调节阀流量特性分析及应用选型
调节阀的特性及选择

调节阀的特性及选择调节阀是一种在空调控制系统中常见的调节设备,分为两通调节阀和三通调节阀两种。
调节阀可以和电动执行机构组成电动调节阀,或者和气动执行机构组成气动调节阀。
电动或气动调节阀安装在工艺管道上直接与被调介质相接触,具有调节、切断和分配流体的作用,因此它的性能好坏将直接影响自动控制系统的控制质量。
本文仅限于讨论在空调控制系统中常用的两通调节阀的特性和选择,暂不涉及三通调节阀。
1.调节阀工作原理从流体力学的观点看,调节阀是一个局部阻力可以变化的节流元件。
对不可压缩的流体,由伯努利方程可推导出调节阀的流量方程式为()()21221242P P D P P AQ -=-=ρζπρζ式中:Q——流体流经阀的流量,m 3/s ;P1、P2——进口端和出口端的压力,MPa ;A——阀所连接管道的截面面积,m 2; D——阀的公称通径,mm ;ρ——流体的密度,kg/m 3; ζ——阀的阻力系数。
可见当A 一定,(P 1-P 2)不变时,则流量仅随阻力系数变化。
阻力系数主要与流通面积(即阀的开度)有关,也与流体的性质和流动状态有关。
调节阀阻力系数的变化是通过阀芯行程的改变来实现的,即改变阀门开度,也就改变了阻力系数,从而达到调节流量的目的。
阀开得越大,ζ将越小,则通过的流量将越大。
2.调节阀的流量特性调节阀的流量特性是指流过调节阀的流体相对流量与调节阀相对开度之间的关系,即⎪⎭⎫⎝⎛=L l f Q Q max 式中:Q/Q max ——相对流量,即调节阀在某一开度的流量与最大流量之比; l/L ——相对开度,即调节阀某一开度的行程与全开时行程之比。
一般说来,改变调节阀的阀芯与阀座之间的节流面积,便可控制流量。
但实际上由于各种因素的影响,在节流面积变化的同时,还会引起阀前后压差的变化,从而使流量也发生变化。
为了便于分析,先假定阀前后压差固定,然后再引申到实际情况。
因此,流量特性有理想流量特性和工作流量特性之分。
调节阀流量系数计算公式和选择数据

调节阀流量系数计算公式和选择数据调节阀是工业生产过程中常用的一种流量控制设备,通过改变阀门开度实现流量的调节和控制。
调节阀的流量特性是一个非线性曲线,通常通过流量系数来描述。
流量系数是指,在单位压差下,通过阀门所能流过的液体的流量与阀门的开度之间的关系。
调节阀流量系数计算公式通常包含两个主要参数:阀门的开度和压差。
常见的调节阀流量系数计算公式有两种:流量系数计算公式和修正流量系数计算公式。
1.流量系数计算公式流量系数计算公式通常为以下形式:Cv=Q/√ΔP其中,Cv是调节阀的流量系数,Q是通过调节阀的液体流量,ΔP是压差。
2.修正流量系数计算公式修正流量系数计算公式是对流量系数计算公式进行修正,考虑了液体的特性、密度、黏度等因素,通常为以下形式:Cv=Q/√(SG*ΔP)其中,Cv是修正流量系数,Q是通过调节阀的液体流量,ΔP是压差,SG是液体的相对密度。
选择数据通常包括以下几个方面:1.流量范围根据实际工艺要求和流体特性,确定调节阀的流量范围。
包括最小流量、额定流量和最大流量。
2.压差范围根据实际工艺情况和管路布局,确定调节阀的压差范围。
包括最小压差、额定压差和最大压差。
3.流体特性根据液体的物理、化学特性,选择适合的调节阀型号。
包括液体的温度、压力、粘度、相对密度等参数。
4.调节特性根据实际工艺要求,选择适合的调节阀调节特性。
常见的调节特性有线性、等百分比、快开、快关等。
5.阀门材质根据液体的化学性质,选择适合的阀门材质。
常见的阀门材质有铸钢、不锈钢、铸铁、黄铜等。
调节阀的4种流量特性

调节阀的4种流量特性
1正逆行阀特性
正逆行阀特性是调节阀中最常见的流量特性,即调节阀的阀板由可调座在正、反两个方位转换。
随着阀板的移动,流量的增减空间是不断在正反之间变化的,最终达到设定的流量值。
正逆行阀的优势是,抗压力能力高,密封性好,动作健壮,结构简单,噪音小,前后行程最大化,但精度低,斜度梯形典型,处理流量噪音变化较大。
2双调节特性
双调节特性是指调节阀内部有两个独立行程空间,根据需要可以任意调节,从而让阀板呈现一个平滑的斜列面,流量曲线是多项式拟合的。
双调节特性的优势是控制的动作精度高,具有优异的空载性能和可控制性,流量响应迅速精准,过程变化具有很好的稳定性,但处理能力不足。
3耦合形态特性
耦合形态特性是指流量及阀板间运动耦合关系,结合正反行程和双调节空间特性,使流量曲线看起来像是拉扯。
耦合形态特性的优势是控制变比更大、流量控制可控性和稳定性更好以及噪音控制更出色,但回归特性较差。
4多阶梯形特性
多阶梯形特性是最复杂的阀板的移动特性,它是不同的阶梯组合在一起,通过多段流量曲线改善流量响应。
多阶梯形特性的优势是具有良好的抗压能力、可适应高温高压的环境,可实现优化的流量控制,控制响应快,精准,但设计和生产难度大,价格略高。
以上就是调节阀的4种流量特性,不同特性有着不同的优势和缺点,可以根据实际需要选择不同的流量特性来满足用户的需要。
调节阀的选型依据

