、B 是直线333+-=x y 分别与x 轴、y 轴的交点.∴ A (3,0),B )3,0(. 又∠COD =∠CBO . ∴ ∠CBO =∠ABC .∴ C 是的中点. ∴ EC ⊥OA .∴ 232,2321====OB EN OA ON . 连结OE .∴ 3==OE EC . ∴ 23=-=EN EC NC .∴ C 点的坐标为(23,23-). (2)设经过O 、C 、A 三点的抛物线的解析式为()3-=x ax y .∵ C (23,23-). ∴)323(2323-⋅=-a .∴ 392=a .∴ x x y 8329322-=为所求. (3)∵ 33tan =∠BAO , ∴ ∠BAO =30°,∠ABO =50°. 由(1)知∠OBD =∠ABD .∴ ︒=︒⨯-∠=∠30602121ABO OBD . ∴ OD =OB ·tan30°-1.∴ DA =2. ∵ ∠ADC =∠BDO =60°,PD =AD =2. ∴ △ADP 是等边三角形.∴ ∠DAP =60°.∴ ∠BAP =∠BAO +∠DAP =30°+60°=90°.即 PA ⊥AB . 即直线PA 是⊙E 的切线.。
初中数学二次函数知识点汇总(史上最全)
![初中数学二次函数知识点汇总(史上最全)](https://img.taocdn.com/s3/m/0ad1eb68d0d233d4b04e6920.png)
小. 2. 一次项系数 b 在二次项系数 a 确定的前提下, b 决定了抛物线的对称轴. ⑴ 在 a 0 的前提下, 当 b 0 时, b 0 ,即抛物线的对称轴在 y 轴左侧; 2a 当 b 0 时, b 0 ,即抛物线的对称轴就是 y 轴; 2a 当 b 0 时, b 0 ,即抛物线对称轴在 y 轴的右侧. 2a ⑵ 在 a 0 的前提下,结论刚好与上述相反,即 当 b 0 时, b 0 ,即抛物线的对称轴在 y 轴右侧; 2a 当 b 0 时, b 0 ,即抛物线的对称轴就是 y 轴; 2a 当 b 0 时, b 0 ,即抛物线对称轴在 y 轴的左侧. 2a 总结起来,在 a 确定的前提下, b 决定了抛物线对称轴的位置. ab 的符号的判定:对称轴 x b 在 y 轴左边则 ab 0 ,在 y 轴的右侧则 ab 0 ,概括的说就 2a
y=a(x-h)2+k
2. 平移规律 在原有函数的基础上“ h 值正右移,负左移; k 值正上移,负下移”.概括成八个字“左加右减,
上加下减”.
第- 2 -页 共 31页
方法 2: ⑴ y ax 2 bx c 沿 y 轴平移:向上(下)平移 m 个单位, y ax 2 bx c 变成 y ax 2 bx c m (或 y ax 2 bx c m ) ⑵ y ax 2 bx c 沿轴平移:向左(右)平移 m 个单位, y ax 2 bx c 变成 y a(x m)2 b(x m) c (或 y a(x m)2 b(x m) c )
中考数学复习二次函数知识点总结
![中考数学复习二次函数知识点总结](https://img.taocdn.com/s3/m/f85b3a8409a1284ac850ad02de80d4d8d15a0181.png)
中考数学复习二次函数知识点总结二次函数是中学数学中的重要内容,也是考试中常见的题型之一、在复习二次函数时,需要掌握其基本概念、性质、图像和应用等方面的知识。
下面是关于二次函数的知识点总结。
一、基本概念1.二次函数的定义二次函数是形如y=ax²+bx+c(a≠0)的函数,其中a、b、c为常数,且a为二次函数的二次系数。
2.二次函数的导数与二次系数的关系二次函数的导数为一次函数,二次系数a决定了导数的单调性,当a>0时,导数在整个定义域上单调递增;当a<0时,导数在整个定义域上单调递减。
3.二次函数的对称轴二次函数的对称轴是二次函数的图像关于该轴对称的直线。
对称轴的方程为x=-b/2a,其中a、b是二次函数的系数。
4.二次函数的顶点二次函数的顶点是二次函数的图像的最低点或最高点,对称轴上的点。
顶点的横坐标为对称轴的横坐标,纵坐标为代入对称轴横坐标得到的纵坐标。
二、性质1.零点性质二次函数y=ax²+bx+c(a≠0)的零点是方程ax²+bx+c=0的解,当方程有解时,二次函数与x轴交于两点,也可能与x轴重合。
2.二次函数图像的开口方向当a>0时,二次函数的图像开口向上;当a<0时,二次函数的图像开口向下。
3.二次函数的最值当a>0时,二次函数的最小值是顶点的纵坐标;当a<0时,二次函数的最大值是顶点的纵坐标。
4.判别式二次函数方程ax²+bx+c=0的判别式Δ=b²-4ac可以判断二次函数方程的解的情况:当Δ>0时,方程有两个不相等实数解;当Δ=0时,方程有两个相等实数解;当Δ<0时,方程没有实数解。
三、图像1.开口向上的二次函数图像特点开口向上的二次函数图像在顶点处为最小值,两侧递增;对称轴为y 轴且在第四象限,二次系数a为正数。
2.开口向下的二次函数图像特点开口向下的二次函数图像在顶点处为最大值,两侧递减;对称轴为y 轴且在第一象限,二次系数a为负数。
