7.2探索平行线的性质
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2
c
4.应用转化,推出性质
性质3 两条平行线被第三条直 线所截,同旁内角互补.
5.巩固新知,深化理解
例1 如图,平行线 AB,CD 被直线 AE 所截.
(1)从∠1=110º 可以知道∠2是多少度吗?为什么? (2)从∠1=110º 可以知道∠3是多少度吗?为什么?
ห้องสมุดไป่ตู้
(3)从∠1=110º 可以知道∠4是多少度吗?为什么?
a
同位角相等).
b
又∵ ∠1=∠3(对顶角相等),
1 3
2
∴ ∠2=∠3(等量代换).
c
4.应用转化,推出性质
性质2 两条平行线被第三条直 线所截,内错角相等.
4.应用转化,推出性质
两条平行线被第三条直线截得的同旁内角 具有怎样的数量关系? 如图,已知a//b,那么2与4有什么关系?
a
1
4
b
C
2
A 1
43 E
B
D
5.巩固新知,深化理解
例2 如图,是一块梯形铁片的残余部
分,量得∠A =100º,∠B =115º,梯形
的另外两个角分别是多少度?
5.巩固新知,深化理解
例3 如图,已知直线a∥b,∠1=70°,
求∠2的度数.
解:∵a∥b(已知),
∴∠2=∠1(内错角相等,两直线平行). ∵∠1=70°(已知), ∴∠2=70°(等量代换). 以上解答过程正确吗?如果不正确,请指出错误, 并给出正确的解答过程.
如图,已知直线 a∥b ,c是截线. c
a
21 34
b
65
78
3.动手操作,归纳性质
性质1 两条平行线被第三条直线 所截,同位角相等.
4.应用转化,推出性质
两条平行线被第三条直线截得的内错角
如会图具:有已怎知样a/的/b数,那量么关系2?与3有什么关系?
解∵a∥b(已知),
∴∠1=∠2(两直线平行,
6.归纳小结
一、平行线的性质:
同位角相等
两直线平行
内错角相等
同旁内角互补
二、平行线的性质与判定的区别:
已知角之间的关系,得到两直线平行的结论,
是平行线的判定。
已知两直线平行,得到角之间的关系的结论,
是平行线的性质。
7.
课堂反馈 第8页
8.作业
课本23页 第4、6题
祝同学们 学习进步
洛阳市五十四中学 陈季娟
1.复习旧知
(1)∠3=∠B,则 EF ∥ AB ,依据是 同位角相等,两直线平行
(2)∠2+∠A=180°,则 DC∥ AB,依据是 同旁内角互补,两直线平行
(3)∠1=∠4,则 GC ∥ EF ,依据是 内错角相等,两直线平行
2.梳理旧知,引出新课
条件 结论
两
直 线
?
平
行
学习目标
1.理解平行线的性质 2.会利用平行线的性质进行有关计算. 3.知道平行线的性质与判定的区别.
2.梳理旧知,引出新课
条件 结论
两
直 线
?
平
行
2.梳理旧知,引出新课
条件 结论
两条平行线 被第三条直 线所截
同位角? 内错角? 同旁内角?
3.动手操作,归纳性质
两条平行线被第三条直线截得的同位角 会具有怎样的数量关系?