2019-2020学年高二上学期期末考试数学试卷(文科)附答案

合集下载

2019-2020学年高二上学期期末考试数学试卷(文科)含解答

2019-2020学年高二上学期期末考试数学试卷(文科)含解答

2019-2020学年高二上学期期末考试数学试卷(文科)一、选择题(本大题共12小题,共60.0分)1.下列命题中,正确的是A. 若,,则B. 若,则C. 若,,则D. 若,则【答案】D【解析】解:对于A,要满足,,才能得到,故错;对于B,时,由,得,故错;对于C,若,,则或或,故错;对于D,若,则,则,故正确;故选:D.A,要满足,,才能得到;B,时,由,得;C,若,,则或或;D,若,则,则;本题考查了不等式的性质及其应用,属于基础题.2.一个命题与它们的逆命题、否命题、逆否命题这4个命题中A. 真命题与假命题的个数不同B. 真命题的个数一定是偶数C. 真命题的个数一定是奇数D. 真命题的个数可能是奇数,也可能是偶数【答案】B【解析】解:一个命题与他们的逆命题、否命题、逆否命题这4个命题,原命题与逆否命题具有相同的真假性,否命题与逆命题具有相同的真假性,真命题的若有事成对出现的,真命题的个数一定是一个偶数.故选:B.根据互为逆否命题的真假性是一致的,得到原命题与逆否命题具有相同的真假性,否命题与逆命题具有相同的真假性,真命题的若有事成对出现的.本题考查命题的四种形式,是一个概念辨析问题,这种题目不用运算,是一个比较简单的问题,若出现是一个送分题目.3.若点P到直线的距离比它到点的距离小1,则点P的轨迹为A. 圆B. 椭圆C. 双曲线D. 抛物线【答案】D【解析】解:点P到直线的距离比它到点的距离小1,点P到直线的距离和它到点的距离相等,故点P的轨迹是以点为焦点,以直线为准线的抛物线,即,则点P的轨迹方程为,故选:D.由题意得,点P到直线的距离和它到点的距离相等,故点P的轨迹是以点为焦点,以直线为准线的抛物线,,写出抛物线的方程.本题考查抛物线的定义,抛物线的标准方程,判断点P的轨迹是以点为焦点,以直线为准线的抛物线,是解题的关键.4.等差数列中,若,则A. 256B. 512C. 1024D. 2048【答案】C【解析】解:等差数列中,若,可得,则.故选:C.运用等差数列的性质和指数的运算性质,结合等差数列的求和公式,计算可得所求值.本题考查等差数列的性质和求和公式,以及指数的预算性质,考查运算能力,属于基础题.5.已知函数既存在极大值又存在极小值,那么实数m的取值范围是A. B.C. D.【答案】D【解析】解:函数既存在极大值,又存在极小值有两异根,,解得或,故选:D.求出函数的导函数,根据已知条件,令导函数的判别式大于0,求出m的范围.利用导数求函数的极值问题,要注意极值点处的导数值为0,极值点左右两边的导函数符号相反.6.下面四个条件中,使成立的一个必要不充分的条件是A. B. C. D.【答案】A【解析】解:“”能推出“”,但“”不能推出“”,故满足题意;“”不能推出“”,故选项B不是“”的必要条件,不满足题意;B 不正确.“”能推出“”,且“”能推出“”,故是充要条件,不满足题意;C不正确;“”不能推出“”,故选项C不是“”的必要条件,不满足题意;D不正确.故选:A.欲求成立的必要而不充分的条件,即选择一个“”能推出的选项,但不能推出,对选项逐一分析即可.本题主要考查了必要条件、充分条件与充要条件的判断,解题的关键是理解必要而不充分的条件,属于基础题.7.若,则的最小值为A. B. 5 C. 6 D. 7【答案】C【解析】解:设,因为,则,则,由“对勾函数”的性质可得:在为减函数,即,故选:C.由三角函数的有界性得:,因为,则,由对勾函数的单调性得:在为减函数,即,得解.本题考查了三角函数的有界性及对勾函数的单调性,属中档题.8.平面四边形ABCD中,若,,,则A. B. C. D.【答案】B【解析】解:中,,,,得.,,.故选:B.由平面几何知识,不难算出,从而求得AC,AD即可.此题考查了正弦定理,三角形面积公式,以及同角三角函数间的基本关系,熟练掌握余弦定理是解本题的关键.9.已知过抛物线的焦点的直线交抛物线于A,B两点,若O为坐标原点,则A. B. C. 0 D.【答案】A【解析】解:由题意知,抛物线的焦点坐标点,直线AB的方程为,由,得,设,,则,,,,故选:A.由抛物线与过其焦点的直线方程联立,消去y整理成关于x的一元二次方程,设出、两点坐标,由向量的数量积的坐标运算得,由韦达定理可以求得答案.本题考查直线与圆锥曲线的关系,解决问题的关键是联立抛物线方程与过其焦点的直线方程,利用韦达定理予以解决.10.若函数的导函数的图象如图所示,则函数的图象可能是A. B. C. D.【答案】D【解析】解:由的图象知,当时,,时,,即当时,,排除B,C,当时,,排除A,故选:D.根据的图象得到当时,,时,,然后讨论x 的范围得到函数取值是否对应进行排除即可.本题主要考查函数图象的识别和判断,根据函数符号的一致性进行排除是解决本题的关键.11.若P是椭圆上的点,点Q,R分别在圆:和圆:上,则的最大值为A. 9B. 8C. 7D. 6【答案】B【解析】解:椭圆中,,椭圆两焦点,恰为两圆和的圆心,,准线,过P点作x轴平行线,分别交两准线于A,B两点,连接,,并延长,分别交两圆于,,则.故选:B.椭圆中,,故椭圆两焦点,恰为两圆和的圆心,过P点作x轴平行线,分别交两准线于A,B两点,连接,,并延长,分别交两圆于,,则,由此能求出的最大值.本题考查椭圆和圆的简单性质,解题时要认真审题,注意挖掘题设中的隐含条件,合理地进行等价转化.12.已知函数的图象过点,为函数的导函数,e为自然对数的底数若1'/>恒成立,则不等式的解集为A. B. C. D.【答案】C【解析】解:设,则,1'/>恒成立,恒成立,单调递增,,,不等式,,,故选:C.构造函数设确定在R单调递增,即可求出不等式的解集.本题考查导数知识的运用,考查函数的单调性,正确构造函数是关键.二、填空题(本大题共4小题,共20.0分)13.已知双曲线C的离心率为,那么它的两条渐近线所成的角为______.【答案】【解析】解:设该双曲线的实半轴为a,虚半轴为b,半焦距为c,离心率,,,又,,,当双曲线的焦点在x轴时,双曲线的两条渐近线方程为,双曲线的两条渐近线互相垂直所成的角是;故答案为:.设该双曲线的实半轴为a,虚半轴为b,半焦距为c,由离心率,可求得,从而可求双曲线的两条渐近线所成的角.本题考查双曲线的简单性质,求得是关键,考查分析与运算能力,属于中档题.14.若x,y满足约束条件,则的最小值为______.【答案】1【解析】解:由x,y满足约束条件作出可行域如图,联立,解得,化目标函数为,由图可知,当直线过点A时,直线在y轴上的截距最小,z有最小值为1.故答案为:1.由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,代入目标函数得答案.本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.15.数列1,3,1,3,3,1,3,3,3,1,3,3,3,3,1,3,依此规律,这个数列前44项之和为______.【答案】116【解析】解:数列1,3,1,3,3,1,3,3,3,1,3,3,3,3,1,3,规律为1后接着3,到第几个1后接几个3,当第8个1后接8个3时,共有,则前44项之和为.故答案为:116.由题意可得该数列规律为1后接着3,到第几个1后接几个3,当第8个1后结8个3时,项数为44,计算可得所求和.本题考查数列的求和,注意总结数列的规律,考查运算能力,属于基础题.16.若长度为,4x,的三条线段可以构成一个钝角三角形,则的取值范围是______.【答案】【解析】解:,可得为最大边.由于此三角形为钝角三角形,,化为:,由,解得.又,解得:,的取值范围为.故答案为:.,可得为最大边由于此三角形为钝角三角形,可得,解出,根据三角形两边之和大于第三边可求,即可得解本题考查了余弦定理、不等式的解法、锐角三角形,考查了推理能力与计算能力,属于中档题.三、解答题(本大题共6小题,共70.0分)17.已知命题p:函数在定义域上单调递增;命题q:不等式对任意实数x恒成立.Ⅰ若q为真命题,求实数a的取值范围;Ⅱ若“¬”为真命题,求实数a的取值范围.【答案】解:Ⅰ因为命题q:不等式对任意实数x恒成立为真命题,所以或综上所述:分Ⅱ因为“¬为真命题,故p真q假.因为命题p:函数在定义域上单调递增,所以分q假,由可知或所以或分所以实数a的取值范围为,分【解析】Ⅰ恒成立,时,,即,结果相并;Ⅱ为真时,;¬为真,即q为假时,或,结果再相交.本题考查了复合命题及其真假,属基础题.18.已知中,内角A,B,C所对的边分别为a,b,c,且.Ⅰ求A;Ⅱ若,求的面积.【答案】本小题满分12分解:Ⅰ.由正弦定理,得分整理得,分因为,所以,又,所以分方法二:由余弦定理得:分化简整理得:分即,又,所以分Ⅱ由余弦定理得:,,即,分又,解得,分所以分【解析】Ⅰ方法一:由已知结合正弦定理及两角和的正弦公式可求,进而可求A;方法二:由余弦定理对已知进行化简可得,然后再由余弦定理可求,进而可求A;Ⅱ由已知结合余弦定理可得,结合已知,可求b,c代入三角形面积可求.本题主要考查了正弦定理余弦定理,三角形的面积公式及两角和的正弦公式,诱导公式等知识的综合应用,数中档试题19.设函数,曲线在点处的切线方程为.Ⅰ求b,c的值;Ⅱ若,求函数的极值.【答案】本小题满分12分解:Ⅰ,分由题意得解得:,分Ⅱ依题意,由得,分所以当时,,单调递增;时,,单调递减;时,,单调递增分故的极大值为,的极小值为分【解析】Ⅰ求出函数的导数,利用已知条件推出方程,然后求解b,c的值;Ⅱ若,判断导函数的符号,然后求解函数的极值.本题考查函数的导数的应用,考查转化思想以及计算能力.20.已知函数,数列的前n项和为,点在曲线上.Ⅰ求数列的通项公式;Ⅱ求数列的前n项和.【答案】本小题满分12分解:Ⅰ因为点,在曲线上,所以,,分当,时,分当,时,,满足上式,分,所以分,Ⅱ因为,,所以分,,分【解析】Ⅰ利用点在曲线上,通过通项公式与数列的和关系,然后求解数列的通项公式;Ⅱ化简数列,利用数列的裂项相消法,求解数列的前n项和.本题考查数列的通项公式的求法,递推关系式的应用,数列与曲线相结合,考查计算能力.21.椭圆C:的离心率为,且过点.Ⅰ求椭圆C的方程;Ⅱ过点M作两条互相垂直的直线,,椭圆C上的点P到,的距离分别为,,求的最大值,并求出此时P点坐标.【答案】本小题满分12分解:Ⅰ由题意知,,所以椭圆方程为:分Ⅱ设,因为,则分因为,所以分因为,所以当时,取得最大值为,此时点分【解析】Ⅰ利用椭圆的离心率,然后求解a,b,即可得到椭圆C的方程;Ⅱ设,结合,然后求解的表达式,然后求解表达式的最大值,然后求解求解P点坐标.本题考查椭圆的简单性质以及椭圆方程的求法,直线与椭圆的位置关系的应用,考查计算能力.22.已知函数.Ⅰ当时,讨论的单调性;Ⅱ证明:当时,.【答案】本小题满分12分解:Ⅰ,分当时,.令0'/>,得;令,得;分所以在单调递增,在单调递减分当时,令0'/>,得;令,得或;分所以在单调递增,在和单调递减分综上,当时,在单调递增,在单调递减;当时,在单调递增,在和单调递减分Ⅱ当时,分令,则.当时,,单调递减;当时,0'/>,单调递增;分所以因此分方法二:由Ⅰ得,当时,在单调递减,在单调递增,所以当时,取得极小值;分当时,,,分所以当时,取得最小值;分而,所以当时,分【解析】Ⅰ求出函数的导数,通过a的值,当时,导函数的符号,推出的单调性;Ⅱ当时,求出导函数,然后判断导函数的符号,推出单调区间.方法二:判断当时,判断导函数的符号,求解函数的最小值,然后求解函数的最值.本题考查函数的导数的应用,考查函数的单调性以及函数的最值的求法,考查计算能力.。