调节阀的选型依据
调节阀是工业现场不可或缺的流量调节设备之一,那么如何选择
一款适合自己需要的调节阀呢?下面就为大家介绍调节阀的选型依据:首先,根据流体介质的特性选型。
流体包括气体、液体和蒸汽,
在选型前需要了解流体的温度、粘度、密度、压力变化等参数,以便
进行匹配选择。
其次,根据流量变化情况选型。
通常,流量调节阀的调节范围是10:1或20:1,而超调范围在±5%~±10%之间,因此在选型前,需要
清楚了解实际工况下的流量范围,以便选择合适的调节阀。
第三,考虑阀门的执行机构。
阀门的执行机构根据不同的使用环
境可以分为手动、气动、电动等多种,需要根据现场实际情况进行选择。
如果环境复杂,需要远程控制,那么选择气动或电动阀门会更为
便捷。
第四,考虑安装环境。
调节阀的安装环境通常需要考虑阀门的防
爆等级、密封性、承压能力、安装方式等因素。
例如,在液化气体工
况下,需选用防爆等级较高的调节阀,比如说防爆设计的角行程式控
制阀。
第五,考虑配套件的选择。
配套的附件包括阀门定位器、阀门位
置传感器、防爆限位器、加热器等,也需要根据实际情况选择。
综上所述,对于调节阀的选型,需要综合考虑流体介质的特性、流量变化情况、阀门执行机构、安装环境、配套附件等多重因素,以达到最佳匹配。
调节阀线性选择

在独立进行设计过程中,调节阀的流量特性的选择实际上是个较为复杂的过程,首先要深入了解工艺过程的设计,这是调节阀设计的基础,基于此,简单介绍下基本的原则:
1、调节阀的四种理想流量特性中,抛物线流量特性可以用等百分比流量特性代替;快开特性主要用于位式控制和和顺序控制;调节阀的流量特性主要就是直线性特性与等百分比特性的选择。
2、基本经验法:流量调节系统-直线或等百分比;气体压力、液位-直线;温度、蒸汽压力、成分-等百分比;但在实际应用中还要对这些特性进行修订,如干扰因素的变化等。
3、S值可以直接影响流量的选择,因此系统压降的分析是重要的因素,主要是工艺配管情况。
S值小于0.3时要选用低S值的调节阀。
4、节能等其它因素:节能角度讲要选择低S值的调节阀但考虑到流量畸变,对确有节能必要的情况才选低S值运行;如果长期工作在小开度的调节阀应选用等百分比特性;介质固体较多,易选用直线特性;有时要参考特种阀门的技术要求。
调节阀选型、动作特性选择

1阀门选型1.1调节阀选型、动作特性选择1.1.1阀门选用原则生产过程中,被控介质的特性千差万别,有高压的,高粘度的,强腐蚀的;流体的流动状态也各不相同,有流量小的,有流量大的,有分流的,有合流的。
因此,必须根据流体的性质、工艺条件和过程控制要求,并参照各种阀门结构的特点进行综合考虑,同时兼顾经济性来最终确定合适的结构型式。
(1)调节阀选用的原则①调节前后压差较小,要求泄漏量小,一般可选用单座阀。
②调节低压差、大流量气体可选用蝶阀。
③调节强腐蚀性介质,可选用隔膜阀、衬氟单座阀。
④既要求调节,又要求切断时,可选用偏心旋转阀。
其他有此功能的还有球阀、蝶阀、隔膜阀。
⑤噪音较大时,可选用套筒阀。
⑥控制高粘度、带纤维、细颗粒的介质可选用偏心旋转阀或V型球阀。
⑦特别适用于浆状物料的调节阀有球阀、隔膜阀、蝶阀等。
(2)常用调节阀介绍以下介绍常用于工业生产的几种调节阀,除此之外,还有某些特殊用途的调节阀,比如高压阀、三通阀等。
总而言之,用于调节的阀门要求它的调节范围大,调节灵活省力.开得彻底,关得严密。
有时还必须耐热、耐腐蚀、耐高压,此外对其流量特性也有要求。
单座阀:优点是全关时比较严密,可以做到不泄漏。
但是当阀门前后压力差很大时,介质的不平衡力作用在阀芯上,会妨碍阀门的开闭,口径越大或压力差越大影响尤其严重。
因此,它只适用在口径小于25mrn的管路中,或压力差不大的情况下。
双座阀:要想关闭时完全不泄漏,必须两个阀芯同时和间座接触,但这只能在加工精度有保证的情况下才能做到,所以双座阀的制造工艺要求高。
此外,即使常温下确实不漏,但在高温下难免因间杆和同座膨胀不等仍然会引起泄漏。
虽然设计时要考虑到材抖的膨服系数,终难使热膨胀程度配合得十分完美。
而且双座间的流路比较复杂,不适合高粘度或含纤维的流体。
角形阀:有两种,流体的流路有底进侧出的和侧进底出的。
前者流动稳定性好,调节性能好,常被采用。
隔膜调节阀:用于腐蚀性介质的阀门常采用隔膜调节阀,这种阀用柔性耐腐蚀隔膜与阀座配合以调节流最,介质与外界隔离,能有效地防止介质外泄。
调节阀流量特性及选择分析