初三数学二次函数知识点总结
![初三数学二次函数知识点总结](https://img.taocdn.com/s3/m/efec69457dd184254b35eefdc8d376eeafaa1717.png)
初三数学二次函数知识点总结一、二次函数的基本形式1. 二次函数的一般形式二次函数的一般形式为:y=ax^2+bx+c,其中a、b、c是常数,且a≠0。
2. 二次函数的顶点二次函数y=ax^2+bx+c的图象是一个抛物线,抛物线的对称轴与x轴的交点称为顶点。
顶点的横坐标为:-b/2a; 纵坐标为:f(-b/2a)。
3. 二次函数的开口方向当a>0时,抛物线开口向上;当a<0时,抛物线开口向下。
4. 二次函数的轴线二次函数y=ax^2+bx+c的图象的对称轴,称为轴线,其方程为:x=-b/2a。
5. 二次函数的零点二次函数y=ax^2+bx+c的图象与x轴的交点,称为零点。
二次函数的零点可以用求根公式或配方法求得。
6. 二次函数的图象二次函数y=ax^2+bx+c的图象是一个抛物线,其形状由a的正负决定,a>0时开口向上,a<0时开口向下;顶点坐标由b,c的值决定。
二、二次函数的性质1. 判断二次函数图象开口方向的方法当二次函数为y=ax^2+bx+c时,通过判断a的正负来判断开口方向。
如果a>0,则抛物线开口向上;如果a<0,则抛物线开口向下。
2. 二次函数的最值二次函数的最大值或最小值为y的极值,可以通过求导数或直接利用顶点的纵坐标得出。
最值的性质有:当a>0时,最值为最小值;当a<0时,最值为最大值。
3. 二次函数的零点二次函数的零点即二次方程ax^2+bx+c=0的实根。
根据求根公式或配方法可以求得二次函数的零点。
4. 二次函数的对称轴和顶点二次函数的对称轴即为x=-b/2a,顶点坐标为:(-b/2a, f(-b/2a))。
5. 二次函数的图象二次函数的图象是一个抛物线,通过对称轴和顶点坐标可以直接绘制出抛物线的图象。
三、二次函数的应用1. 求二次函数的最值通过求导数或者用顶点坐标的纵坐标来求得二次函数的最值。
2. 判断二次函数的零点和对称轴通过求根公式可以求得二次方程的零点,通过a、b的值求得对称轴。
初三数学二次函数知识点总结
![初三数学二次函数知识点总结](https://img.taocdn.com/s3/m/bad47b5e0b1c59eef9c7b432.png)
初三数学二次函数知识点总结一、二次函数概念:1.二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。
这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数.2.二次函数2y ax bx c =++的结构特征:⑴等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2. ⑵a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项.二、二次函数的基本形式1.二次函数基本形式:2y ax =的性质:a 的绝对值越大,抛物线的开口越小。
2.2y ax c =+的性质: 上加下减。
3.()2y a x h =-的性质:左加右减。
4.()2y a x h k =-+的性质:1.平移步骤:方法一:⑴将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,; ⑵保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下: 2.平移规律在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”. 方法二:⑴c bx ax y ++=2沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2变成m c bx ax y +++=2(或m c bx ax y -++=2)⑵c bx ax y ++=2沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2变成c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2)四、二次函数()2y a x h k =-+与2y ax bx c =++的比较从解析式上看,()2y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即22424b ac b y a x a a -⎛⎫=++⎪⎝⎭,其中2424b ac b h k a a -=-=,. 五、二次函数2y ax bx c =++图象的画法五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴的交点()0c ,、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点).