江西省宜春市第二中2019-2020学年高二上学期期末考试数学(文)试卷含详解

江西省宜春市第二中2019-2020学年高二上学期期末考试数学(文)试卷含详解
C.若一个回归直线方程 ,则变量 每增加一个单位时, 平均增加3个单位
D.若一组数据2,4, ,8 平均数是5,则该组数据的方差也是5
2.甲、乙两名同学参加校园歌手比赛,7位评委老师给两名同学演唱比赛打分情况的茎叶图如图(单位:分),则甲同学得分的平均数与乙同学得分的中位数之差为
A.1B.2
C.3D.4
上高二中2021届高二上学期期末考试数学(文科)试题
一、选择题:本大题共12小题,每小题5分,共60分.
1.下列说法中正确的是()
A.先把高二年级的2000名学生编号:1到2000,再从编号为1到50的学生中随机抽取1名学生,其编号为 ,然后抽取编号为 , , ,…的学生,这种抽样方法是分层抽样法
B.线性回归直线 不一定过样本中心
3.设椭圆C: 的左、右焦点分别为 、 ,P是C上的点, ⊥ ,
∠ = ,则C的离心率为
A. B. C. D.
4.下课后教室里最后还剩下甲、乙、丙三位同学,如果没有2位同学一起走的情况,则第二位走的是甲同学的概率是()
A. B. C. D.
5.设两圆 、 都和两坐标轴相切,且都过点(4,1),则两圆心的距离 =
13.我国古代数学名著《九章算术》有一抽样问题:“今有北乡若干人,西乡七千四百八十八人,南乡六千九百一十二人,凡三乡,发役三百人,而北乡需遣一百零八人,问北乡人数几何?”其意思为:“今有某地北面若干人,西面有7488人,南面有6912人,这三面要征调300人,而北面征调108人(用分层抽样的方法),则北面共有__________人.”
上高二中2021届高二上学期期末考试数学(文科)试题
一、选择题:本大题共12小题,每小题5分,共60分.
1.下列说法中正确的是()

安徽省黄山市2018-2019学年高二上学期期末考试数学(文)试题 Word版含解析

安徽省黄山市2018-2019学年高二上学期期末考试数学(文)试题 Word版含解析

黄山市2018~2019学年度第一学期期末质量检测高二(文科)数学试题第Ⅰ卷(选择题满分60分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.若直线a平行于平面α,则下列结论错误..的是( )A. 直线a上的点到平面α的距离相等B. 直线a平行于平面α内的所有直线C. 平面α内有无数条直线与直线a平行D. 平面α内存在无数条直线与直线a成90°角【答案】B【解析】【分析】由题意,根据两直线的位置关系的判定,以及直线与平面的位置关系,逐一判定,即可得到答案.【详解】由题意,直线a平行于平面α,则对于A中,直线a上的点到平面α的距离相等是正确的;对于B中,直线a与平面α内的直线可能平行或异面,所以不正确;对于C中,平面α内有无数条直线与直线a平行是正确的;对于D中,平面α内存在无数条直线与直线a 成90°角是正确的,故选D.【点睛】本题主要考查了空间中两直线的位置关系的判定,其中解答中熟记空间中两条直线的三种位置关系是解答的关键,着重考查了推理与论证能力,属于基础题.2.在空间直角坐标系中,点关于平面的对称点是( )A. B. C. D.【答案】D【解析】【分析】空间直角坐标系中任一点关于坐标平面的对称点为,即可求得答案【详解】根据空间直角坐标系中点的位置关系可得点关于平面的对称点是故选【点睛】本题考查了对称点的坐标的求法,解决此类问题的关键是熟练掌握空间直角坐标系,以及坐标系中点之间的位置关系,属于基础题。

3.已知,则“”是“直线与直线垂直”的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件【答案】A【解析】【分析】当时,判断两直线是否垂直,由此判断充分性,当两直线垂直时,根据两直线垂直的性质求出的值,由此判断必要性,从而得到答案【详解】充分性:当时,两条直线分别为:与此时两条直线垂直必要性:若两条直线垂直,则,解得故“”是“直线与直线垂直”的充分不必要条件故选【点睛】本题是一道有关充分条件和必要条件的题目,需要分别从充分性和必要性两方面分析,属于基础题。

四川省内江市2019~2020学年度高二上学期期末检测文科数学试题参考答案

四川省内江市2019~2020学年度高二上学期期末检测文科数学试题参考答案

边 的中线 的斜率为 , 分 ∴ AB
CO
k=

1 5

边 上的中线 的一般式方程为 分 ∴ AB
CO
x + 5y = 0 5
() ( , ),(,), , 分 2 ∵ A - 2 - 4 B 2 4 ∴ kAB = 2 6
分 S△A1AF =
1 2
A1 A
×
AC

1 2
× 3 × 2 = 3
10
高二数学(文科)试题答案第 1 页(共3 页)


· 槡槡 分 V 测 A1检- AEF 末
= VE - A1AF

1 3
S△A1AE
h=
1 3
×3 ×
3=

12

解:()设“从这组数据中随机选取组数据后,剩下的组数据相邻”为事件 学期20.






记这六组数据分别为,,,,,, 分 二
1 2 3 4 5 6 1
高 剩下的2 组数据的基本事件有12,13, , 14 15, , , , , , , , , 16 23 24 25 26 34 35 36 45,46,56,共15
解得 分 a = 0. 005. 4
(2)估计这100 名学生语文成绩的平均分为:
分 55 ×0. 005 ×10 +65 ×0. 04 ×10 +75 ×0. 03 ×10 +85 ×0. 02 ×10 +95 ×0. 005 ×10 =73. 6
所以求出的线性回归方程是“恰当回归方程”. 分 12
二、填空题:本大题共4 小题,每小题5 分,共20 分. ; 13. 2a + 3 14. 859 15. x = 2 4x + 3y - 17 = 0 16. ①③④ 三、解答题:本大题共6 个小题,共70 分. 17. 解:(1)∵ (A - 2,4),B(2,4),∴ AB 的中点为(,) O 0 0 1 分

2019-2020年高二上学期期末考试 数学文 含答案

2019-2020年高二上学期期末考试 数学文 含答案

2019-2020年高二上学期期末考试 数学文 含答案本试卷分为第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分第Ⅰ卷(选择题,共60分)一、选择题:(本大题共12小题,每小题5分,共60分.在每题给出的四个选项中,只有一个是符合题目要求的.) 1.若a 、b 为正实数,则a b >是22a b >的 A .充分非必要条件B .必要非充分条件C .充分必要条件D .既非充分也非必要条件2.抛物线2x y =的焦点坐标是 A .)0,41(-B. )41,0(-C. )41,0(D . )0,41(3.在等差数列{a n }中,已知a 4+a 8=16,则该数列前11项和11S =A. 58B. 88C. 143D. 1764. 已知下列四个命题:①“若xy=0,则x=0且y=0”的逆否命题;②“正方形是菱形”的否命题;③“若ac 2>bc 2,则a >b”的逆命题;④若“m >2,则不等式x 2﹣2x+m >0的解集为R”.其中真命题的个数为 A. 0个 B. 1个 C. 2个 D. 3个 5.曲线324y x x =-+在点(13),处的切线的倾斜角为A .120°B .30°C .60°D .45°6. 设n S 为等比数列{}n a 的前n 项和,525280S a a S +==,则 A .11-B .8-C .5D .117. 已知ABC ∆的顶点B 、C 在椭圆1322=+y x 上,顶点A 是椭圆的一个焦点,且椭圆的另外一个焦点在BC 边上,则ABC ∆的周长是A.32B.6C. 34D. 128.在△ABC 中,角A ,B 所对的边长为a ,b ,则“a=b”是“acosA=bcosB”的 A. 充分不必要条件 B. 必要不充分条件 C. 充要条件D. 既不充分又不必要条件9. 设函数f (x )在定义域内可导,y=f (x则导函数y=f '(x )可能为A BC D10设变量x ,y 满足约束条件:3123x y x y x y +≥⎧⎪-≥-⎨⎪-≤⎩.则目标函数z=2x+3y 的最小值为A . 6B. 7C. 8D. 2311.如图,某船在海上航行中遇险发出呼救信号,我海上救生艇在A 处获悉后,立即测出该船在方位角45°方向,相距10海里的C 处,还 测得该船正沿方位角105°的方向以每小时9海里的 速度行驶,救生艇立即以每小时21海里的速度前往 营救,则救生艇与呼救船在B 处相遇所需的时间为A.15小时 B.13小时 C. 25小时D. 23小时12. 已知双曲线(>0)mx y m -=221的右顶点为A ,若该双曲线右支上存在两点,B C 使得ABC ∆为等腰直角三角形,则该双曲线的离心率e 的取值范围是A.B .(1,2)C. D .(1,3)第Ⅱ卷(非选择题,共90分)二、填空题: (本大题4小题,每小题5分,共20分)13.已知32()32f x ax x =++且(1)4f '-=,则实数a 的值等于_________ 14.在ABC ∆中,角A,B,C 成等差数列且3=b ,则ABC ∆的外接圆面积为______15. 下列函数中,最小值为2的是①y =② 21x y x +=③(),(02)y x x x =-<④2y =16.已知F 是抛物线C :x y 42=的焦点,A 、B 是C 上的两个点,线段AB 的中点为M(2,2),则△ABF 的面积等于 ____.三、解答题(本大题共6小题,共70分,解答题应根据要求写出必要的文字说明,证明过程或演算步骤) 17.(本题满分10分).在ABC ∆中,A B C 、、是三角形的三内角,a b c 、、是三内角对应的三边,已知222b c a bc +-=.(Ⅰ)求角A 的大小;(Ⅱ)若222sin sin sin A B C +=,求角B 的大小.18.(本题满分12分).已知双曲线与椭圆1244922=+y x 有共同的焦点,且以x y 34±=为渐近线. (1)求双曲线方程.(2)求双曲线的实轴长.虚轴长.焦点坐标及离心率.19.(本题满分12分).已知等差数列{}n a 满足818163a a 34a a 31a a >-=-=+且,(1)求数列{}n a 的通项公式;(2)把数列{}n a 的第1项、第4项、第7项、……、第3n -2项、……分别作为数列{}n b 的第1项、第2项、第3项、……、第n 项、……,求数列{}2nb 的前n 项和;20.(本题满分12分).函数f (x )= 4x 3+ax 2+bx+5的图像在x=1处的切线方程为y=-12x ; (1)求函数f (x )的解析式;(2)求函数f (x )在 [—3,1]上的最值。

北京市海淀区2019-2020学年高二上学期期末考试文科数学试卷 Word版含解析 (2)

北京市海淀区2019-2020学年高二上学期期末考试文科数学试卷 Word版含解析 (2)