调节阀流量特性及选择分析摘要:调节阀在稳定生产、优化控制等方面发挥着重要作用,是保证调节系统安全和平稳运行的关键。
本文主要通过对调节阀的流量特性进行分析,讨论调节阀的选型问题。
关键词:调节阀;流量特性;阀门特性;选型1 引言根据《火力发电厂热工控制设计技术规定 DL/T 5175-2003》7.1.3 条规定:对选用的控制阀的配置情况应按下列要求进行校核。
阀门开度:开度为85%‐90%时应满足运行的最大需要。
阀门差压:对泄漏量有严格要求时,宜取流量为零时的最大差压;对泄漏量无特殊要求时,宜取最小流量下的最大差压,其值应不大于该阀门的最大允许差压。
阀门特性:控制阀门的工作流量特性应满足工艺系统的控制要求;阀门配套的附件应能满足控制系统的接口要求。
正确的选择和使用调节阀,不仅直接关系到整个自动控制系统的控制质量,而且还将对生产秩序的稳定产生重要的影响。
自动控制系统不能正常投入运行有2/3 以上是由于调节阀的选型不当造成的,因此,如何正确选择合适的调节阀,应引起仪控技术人员的重视。
2 调节阀流量特性分析2.1工作原理根据流体力学可知,调节阀是一个局部阻力可以变化的节流元件。
对不可压缩流体,调节阀的流量式中 p1——调节阀前压力;p2——调节阀后压力;A ——节流截面积;ξ——调节阀阻力系数;ρ——流体密度。
由式(1)可知,当A一定,Δp= p1-p2也恒定时,通过阀的流量Q随阻力系数ξ变化,即阻力系数ξ愈大,流量愈小。
而阻力系数ξ则与阀的结构和开度有关。
所以调节器输出信号控制阀门的开或关,可改变阀的阻力系数,从而改变被调介质的流量。
2.2调节阀的流动特性2.2.1调节阀理想流量特性调节阀理想流量特性是指给定压差下,阀门开度和通过阀门的流量之间的关系,对在自动控制中应用的调节阀而言,有三种基本的流量特性:快开、线形、等百分比。
开流量特性的阀门,较小的阀门开度可以达到很大的流量改变。
例如50%的开度可以达到阀门最大流量的65%至90%。
调节阀的三个流量特性

调节阀的流量特性
调节阀的流量特性,是在阀两端压差保持恒定的条件下,介质流经调节阀的相对流量与它的开度之间关系。
理想流量特性有:
1、等百分比特性
等百分比特性的相对行程和相对流量不成直线关系,在行程的每一点上单位行程变化所引起的流量的变化与此点的流量成正比,流量变化的百分比是相等的。
所以它的优点是流量小时,流量变化小,流量大时,则流量变化大,也就是在不同开度上,具有相同的调节精度。
2、线性特性线性特性的相对行程和相对流量成直线关系。
单位行程的变化所引起的流量变化是不变的。
流量大时,流量相对值变化小,流量小时,则流量相对值变化大。
3、抛物线特性
流量按行程的二方成比例变化,大体具有线性和等百分比特性的中间特性。
三种理想流量特性各有优缺点,不多说了。
阀门的流量特性,一般在特定开度比如30Q70%,会更加接近理想流量特性。
所以在调节阀计算时,要多和厂家沟通,必要时相应的做变径。
调节阀流量特性选择