画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点.六、二次函数2y ax bx c =++的性质1.当0a >时,抛物线开口向上,对称轴为2bx a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2b x a <-时,y 随x 的增大而减小;当2b x a >-时,y 随x 的增大而增大;当2bx a=-时,y 有最小值244ac b a-.2.当0a <时,抛物线开口向下,对称轴为2b x a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2bx a <-时,y 随x 的增大而增大;当2b x a >-时,y 随x 的增大而减小;当2bx a=-时,y 有最大值244ac b a -.七、二次函数解析式的表示方法1.一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠);2.顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠);3.两根式:12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标).注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.八、二次函数的图象与各项系数之间的关系1.二次项系数a二次函数2y ax bx c =++中,a 作为二次项系数,显然0a ≠.⑴当0a >时,抛物线开口向上,a 的值越大,开口越小,反之a 的值越小,开口越大; ⑵当0a <时,抛物线开口向下,a 的值越小,开口越小,反之a 的值越大,开口越大.总结起来,a 决定了抛物线开口的大小和方向,a 的正负决定开口方向,a 的大小决定开口的大小. 2.一次项系数b在二次项系数a 确定的前提下,b 决定了抛物线的对称轴. ⑴在0a >的前提下,当0b >时,02ba-<,即抛物线的对称轴在y 轴左侧; 当0b =时,02ba-=,即抛物线的对称轴就是y 轴; 当0b <时,02ba->,即抛物线对称轴在y 轴的右侧. ⑵在0a <的前提下,结论刚好与上述相反,即 当0b >时,02ba->,即抛物线的对称轴在y 轴右侧; 当0b =时,02ba-=,即抛物线的对称轴就是y 轴; 当0b <时,02ba-<,即抛物线对称轴在y 轴的左侧. 总结起来,在a 确定的前提下,b 决定了抛物线对称轴的位置.ab 的符号的判定:对称轴abx 2-=在y 轴左边则0>ab ,在y 轴的右侧则0<ab ,概括的说就是“左同右异” 总结:3.常数项c⑴当0c >时,抛物线与y 轴的交点在x 轴上方,即抛物线与y 轴交点的纵坐标为正; ⑵当0c =时,抛物线与y 轴的交点为坐标原点,即抛物线与y 轴交点的纵坐标为0; ⑶当0c <时,抛物线与y 轴的交点在x 轴下方,即抛物线与y 轴交点的纵坐标为负. 总结起来,c 决定了抛物线与y 轴交点的位置.总之,只要a b c ,,都确定,那么这条抛物线就是唯一确定的. 二次函数解析式的确定:根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况:1.已知抛物线上三点的坐标,一般选用一般式;2.已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;3.已知抛物线与x 轴的两个交点的横坐标,一般选用两根式;4.已知抛物线上纵坐标相同的两点,常选用顶点式.九、二次函数图象的对称二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达 1.关于x 轴对称2y ax bx c =++关于x 轴对称后,得到的解析式是2y ax bx c =---;()2y a x h k =-+关于x 轴对称后,得到的解析式是()2y a x h k =---;2.关于y 轴对称2y ax bx c =++关于y 轴对称后,得到的解析式是2y ax bx c =-+;()2y a x h k =-+关于y 轴对称后,得到的解析式是()2y a x h k =++;3.关于原点对称2y ax bx c =++关于原点对称后,得到的解析式是2y ax bx c =-+-; ()2y a x h k =-+关于原点对称后,得到的解析式是()2y a x h k =-+-;4.关于顶点对称(即:抛物线绕顶点旋转180°)2y ax bx c =++关于顶点对称后,得到的解析式是222b y ax bx c a=--+-;()2y a x h k =-+关于顶点对称后,得到的解析式是()2y a x h k =--+.5.关于点()m n ,对称 ()2y a x h k =-+关于点()m n ,对称后,得到的解析式是()222y a x h m n k =-+-+-根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此a 永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式.