北京市海淀区2019-2020学年上学期期末考试高二文科数学试卷一、选择题:本大题共8小题,每小题4分,共32分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(4分)直线x+y=2的倾斜角是()A.B.C.D.2.(4分)焦点在x轴上的椭圆的离心率是,则实数m的值是()A.4 B.C.1 D.3.(4分)一个空间几何体的三视图如图所示,该几何体的体积为()A.8 B.C.D.64.(4分)已知圆O:x2+y2=1,直线l:3x+4y﹣3=0,则直线l被圆O所截的弦长为()A.B.1 C.D.25.(4分)命题“∃k>0,使得直线y=kx﹣2的图象经过第一象限”的否定是()A.∃k>0,使得直线y=kx﹣2的图象不经过第一象限B.∃k≤0,使得直线y=kx﹣2的图象经过第一象限C.∀k>0,使得直线y=kx﹣2的图象不经过第一象限D.∀k≤0,使得直线y=kx﹣2的图象不经过第一象限6.(4分)已知等差数列{a n},则“a2>a1”是“数列{a n}为单调递增数列”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件7.(4分)已知正四面体A﹣BCD的棱长为2,点E是AD的中点,则下面四个命题中正确的是()A.∀F∈BC,EF⊥AD B.∃F∈BC,EF⊥AC C.∀F∈BC,EF≥D.∃F∈BC,EF∥AC8.(4分)已知曲线W:+|y|=1,则曲线W上的点到原点距离的最小值是()A.B.C.D.二、填空题:本大题共6小题,每小题4分,共24分.把答案填在题中横线上.9.(4分)已知直线x﹣ay﹣1=0与直线y=ax平行,则实数a=.10.(4分)双曲线的两条渐近线方程为.11.(4分)已知椭圆上的点P到一个焦点的距离为3,则P到另一个焦点的距离为.12.(4分)已知椭圆C=1(a>b>0)的左右焦点分别为F1,F2,若等边△F1F2P的一个顶点P在椭圆C上,则椭圆C的离心率为.13.(4分)已知平面α⊥β,且α∩β=l,在l上有两点A,B,线段AC⊂α,线段BD⊂β,AC⊥l,BD⊥l,AB=4,AC=3,BD=12,则线段CD的长为.14.(4分)已知点,抛物线y2=2x的焦点为F,点P在抛物线上,且|AP|=|PF|,则|OP|=.三、解答题:本大题共4小题,共44分.解答应写出文字说明,证明过程或演算步骤.15.(10分)已知点A(0,2),圆O:x2+y2=1.(Ⅰ)求经过点A与圆O相切的直线方程;(Ⅱ)若点P是圆O上的动点,求的取值范围.16.(12分)已知直线l:y=x+t与椭圆C:x2+2y2=2交于A,B两点.(Ⅰ)求椭圆C的长轴长和焦点坐标;(Ⅱ)若|AB|=,求t的值.17.(12分)如图所示的几何体中,直线AF⊥平面ABCD,且ABCD为正方形,ADEF为梯形,DE∥AF,又AB=1,AF=2DE=2a.(Ⅰ)求证:直线CE∥平面ABF;(Ⅱ)求证:直线BD⊥平面ACF;(Ⅲ)若直线AE⊥CF,求a的值.18.(10分)已知椭圆,经过点A(0,3)的直线与椭圆交于P,Q两点.(Ⅰ)若|PO|=|PA|,求点P的坐标;(Ⅱ)若S△OAP=S△OPQ,求直线PQ的方程.北京市海淀区2019-2020学年上学期期末考试高二文科数学试卷参考答案一、选择题:本大题共8小题,每小题4分,共32分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(4分)直线x+y=2的倾斜角是()A.B.C.D.考点:直线的倾斜角.专题:直线与圆.分析:直线的倾斜角与斜率之间的关系解答:解:设倾斜角为θ,θ∈可得,解得m=4.故选:A.点评:本题考查椭圆的简单性质的应用,基本知识的考查.3.(4分)一个空间几何体的三视图如图所示,该几何体的体积为()A.8 B.C.D.6考点:由三视图求面积、体积.专题:计算题;空间位置关系与距离.分析:由已知中的三视图可得,该几何体为以俯视图为底面的四棱锥,求出底面面积和高,代入棱锥体积公式,可得答案.解答:解:由已知中的三视图可得,该几何体为以俯视图为底面的四棱锥,棱锥的底面面积S=2×2=4,棱锥的高h=2,故棱锥的体积V==,故选:B点评:本题考查三视图、三棱柱的体积,本试题考查了简单几何体的三视图的运用.培养同学们的空间想象能力和基本的运算能力.基础题.4.(4分)已知圆O:x2+y2=1,直线l:3x+4y﹣3=0,则直线l被圆O所截的弦长为()A.B.1 C.D.2考点:直线与圆相交的性质.专题:直线与圆.分析:根据直线和圆的位置关系结合弦长公式即可得到结论.解答:解:圆心到直线的距离d=,则直线l被圆O所截的弦长为==,故选:C点评:本题主要考查直线和圆相交的应用,根据圆心到直线的距离结合弦长公式是解决本题的关键.5.(4分)命题“∃k>0,使得直线y=kx﹣2的图象经过第一象限”的否定是()A.∃k>0,使得直线y=kx﹣2的图象不经过第一象限B.∃k≤0,使得直线y=kx﹣2的图象经过第一象限C.∀k>0,使得直线y=kx﹣2的图象不经过第一象限D.∀k≤0,使得直线y=kx﹣2的图象不经过第一象限考点:命题的否定.专题:简易逻辑.分析:根据特称命题的否定是全称命题即可得到结论.解答:解:命题为特称命题,则根据特称命题的否定是全称命题得命题的否定是∀k>0,使得直线y=kx﹣2的图象不经过第一象限,故选:C点评:本题主要考查含有量词的命题的否定,比较基础.6.(4分)已知等差数列{a n},则“a2>a1”是“数列{a n}为单调递增数列”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件考点:必要条件、充分条件与充要条件的判断.专题:等差数列与等比数列;简易逻辑.分析:根据充分条件和必要条件的定义进行判断即可.解答:解:在等差数列{a n}中,若a2>a1,则d>0,即数列{a n}为单调递增数列,若数列{a n}为单调递增数列,则a2>a1,成立,即“a2>a1”是“数列{a n}为单调递增数列”充分必要条件,故选:C.点评:本题主要考查充分条件和必要条件的判断,等差数列的性质是解决本题的关键.7.(4分)已知正四面体A﹣BCD的棱长为2,点E是AD的中点,则下面四个命题中正确的是()A.∀F∈BC,EF⊥AD B.∃F∈BC,EF⊥AC C.∀F∈BC,EF≥D.∃F∈BC,EF∥AC考点:棱锥的结构特征.专题:空间位置关系与距离.分析:由题意画出图形,利用线面垂直的判定判定AD⊥面BCE,由此说明A正确;由三垂线定理结合∠BEC为锐角三角形说明B错误;举例说明C错误;由平面的斜线与平面内直线的位置关系说明D错误.解答:解:如图,∵四面体A﹣BCD为正四面体,且E为AD的中点,∴BE⊥AD,CE⊥AD,又BE∩CE=E,∴AD⊥面BCE,则∀F∈BC,EF⊥AD,选项A正确;由AE⊥面BCE,∴AE⊥EF,若AC⊥EF,则CE⊥EF,∵∠BEC为锐角三角形,∴不存在F∈BC,使EF⊥AC,选项B错误;取BC中点F,可求得DF=,又DE=1,得EF=,选项C错误;AC是平面BCE的一条斜线,∴AC与平面BCE内直线的位置关系是相交或异面,选项D错误.故选:A.点评:本题考查了命题的真假判断与应用,考查了空间中直线与平面的位置关系,考查了线线垂直与线面平行的判定,考查了空间想象能力,是中档题.8.(4分)已知曲线W:+|y|=1,则曲线W上的点到原点距离的最小值是()A.B.C.D.考点:两点间距离公式的应用.专题:计算题;圆锥曲线的定义、性质与方程.分析:化简方程+|y|=1,得到x2=1﹣2|y|,作出曲线W的图形,通过图象观察,即可得到到原点距离的最小值.解答:解:+|y|=1即为=1﹣|y|,两边平方,可得x2+y2=1+y2﹣2|y|,即有x2=1﹣2|y|,作出曲线W的图形,如右:则由图象可得,O与点(0,)或(0,﹣)的距离最小,且为.故选A.点评:本题考查曲线方程的化简,考查两点的距离公式的运用,考查数形结合的思想方法,属于中档题.二、填空题:本大题共6小题,每小题4分,共24分.把答案填在题中横线上.9.(4分)已知直线x﹣ay﹣1=0与直线y=ax平行,则实数a=1或﹣1.考点:直线的一般式方程与直线的平行关系.专题:直线与圆.分析:由平行关系可得向量相等,排除截距相等即可.解答:解:当a=0时,第二个方程无意义,故a≠0,故直线x﹣ay﹣1=0可化为x﹣,由直线平行可得a=,解得a=±1故答案为:1或﹣1点评:本题考查直线的一般式方程和平行关系,属基础题.10.(4分)双曲线的两条渐近线方程为.考点:双曲线的简单性质.专题:圆锥曲线的定义、性质与方程.分析:先确定双曲线的焦点所在坐标轴,再确定双曲线的实轴长和虚轴长,最后确定双曲线的渐近线方程.解答:解:∵双曲线的a=4,b=3,焦点在x轴上而双曲线的渐近线方程为y=±x∴双曲线的渐近线方程为故答案为:点评:本题考查了双曲线的标准方程,双曲线的几何意义,特别是双曲线的渐近线方程,解题时要注意先定位,再定量的解题思想11.(4分)已知椭圆上的点P到一个焦点的距离为3,则P到另一个焦点的距离为7.考点:椭圆的定义.专题:计算题.分析:椭圆的长轴长为10,根据椭圆的定义,利用椭圆上的点P到一个焦点的距离为3,即可得到P到另一个焦点的距离.解答:解:椭圆的长轴长为10根据椭圆的定义,∵椭圆上的点P到一个焦点的距离为3∴P到另一个焦点的距离为10﹣3=7故答案为:7点评:本题考查椭圆的标准方程,考查椭圆的定义,属于基础题.12.(4分)已知椭圆C=1(a>b>0)的左右焦点分别为F1,F2,若等边△F1F2P的一个顶点P在椭圆C上,则椭圆C的离心率为.考点:椭圆的简单性质.专题:圆锥曲线的定义、性质与方程.分析:由题意和椭圆的对称性可得:点P是椭圆短轴上的顶点,由椭圆的性质即可求出椭圆C的离心率.解答:解:因为等边△F1F2P的一个顶点P在椭圆C上,如图:所以由椭圆的对称性可得:点P是椭圆短轴上的顶点,因为△F1F2P是等边三角形,所以a=2c,则=,即e=,故答案为:.点评:本题考查椭圆的简单几何性质的应用,解题的关键确定点P的位置,属于中档题.13.(4分)已知平面α⊥β,且α∩β=l,在l上有两点A,B,线段AC⊂α,线段BD⊂β,AC⊥l,BD⊥l,AB=4,AC=3,BD=12,则线段CD的长为13.考点:点、线、面间的距离计算.专题:计算题;空间位置关系与距离.分析:由于本题中的二面角是直角,且两线段都与棱垂直,可根据题意作出相应的长方体,CD恰好是此长方体的体对角线,由长方体的性质求出其长度即可.解答:解:如图,由于此题的二面角是直角,且线段AC,BD分别在α,β内垂直于棱l,AB=4,AC=3,BD=12,作出以线段AB,BD,AC为棱的长方体,CD即为长方体的对角线,由长方体的性质知,CD==13.故答案为:13.点评:本题考查与二面角有关的线段长度计算问题,根据本题的条件选择作出长方体,利用长方体的性质求线段的长度,大大简化了计算,具体解题中要注意此类问题的合理转化.14.(4分)已知点,抛物线y2=2x的焦点为F,点P在抛物线上,且|AP|=|PF|,则|OP|=.考点:椭圆的简单性质.专题:圆锥曲线的定义、性质与方程.分析:求得抛物线的焦点F,设P(m2,m),运用两点的距离公式,结合条件|AP|=|PF|,计算可得m,再由两点的距离公式计算即可得到结论.解答:解:抛物线y2=2x的焦点为F(,0),设P(m2,m),由|AP|=|PF|,可得|AP|2=2|PF|2,即有(m2+)2+m2=2,化简得m4﹣2m2+1=0,解得m2=1,即有|OP|===.故答案为:.点评:本题考查抛物线的方程和性质,主要考查抛物线的焦点坐标,同时考查两点的距离公式的运用,属于中档题.三、解答题:本大题共4小题,共44分.解答应写出文字说明,证明过程或演算步骤.15.(10分)已知点A(0,2),圆O:x2+y2=1.(Ⅰ)求经过点A与圆O相切的直线方程;(Ⅱ)若点P是圆O上的动点,求的取值范围.考点:直线和圆的方程的应用.专题:平面向量及应用;直线与圆.分析:(1)由已知中直线过点A我们可以设出直线的点斜式方程,然后化为一般式方程,代入点到直线距离公式,根据直线与圆相切,圆心到直线的距离等于半径,可以求出k值,进而得到直线的方程;(2)设出P点的坐标,借助坐标来表示两个向量的数量积,再根据P在圆上的条件,进而得到结论.解答:(本小题满分10分)解:( I)由题意,所求直线的斜率存在.设切线方程为y=kx+2,即kx﹣y+2=0,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(1分)所以圆心O到直线的距离为,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(3分)所以,解得,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(4分)所求直线方程为或.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(5分)( II)设点P(x,y),所以,,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(6分)所以.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(7分)因为点P在圆上,所以x2+y2=1,所以.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(8分)又因为x2+y2=1,所以﹣1≤y≤1,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(9分)所以.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(10分)点评:本题考查的知识是直线和圆的方程的应用,其中熟练掌握直线与圆不同位置关系时,点到直线的距离与半径的关系是关键,还考查了向量数量积的坐标表示.16.(12分)已知直线l:y=x+t与椭圆C:x2+2y2=2交于A,B两点.(Ⅰ)求椭圆C的长轴长和焦点坐标;(Ⅱ)若|AB|=,求t的值.考点:椭圆的简单性质.专题:圆锥曲线的定义、性质与方程.分析:(Ⅰ)求出椭圆的标准方程,即可求椭圆C的长轴长和焦点坐标;(Ⅱ)联立直线和椭圆方程转化为一元二次方程,结合弦长公式进行求解即可.解答:解:( I)因为x2+2y2=2,所以,所以,所以c=1,所以长轴为,焦点坐标分别为F1(﹣1,0),F2(1,0).( II)设点A(x1,y1),B(x2,y2).因为,消元化简得3x2+4tx+2t2﹣2=0,所以,所以,又因为,所以,解得t=±1.点评:本题主要考查椭圆方程的应用和性质,以及直线和椭圆相交的弦长公式的应用,转化一元二次方程是解决本题的关键.17.(12分)如图所示的几何体中,直线AF⊥平面ABCD,且ABCD为正方形,ADEF为梯形,DE∥AF,又AB=1,AF=2DE=2a.(Ⅰ)求证:直线CE∥平面ABF;(Ⅱ)求证:直线BD⊥平面ACF;(Ⅲ)若直线AE⊥CF,求a的值.考点:直线与平面垂直的判定;直线与平面平行的判定.专题:证明题;空间位置关系与距离.分析:(I)由AB∥CD,DE∥AF,且AB∩AF=A,CD∩DE=D,可证平面ABF∥平面DCE即可证明CE∥平面ABF.(II)先证明AC⊥BD,AF⊥BD,即可证明直线BD⊥平面ACF.(Ⅲ)连接 FD,易证明CD⊥AE.又AE⊥CF,可证AE⊥FD.从而可得,即有,即可解得a的值.解答:(本小题满分12分)解:( I)因为ABCD为正方形,所以AB∥CD.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(1分)又DE∥AF,且AB∩AF=A,CD∩DE=D.所以平面ABF∥平面DCE.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(3分)而CE⊂平面EDC,所以CE∥平面ABF.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(4分)(II)因为ABCD为正方形,所以AC⊥BD﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(5分)因为直线AF⊥平面ABCD,所以AF⊥BD,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(6分)因为AF∩AC=A,所以直线BD⊥平面ACF.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(8分)(Ⅲ)连接 FD.因为直线AF⊥平面ABCD,所以AF⊥CD,又CD⊥AD,AD∩AF=A所以CD⊥平面ADEF,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(9分)所以CD⊥AE.又AE⊥CF,FC∩CD=C,所以AE⊥平面FCD,所以AE⊥FD.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(11分)所以,所以==解得.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(12分).点评:本题主要考察了直线与平面垂直的判定,直线与平面平行的判定,考察了转化思想,属于中档题.18.(10分)已知椭圆,经过点A(0,3)的直线与椭圆交于P,Q两点.(Ⅰ)若|PO|=|PA|,求点P的坐标;(Ⅱ)若S△OAP=S△OPQ,求直线PQ的方程.考点:椭圆的简单性质.专题:圆锥曲线的定义、性质与方程.分析:(Ⅰ)由|PO|=|PA|,得P在OA的中垂线上,求出中垂线方程,代入椭圆方程进行求解即可求点P 的坐标;(Ⅱ)求出直线方程,联立直线和椭圆方程,转化为一元二次方程,结合三角形面积之间的关系即可得到结论.解答:解:( I)设点P(x1,y1),由题意|PO|=|PA|,所以点P在OA的中垂线上,而OA的中垂线为,所以有.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(2分)把其代入椭圆方程,求得x1=±1.所以或.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(4分)(II)设Q(x2,y2).根据题意,直线PQ的斜率存在,设直线PQ的方程为y=kx+3,所以.消元得到(3+4k2)x2+24kx+24=0,所以﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(6分)因为S△OAP=S△OPQ,所以S△OAQ=2S△OPQ,即﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(7分)所以有|x1|=2|x2|,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(8分)因为,所以x1,x2同号,所以x1=2x2.所以,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(9分)解方程组得到,经检验,此时△>0,所以直线PQ的方程为,或.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(10分)法二:设Q(x2,y2),因为S△OAP=S△OPQ,所以|AP|=|PQ|.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(6分)即点P为线段OQ的中点,所以x2=2x1,y2=2y1﹣3.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(7分)把点P,Q的坐标代入椭圆方程得到﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(8分)解方程组得到或者,即,或者.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(9分)所以直线PQ的斜率为或者,所以直线PQ的方程为,.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(10分)点评:本题主要考查椭圆方程的应用和性质,直线和椭圆相交的性质,利用设而不求的思想是解决本题的关键.考查学生的运算能力.。