调节阀的流量特性如何选择控制阀的流量特性是介质流过控制阀的相对流量与相对位移(控制阀的相对开度)间的关系,一般来说改变控制阀的阀芯与阀座的流通截面,便可控制流量。
但实际上由于多种因素的影响,如在截流面积变化的同时,还发生阀前后压差的变化,而压差的变化又将引起流量的变化。
在阀前后压差保持不变时,控制阀的流量特性称为理想流量特性;控制阀的结构特性是指阀芯位移与流体流通截面积之间的关系,它纯粹由阀芯大小和几何形状决定,与控制阀几何形状有关外,还考虑了在压差不变的情况下流量系数的影响,因此,控制阀的理想流量特性与结构特性是不同的。
理性流量特性主要由线性、等百分比、抛物线及快开四种。
在实际生产应用过程中,控制阀前后压差总是变化的,这时的流量特性称为工作流量特性,因为控制阀往往和工艺设备串联或并联使用,流量因阻力损失的变化而变化,在实际工作中因阀前后压差的变化而使理想流量特性畸变成工作特性。
控制阀的理想流量特性,在生产中常用的是直线、等百分比、快开三种,抛物线流量特性介于直线与等百分比之间,一般可用等百分比来代替,而快开特性主要用于二位式调节及程序控制中。
因此,控制阀的特性选择是指如何选择直线和等百分比流量特性。
目前控制阀流量特性的选择多采用经验准则,可从下述几个方面考虑:1、从调节系统的质量分析下图是一个热交换器的自动调节系统,它是由调节对象、变送器、调节仪表和控制阀等环节组成。
K1变送器的放大系数,K2调节仪表的放大系数,K3执行机构的放大系数,K4控制阀的放大系数,K5调节对象的放大系数。
很明显,系统的总放大系数K为:K=K1*K2*K3*K4*K5K1、K2、K3、K4、K5分别为变送器、调节仪表、执行机构、控制阀、调节对象的放大系数,在负荷变动的情况下,为使调节系统仍能保持预定的品质指标;则希望总的放大系数在调节系统的整个操作范围内保持不变。
通常,变送器、调节器(已整定好)和执行机构的放大系数是一个常数,但调节对象的放大系数却总是随着操作条件变化而变化,所以对象的特性往往是非线性的。
调节阀的流量特性

调节阀的流量特性、流通能力的计算与选择摘要:企业的能源计量已成为节能减排的重要方式,而流量调节阀作为流量控制中的重要方法,文章详细介绍了调节阀的流量特性,直线特性、等百分比特性及介于两者之间的抛物线特性的流量调节阀的作用及如何选型。
关键词:调节阀;流量特性;流通能力;等百分比特性;直线特性调节阀作为一个执行器将来自控制器的信号,变成控制量作用在对象上。
它是控制系统的重要组成部分,在选择使用时,应和选用传感器、变送器一样,从现有的商品中,选择能满足要求的产品。
下面介绍调节阀的流量特性和口径的计算。
1 调节阀的流量特性及其选择1.1 调节阀的流量特性调节阀的流量特性是指流过调节阀介质的相对流量与调节阀的相对开度之间的关系,即:式中:Q/Q max:相对流量,即调节阀某一开度下的流量与全开流量之比;L/L max:相对开度,即调节阀某一开度下的行程与全开行程之比。
调节阀流量特性是由调节阀阀芯形状决定的。
阀芯形状有柱塞阀和开口阀两类,而每一类都分为直线特性、等百分比特性和抛物线特性。
此外还有平板形的快开特性。
图1 是阀芯形状示意图,图2 是理想流量特性图。
图1 阀芯形状图2 理想流量特性(1)直线特性;(2)等百分比特性;(3)快开特性;(4)抛物线特性所谓理想流量特性是指阀前后压差在流量改变时保持不变条件下,所得到的流量特性,这自然应在实验条件下才能形成恒定的压差。
从图2 可以看出,各流量特性线,当开度为零时,相对流量为3.3%,可知在相对开度为零时为最小流量,且此最小流量与最大流量之比为3.3%,或者说最大流量与最小流量之比为30。
直线流量特性的斜率等于常数,与相对流量值无关;等百分比流量特性的斜率与相对流量成正比;抛物线特性介于直线和等百分比特性之间。
1.2 调节阀流量特性的选择工程所用调节阀的特性有直线特性、等百分比特性及介于两者之间的抛物线特性,此外还有快开特性。
对于直通调节阀可用等百分比特性阀代替抛物线特性阀,而快开特性阀只应用于双位控制和程序控制中。
调节阀流量系数计算及其选型分析