十、二次函数与一元二次方程:1.二次函数与一元二次方程的关系(二次函数与x 轴交点情况):一元二次方程20ax bx c ++=是二次函数2y ax bx c =++当函数值0y =时的特殊情况. 图象与x 轴的交点个数:①当240b ac ∆=->时,图象与x 轴交于两点()()1200A x B x ,,,12()x x ≠,其中的12x x ,是一元二次方程()200ax bx c a ++=≠的两根.这两点间的距离21AB x x =-=.②当0∆=时,图象与x 轴只有一个交点;③当0∆<时,图象与x 轴没有交点.1'当0a >时,图象落在x 轴的上方,无论x 为任何实数,都有0y >; 2'当0a <时,图象落在x 轴的下方,无论x 为任何实数,都有0y <. 2.抛物线2y ax bx c =++的图象与y 轴一定相交,交点坐标为(0,)c ;3.二次函数常用解题方法总结:⑴求二次函数的图象与x 轴的交点坐标,需转化为一元二次方程;⑵求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式;⑶根据图象的位置判断二次函数2y ax bx c =++中a ,b ,c 的符号,或由二次函数中a ,b ,c 的符号判断图象的位置,要数形结合;⑷二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与x 轴的一个交点坐标,可由对称性求出另一个交点坐标.⑸与二次函数有关的还有二次三项式,二次三项式2(0)ax bx c a ++≠本身就是所含字母x 的二次函数;下面以0a >时为例,揭示二次函数、二次三项式和一元二次方程之间的内在联系:二次函数图像参考:十一、函数的应用二次函数应用⎧⎪⎨⎪⎩刹车距离何时获得最大利润最大面积是多少二次函数考查重点与常见题型1. 考查二次函数的定义、性质,有关试题常出现在选择题中,如:已知以x 为自变量的二次函数2)2(22--+-=m m x m y 的图像经过原点,则m 的值是2. 综合考查正比例、反比例、一次函数、二次函数的图像,习题的特点是在同一直角坐标系内考查两个函数的图像,试题类型为选择题,如:如图,如果函数b kx y +=的图像在第一、二、三象限内,那么函数12-+=bx kx y 的图像大致是()考查用待定系数法求二次函数的解析式,有关习题出现的频率很高,习题类型有中档解答题和选拔性的综合题,如:已知一条抛物线经过(0,3),(4,6)两点,对称轴为35=x,求这条抛物线的解析式。
初中数学二次函数知识点总结
![初中数学二次函数知识点总结](https://img.taocdn.com/s3/m/df5e89cd82d049649b6648d7c1c708a1284a0ac6.png)
初中数学二次函数知识点总结(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用范文,如工作计划、工作总结、演讲稿、合同范本、心得体会、条据文书、应急预案、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of practical sample essays for everyone, such as work plans, work summaries, speech drafts, contract templates, personal experiences, policy documents, emergency plans, teaching materials, complete essays, and other sample essays. If you want to learn about different formats and writing methods of sample essays, please stay tuned!初中数学二次函数知识点总结初中数学二次函数知识点总结(精选30篇)初中数学二次函数知识点总结篇11、定义与定义表达式一般地,自变量X和因变量y之间存在如下关系:y=aX^2+bX+c (a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a 二次函数表达式的右边通常为二次三项式。
九年级数学二次函数知识点归纳总结
![九年级数学二次函数知识点归纳总结](https://img.taocdn.com/s3/m/3026a91f0622192e453610661ed9ad51f01d543b.png)