2019-2020年高二上学期期末联考数学(文)试题 含答案

2019-2020年高二上学期期末联考数学(文)试题 含答案

xx 学年度高xx 级上期过程性调研抽测数学试题(文科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分,考试时间120分钟.2019-2020年高二上学期期末联考数学(文)试题 含答案注意事项:1.答题前,务必将自己的姓名、准考证号填写在答题卡规定的位置上。

2.答选择题时,必须使用2B 铅笔将答题卡上对应题目的答案标号涂黑,若需改动,用橡皮擦擦干净后,再选择其他答案标号。

3.答非选择题时,必须使用0.5毫米黑色签字笔,将答案书写在答题卡规定的位置上。

4.所有题目必须在答题卡上作答,在试题卷上答题无效。

参考公式:球的表面积公式: 柱体的体积公式:球的体积公式: 锥体的体积公式 :棱台的体积公式一、选择题:本大题10个小题,每小题5分,共50分,在每小题给出的四个备选项中,只有一项是符合题目要求的.1.已知圆,则圆心坐标是( )2.抛物线的准线方程是( )3. 曲线在点P(1,12)处的切线与y 轴交点的纵坐标是A. -9B. -3C.15D. 94.已知直线l:则过点且与直线l 平行的直线方程是( )5.“直线l 与平面内无数条直线都垂直”是“直线l 与平面垂直”的( )条件. 充要 充分非必要 必要非充分 既非充分又非必要6.已知某几何体的俯视图是如图所示的矩形,正视图(或称主视图)是一个底边长为8,高为4的等腰三角形,侧视图(或称左视图)是一个底边长为6,高为4的等腰三角形,则该几何体的体积为( )7.若直线与圆相离,则点与圆的位置关系是( )在圆上 在圆外 在圆内 以上都有可能8. 已知函数,其导函数的图象如图所示,则( )A .在上为减函数B .在处取极小值C .在上为减函数D.在处取极大值9.设是空间不同的直线,是空间不同的平面①则// ; ②//,则//;③则//; ④则//.以上结论正确的是()①②①④③④②③10.一个圆形纸片,圆心为为圆内一定点,是圆周上一动点,把纸片折叠使点与点重合,然后抹平纸片,折痕为,设与交与点,则点的轨迹是()双曲线椭圆抛物线圆第Ⅱ卷(非选择题,共100分)二、填空题:本大题5个小题,每小题5分,共25分,把答案填写在答题卡相应位置上.11.已知双曲线,则它的渐近线方程是.12.已知椭圆,则它的离心率为 .13.已知则 .14.如右图是一个几何体的三视图,俯视图是顶角为120度的等腰三角形,则这个几何体的表面积为.15.已知直线与圆交于两点,且(其中为坐标原点),则实数等于 .三、解答题:本大题6个小题,共75分,解答应写出必要的文字说明、演算步骤或推理过程,并答在答题卡相应位置上.16(本大题满分13分)已知直线过两直线和的交点.求解下列问题.(1)直线经过点,求直线的方程;(2)直线与直线垂直,求直线的方程.17.(本大题满分13分)已知命题命题若命题“且”是真命题,求实数的取值范围.第19题图C 1B 1A 1C BA 18.(本大题满分13分)已知函数.(1)求的单调递减区间.(2)若在区间上的最大值为,求它在该区间上的最小值.19.(本大题满分12分)直三棱柱中,.(Ⅰ)求证:平面; (Ⅱ)求三棱锥的体积.20.(本大题满分12分)已知22x f (x)(x ax 2a 3a)e (x R,a R)=+-+∈∈.时,求曲线在处的切线的斜率.当时,求函数的极值.21.(本大题满分12分)若分别是椭圆的左、右焦点.(1)设点是第一象限内椭圆上的点,且求点的坐标.(2)设过定点的直线l 与椭圆交于不同的点且,(其中为原点),求直线l 的斜率k 的取值范围.数学参考答案及评分意见一、选择题:1—5 A B D D C : 6—10 B C C A B二、填空题:11.; 12.; 13.; 14. ; 15.三、解答题:16.解:(1)由···········3分所求直线方程为:···············7分(2)设所求直线方程为:············8分又过P(0,2) ······················10分直线方程为:················13分17.解:由命题可知: ···········5分由命题可知:····9分···································11分又是真命题··································13分18.解:(1)'22f (x)3x 6x 93(x 2x 3)3(x 3)(x 1)=-++=---=--+······3分 ························5分减区间为························7分(2)由(1)知,在上单调递减 上单调递增·········10分···············12分····································13分19.解:(Ⅰ)直三棱柱中,,又可知,………………………2分由于,则由可知,,…………………… 4分则所以有平面 ……………………………………………6分(Ⅱ)直三棱柱中,,…………………….8分因为,所以ABC 面积为................10分.............12分20.解:(1)时,2x '2x 'f (x)x e ,f (x)(x 2x)e ,f (1)3e ==+=在处的切线斜率为3e ················3分(2)令得················4分①当时,得:f(x)在为增函数在为减函数··········6分极大值f(x)极小值············8分②当时,得在上为增函数,在上为减函数········10分极大值极小值··············12分21.解:(1)易知12a 2,b 1,c F (==∴设则22125PF PF (x,x,y)x y 34=---=+-=-,又········3分 联立得 解得,·················5分(2)显然不满足题设条件,可设l 的方程为设联立得 ··················7分 ··················8分由△222(16k)412(14k )04k 30,=-⋅⋅+>⇒->得··············9分 又·················10分 212121212y y (kx 2)(kx 2)k x x 2k(x x )4=++=+++2222121211222212(1k )2k 16k 4(4k )x x y y (1k )x x 2k(x x )440,14k 14k 14k +-∴+=++++=-+=>+++综上可得的取值范围是·····12分。

2019-2020学年河南省焦作市高二(上)期末数学试卷(文科)

2019-2020学年河南省焦作市高二(上)期末数学试卷(文科)