表达式为:式中:ΔPvc 、ΔPc 为产生闪蒸时的缩流处压差和阀前后压差。
F L =1,P 2与P 1无关,压力恢复无;F L <1,P 2接近于P 1,压力恢复程度高;F L 越少,压力恢复越大,一般取F L =0.5~0.98;通过对理论Kv 值计算公式的修正,针对不同的流体和流动状态,整理得出如下计算方法:表1 不同流体和流动状态下Kv值的计算方法液体一般流动ΔP<ΔPc=F L 21-Pv)阻塞流动ΔP ≥ΔPc 当Pv<0.5P 1时,ΔPc=F L 2 (P 1-Pv)当Pv ≥0.5P时,气体一般流动ΔP<0.5FL 2 P 1阻塞流动ΔP≥0.5F L 2 P 1饱和蒸汽一般流动ΔP<0.5P 1阻塞流动ΔP ≥0.5P 1过热蒸汽一般流动ΔP<0.5P 1阻塞流动ΔP ≥0.5P 1计算公式中的代号及单位说明:Q :液体流量,m 3/h ;QN :标况下气体流量,Nm 3/h ;GS :蒸气重量流量,kgf/h ;r :液体密度,g/cm 3;r N :标况下气体重度,kg/Nm 3;t :摄氏温度,℃;tsh :过热温度,℃;P 1:阀前压力,100kPa ;P 2:阀后压力,100kPa ;ΔP :压差,100kPa ;Pv :饱和蒸气压,100kPa ;Pc :临界点压力;ΔPc :临界压差,100kPa ;F L :压力恢复系数。
1.4 Kv值公式计算步骤利用上述公式计算流量系数Kv 值的步骤如下[4]:第一步:根据已知条件查介质的物化参数:F L 、Pc 。
第二步:判定流体的流动状态。
(1)流体介质为液体,进行如下计算:判断Pv 是大于还是小于0.5P 1;由a 的判断结果选取对应的ΔPc 公式:若ΔP<ΔPc 则为一般流动,否则为阻塞流动。
0 引言调节阀是用于控制调节介质流体流量和压力,实现流体自动化控制、保障系统运行稳定平衡的关键设备[1]。
调节阀流量特性选择方法

调节阀流量特性选择方法调节阀流量特性主要有直线、等百分比、快开和抛物线四种流量特性, 提醒用户:调节阀流量特性要根据系统的控制质量、工况条件、符合变化和被控对象来选择。
调节阀是个局部阻力可以变化的节流件。
对于不可压缩流体,调节阀的流量方程为: 式中Q为调节阀某一开度的流量;△P为调节阀进出口压差;Cv为调节阀的流量系数;ρ为流体密度。
由上面的公式可知,调节阀流量系数Cv与阀门的结构和开度有关。
不同的阀芯,其流量系数Cv值与阀门开度之间都有固定的关系,这就是固有流量特性,在控制系统中,控制器的输出信号控制调节阀的开或关,也就改变了阀门阻力的大小,从而改变了被控流体的流量。
不同的控制系统,需要选择不同的调节阀,调节阀的选型首先需要确定阀芯的类型,即流量特性。
流量特性就是流过调节阀的相对流量与调节阀相对开度间的关系,如下面公式所示:式中Q为调节阀某一开度时流量,mm3/s;Qmax为调节阀全开时流量,mm3/s;L为调节阀某一开度时行程,mm;Lmax为调节阀全开时行程,mm。
调节阀量特性包括理想流量特性和工作流量特性。
理想流量特性是指在调节阀进出口压差固定不变情况下的流量特性,常见的有直线、快开、等百分比、抛物线特性,如图所示:调节阀的相对流量与相对开度呈直线关系,即单位相对行程变化引起的相对流量变化是一个常数。
小开度时流量变化大,大开度时流量变化小;小负荷时调节过于灵敏易振荡,大负荷时调节平缓不及时,适应能力较差。
在阀行程较小时,流量就有比较大的增加,很快达最大。
小开度时流量很大,随着行程的增大,阀门开度流量很快达到最大。
常用在位式和程序控制的场合。
单位行程变化引起流量变化的百分率是相等的。
在全行程范围内工作较平稳,尤其在大开度时,放大倍数大、灵敏。
应用广泛,适应性强。
特性介于直线特性和等百分比特性之间,使用上常以等百分比特性代之。
调节性能较理想。
在实际应用中,调节阀进出口的压差是变化的,这时调节阀相对流量与相对开度之间的关系称为工作流量特性。
调节阀的选择及流量特性分析

调节阀的选择及流量特性分析摘要:调节阀是流量控制的最终执行元件,是过程控制系统中不可缺少的一个重要环节。
调节阀是按照工艺流体的特性参数及其工作条件如温度、阀前后压力、密度、最大流量、正常流量、最小流量以及阀的结构形式、公称通径、阀的作用形式、材质、压力等级及流量特性的。
其中阀的流量特性对控制系统的控制质量会带来很大的影响。
关键词:调节阀;类型选择;性能在自动控制系统中,调节阀是其常用的执行器。
控制过程是否平稳取决于调节阀能否准确动作,使过程控制体现为物料能量和流量的精确变化。
所以,要根据不同的需要选择不同的调节阀。
选择恰当的调节阀是管路设计的主要问题,也是保证调节系统安全和平稳运行的关键。
1.类型选择调节阀一般由执行机构和阀门组成。
调节阀门是调节阀的调节机构,它根据控制信号的要求而改变阀门开度的大小来调节流量,是一个局部阻力可以变化的节流元件。
调节阀门主要由上下阀盖、阀体、阀芯、阀座、填料及压板等部件组成。
在自动控制系统中,阀门主要的调节介质为水和蒸汽等。
在压力比较低、使用情况单一的情况下,常用的调节阀有直通调节阀、三通调节阀和蝶阀等种类。
执行机构按照使用的能源种类可分为气动、电动、液动3种,即以压缩空气为动力源的气动调节,以电为动力源的电动调节,以液体介质(如油等)压力为动力的液动调节。
其中,气动执行机构具有结构简单、动作可靠、性能稳定、价格低、维护方便、防火防爆等优点,在许多控制系统中获得了广泛的应用。
电动执行机构虽然不利于防火防爆,但其驱动电源方便可取,且信号传输速度快、便于远距离传输、体积小、动作可靠、维修方便、价格便宜。
液动执行器的推力最大,且调节精度高、动作速度快及平稳,但设备体积大,工艺复杂。
2.调节阀门类型的选择调节阀的阀体类型选择是调节阀选择中最重要的环节。
在选择阀门之前,要对控制过程的介质、工艺条件和参数进行细心的分析,了解系统对调节阀的要求,根据所收集的数据来确定所要使用的阀门类型。
阀门选型-调节阀