九年级数学二次函数知识点归纳总结Is the eternal love the truth. December 22, 2021二次函数知识点归纳1.定义:一般地,如果c b a c bx ax y ,,(2++=是常数,)0≠a ,那么y 叫做x 的二次函数.2.二次函数2ax y =的性质1抛物线2ax y =的顶点是坐标原点,对称轴是y 轴.2函数2ax y =的图像与a 的符号关系.①当0>a 时⇔抛物线开口向上⇔顶点为其最低点;②当0<a 时⇔抛物线开口向下⇔顶点为其最高点.3顶点是坐标原点,对称轴是y 轴的抛物线的解析式形式为2ax y =)(0≠a .3.二次函数 c bx ax y ++=2的图像是对称轴平行于包括重合y 轴的抛物线.4.二次函数c bx ax y ++=2用配方法可化成:()k h x a y +-=2的形式,其中ab ac k a b h 4422-=-=,. 5.二次函数由特殊到一般,可分为以下几种形式:①2ax y =;②k ax y +=2;③()2h x a y -=;④()k h x a y +-=2;⑤c bx ax y ++=2. 6.抛物线的三要素:开口方向、对称轴、顶点.①a 的符号决定抛物线的开口方向:当0>a 时,开口向上;当0<a 时,开口向下;a 相等,抛物线的开口大小、形状相同.②平行于y 轴或重合的直线记作h x =.特别地,y 轴记作直线0=x .7.顶点决定抛物线的位置.几个不同的二次函数,如果二次项系数a 相同,那么抛物线的开口方向、开口大小完全相同,只是顶点的位置不同.8.求抛物线的顶点、对称轴的方法1公式法:a b ac a b x a c bx ax y 442222-+⎪⎭⎫ ⎝⎛+=++=,∴顶点是),(a b ac a b 4422--,对称轴是直线ab x 2-=.2配方法:运用配方的方法,将抛物线的解析式化为()k h x a y +-=2的形式,得到顶点为h ,k ,对称轴是直线h x =.3运用抛物线的对称性:由于抛物线是以对称轴为轴的轴对称图形,所以对称轴的连线的垂直平分线是抛物线的对称轴,对称轴与抛物线的交点是顶点.用配方法求得的顶点,再用公式法或对称性进行验证,才能做到万无一失.9.抛物线c bx ax y ++=2中,c b a ,,的作用1a 决定开口方向及开口大小,这与2ax y =中的a 完全一样.2b 和a 共同决定抛物线对称轴的位置.由于抛物线c bx ax y ++=2的对称轴是直线a b x 2-=,故:①0=b 时,对称轴为y 轴;②0>ab 即a 、b 同号时,对称轴在y 轴左侧;③0<a b 即a 、b 异号时,对称轴在y 轴右侧. 3c 的大小决定抛物线c bx ax y ++=2与y 轴交点的位置.当0=x 时,c y =,∴抛物线c bx ax y ++=2与y 轴有且只有一个交点0,c : ①0=c ,抛物线经过原点; ②0>c ,与y 轴交于正半轴;③0<c ,与y 轴交于负半轴.以上三点中,当结论和条件互换时,仍成立.如抛物线的对称轴在y 轴右侧,则0<ab . 10.几种特殊的二次函数的图像特征如下:11.用待定系数法求二次函数的解析式1一般式:c bx ax y ++=2.已知图像上三点或三对x 、y 的值,通常选择一般式. 2顶点式:()k h x a y +-=2.已知图像的顶点或对称轴,通常选择顶点式. 3交点式:已知图像与x 轴的交点坐标1x 、2x ,通常选用交点式:()()21x x x x a y --=.12.直线与抛物线的交点1y 轴与抛物线c bx ax y ++=2得交点为0, c .2与y 轴平行的直线h x =与抛物线c bx ax y ++=2有且只有一个交点h ,c bh ah ++2. 3抛物线与x 轴的交点二次函数c bx ax y ++=2的图像与x 轴的两个交点的横坐标1x 、2x ,是对应一元二次方程02=++c bx ax 的两个实数根.抛物线与x 轴的交点情况可以由对应的一元二次方程的根的判别式判定:①有两个交点⇔0>∆⇔抛物线与x 轴相交;②有一个交点顶点在x 轴上⇔0=∆⇔抛物线与x 轴相切;③没有交点⇔0<∆⇔抛物线与x 轴相离.4平行于x 轴的直线与抛物线的交点同3一样可能有0个交点、1个交点、2个交点.当有2个交点时,两交点的纵坐标相等,设纵坐标为k ,则横坐标是k c bx ax =++2的两个实数根.5一次函数()0≠+=k n kx y 的图像l 与二次函数()02≠++=a c bx ax y 的图像G 的交点,由方程组 c bx ax y nkx y ++=+=2的解的数目来确定:①方程组有两组不同的解时⇔l 与G 有两个交点; ②方程组只有一组解时⇔l 与G 只有一个交点;③方程组无解时⇔l 与G 没有交点.6抛物线与x 轴两交点之间的距离:若抛物线c bx ax y ++=2与x 轴两交点为()()0021,,,x B x A ,由于1x 、2x 是方程02=++c bx ax 的两个根,故。
初三数学二次函数知识点总结
![初三数学二次函数知识点总结](https://img.taocdn.com/s3/m/53eb1b5c5627a5e9856a561252d380eb6394235b.png)
初三数学二次函数知识点总结一、二次函数的定义一般地,如果形如 y = ax²+ bx + c(a、b、c 是常数,a ≠ 0)的函数,叫做二次函数。