2019-2020学年河南省焦作市高二(上)期末数学试卷(文科)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合|02x A x Z x ⎧⎫=∈⎨⎬+⎩⎭„,则集合A 子集的个数为( )A .3B .4C .7D .82.(5分)设命题:1p x ∀…,516x +…,则p ⌝为( )A .1x ∃<,516x +<B .1x ∀…,516x +<C .1x ∀<,516x +…D .1x ∃…,516x +< 3.(5分)记等差数列{}n a 的前n 项和为n S ,已知33S =,21S =,则5(S = ) A .52B .5C .10D .204.(5分)执行如图所示的算法流程图,则输出的S 的值为( )A .9B .27C .81D .7295.(5分)某公司有240名员工,编号依次为001,002,..,240,现采用系统抽样方法抽取一个容量为30的样木,且随机抽得的编号为004.若这240名员工中编号为001~100的在研发部.编号为101210-的在销售部、编号为211~240的在后勤部,则这三个部门被抽中的员工人数依次为( ) A .12,14,4B .13,14,3C .13,13,4D .12,15,36.(5分)在区间(,)a b 上,初等函数()f x 存在极大值是其存在最大值的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件7.(5分)已知函数()2sin 2x xf x k π=++,若函数()f x 在(1,1)-上存在零点,则实数k 的取值范围是( ) A .(2,2)-B .(1,2)-C .1(3,)2-D .3(0,)28.(5分)已知在正方1111ABCD A B C D -体中,P ,Q 分别为11A B ,1CC 的中点,则异面直线1B C 和PQ 所成的角为( ) A .6πB .4π C .3π D .2π 9.(5分)已知双曲线222:1(0)x C y a a-=>与圆224x y +=恰好有2个不同的公共点,F 是双曲线C 的右焦点,过点F 的直线与圆224x y +=切于点A ,则A 到C 左焦点的距离为()A B C D 10.(5分)在ABC ∆中,D 是线段AB 上靠近B 的三等分点,E 是线段AC 的中点,BE 与CD 交于F 点,若AF aAB bAC =+u u u r u u u r u u u r,则a ,b 的值分别为( )A .11,24B .11,42C .11,35D .11,2311.(5分)欲制作一个容积为V 的圆柱形蓄水罐(无盖),为能使所用的材料最省,它的底面半径应为( )A .VπB C D 12.(5分)已知椭圆2222:1(0)x y C a b a b+=>>的右焦点F 和坐标原点O 是某正方形的两个顶点,若该正方形至少有一个顶点在椭圆C 上,则椭圆C 的离心率不可能为( )A B C .2D 二、填空题:本题共4小题,每小题5分,共20分. 13.(5分)计算:cos570︒= .14.(5分)如图.将一个圆周进行6等分1A ,2A ,3A ,4A ,5A ,6A ,得到分点,先在从2OA ,3OA ,4OA ,5OA ,6OA 这5个半径中任意取1个,若1[0i AOA ∠∈,](2i π=,3,4,5,6),则13sin i A OA ∠=的概率为 .15.(5分)已知函数2()44f x x x =--.若()1f x <在区间(1,2)m m --上恒成立.则实数m 的取值范围是 .16.(5分)已知直线0x y b -+=与曲线2y x lnx =-和曲线296y ax x a =++-均相切,则a = .三、解答题:共70分.解答应写出文字说明,证明过程或演算步骤.17.(10分)设函数2()()f x x bx b Z =+∈,不等式()0f x <的解集中恰有两个正整数. (1)求()f x 的解析式;(2)若1m >,不等式()f x m „在[1x ∈,]m 时恒成立,求实数m 的取值范围. 18.(12分)记数列{}n a 的前n 项和为n S ,已知*1()4n n S a n N =-∈. (1)求数列{}n a 的通项公式;(2)设2log n n b a =,数列{}n b 的前n 项和为n T ,求满足25n T -„的n 的最小值. 19.(12分)在ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c ,已知sin 3cos 0A Ba =. (1)求B 的大小;(2)若3b =,求ABC ∆面积的最大值.20.(12分)如图,在平行六面体1111ABCD A B C D -中,底面ABCD 为菱形,1AC 和1BD 相交于点O ,E 为1CC 的中点. (Ⅰ)求证://OE 平面ABCD ;(Ⅱ)若平面11BDD B ⊥平面ABCD ,求证:1D E BE =.21.(12分)如图,在平面直角坐标系xOy 中,抛物线2:2(0)C x py p =>与圆O 的一个交点为3(,1)R . (Ⅰ)求抛物线C 及圆O 的方程;(Ⅱ)设直线l 与圆O 相切于点R ,与抛物线C 交于A ,R 两点,求OAR ∆的面积.22.(12分)已知函数2()()f x x ax lnx =+,a R ∈.(Ⅰ)若()f x 的图象在1x =处的切线经过点(0,2)-,求a 的值; (Ⅱ)当21x e <<时,不等式2()f x x <恒成立,求a 的取值范围.2019-2020学年河南省焦作市高二(上)期末数学试卷(文科)参考答案与试题解析一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合|02x A x Z x ⎧⎫=∈⎨⎬+⎩⎭„,则集合A 子集的个数为( )A .3B .4C .7D .8【解答】解:|0{12x A x Z x ⎧⎫=∈=-⎨⎬+⎩⎭„,0},则集合A 子集的个数为4, 故选:B .2.(5分)设命题:1p x ∀…,516x +…,则p ⌝为( )A .1x ∃<,516x +<B .1x ∀…,516x +<C .1x ∀<,516x +…D .1x ∃…,516x +< 【解答】解:命题的全称命题,则否定是特称命题,即1x ∃…,516x +<, 故选:D .3.(5分)记等差数列{}n a 的前n 项和为n S ,已知33S =,21S =,则5(S = ) A .52B .5C .10D .20【解答】解:依题意,得3232S S a -==, 则15355()521022a a a S +⨯===. 故选:C .4.(5分)执行如图所示的算法流程图,则输出的S 的值为( )A .9B .27C .81D .729【解答】解:模拟程序的运行过程,可知;1S =,1i =; 3S =,3i =; 9S =,5i =; 27S =,7i =;此时退出循环,所以输出的S 值为27. 故选:B .5.(5分)某公司有240名员工,编号依次为001,002,..,240,现采用系统抽样方法抽取一个容量为30的样木,且随机抽得的编号为004.若这240名员工中编号为001~100的在研发部.编号为101210-的在销售部、编号为211~240的在后勤部,则这三个部门被抽中的员工人数依次为( ) A .12,14,4B .13,14,3C .13,13,4D .12,15,3【解答】解:依题意可知,被抽中的员工编号构成以4为首项,以8为公差的等差数列,通项为84(1k k -=,2,⋯,30).由84100k -„,得*13()k k N ∈„,由10184210k -剟,得*1426()k k N ∈剟,所以被抽中的员工研发部有13人,销售部有13人,后勤部有4人,故选:C .6.(5分)在区间(,)a b 上,初等函数()f x 存在极大值是其存在最大值的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分又不必要条件【解答】解:初等函数()f x 在区间(,)a b 存在极大值推不出其在区间(,)a b 存在最大值,所以不充分;若初等函数()f x 在区间(,)a b 存在最大值,则其在区间(,)a b 必存在极大值,所以是必要的. ∴在区间(,)a b 上,初等函数()f x 存在极大值是其存在最大值的必要不充分条件.故选:B .7.(5分)已知函数()2sin 2x xf x k π=++,若函数()f x 在(1,1)-上存在零点,则实数k 的取值范围是( ) A .(2,2)-B .(1,2)-C .1(3,)2-D .3(0,)2【解答】解:因为()2sin2x xf x k π=++在(1,1)-上单调递增,所以由零点存在定理得,函数()f x 在(1,1)-存在零点等价于解得132k -<<, 所以实数k 的取值范围是1(3,)2-.故选:C .8.(5分)已知在正方1111ABCD A B C D -体中,P ,Q 分别为11A B ,1CC 的中点,则异面直线1B C 和PQ 所成的角为( ) A .6πB .4π C .3π D .2π 【解答】解:取11C B 的中点为R ,连接PR ,QR .因为Q 为1CC 的中点,所以1//RQ B C , 所以异面直线1B C 和PQ 所成角为PQR ∠或其补角.设正方体的棱长为2,经过计算可得,PR RQ PQ ===所以cosPQR ∠==所以6PQR π∠=.故选:A .9.(5分)已知双曲线222:1(0)x C y a a -=>与圆224x y +=恰好有2个不同的公共点,F 是双曲线C 的右焦点,过点F 的直线与圆224x y +=切于点A ,则A 到C 左焦点的距离为() A .3B .45C .5D .17【解答】解:因为双曲线222:1(0)x C y a a-=>与圆224x y +=恰好有2个不同的公共点,所以24a =.因为过F 点的直线与圆224x y +=切于A 点,所以22||||||541AF OF OA =-=-=.过A 作AB x ⊥轴于B ,则||,||(55AB OB O==为坐标原点),所以A 到左焦点的距离为2224()(5)1755++=.故选:D .10.(5分)在ABC ∆中,D 是线段AB 上靠近B 的三等分点,E 是线段AC 的中点,BE 与CD 交于F 点,若AF aAB bAC =+u u u r u u u r u u u r,则a ,b 的值分别为( )A .11,24B .11,42C .11,35D .11,23【解答】解:取AD 的中点为G ,连接GE .由已知得//GE CD ,所以//DF EG ,又因为D 是GB 的中点,所以F 是BE 的中点,所以11111()()22224AF AB AE AB AC AB AC =+=+=+u u u r u u u r u u u r u u u r u u u r u u ur u u u r .12a ∴=,14b =. 故选:A .11.(5分)欲制作一个容积为V 的圆柱形蓄水罐(无盖),为能使所用的材料最省,它的底面半径应为( )A .VπB C D 【解答】解:设圆柱的底面半径为r ,高为h ,表面积为y , 则由题意有2r h V π=,所以2V h r π=. 水罐的表面积2222222(0)V V y r rh r rr r r rππππππ=+=+=+>.令32222()20V r V y r r r ππ-'=-==,得r =r =所用的材料最省. 故选:C .12.(5分)已知椭圆2222:1(0)x y C a b a b+=>>的右焦点F 和坐标原点O 是某正方形的两个顶点,若该正方形至少有一个顶点在椭圆C 上,则椭圆C 的离心率不可能为( )A B C D 【解答】解:如图所示,椭圆C 有1C ,2C ,3C 三种情况. 不妨设点(2,0)F ,则222244,b a e a =-=,①对于1C ,点(2,2)在椭圆上,则224414a a +=-,解得26a =±,由题知24a >,所以26a =+,则2e ==因为2=B 项符合.②对于2C ,点(0,2)在椭圆上,2,b a ==,所以e C =项符合,③对于3C ,点(1,1)在椭圆上,则221114a a +=-,解得235a =±, 因为24a >,所以235a =+,则243535e ==-+,D 项符合.故选:A .二、填空题:本题共4小题,每小题5分,共20分. 13.(5分)计算:cos570︒= 3-. 【解答】解:3cos570cos(720150)cos150cos30︒=︒-︒=︒=-︒=-. 故答案为:3-. 14.(5分)如图.将一个圆周进行6等分1A ,2A ,3A ,4A ,5A ,6A ,得到分点,先在从2OA ,3OA ,4OA ,5OA ,6OA 这5个半径中任意取1个,若1[0i AOA ∠∈,](2i π=,3,4,5,6),则13sin i A OA ∠=的概率为 45.【解答】解:因为1[0i AOA ∠∈,](2i π=,3,4,5,136),sin i AOA ∠, 所以11233i i AOA AOA ππ∠=∠=或, 从2OA ,3OA ,4OA ,5OA ,6OA 这5个半径中任意取1个,得到5个不同的基本事件: 12A OA ∠,13AOA ∠,14A OA ∠,15AOA ∠,16A OA ∠,其中1213151622,,,3333AOA AOA AOA AOA ππππ∠=∠=∠=∠=,根据古典概率的计算公式得1sin i A OA ∠=45. 故答案为:45. 15.(5分)已知函数2()44f x x x =--.若()1f x <在区间(1,2)m m --上恒成立.则实数m的取值范围是 [0,1)3.【解答】解:因为2()44f x x x =--, 所以2()145015f x x x x <⇔--<⇔-<<, 即解集为(1,5)-.因为()1f x <在区间(1,2)m m --上恒成立, 所以(1m -,2)(1m -⊆-,5),所以1125m m --<-剟,且两个等号不同时成立, 所以103m <…, 故答案为:1[0,)3.16.(5分)已知直线0x y b -+=与曲线2y x lnx =-和曲线296y ax x a =++-均相切,则a =2-或8 .【解答】解:直线0x y b -+=的斜率为1,设2()f x x lnx =-,则1()2(0)f x x x x'=->.令()1f x '=得1x =,所以直线0x y b -+=与曲线2y x lnx =-的切点为(1,1),所以0b =. 将y x =代入296y ax x a =++-,得2860ax x a ++-=.因为直线与曲线相切,所以△644(6)0a a =--=,解得2a =-或8. 故答案为:2-或8.三、解答题:共70分.解答应写出文字说明,证明过程或演算步骤.17.(10分)设函数2()()f x x bx b Z =+∈,不等式()0f x <的解集中恰有两个正整数. (1)求()f x 的解析式;(2)若1m >,不等式()f x m „在[1x ∈,]m 时恒成立,求实数m 的取值范围. 【解答】解:(1)由题可知,不等式()0f x <的解集包含1和2两个正整数, 故解集为{|03}x x <<,所以()0f x =的根为0和3, 由930b +=得3b =-, 所以2()3f x x x =-;(2)因为不等式()f x m „在[1x ∈,]m 时恒成立, 所以在[1x ∈,]m 上,()min f x m „成立, 所以f (1)m „且()f m m „, 所以2m -„且23m m m -„. 解得04m 剟.又1m >,所以14m <„,所以实数m 的取值范围为(1,4].18.(12分)记数列{}n a 的前n 项和为n S ,已知*1()4n n S a n N =-∈. (1)求数列{}n a 的通项公式;(2)设2log n n b a =,数列{}n b 的前n 项和为n T ,求满足25n T -„的n 的最小值. 【解答】解:(1)因为1114S a =-,所以1114a a =-,所以118a =, 因为14n n S a =-,所以1114n n S a ++=- 所以111144n n n n S S a a ++-=--+ 所以11n n n a a a ++=-,易知0n a ≠,所以112n n a a += 所以数列{}n a 是首项为18,公比为12的等比数列.所以12111()822n n n a -+=⨯=.(2)由(1)得2log 2n n b a n ==--,所以22(32)552525222n n n n n n n nT T ---++==--⇔--剟,即25500n n +-…又因*n N ∈,所以可得5n ….所以满足25n T -„的n 的最小值为5.19.(12分)在ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c ,已知sin 3cos 0A Ba +=. (1)求B 的大小;(2)若3b =,求ABC ∆面积的最大值. 【解答】解:(1)由正弦定理及sin 3cos 0A Ba +=, 得sin 3cos sin A BA =-, 所以tan 3B =-, 又因为(0,)B π∈, 所以23B π=. (2)由余弦定理,得2222cos b a c ac B =+-,即229a c ac =++, 因为22923a c ac ac ac ac =+++=…,所以当且仅当3a c ==时,ac 取得最大值3. 此时,ABC ∆的面积133sin 2S ac B ==,所以ABC ∆的面积的最大值为33. 20.(12分)如图,在平行六面体1111ABCD A B C D -中,底面ABCD 为菱形,1AC 和1BD 相交于点O ,E 为1CC 的中点. (Ⅰ)求证://OE 平面ABCD ;(Ⅱ)若平面11BDD B ⊥平面ABCD ,求证:1D E BE =.【解答】解:(Ⅰ)如图,连接AC .因为11//AB C D ,11AB C D =,所以1AC ,1BD 相互平分,所以O 为1BD 和1AC 的中点.又因为E 为1CC 的中点,所以OE 为1ACC ∆的中位线,所以//OE AC . 又因为OE ⊂/平面ABCD ,AC ⊂平面ABCD , 所以//OE 平面ABCD .(Ⅱ)因为四边形ABCD 为菱形,所以AC BD ⊥.因为平面11BDD B ⊥平面ABCD ,平面11BDD B ⋂平面ABCD BD =,AC ⊂平面ABCD ,所以AC ⊥平面11BDD B .因为1BD ⊂平面11BDD B ,所以1AC BD ⊥. 又因//OE AC ,所以1OE BD ⊥. 因为1OB OD =,所以1D E BE =.21.(12分)如图,在平面直角坐标系xOy 中,抛物线2:2(0)C x py p =>与圆O 的一个交点为3(,1)R . (Ⅰ)求抛物线C 及圆O 的方程;(Ⅱ)设直线l 与圆O 相切于点R ,与抛物线C 交于A ,R 两点,求OAR ∆的面积.【解答】解:(Ⅰ)因为抛物线C 与圆O 的一个交点为3(,1)R , 所以23()21p =g ,所以123p =,即抛物线C 的方程为213x y =. 设圆O 的方程为222(0)x y r r +=>,所以2223()1r +=, 所以243r =,即圆O 的方程为2243x y +=. (Ⅱ)由题意得33oR k ==.因为AR 是圆O 的切线,所以OR AR ⊥,所以3AR k =-. 所以直线AR 的方程为331()y x -=--,即343y x =-+. 由343y x =-+与213x y =联立消去y 得29340x x +-=,则△1470=>. 设点A 和点R 的横坐标分别为A x ,R x . 则3A R x x +=-,49A R x x =-. 所以2223231614||1()||()4()399933A R A R A R AR x x x x x x =+--=+-=-+=g g . 所以OAR ∆的面积1114143||||2293S AR OR ==⨯⨯=g .22.(12分)已知函数2()()f x x ax lnx =+,a R ∈.(Ⅰ)若()f x 的图象在1x =处的切线经过点(0,2)-,求a 的值;(Ⅱ)当21x e <<时,不等式2()f x x <恒成立,求a 的取值范围. 【解答】解:(Ⅰ)由题知()f x 的定义域为(0,)+∞.()(2)f x x a lnx x a '=+++,则f '(1)1a =+. 又因为f (1)0=,所以切点为(1,0). 所以02110a +=+-, 解得1a =.(Ⅱ)当21x e <<时,02lnx <<. 由22()x ax lnx x +<可得xa x lnx <-. ()xg x x lnx=-,则2221()1()1()()lnx lnx lnx g x lnx lnx --+'=-=-. 因为2213()1()024lnx lnx lnx -+=-+>,所以()0g x '<.所以()g x 在2(1,)e 上单调递减,从而22()()2e g x g e >=-.要使原不等式恒成立,即()a g x <恒成立,故22e a -….即a 的取值范围为2(,]2e -∞-.。