“O”型石墨填料
寿命长、耐磨、可靠性高、摩擦大
-200℃~600℃
在需要带定位器使用时可以考虑,尤其是 蒸气介质。
可以不带散热片使用,故经济性好,外形 尺寸小,并且密封性能好,但必须带定位 器,目前选用越来越多,当工作温度较高 时,可优先选用
不能用(目前,四氟填料只设计到450℃ 以下)
可用到600℃
1 调节阀结构型式的选择
1、1从使用功能上选阀需注意的问题
表5-1 常用材质的工作温度、工作压力与PN关系
材料
铸铁 碳素钢
公称压
介 质 工 作 温 度(℃)
力PN
(Mpa) <
<
<
<
<
<
<
<
<
<
<
<
<
<
<
120 200 250 300 350 400 425 450 475 500 525 550 575 600 625
32.0 32.0 32.0 32.0 32.0 32.0 24.0 21.6 19.2 16.8 15.2 13.6 11.2 8.8 6.4 4.0
含钼不少于
4.0
0.4%的钼钢及
铬钼钢
6.4
22.0
4.0 3.6 3.4 3.2 2.8 2.2 1.6 6.4 5.8 5.5 5.2 4.5 3.5 2.5 22.0 20.1 19.0 17.9 15.7 12.2 9.0
6 流量特性的选择
6.2 调节阀的工作流量特性
2)并联管道的工作流量特性
6 流量特性的选择
6.3 对传统流量特性理论的突破----节能调节阀流量特性
S可以在0.05~0.15之间,与原高S运行相比,可节省能耗 15%~22%。这对于我国能源紧张的今天,有较好的使用价值 和社会效益。
暖通空调系统两通调节阀的特性分析

暖通空调系统两通调节阀的特性分析首先,我们来了解一下两通调节阀的基本结构和原理。
两通调节阀由阀体、阀芯、阀座、传动机构和执行器组成。
阀体一般为铸铁或不锈钢制成,内部有一个通道用于介质流动。
阀芯为圆柱形,通过旋转来调节流量。
阀座位于阀体内部,是阀芯的密封座,防止介质泄漏。
传动机构可以将操作员的旋转或推拉动作转换为阀芯的旋转运动。
执行器通常由电动机、气动元件或电磁驱动器组成,用于控制传动机构。
两通调节阀的特性可以从以下几个方面进行分析。
1.流量特性:两通调节阀的流量特性通常有等百分比、线性和快开等。
等百分比流量特性适用于需要较大调节范围的系统,例如供暖和通风系统。
线性流量特性适用于需要精确控制流量的系统,例如制冷系统。
快开流量特性适用于需要迅速改变流量的系统,例如液体循环系统。
2.温度特性:两通调节阀的温度特性是指其在不同温度下的流量变化情况。
温度特性通常有快开和平稳变化等。
快开温度特性适用于温度变化较大的系统,例如太阳能系统。
平稳变化温度特性适用于需要稳定温控的系统,例如空调系统。
3.死区特性:死区是指调节阀开始动作和实际流量变化之间的范围,也称为“活动区间”。
两通调节阀的死区特性通常有大死区和小死区等。
大死区特性适用于需要防止小幅度波动造成频繁调节的系统,例如输送系统。
小死区特性适用于需要精确控制的系统,例如加热系统。
4.压降特性:压降是指调节阀前后的压力差。
两通调节阀的压降特性通常有恒定压差和恒定百分比压降等。
恒定压差特性适用于需要稳定压力降的系统,例如工业管道系统。
恒定百分比压降特性适用于需要按照比例调节压力降的系统,例如供暖系统。
综上所述,暖通空调系统中的两通调节阀的特性包括流量特性、温度特性、死区特性和压降特性等。
在选择合适的调节阀时,需要根据具体应用场景和系统要求来确定所需的特性。
合理选择和配置调节阀可提高系统的运行效率和稳定性。
电动调节阀选型参数