其中,x 是自变量,a 叫做二次项系数,b 叫做一次项系数,c 叫做常数项。
需要注意的是,二次函数的二次项系数 a 不能为 0,如果 a = 0,那么就不是二次函数了。
二、二次函数的图像二次函数的图像是一条抛物线。
当 a > 0 时,抛物线开口向上;当 a < 0 时,抛物线开口向下。
抛物线的对称轴是直线 x = b / 2a 。
抛物线的顶点坐标为(b / 2a ,(4ac b²) / 4a)。
例如,对于二次函数 y = 2x² 4x + 1,其中 a = 2 > 0,抛物线开口向上,对称轴为 x =(-4) /(2×2) = 1,顶点坐标为(1,-1)。
三、二次函数的平移二次函数的平移遵循“上加下减,左加右减”的原则。
“上加下减”指的是在函数表达式后面直接加上或减去一个常数,影响抛物线的上下移动。
比如,将 y = x²向上平移 2 个单位,得到 y = x²+ 2;向下平移 3 个单位,得到 y = x² 3 。
“左加右减”指的是在自变量 x 上加上或减去一个常数,影响抛物线的左右移动。
例如,将 y =(x 1)²向左平移 2 个单位,得到 y =(x 1 + 2)²=(x + 1)²;向右平移 3 个单位,得到 y =(x 1 3)²=(x 4)²。
四、二次函数的最值当 a > 0 时,抛物线开口向上,函数有最小值,在顶点处取得,即y 最小值=(4ac b²) / 4a 。
当 a < 0 时,抛物线开口向下,函数有最大值,同样在顶点处取得,即 y 最大值=(4ac b²) / 4a 。
例如,对于二次函数 y = x²+ 2x 3,因为 a =-1 < 0,所以函数有最大值。
初三数学二次函数知识点总结
![初三数学二次函数知识点总结](https://img.taocdn.com/s3/m/8037b43cf68a6529647d27284b73f242326c3155.png)
初三数学二次函数知识点总结初三数学二次函数知识点总结一、二次函数概念:二次函数是形如y=ax²+bx+c(a≠0)的函数。
需要强调的是,和一元二次方程类似,二次项系数a≠0,而b、c可以为零。
二次函数的定义域是全体实数。
二、二次函数的基本形式二次函数的基本形式为y=a(x-h)²+k,其中a、h、k为常数。
a的绝对值越大,抛物线的开口越小。
a的符号决定了抛物线的开口方向,顶点坐标为(h,k),对称轴为x=h。
当a>0时,抛物线开口向上,当a<0时,抛物线开口向下。
三、二次函数图象的平移平移二次函数的步骤为:确定顶点坐标,保持抛物线形状不变,将顶点平移。
具体平移方法为:向右(左)平移h个单位,向上(下)平移k个单位。
平移规律可以概括为“左加右减,上加下减”。
四、二次函数y=a(x-h)²+k与y=ax²+bx+c的比较二次函数y=a(x-h)²+k和y=ax²+bx+c的区别在于表示方式不同,但它们的图象形状相同。
y=a(x-h)²+k更便于确定顶点坐标和对称轴,y=ax²+bx+c更便于确定一次项系数和常数项。
二次函数的特点和与其他函数的关系,如:设函数f(x)为一次函数,g(x)为二次函数,且在同一坐标系内,若f(x)和g(x)的图像均经过点(1,3),则下列说法正确的是()A.f(x)和g(x)的图像均经过点(2,6)B.f(x)和g(x)的图像均经过点(3,9)C.f(x)的图像经过点(2,6),g(x)的图像经过点(2,5)D.f(x)的图像经过点(3,9),g(x)的图像经过点(2,5)3.考查利用二次函数解决实际问题的能力,题的特点是给出具体的问题场景,需要学生根据题意列出方程并解答,如:一家餐馆销售汉堡,售价为每个3元,每天售出x个汉堡,该餐馆的总收入为y元.若这家餐馆每天的固定成本为32元,每售出一个汉堡的变动成本为1元,求这家餐馆每天售出多少个汉堡时,能收益最大?二次函数的解析式:二次函数的解析式由系数a、b、c决定,其中a决定了抛物线的开口方向,b决定了抛物线在y轴的位置,c决定了抛物线与y轴的交点位置。
经典:初三数学二次函数知识点总结
![经典:初三数学二次函数知识点总结](https://img.taocdn.com/s3/m/0dc85bc1551810a6f52486f4.png)
八、二次函数的图象与各项系数之间的关系 1. 二次项系数 二次函数 ⑴ 当a ⑵ 当a y
a
y a ( x x 1 )( x x 2 ) ( a 0 , x1 , x 2 是抛物线与 x 轴两交点的横坐标) . 3. 两根式: 注意: 任何二次函数的解析式都可以化成一般式或顶点式, 但并非所有的二次函数都可以写成交点式, 交点,即 b
2
只有抛物线与 .
x 轴有
4 ac
0 时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化
c 的结构特征:
x 的二次式, x 的最高次数是
⑴ 等号左边是函数,右边是关于自变量 ⑵ a ,b ,c 是常数, a 是二次项系数, Nhomakorabea2.
b 是一次项系数,
c 是常数项.