2019-2020年高二上学期期末考试数学(文)试题含答案

2019-2020年高二上学期期末考试数学(文)试题含答案

2019-2020年高二上学期期末考试数学(文)试题含答案一、选择题:(本大题共10个小题,每题5分,共50分.每题只有一个正确答案)1、已知,则等于( )A. B. C. D.2、三视图如右图的几何体是( )A.三棱锥B.四棱锥C.四棱台D.三棱台3、下列说法中正确的是( )A.一个命题的逆命题为真,则它的逆否命题一定为真B. “a>b”与“a+c>b+c”不等价C.“a2+b2=0,则a,b全为0”的逆否命题是“若a、b全不为0,则a2+b2≠0”D.一个命题的否命题为真,则它的逆命题一定为真4、下列说法中正确的是( )A.平行于同一直线的两个平面平行 B.垂直于同一平面的两个平面平行C.平行于同一直线的两条直线平行 D.垂直于同一平面的两个平面垂直5、设,则“直线与直线平行”是“”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件6、设命题:方程的两根符号不同;命题:方程的两根之和为3,判断命题“非”、“非”、“或”、“且”为假命题的个数为( )A.0 B.1 C.2 D.37、如图,点P是球O的直径AB上的动点,PA=x,过点P且与AB垂直的截面面积记为y,则y=f(x)的大致图象是( )8、函数的最大值是( )A.1B.C. D.9、如图,在正方体中,分别为,,,的中点,则异面直线与所成的角等于( )G A.45°B.60°C.90° D.120°10、已知点在曲线上,为曲线在点处切线的倾斜角,则的取值范围是( )A.[0,)B.C.D.第II卷(非选择题)二、选择题:(本大题共5个小题,每题5分,共25分.请将答案填在横线上)11、_________..12、命题“存在R,0”的否定是_________________.13、函数在处的切线方程是 .14、直线与函数的图象有相异的三个公共点,则的取值范围是______.15、长方体ABCD—A1B1C1D1中,AB=2,BC=3,AA1=5,则一只小虫从A点沿长方体的表面爬到C1点的最短距离是 .三、解答题:(本大题共6小题,共75分.解答应写出必要的文字说明,证明过程或演算步骤)16、设和是函数的两个极值点.(1)求a,b的值(2)求的单调区间.17、命题实数满足(其中),命题实数满足若是的充分不必要条件,求实数的取值范围.18、如图,在直三棱柱中,,,且是中点.(I)求证:;(Ⅱ)求证:平面.19、已知函数,且在点处的切线垂直于轴.(1)求实数的值;(2)求在区间上的最大值和最小值。

2019-2020年高二上学期期末数学试卷(文科) 含解析

2019-2020年高二上学期期末数学试卷(文科) 含解析

2019-2020年高二上学期期末数学试卷(文科)含解析一、选择题(本大题共12小题,每小题3分,共36分)1.如果命题“非p”是真命题,同时命题“p或q”是真命题,那么下列命题中,一定是真命题的是()A.q B.p C.非q D.p且q2.椭圆=1的离心率为()A.B.C.D.3.双曲线的焦点坐标为()A.(,0)B.(0,)C.(,0)D.(0,)4.给出下列五个导数式:①(x4)′=4x3;②(cosx)′=sinx;③(2x)′=2x ln2;④;⑤.其中正确的导数式共有()A.2个B.3个C.4个D.5个5.如图所示的程序框图,其输出结果是()A.341 B.1364 C.1365 D.13666.设抛物线y2=8x上一点P到y轴的距离是4,则点P到该抛物线焦点的距离是()A.4 B.6 C.8 D.127.若曲线y=x2+ax+b在点(0,1)处的切线方程是x﹣y+1=0,则()A.a=﹣1,b=﹣1 B.a=﹣1,b=1 C.a=1,b=﹣1 D.a=1,b=18.过点(0,2)与抛物线y2=8x只有一个公共点的直线有()A.无数多条 B.3条C.2条D.1条9.x2<1是﹣1<x<1的什么条件()A.充分必要条件 B.必要不充分条件C.充分不必要条件D.既不充分与不必要10.曲线y=e x在点A(0,1)处的切线斜率为()A.1 B.2 C.e D.11.过抛物线y2=x(a>0)的焦点F的一直线交抛物线于P、Q两点,若线段PF与FQ的长分别是p、q,则+等于()A.2a B.C.4a D.12.已知点F1,F2分别是双曲线的左、右焦点,过F1且垂直于x轴的直线与双曲线交于A,B两点,若△ABF2是锐角三角形,则该双曲线离心率的取值范围是()A.B.C. D.二、填空题(本大题共5小题,每小题4分,共20分)13.已知命题p:∀x∈R,sinx≤1,则¬p为.14.在某项才艺竞赛中,有9位评委,主办单位规定计算参赛者比赛成绩的规则如下:剔除评委中的一个最高分和一个最低分后,再计算其它7位评委的平均分作为此参赛者的比赛成绩.现有一位参赛者所获9位评委一个最高分为86分、一个最低分为45分,若未剔除最高分与最低分时9位评委的平均分为76分,则这位参赛者的比赛成绩为分.15.命题:“方程x2=2的解是”中使用了逻辑联结词.(填写“或、且、非”)16.若抛物线x2=2py(p>0)的焦点在圆x2+y2+2x﹣1=0上,则这条抛物线的准线方程为.17.对于函数f(x)=ax3,(a≠0)有以下说法:①x=0是f(x)的极值点.②当a<0时,f(x)在(﹣∞,+∞)上是减函数.③f(x)的图象与(1,f(1))处的切线必相交于另一点.④若a>0且x≠0则f(x)+f()有最小值是2a.其中说法正确的序号是.三、解答题(本大题共4小题,共44分)18.已知a>0,a≠1,设p:函数y=log a x在(0,+∞)上单调递减,q:曲线y=x2+(2a﹣3)x+1与x轴交于不同的两点.若“p且q”为假,“﹁q”为假,求a的取值范围.19.曲线C的方程:(1)当m为何值时,曲线C表示焦点在x轴上的椭圆?(2)当m为何值时,曲线C表示双曲线?20.求函数f(x)=x5+5x4+5x3+1在区间[﹣1,4]上的最大值与最小值.21.已知椭圆(a>b>0)的离心率为,短轴的一个端点为M(0,1),过椭圆左顶点A的直线l与椭圆的另一交点为B.(Ⅰ)若l与直线x=a交于点P,求•的值;(Ⅱ)若|AB|=,求直线l的倾斜角.2015-2016学年陕西省西安一中高二(上)期末数学试卷(文科)参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分)1.如果命题“非p”是真命题,同时命题“p或q”是真命题,那么下列命题中,一定是真命题的是()A.q B.p C.非q D.p且q【考点】命题的真假判断与应用.【分析】由命题“非p”是真命题,知命题p是假命题,再由命题“p或q”是真命题,知命题q 一定是真命题.【解答】解:∵命题“非p”是真命题,∴命题p是假命题,∵命题“p或q”是真命题,∴命题q一定是真命题.故选A.2.椭圆=1的离心率为()A.B.C.D.【考点】椭圆的简单性质.【分析】根据椭圆的方程,可得a、b的值,结合椭圆的性质,可得c的值,有椭圆的离心率公式,计算可得答案.【解答】解:根据椭圆的方程=1,可得a=4,b=2,则c==2;则椭圆的离心率为e==,故选D.3.双曲线的焦点坐标为()A.(,0)B.(0,)C.(,0)D.(0,)【考点】双曲线的简单性质.【分析】根据双曲线方程得出a、b的值,从而得到c==,因此可得该双曲线的焦点坐标.【解答】解:∵双曲线的方程为,∴a2=4,b2=1,可得c==由此可得双曲线的焦点坐标为(±,0)故选:C4.给出下列五个导数式:①(x4)′=4x3;②(cosx)′=sinx;③(2x)′=2x ln2;④;⑤.其中正确的导数式共有()A.2个B.3个C.4个D.5个【考点】导数的运算.【分析】根据导数的基本公式求导,再判断即可.【解答】解:①(x4)′=4x3;②(cosx)′=﹣sinx;③(2x)′=2x ln2;④(lnx)′=;⑤()′=﹣,故①②正确,故选:A.5.如图所示的程序框图,其输出结果是()A.341 B.1364 C.1365 D.1366【考点】循环结构.【分析】写出前几次循环,直到不满足判断框中的条件,执行输出.【解答】解:由框图知,经过第一次循环得到a=5经过第二次循环得到a=21经过第三次循环得到a=85经过第四次循环得到a=341经过第五次循环得到a=1365不满足判断框的条件,执行输出1365故选C6.设抛物线y2=8x上一点P到y轴的距离是4,则点P到该抛物线焦点的距离是()A.4 B.6 C.8 D.12【考点】抛物线的定义.【分析】先根据抛物线的方程求得抛物线的准线方程,根据点P到y轴的距离求得点到准线的距离进而利用抛物线的定义可知点到准线的距离与点到焦点的距离相等,进而求得答案.【解答】解:抛物线y2=8x的准线为x=﹣2,∵点P到y轴的距离是4,∴到准线的距离是4+2=6,根据抛物线的定义可知点P到该抛物线焦点的距离是6故选B7.若曲线y=x2+ax+b在点(0,1)处的切线方程是x﹣y+1=0,则()A.a=﹣1,b=﹣1 B.a=﹣1,b=1 C.a=1,b=﹣1 D.a=1,b=1【考点】利用导数研究曲线上某点切线方程.【分析】求出y=x2+ax+b的导数,由切点得到切线的斜率,由切线方程得到a,再由切点在曲线上求出b.【解答】解:y=x2+ax+b的导数是y′=2x+a,则在点(0,1)处的切线斜率为a,由切线方程得a=1,再由切点(0,1)在曲线上,则b=1.故选D.8.过点(0,2)与抛物线y2=8x只有一个公共点的直线有()A.无数多条 B.3条C.2条D.1条【考点】直线与圆锥曲线的关系.【分析】当过点(0,2)的直线的斜率不存在时,直线的方程为x=0;当过点(0,2)的直线的斜率等于0时,直线的方程为y=2;当过点(0,2)的直线斜率存在且不为零时,设为k,把y=kx+2,代入抛物线方程,由判别式等于0,求得k的值,从而得到结论.【解答】解:抛物线y2=8x的焦点为(2,0),当过点(0,2)的直线的斜率不存在时,直线的方程为x=0,即直线为y轴时,与抛物线y2=8x只有一个公共点.当过点(0,2)的直线的斜率等于0时,直线的方程为y=2,与抛物线y2=8x只有一个公共点.当过点(0,2)的直线斜率存在且不为零时,设为k,那么直线方程为:y﹣2=kx,即:y=kx+2,代入抛物线方程可得k2x2+(4k﹣8)x+4=0,由判别式等于0 可得:64﹣64k=0,∴k=1,此时,直线的方程为y=kx+2.综上,满足条件的直线共有3条,故选B.9.x2<1是﹣1<x<1的什么条件()A.充分必要条件 B.必要不充分条件C.充分不必要条件D.既不充分与不必要【考点】必要条件、充分条件与充要条件的判断.【分析】由x2<1⇔﹣1<x<1,即可得出.【解答】解:x2<1⇔﹣1<x<1,因此x2<1是﹣1<x<1的充要条件.故选:A.10.曲线y=e x在点A(0,1)处的切线斜率为()A.1 B.2 C.e D.【考点】直线的斜率;导数的几何意义.【分析】由曲线的解析式,求出导函数,然后把切点的横坐标x=0代入,求出对应的导函数的函数值即为切线方程的斜率.【解答】解:由y=e x,得到y′=e x,把x=0代入得:y′(0)=e0=1,则曲线y=e x在点A(0,1)处的切线斜率为1.故选A.11.过抛物线y2=x(a>0)的焦点F的一直线交抛物线于P、Q两点,若线段PF与FQ的长分别是p、q,则+等于()A.2a B.C.4a D.【考点】抛物线的简单性质.【分析】取斜率不存在情形,焦点为(,0),此时p=q=,即可求出+.【解答】解:取斜率不存在情形,焦点为(,0),此时p=q=,∴+=2a+2a=4a,故选:C.12.已知点F1,F2分别是双曲线的左、右焦点,过F1且垂直于x轴的直线与双曲线交于A,B两点,若△ABF2是锐角三角形,则该双曲线离心率的取值范围是()A.B.C. D.【考点】双曲线的简单性质.【分析】先求出A,B两点的纵坐标,由△ABF2是锐角三角形知,tan∠AF2F1=<1,e2﹣2e﹣1<0,解不等式求出e 的范围.【解答】解:在双曲线中,令x=﹣c 得,y=±,∴A,B两点的纵坐标分别为±.由△ABF2是锐角三角形知,∠AF2F1<,tan∠AF2F1=<tan=1,∴<1,c2﹣2ac﹣a2<0,e2﹣2e﹣1<0,∴1﹣<e<1+.又e>1,∴1<e<1+,故选D.二、填空题(本大题共5小题,每小题4分,共20分)13.已知命题p:∀x∈R,sinx≤1,则¬p为∃x∈R,sinx>1.【考点】命题的否定.【分析】根据命题p:∀x∈R,sinx≤1是全称命题,其否定为特称命题,将“任意的”改为“存在”,“≤“改为“>”可得答案.【解答】解:∵命题p:∀x∈R,sinx≤1是全称命题∴¬p:∃x∈R,sinx>1故答案为:∃x∈R,sinx>1.14.在某项才艺竞赛中,有9位评委,主办单位规定计算参赛者比赛成绩的规则如下:剔除评委中的一个最高分和一个最低分后,再计算其它7位评委的平均分作为此参赛者的比赛成绩.现有一位参赛者所获9位评委一个最高分为86分、一个最低分为45分,若未剔除最高分与最低分时9位评委的平均分为76分,则这位参赛者的比赛成绩为79分.【考点】众数、中位数、平均数.【分析】由题意设这一位选手除去最高分和最低分后7个分数的和是x,写出没有去分时,平均数的表示式,使它等于76,得到一个关于x的方程,解出x,用x除以7得到选手的成绩.【解答】解:设这一位选手除去最高分和最低分后,7个分数的和是x,∵一位参赛者所获9位评委一个最高分为86分、一个最低分为45分,未剔除最高分与最低分时9位评委的平均分为76分,∴=76,∴x+131=684,∴x=553,∴这位参赛者的比赛成绩为=79,故答案为:7915.命题:“方程x2=2的解是”中使用了逻辑联结词或.(填写“或、且、非”)【考点】复合命题.【分析】即x=或x=﹣,即可得出.【解答】解:即x=或x=﹣,因此使用了逻辑联结词“或”.故答案为:或.16.若抛物线x2=2py(p>0)的焦点在圆x2+y2+2x﹣1=0上,则这条抛物线的准线方程为y=﹣1.【考点】抛物线的简单性质.【分析】求出圆x2+y2+2x﹣1=0与y轴正半轴的交点坐标,可得抛物线的焦点坐标,则答案可求.【解答】解:由x2+y2+2x﹣1=0,取x=0,得y2=1,即y=±1,∵抛物线x2=2py(p>0)的焦点在圆x2+y2+2x﹣1=0上,∴可得抛物线x2=2py(p>0)的焦点坐标为(0,1),则,∴抛物线x2=2py(p>0)的准线方程为y=﹣.故答案为:y=﹣1.17.对于函数f(x)=ax3,(a≠0)有以下说法:①x=0是f(x)的极值点.②当a<0时,f(x)在(﹣∞,+∞)上是减函数.③f(x)的图象与(1,f(1))处的切线必相交于另一点.④若a>0且x≠0则f(x)+f()有最小值是2a.其中说法正确的序号是②③.【考点】利用导数研究函数的极值.【分析】对于①②,求出原函数的导函数,由导函数的符号分析原函数的单调性,从而判断原函数极值的情况;对于③,求出f(x)的图象在(1,f(1))处的切线方程,和原函数联立后求解x的值,由解得的x的值判断命题③的真假;对于④,由基本不等式求出函数最值,从而判断④的真假.【解答】解:由f(x)=ax3,(a≠0),得f′(x)=3ax2.①当a>0时,f′(x)≥0,当a<0时,f′(x)≤0,∴函数f(x)是定义域内的单调函数,f(x)无极值点.命题①错误;②当a<0时,f′(x)≤0,∴f(x)在(﹣∞,+∞)上是减函数,命题②正确;③f′(1)=3a,f(1)=a,∴f(x)的图象在(1,f(1))处的切线方程为:y﹣a=3a(x﹣1),即y=3ax﹣2a.代入f(x)=ax3,得ax3﹣3ax+2a=0,即x3﹣3x+2=0,解得:x=﹣2或x=1.∴f(x)的图象与(1,f(1))处的切线必相交于另一点(﹣2,﹣8a),∴命题③正确.④a>0且x<0时,f(x)+f()=a(x3+)=﹣a[]≤﹣2a,∴命题④错误;故答案为:②③.三、解答题(本大题共4小题,共44分)18.已知a>0,a≠1,设p:函数y=log a x在(0,+∞)上单调递减,q:曲线y=x2+(2a﹣3)x+1与x轴交于不同的两点.若“p且q”为假,“﹁q”为假,求a的取值范围.【考点】复合命题的真假.【分析】求出命题p,q成立的等价条件,然后利用若“p且q”为假,“﹁q”为假,求a的取值范围.【解答】解:∵函数y=log a x在(0,+∞)上单调递减,∴0<a<1,即p:0<a<1,∵曲线y=x2+(2a﹣3)x+1与x轴交于不同的两点∴△=(2a﹣3)2﹣4>0,解得a>或a<.即q:a>或a<.∵“p且q”为假,“﹁q”为假,∴p假q真,即,∴a>.即a的取值范围是a>.19.曲线C的方程:(1)当m为何值时,曲线C表示焦点在x轴上的椭圆?(2)当m为何值时,曲线C表示双曲线?【考点】曲线与方程.【分析】(1)曲线C表示焦点在x轴上的椭圆,可得5﹣m>m﹣2>0,即可得出结论;(2)曲线C表示双曲线,可得(5﹣m)(m﹣2)<0,即可得出结论.【解答】解:(1)5﹣m>m﹣2>0,得:2<m<,所以:当2<m<时,曲线C表示焦点在x轴上的椭圆.(2)(5﹣m)(m﹣2)<0得m<2或m>5,所以:当m<2或m>5时,曲线C表示双曲线.20.求函数f(x)=x5+5x4+5x3+1在区间[﹣1,4]上的最大值与最小值.【考点】利用导数求闭区间上函数的最值.【分析】讨论满足f′(x)=0的点附近的导数的符号的变化情况,来确定极值根据极值与最值的求解方法,将f(x)的各极值与其端点的函数值比较,其中最大的一个就是最大值,最小的一个就是最小值.【解答】解:f′(x)=5x4+20x3+15x2=5x2(x+3)(x+1),当f′(x)=0得x=0,或x=﹣1,或x=﹣3,∵0∈[﹣1,4],﹣1∈[﹣1,4],﹣3∉[﹣1,4]列表:又f(0)=0,f(﹣1)=0;右端点处f(4)=2625;∴函数y=x5+5x4+5x3+1在区间[﹣1,4]上的最大值为2625,最小值为0.21.已知椭圆(a>b>0)的离心率为,短轴的一个端点为M(0,1),过椭圆左顶点A的直线l与椭圆的另一交点为B.(Ⅰ)若l与直线x=a交于点P,求•的值;(Ⅱ)若|AB|=,求直线l的倾斜角.【考点】直线与圆锥曲线的综合问题;平面向量数量积的运算;直线的倾斜角.【分析】(Ⅰ)根据椭圆(a>b>0)的离心率为,短轴的一个端点为M(0,1),可求椭圆的方程.设直线l的方程与椭圆方程联立,利用韦达定理求出点B的坐标,即可求得•的值;(Ⅱ)计算弦AB的长,利用|AB|=,可求直线的斜率,从而可求直线l的倾斜角.【解答】解:(Ⅰ)∵椭圆(a>b>0)的离心率为,短轴的一个端点为M(0,1),∴,b=1,∴a=∴椭圆的方程为∵直线l过椭圆左顶点A(﹣,0),设直线l的方程为y=k(x+)∵直线x=a,即为,∴点P(),由,消元可得(1+2k2)x2+4k2x+4k2﹣2=0可知为此方程的一个根,设B(x2,y2)∴,∴∴B∴•=+=2;(Ⅱ)|AB|===,∴8k4﹣k2﹣7=0∴k2=1∴k=±1∴直线l的倾斜角为或.2016年4月13日。