电动调节阀选型参数1.流量特性:流量特性是指调节阀开度和流量之间的关系。
常见的流量特性有线性特性、快速开启特性、快速关闭特性和等百分比特性。
不同的流量特性适用于不同的流体介质和工况要求。
2.压力级别:压力级别是指调节阀能够承受的最高压力。
根据工况要求,应选择能够满足介质压力的调节阀。
3.阀门规格:阀门规格包括口径、公称压力和连接方式等。
根据管道系统的要求,应选择与之匹配的口径和公称压力的调节阀。
常见的连接方式有法兰连接、螺纹连接和对夹连接等。
4.电动执行器:电动执行器是控制调节阀开度的部件,其选型参数包括执行器类型、电源电压、控制信号和输出转矩等。
常见的电动执行器类型有电动开度式执行器和电动调节式执行器。
根据控制系统的要求,选择适用的电源电压和控制信号(如4-20mA、0-10V等)。
输出转矩应满足调节阀在工作过程中的扭矩需求。
另外,选型过程中还需要考虑以下因素:5.工况参数:根据具体的工况要求,如介质温度、介质特性、流量大小等,选择适用的材料和型号。
如果介质对阀门有特殊要求,可以选择耐腐蚀、耐高温等特殊材料。
6.控制要求:根据控制系统的要求,选择相应的调节方式(如手动、自动等)和控制精度。
有些场合需要使用智能型电动调节阀,可以实现远程监控和自动化控制。
7.经济性:在选型过程中,需要综合考虑价格、性能和可靠性等因素,选择性价比最高的产品。
总之,选型参数是电动调节阀选型过程中需要进行综合考虑的因素,包括流量特性、压力级别、阀门规格和电动执行器等。
根据具体的工况要求和控制系统要求,选择适用的电动调节阀,确保其能够满足工作需要。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
调节阀流量特性分析及应用选型
点击次数:102 发布时间:2011-4-5
简介
调节阀是工业生产过程中一种常用的调节机构,它的作用就是按照调节器发出的控制信号的大小和方向,通过执行机构来改变阀门的开度以实现调节流体流量的功能,从而把生产过程中被调参数控制在工艺所要求的范围内,从而实现生产过程的白动化。
调节阀是自动化控制系统中一个十分重要且不可或缺的组成部分,正确的选择和使用调节阀,直接关系到整个自动控制系统的控制质量,直接影响生产产品的质量。
然而,自动控制系统不能正常投人运行的,有许多是由于调节阀的选型不当造成的,因此,如何正确选择合适的调节阀,必须引起我们每一位自动化控制技术人员的高度重视。
调节阀所反应出来的问题大多集中在调节阀的工作特性和结构参数上,如流通能力、公称通径及流量特性等。
在这些参数中,流通能力更重要,它的大小直接反映调节阀的容觉,它是设计选型中的主要参数。
因此,调节阀的选择主要从以上几个因素进行考虑。
本人根据工作中调节阀的选型经验简单介绍一下调节阀的选型原则及注意事项。
2 调节阀的工作原理
在有流体流动的管道中,调节阀是一节流件,假设流体是不可压缩且充满管道,根据伯努利方程式和流体的连续性定律可知:通过阀门的体积流量 Q v与阀门的有效流通截面积 A 和通过阀门前后的压降ΔP(ΔP=P1-P2)的平方根成正比,与流体的密度ρ和阀门的阻力系数ζ的平方根成反比,即:
其中 n——为常数,C——调节阀的流量系数,又叫流通能力。
根据调节阀的流量方程式可得出如下结论:
(l)在流体的密度ρ和阀门上的压降ΔP 一定的情况下,调节阀的流量系数 C 与流量 Q v,C 值的大小反映了阀能通过的流量的大小。
(2)流量系数 C 与流通面积 A 成正比,流通能力随流通截面的增减而增减。
(3)流量系数 C 与阀门的阻力系数ζ的平方根成反比,增大阀门的阻力系数ζ就是阀门的流通能力减小,如果阀门的口径相同,则不同结构的阀门阀门的阻力系数ζ就不相同,流通系数 C 也就不同。
3 调节阀结构形式的选择
调节阀结构形式的选择,应根据实际生产中工艺条件(温度、压力、流量等)、工艺介质的性质(如粘度、腐蚀性、有无毒害等)、调节系统的要求(调节范围、泄漏量、噪音)以及防止调节阀产生汽蚀现象等因素综合加以考虑。
平常在我们实际使用中,应用最多的是普通单座调节阀、双座调节阀、套筒调节阀、蝶阀等。
一般来讲,在流量小、压差小、要求泄漏量小的场合,选择单座调节阀即
可满足生产需要,而且经济实惠;在流量大、压差大、泄漏量要求不严格的场合,应优先考虑双座调节阀;套筒调节阀最适宜用在介质压差大、振动大的场合;蝶阀适宜用于低压状态的空气或其它气体的压力、流最调节。