二、二次函数的基本形式
1. 二次函数基本形式: y ax 的性质:
2
a 的绝对值越大,抛物线的开口越小。
a 的符号
开口方向 向上
顶点坐标 0 ,0
初三数学 二次函数 知识点总结
一、二次函数概念:
1 .二次函数的概念:一般地,形如 y ax
2
bx a
c ( a ,b ,c 是常数, a
0 )的函数,叫做二次函数。
这里需
要强调:和一元二次方程类似,二次项系数 2. 二次函数 y ax
2
0 ,而 b ,c 可以为零.二次函数的定义域是全体实数.
bx
.一般我们选取的五点为: x 1 ,0 , x2 , 0
顶点、与
轴的交点
0 ,c
、 以及
0 ,c
(若与 x 轴没有交点,则取两组关于对称轴对称的
y
画草图时应抓住以下几点:开口方向,对称轴,顶点,与
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初三数学 二次函数 知识点总结一、二次函数概念:1.二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。
这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数.2. 二次函数2y ax bx c =++的结构特征:⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2. ⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项.二、二次函数的基本形式二次函数的基本形式()2y a x h k =-+的性质: a 的绝对值越大,抛物线的开口越小。
三、二次函数图象的平移1. 平移步骤:方法一:⑴ 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下:【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位2. 平移规律在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”. 方法二:⑴c bx ax y ++=2沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2变成m c bx ax y +++=2(或m c bx ax y -++=2)⑵c bx ax y ++=2沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2变成c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2)四、二次函数()2y a x h k =-+与2y ax bx c =++的比较从解析式上看,()2y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即22424b ac b y a x a a -⎛⎫=++ ⎪⎝⎭,其中2424b ac b h k a a -=-=,. 五、二次函数2y ax bx c =++图象的画法五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴的交点()0c ,、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点).画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点.六、二次函数2y ax bx c =++的性质1. 当0a >时,抛物线开口向上,对称轴为2bx a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2b x a <-时,y 随x 的增大而减小;当2b x a >-时,y 随x 的增大而增大;当2bx a=-时,y 有最小值244ac b a-.2. 当0a <时,抛物线开口向下,对称轴为2b x a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2bx a <-时,y 随x 的增大而增大;当2b x a >-时,y 随x 的增大而减小;当2bx a=-时,y 有最大值244ac b a -.七、二次函数解析式的表示方法1. 一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠);2. 顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠);3. 两根式:12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标).注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.八、二次函数的图象与各项系数之间的关系1. 二次项系数a二次函数2y ax bx c =++中,a 作为二次项系数,显然0a ≠.a 决定了抛物线开口的大小和方向,a的正负决定开口方向,a 的大小决定开口的大小.2. 一次项系数b在二次项系数a 确定的前提下,b 决定了抛物线的对称轴.ab 的符号的判定:对称轴abx 2-=在y 轴左边则0>ab ,在y 轴的右侧则0<ab ,概括的说就是“左同右异”3. 常数项c c 决定了抛物线与y 轴交点的位置. 总之,只要a b c ,,都确定,那么这条抛物线就是唯一确定的.二次函数解析式的确定:根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况:1. 已知抛物线上三点的坐标,一般选用一般式;2. 已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;3. 已知抛物线与x 轴的两个交点的横坐标,一般选用两根式;4. 已知抛物线上纵坐标相同的两点,常选用顶点式.九、二次函数与一元二次方程:1. 