河北省石家庄市2018-2019学年高二上学期期末考试数学(文)试卷 Word版含解析

河北省石家庄市2018-2019学年高二上学期期末考试数学(文)试卷 Word版含解析

石家庄市2018~2019学年度第一学期期末考试试题高二数学(文科)第Ⅰ卷(选择题,共60分)一,选择题:本大题共12个小题,每小题5分,共60分.在每小题给出地四个选项中,只有一项是符合题目要求地.1.命题“若则”地逆否命题是()A. 若则B. 若则C. 若则D. 若则【结果】B【思路】本题主要考查命题及其关系。

逆否命题是将原命题地款件与结论否定,然后再将否定后地款件和结论互换,故命题“若则”地逆否命题是“若,则”。

故选2.一个年级有22个班,每个班同学从1~50排学号,为了交流学习经验,要求每班学号为19地学生留下进行交流,这里运用地是A. 分层抽样法B. 抽签法C. 随机数表法D. 系统抽样法【结果】D【思路】【思路】依据系统抽样地定义进行判断即可.【详解】每个班同学以1﹣50排学号,要求每班学号为19地同学留下来交流,则数据之间地间距差相同,都为50,所以依据系统抽样地定义可知,这里采用地是系统抽样地方式.故选:D.【点睛】本题主要考查抽样地定义和应用,要求熟练掌握简单抽样,系统抽样和分层抽样地定义,以及它们之间地区别和联系,比较基础.3.抛物线地焦点坐标是A. B. C. D.【结果】B【思路】【思路】先将方程化简为标准形式,即可得焦点坐标.【详解】由抛物线可得x2=4y,故焦点坐标为(0,1)故选:B.【点睛】本题主要考查抛物线地简单性质,属于基础题.4.已知命题:,。

命题:,,则下面表达中正确地是A. 是假命题B. 是真命题C. 是真命题D. 是假命题【结果】C【思路】【思路】先判断命题地真假,进而求得复合命题真假判断真值表得到结果.【详解】命题p,,即命题p为真,对命题q,去 ,所以命题q为假,为真所以是真命题故选:C.【点睛】(1)对于一些简单命题,判断为真,许推理证明,若判断为假,只需找出一个反例即可。