4 调节阀流量特性的选择
控制阀的流量特性是指流体流过阀门的相对流量和阀门的相对开度之间的关系,即:
Q/Q100=f(L/L100)
式中,Q/Q100——阀门在某一开度下的流量与全开时流量的比;L/L100——阀门在某一开度下的行程与全开时行程的比。
调节阀的流量特性一般常用的有如下四种:
(l)等百分比特性
等百分比特性也称为对数特性,是指阀门的开度增加同样的值时,通过的调节阀的流最按照等百分比增加。
调节阀在同样开度变化值下,流量小时流量的变化也小,调节作用缓和平稳;流量大时.流量的变化也大,调节作用灵敏而有效。
等百分比特性的阀门在全行程阀门内的控制精度时不变的。
(2)直线特性
直线特性是指调节阀的相对流量和相对开度的比值为常数。
调节阀在同样开度变化值下,流量小时流量的变化值相对较大,凋节作用较强,容易产生超调和引起振荡;流量大时,流量的变化值相对较小,调节作用不够灵敏。
(3)抛物线特性
抛物线特性是指调节阀的相对流量与相对开度的二次方根成正比。
抛物线特性介于直线特性和等百分比特性之间,改善了直线特性在小开度时调节性能差的缺点。
(4)快开特性
快开特性是指调节阀在开度很小时流量就已经较大,随着开度增加,流量很快达到最大值。
从调节阀的流量特性可以看出,调节阀的流量特性对选用调节阀有非常重要的意义,直接影响到自动控制系统的质量和稳定性,因此必须正确合理选择调节阀的流量特性。
在工程应用中,我们选用最多的是等百分比特性,对于压差变化小、可调范围小、开度变化小的场合,也可以选用直线特性的调节阀,V 型球阀一般选用抛物线特性。
5 调节阀口径的选定
计算选定调节阀口径的方法在工程中常用 C 值法,即流通能力法。
首先根据工艺条件和调节要求选定阀门的结构型式和流量特性,并且确定流量系数 C 的计算方法和计算公式,然后把各项数值带人计算公式计算出最大流量下调节阀流量系数 C max值,然后在标准阀门额定 C v值表中选择与 1.2C max 相近的 C v值,其对应的阀径即为所选择调节阀的阀径,最后进行噪声和开度验算,在最大流最下一般调节阀的开度不超过 85%,最小流量下开度不小于 20%,若验算结果满意,阀门口径就选定了,若验算结果不满意,则应从新选择额定 C v值,再进行验算,直到得到满意的结果。
6 调节阀材质的选择
调节阀材质的选择主要是指两个方面:一是阀体、阀盖材质的选择,二是阀内组件(阀杆、阀芯、阀座)材质的选择。
阀体、阀盖相当于压力容器,因此要求其必须能承受介质的温度、压力和腐蚀,而阀内组件主要起节流作用,对它的基本耍求是耐腐蚀、耐冲刷,这是调节阀材质选择的出发点。
选择调节阀的材质必须把握两个大的原则:一是要保证安全可靠,也就是根据工艺特性,选择诸如耐高温、耐低温、耐高压、耐汽蚀以及耐腐蚀的材质;二是在满足使用要求的前提下,还要考虑其性能、使用寿命和经济性。
1 概述
在自动控制系统中,调节阀是其常用的执行器。
控制过程是否平稳取决于调节阀能否准确动作,使过程控制体现为物料能量和流量的精确变化。
所以,要根据不同的需要选择不同的调节阀。
选择恰当的调节阀是管路设计的主要问题,也是保证调节系统安全和平稳运行的关键。
2 调节阀的组成
调节阀由执行机构和调节机构组成,接受调节器或计算机的控制信号,用来改变被控介质的流量,使被调参数维持在所要求的范围内,从而达到过程控制的自动化。
2.1 执行机构
执行机构按照驱动形式分为气动、电动和液动3种。
气动执行机构具有结构简单,动作可靠,性能稳定,价格低,维护方便,防火防爆等优点,在许多控制系统中获得了广泛地应用。
电动执行机构虽然不利于防火防爆,但其驱动电源方便可取,且信号传输速度快,便于远距离传输,体积小,动作可靠,维修方便,价格便宜。
液动执行器的推力最大,调节精度高,动作速度快,运行平稳,但由于设备体积大,工艺复杂,所以目前使用不多。
执行机构不论是何种类型,其输出力都是用于克服负荷的有效力(主要是指不平衡力和不平衡力矩、摩擦力、密封力及重力等有关力的作用)。
因此,为了使调节阀正常工作,配用的执行机构要能产生足够的输出力来克服各种阻力,保证高度密封和阀门的开启。
对执行机构输出力确定后。
应根据工艺使用环境要求,选择相应的执行机构。
例如,对于现场有防爆要求时,应选用气动执行机构,且接线盒为防爆型。
如果没有防爆要求,则气动或电动执行机构都可选用,但从节能方面考虑,应尽量选用电动执行机构。
对于要求调节精度高,动作速度快和运行平稳的工况,应选用液动执行机构。