二次函数与一元二次方程的关系(二次函数与x 轴交点情况):一元二次方程20ax bx c ++=是二次函数2y ax bx c =++当函数值0y =时的特殊情况. 图象与x 轴的交点个数:① 当240b ac ∆=->时,图象与x 轴交于两点()()1200A x B x ,,,12()x x ≠,其中的12x x ,是一元二次方程()200ax bx c a ++=≠的两根.这两点间的距离21AB x x =-=. ② 当0∆=时,图象与x 轴只有一个交点; ③ 当0∆<时,图象与x 轴没有交点.1' 当0a >时,图象落在x 轴的上方,无论x 为任何实数,都有0y >;2' 当0a <时,图象落在x 轴的下方,无论x 为任何实数,都有0y <.2. 抛物线2y ax bx c =++的图象与y 轴一定相交,交点坐标为(0,)c ;3. 二次函数常用解题方法总结:⑴ 求二次函数的图象与x 轴的交点坐标,需转化为一元二次方程;⑵ 求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式;⑶ 根据图象的位置判断二次函数2y ax bx c =++中a ,b ,c 的符号,或由二次函数中a ,b ,c 的符号判断图象的位置,要数形结合;⑷ 二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与x 轴的一个交点坐标,可由对称性求出另一个交点坐标.二次函数考查重点与常见题型1. 考查二次函数的定义、性质,有关试题常出现在选择题中,如:已知以x 为自变量的二次函数2)2(22--+-=m m x m y 的图像经过原点, 则m 的值是2. 综合考查正比例、反比例、一次函数、二次函数的图像,习题的特点是在同一直角坐标系内考查两个函数的图像,试题类型为选择题,如: 如图,如果函数b kx y +=的图像在第一、二、三象限内,那么函数12-+=bx kx y 的图像大致是( )y y y y1 10 x -1 o x 0 x 0 1 x A B C D3. 考查用待定系数法求二次函数的解析式,有关习题出现的频率很高,习题类型有中档解答题和选拔性的综合题,如: 已知一条抛物线经过(0,3),(4,6)两点,对称轴为35=x ,求这条抛物线的解析式。
4. 考查用配方法求抛物线的顶点坐标、对称轴、二次函数的极值,有关试题为解答题,如: 已知抛物线2y ax bx c =++(a ≠0)与x 轴的两个交点的横坐标是-1、3,与y 轴交点的纵坐标是-32(1)确定抛物线的解析式;(2)用配方法确定抛物线的开口方向、对称轴和顶点坐标. 5.考查代数与几何的综合能力,常见的作为专项压轴题。
由抛物线的位置确定系数的符号例1 (1)二次函数2y ax bx c =++的图像如图1,则点),(ac b M 在( )A .第一象限B .第二象限C .第三象限D .第四象限(2)已知二次函数y=ax 2+bx+c (a ≠0)的图象如图2所示,•则下列结论:①a 、b 同号;②当x=1和x=3时,函数值相等;③4a+b=0;④当y=-2时,x 的值只能取0.其中正确的个数是( ) A .1个 B .2个 C .3个 D .4个(1) (2)【点评】弄清抛物线的位置与系数a ,b ,c 之间的关系,是解决问题的关键.例2.已知二次函数y=ax 2+bx+c 的图象与x 轴交于点(-2,O)、(x 1,0),且1<x 1<2,与y 轴的正半轴的交点在点(O ,2)的下方.下列结论:①a<b<0;②2a+c>O;③4a+c<O;④2a-b+1>O ,其中正确结论的个数为( ) A 1个 B. 2个 C. 3个 D .4个 答案:D会用待定系数法求二次函数解析式例3.已知:关于x 的一元二次方程ax 2+bx+c=3的一个根为x=2,且二次函数y=ax 2+bx+c 的对称轴是直线x=2,则抛物线的顶点坐标为( )A(2,-3) B.(2,1) C(2,3) D .(3,2) 答案:C例4、已知抛物线y=12x 2+x-52. (1)用配方法求它的顶点坐标和对称轴.(2)若该抛物线与x 轴的两个交点为A 、B ,求线段AB 的长.【点评】本题(1)是对二次函数的“基本方法”的考查,第(2)问主要考查二次函数与一元二次方程的关系.函数主要关注:通过不同的途径(图象、解析式等)了解函数的具体特征;借助多种现实背景理解函数;将函数视为“变化过程中变量之间关系”的数学模型;渗透函数的思想;关注函数与相关知识的联系。
二次函数对应练习试题一、选择题1. 二次函数247y x x =--的顶点坐标是( )A.(2,-11)B.(-2,7)C.(2,11)D. (2,-3) 2. 把抛物线22y x =-向上平移1个单位,得到的抛物线是( )A. 22(1)y x =-+ B. 22(1)y x =-- C. 221y x =-+ D. 221y x =-- 3.函数2y kx k =-和(0)ky k x=≠在同一直角坐标系中图象可能是图中的( )4.已知二次函数2(0)y ax bx c a =++≠的图象如图所示,则下列结论: ①a,b 同号;②当1x =和3x =时,函数值相等;③40a b +=④当2y =-时, x 的值只能取0.其中正确的个数是( )A.1个B.2个C. 3个D. 4个5.已知二次函数2(0)y ax bx c a =++≠的顶点坐标(-1,-3.2)及部分图象(如图),由图象可知关于x 的一元二次方程20ax bx c ++=的两个根分别是121.3x x ==和( )A.-1.3 B.-2.3 C.-0.3 D.-3.3 6. 已知二次函数2y ax bx c =++的图象如图所示,则点(,)ac bc 在( )A .第一象限B .第二象限C .第三象限D .第四象限 7.方程222x x x-=的正根的个数为( ) A.0个 B.1个 C.2个. 3 个8.已知抛物线过点A(2,0),B(-1,0),与y 轴交于点C,且OC=2.则这条抛物线的解析式为A. 22y x x =-- B. 22y x x =-++C. 22y x x =--或22y x x =-++ D. 22y x x =---或22y x x =++二、填空题9.二次函数23y x bx =++的对称轴是2x =,则b =_______。