(2)对于复合命题地真假判断应利用真值表。

(3)也可以利用“互为逆否命题”地等价性,通过判断其逆否命题地真假来判断原命题地真假.5.阅读下边地程序框图,运行相应地程序,则输出地值为A. -1B. 0C. 3D. 4【结果】D【思路】【思路】直接依据程序框图计算得出结果.【详解】由程序框图可知。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019-2020学年高二上学期期末考试数学试卷(文科)一、选择题(本大题共12小题,共60.0分)1.复数z=2018-i在复平面内对应的点在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】D【解析】解:复数z=2018-i在复平面内对应的点的坐标为(2018,-1),在第四象限.故选:D.由已知复数得到z在复平面内对应点的坐标得答案.本题考查复数的代数表示法及其几何意义,是基础题.2.已知命题p:“如果x<3,那么x<5”,命题q:“如果x≥5,那么x≥3”,则命题q是命题p的()A. 否命题B. 逆命题C. 逆否命题D. 否定形式【答案】C【解析】解:命题p:“如果x<3,那么x<5”,命题q:“如果x≥5,那么x≥3”,则命题q是命题p的逆否命题.故选:C.根据命题“若p,则q”的逆否命题是“若¬q,则¬p”,判断即可.本题考查了原命题与它的逆否命题的判断与应用问题,是基础题.3.有50件产品,编号从1到50,现在从中抽取5件检验,用系统抽样确定所抽取的第一个样本编号为7,则第三个样本编号是()A. 12B. 17C. 27D. 37【答案】C【解析】解:样本间隔为50÷5=10,则第一个编号为7,则第三个样本编号是7+2×10=27,故选:C.根据系统抽样的定义先求出样本间隔,然后进行求解.本题主要考查系统抽样的应用,根据条件求出第一个编号是解决本题的关键.4.已知甲、乙两组数据如茎叶图所示,则甲组的中位数与乙组的平均数分别为()A. 32,32B. 27,32C. 39,34D. 32,34【答案】A【解析】解:由茎叶图知,甲组数据从小到大排列为27,32,39,它的中位数是32;乙组数据分别为24,32,34,38,它的平均数为×(24+32+34+38)=32.故选:A.根据茎叶图中的数据,求出甲组数据的中位数和乙组数据的平均数即可.本题考查了利用茎叶图求中位数和平均数的应用问题,是基础题.5.在△ABC中,“a=b”是“sin A=sin B”成立的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件【答案】C【解析】解:∵a=b⇒A=B⇒sin A=sin B,sin A=sin B⇒2R sin A=2R sin B⇒a=b,∴a=b是sin A=sin B的充要条件.故选:C.根据充分条件和必要条件的定义结合正弦定理进行判断即可.本题主要考查充分条件和必要条件的判断,根据不等式的解法是解决本题的关键.6.天气预报“明天降雨的概率为90%”,这是指()A. 明天该地区约90%的地方会降雨,其余地方不降雨B. 明天该地区约90%的时间会降雨,其余时间不降雨C. 气象台的专家中,有90%的人认为明天降雨,其余的专家认为不降雨D. 明天该地区降雨的可能性为90%【答案】D【解析】解:根据概率的意义知,天气预报中“明天降雨的概率为90%”,是指“明天该地区降雨的可能性为90%”.故选:D.根据概率的意义得知,天气预报中“明天降雨的概率”是指“明天该地区降雨的可能性”,由此得出结论.本题考查了概率的意义是什么,重点是理解概率的意义与应用,是基础题目.7.用反证法证明命题“已知a、b、c为非零实数,且a+b+c>0,ab+bc+ca>0,求证a、b、c中至少有二个为正数”时,要做的假设是()A. a、b、c中至少有二个为负数B. a、b、c中至多有一个为负数C. a、b、c中至多有二个为正数D. a、b、c中至多有二个为负数【答案】A【解析】解:用反证法证明某命题时,应先假设命题的否定成立,而:“a、b、c中至少有二个为正数”的否定为:“a、b、c中至少有二个为负数”.故选:A.用反证法证明某命题时,应先假设命题的否定成立,而命题的否定为:“a、b、c中至少有二个为负数”,由此得出结论.本题主要考查用反证法证明数学命题,把要证的结论进行否定,得到要证的结论的反面,是解题的关键.8.如图是一个中心对称的几何图形,已知大圆半径为2,以半径为直径画出两个半圆,在大圆内随机取一点,则此点取自阴影部分的概率为()A. B. C. D.【答案】C【解析】解:由题意知,大圆的面积为S=π•22=4π;阴影部分的面积为S′=π•22-π•12=π,则所求的概率为P===.故选:C.计算大圆的面积与阴影部分的面积,求对应的面积比即可.本题考查了几何概型的概率计算问题,是基础题.9.五进制是以5为底的进位制,主因乃人类的一只手有五只手指.中国古代的五行学说也是采用的五进制,0代表土,1代表水,2代表火,3代表木,4代表金,依此类推,5又属土,6属水,……,减去5即得.如图,这是一个把k进制数a(共有N位)化为十进制数b的程序框图,执行该程序框图,若输入的k,a,n分别为5,1203,4,则输出的b=()A. 178B. 386C. 890D. 14 303【答案】A【解析】解:模拟执行程序框图,可得程序框图的功能是计算并输出:b=3•50+0•51+2•52+1•53=178.故选:A.模拟执行程序框图,可得程序框图的功能是计算并输出b=3•50+0•51+2•52+1•53=178的值,从而得解.本题主要考查了循环结构的程序框图,模拟执行程序框图,正确写出每次循环得到的b,i的值,分析出程序框图的功能是解题的关键,属于基础题.10.我们把平面内与直线垂直的非零向量称为直线的法向量,在平面直角坐标系中,利用求动点轨迹方程的方法,可以求出过点A(-3,4),且法向量为=(1,-2)的直线(点法式)方程为:1×(x+3)+(-2)×(y-4)=0,化简得x-2y+11=0.类比以上方法,在空间直角坐标系中,经过点A(1,2,3),且法向量为=(-1,-2,1)的平面的方程为()A. x+2y-z-2=0B. x-2y-z-2=0C. x+2y+z-2=0D. x+2y+z+2=0【答案】A【解析】解:类比平面中求动点轨迹方程的方法,在空间任取一点P(x,y,z),则=(x-1,y-2,z-3)∵平面法向量为=(-1,-2,1),∴-(x-1)-2×(y-2)+1×(z-3)=0∴x+2y-z-2=0,故选:A.类比平面中求动点轨迹方程的方法,在空间任取一点P(x,y,z),则=(x-1,y-2,z-3),利用平面法向量为=(-1,-2,1),即可求得结论.类比推理的一般步骤是:(1)找出两类事物之间的相似性或一致性;(2)用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(猜想).由于平面向量与空间向量的运算性质相似,故我们可以利用求平面曲线方程的办法,构造向量,利用向量的性质解决空间内平面方程的求解.11.已知F1,F2是双曲线E:=1的左,右焦点,点M在E上,MF1与x轴垂直,sin∠MF2F1=,则双曲线E的渐近线方程为()A. y=B. y=±xC. y=±D. y=±2x【答案】B【解析】解:由题意,M为双曲线左支上的点,则|MF1|=,|MF2|=+2a,∴sin∠MF2F1=,∴,可得:b=a,双曲线E的渐近线方程为:y=±x.故选:B.由条件MF1⊥MF2,sin∠MF2F1=,列出关系式,从而可求渐近线方程.本题考查双曲线的定义及渐近线方程的求解,关键是找出几何量之间的关系,考查数形结合思想,属于中档题.12.已知函数f(x)(x∈R)满足f(1)=1,且f(x)的导数f′(x)>,则不等式f(x2)<的解集为()A. (-∞,-1)B. (1,+∞)C. (-∞,-1]∪[1,+∞)D. (-1,1)【答案】D【解析】解:根据题意,设g(x)=f(x)-,其导数g′(x)=f′(x)->0,则函数g(x)在R上为增函数,又由f(1)=1,则g(1)=f(1)-=,不等式f(x2)<⇒f(x2)-<⇒g(x2)<g(1),又由g(x)在R上为增函数,则x2<1,解可得:-1<x<1,即不等式的解集为(-1,1);故选:D.根据题意,设g(x)=f(x)-,对其求导分析可得函数g(x)在R上为增函数,由f(1)的值计算可得g(1)的值,将不等式变形分析可以转化为g(x2)<g(1),由函数的单调性可得x2<1,解可得x的取值范围,即可得答案.本题考查函数的导数与函数的单调性之间的关系,关键是构造函数g(x),并分析函数g(x)的单调性.二、填空题(本大题共4小题,共20.0分)13.已知,则=______,|z|=______.【答案】【解析】解:∵已知==,则=+i,|z|==,故答案为+i,.根据两个复数代数形式的乘除法,虚数单位i的幂运算性质求得z,可得以及|z|的值.本题主要考查两个复数代数形式的乘除法,虚数单位i的幂运算性质,附属求模,属于基础题.14.函数f(x)=-4x+4的单调递增区间为______.【答案】(-∞,-2),(2,+∞)【解析】解:由f(x)=x3-4x+4,得f′(x)=x2-4,由f′(x)=x2-4=0,得x=-2或x=2.当x∈(-∞,-2)∪(2,+∞)时,f′(x)>0,当x∈(-2,2)时,f′(x)<0.∴f(x)的单调递增区间为(-∞,-2),(2,+∞).故答案为:(-∞,-2),(2,+∞).求出原函数的导函数,解得导函数的零点,由导函数的零点对函数定义域分段,再由导函数在各区间段内的符号得到原函数的单调区间.本题考查利用导数研究函数的单调性,关键是明确函数的单调性与导函数符号间的关系,是中档题.15.观察下列各式:m+n=1,m2+n2=3,m3+n3=4,m4+n4=7,m5+n5=11,…,则m7+n7=______.【答案】29【解析】解:∵1+3=4,3+4=7,4+7=11,7+11=18,11+18=29,…∴可以发现从第三项开始,右边的数字等于前两项的右边的数字之和,∴m7+n7=29,故答案为:29.由题意可得到可以发现从第三项开始,右边的数字等于前两项的右边的数字之和,问题得以解决.本题考查了归纳推理的问题,关键是找到其数字的变化规律,属于基础题.16.如图,已知抛物线C1的顶点在坐标原点,焦点在x轴上,且过点(2,4),圆C2:x2+y2-4x+3=0,过圆心C2的直线l与抛物线和圆分别交于P,Q,M,N,则|PN|+9|QM|的最小值为______.【答案】42【解析】解:设抛物线的方程:y2=2px(p>0),则16=2p×2,则2p=8,∴抛物线的标准方程:y2=8x,焦点坐标F(2,0),准线方程为x=-2,圆C2:x2+y2-4x+3=0的圆心为(2,0),半径为1,由直线PQ过抛物线的焦点,可设P(ρ1,θ),Q(ρ2,π+θ),由ρ=,可得+=+==,圆C2:(x-2)2+y2=1圆心为(2,0),半径1,|PN|+9|QM|=|PF|+1+9(|QF|+1)=|PF|+9|QF|+10=2(|PF|+9|QF|)(+)+10=2(10++)+10≥2(10+2)+10=42,可得|PN|+9|QM|的最小值为42,故答案为:42.设抛物线的标准方程,将点代入抛物线方程,求得抛物线方程,由抛物线的焦点弦性质,求得+==,根据抛物线的性质及基本不等式,即可求得答案.本题考查抛物线的标准方程,直线与抛物线的位置关系,抛物线的焦点弦的性质及基本不等式的应用,考查转化思想,属于中档题.三、解答题(本大题共6小题,共70.0分)17.某学生对其30位亲属的饮食习惯进行了一次调查,并用如图所示的茎叶图表示他们的饮食指数(说明:图中饮食指数低于70的人,饮食以蔬菜为主;饮食指数高于70的人,饮食以肉类为主).(1)根据茎叶图,帮助这位同学说明这30位亲属的饮食习惯.(2)根据以上数据完成如下2×2列联表.(3)能否有99%的把握认为其亲属的饮食习惯与年龄有关?参考公式:K2=,其中n=a+b+c+d.【答案】解:(1)由茎叶图可知,30位亲属中50岁以上的人饮食多以蔬菜为主,50岁以下的人饮食多以肉类为主;…(4分)(2)填写2×2列联表如下所示:…(分)(3)由题意,随机变量K2的观测值为;故有99%的把握认为其亲属的饮食习惯与年龄有关…(12分)【解析】(1)由茎叶得出30位亲属中的饮食习惯;(2)填写2×2列联表即可;(3)计算K2的观测值,对照临界值得出结论.本题考查了茎叶图与独立性检验的应用问题,是基础题.18.已知命题p:对∀x∈R,不等式x2-2x+m≥0恒成立;命题q:方程=1表示焦点在y轴上的椭圆.若¬p为真,且p∨q为真,求实数m的取值范围.【答案】解:由¬p为真,则p为假命题,又p∨q为真,由复合命题的真假可得:q为真命题,当p为真时:△=4-4m≤0,解得:m≥1,又p为假:则实数m的取值范围为:m<1,①当q为真时:椭圆的焦点在y轴上,则0<m<2,②结合①②得:当¬p为真,且p∨q为真,可得实数m的取值范围为:0<m<1.【解析】复合命题的真假可得:若¬p为真,且p∨q为真,则p为假命题,q为真命题,由题意有m<1且0<m<2,即实数m的取值范围为:0<m<1.本题考查了复合命题的真假及椭圆的定义,属简单题.19.为了解某地区某种农产品的年产量x(单位:吨)对价格y(单位:千元/吨)的影响,对近五年该农产品的年产量和价格统计如表:(1)求,;(2)求y关于x的线性回归方程;(3)若年产量为4.5吨,试预测该农产品的价格.附:本题参考公式与参考数据:=,,.【答案】解:(1)计算可得,,(2),∵线性回归直线过(),∴,故y关于x的线性回归方程是;(3)当x=4.5时,(千元/吨).∴该农产品的价格为2.9千元/吨.【解析】(1)由已知图表直接求得,;(2)由已知公式求得,再由线性回归方程恒过样本中心点求得,则回归方程可求;(3)在线性回归方程中,取x=4.5求得y值得答案.本题考查线性回归方程的求法,考查计算能力,是基础题.20.某校高二期中考试后,教务处计划对全年级数学成绩进行统计分析,从男、女生中各随机抽取100名学生,分别制成了男生和女生数学成绩的频率分布直方图,如图所示.(1)若所得分数大于等于80分认定为优秀,求男、女生优秀人数各有多少人?(2)在(1)中的优秀学生中用分层抽样的方法抽取5人,从这5人中任意任取2人,求至少有1名男生的概率.【答案】解:(1)由题可得,男生优秀人数为100×(0.01+0.02)×10=30人,女生优秀人数为100×(0.015+0.03)×10=45人.…(4分)(2)因为样本容量与总体中的个体数的比是,所以样本中包含男生人数为人,女生人数为人…(6分)设两名男生为A1,A2,三名女生为B1,B2,B3.则从5人中任意选取2人构成的所有基本事件为:{A1,A2},{A1,B1},{A1,B2},{A1,B3},{A2,B1},{A2,B2},{A2,B3},{B1,B2},{B1,B3},{B2,B3},共10个,记事件C:“选取的2人中至少有一名男生”,则事件C包含的基本事件有:{A1,A2},{A1,B1},{A1,B2},{A1,B3},{A2,B1},{A2,B2},{A2,B3}共7个.所以至少有1名男生的概率…(12分)【解析】(1)由频率分布直方图能求出男、女生优秀人数.(2)先求出样本容量与总体中的个体数的比,再求出样本中包含男生人数和女生人数,设两名男生为A1,A2,三名女生为B1,B2,B3.从5人中任意选取2人,利用列举法能求出至少有1名男生的概率.本题考查频率分布直方图的应用,考查概率的求法,考查列举法、古典概型等基础知识,考查运算求解能力,是基础题.21.在直角坐标系xOy中,椭圆C:的离心率为,椭圆短轴上的一个顶点为.(1)求椭圆C的方程;(2)已知点P(1,),动直线y=kx-2与椭圆C相交于A、B两点,若直线AP,BP的斜率均存在,求证:直线AP,OP,BP的斜率依次成等差数列.【答案】解:(1)由,解得a=2,则椭圆C的方程;(2)证明:设A(x1,y1),B(x2,y2),由,得(3+4k2)x2-16kx+4=0,由△>0,有,则,,==,则k AP+k BP=2k OP,故直线AP,OP,BP的斜率成等差数列.【解析】(1)利用椭圆的离心率以及椭圆短轴上的一个顶点为,求解椭圆方程;(2)证明:设A(x1,y1),B(x2,y2),由,利用韦达定理求解直线的斜率,然后推出k AP+k BP=2k OP,得到结果即可.本题考查椭圆的简单性质的应用椭圆方程的求法,考查转化思想以及计算能力.22.设函数f(x)=x2e x.(1)求曲线f(x)在点(1,e)处的切线方程;(2)若f(x)<ax对x∈(-∞,0)恒成立,求实数a的取值范围;(3)求整数n的值,使函数F(x)=f(x)-在区间(n-1,n)上有零点.【答案】解:(1)∵f′(x)=(x2+2x)e x,∴f′(1)=3e,∴所求切线方程为y-e=3e(x-1),即y=3ex-2e;(2)∵f(x)<ax,对x∈(-∞,0)恒成立,∴对x∈(-∞,0)恒成立.设g(x)=xe x,g'(x)=(x+1)e x,令g'(x)>0,得x>-1,令g'(x)<0得x<-1,∴g(x)在(-∞,-1)上递减,在(-1,0)上递增,∴,∴;(3)令F(x)=0,得,当x<0时,,∴F(x)的零点只能在(0,+∞)上,在(0,+∞)上大于0恒成立,∴函数F(x)在(0,+∞)上递增.∴F(x)在(0,+∞)上最多有一个零点.∵,由零点存在的条件可得F(x)在(0,+∞)上有一个零点x0,且,∴n=1.【解析】(1)求出原函数的导函数,求得f′(1),再由直线方程的点斜式求曲线f (x)在点(1,e)处的切线方程;(2)把f(x)<ax,对x∈(-∞,0)恒成立,转化为对x∈(-∞,0)恒成立.设g(x)=xe x,g'(x)=(x+1)e x,利用导数求其最小值,即可求得实数a的取值范围;(3)令F(x)=0,得,当x<0时,不合题意,可知F(x)的零点只能在(0,+∞)上,利用导数研究其单调性,再由函数零点的判定求得答案.本题考查利用导数研究函数的单调性,考查函数零点的判定,考查化归与转化思想方法,考查计算能力,是中档题.。

相关文档
最新文档