最新等积变形问题整理
小学数学等积变形练习题
小学数学等积变形练习题1. 背景介绍小学数学中的等积变形是指在保持某个数的积不变的前提下,对数的加减运算进行变形。
这是培养学生逻辑思维和数学运算能力的重要内容。
本文将介绍一些小学等积变形的练习题,旨在帮助学生提高在等积变形方面的能力。
2. 题目一给定两个数a和b,满足a × b = 20,求a + b的值。
解答:根据等积变形的原则,我们可以将等式a × b = 20转化为a + b的形式,即a × b + 2ab = 20 + 2ab。
进一步化简得到(a + 2)(b + 2) = 24。
由此可知,a + b的值为24。
3. 题目二已知一个数的三倍与另一个数的四倍之积为84,求这两个数的和。
解答:设第一个数为a,第二个数为b。
根据题意可得3a × 4b = 84,化简得到ab = 7。
考虑到等积变形的特点,我们可以将等式ab = 7变形为a + b的形式,即a × 1 +b × 1 = a + b = 7 + 1。
因此,这两个数的和为8。
4. 题目三设一个数的正方形的面积与另一个数的立方体的体积相等,求这两个数的差。
解答:设第一个数为a,第二个数为b。
根据题意可得a^2 = b^3,化简得到(a^2)^(1/2) = (b^3)^(1/2)。
进一步计算可得a = b^3/2。
根据等积变形的原则,我们可以将等式a = b^3/2变形为a - b的形式,即(a^2)^(1/2) - b = 0。
因此,这两个数的差为0。
5. 题目四已知一个数的倒数与另一个数的平方之和为2,求这两个数的和。
解答:设第一个数为a,第二个数为b。
根据题意可得1/a + b^2 = 2,化简得到b^2 = 2a - 1。
考虑到等积变形的特点,我们可以将等式b^2 = 2a - 1变形为b - a的形式,即b^2 - a = 2 - 1。
因此,这两个数的和为1。
6. 题目五给定一个数,将其增加2倍后再增加5,与另一个数的积为56,求这两个数的差。
等积变形问题
一、打折销售问题(1)售价、进价、利润的关系:利润=售价—成本进价、利润、利润率的关系:利润率=商品利润商品成本价×100%商品售价=商品进价×(1+利润率)(2)标价、折扣数、商品售价关系:商品售价=标价×折扣数(3)商品总销售额=1件商品售价×销售量例1. 一家商店将某种服装按进价提高40%后标价,又以8折优惠卖出,结果每件仍获利15元,这种服装每件的进价是多少?等量关系:折扣后价格-进价=151.一家商店将某种服装按成本价提高20%后标价,又以9折销售,售价为270元,这种服装成本价是多少元?2、某商场的电视机原价为2500元,现以8折销售,如果想使降价前后的销售额都为10万元,那么销售量应增加多少?3、一家服装店将某种服装按成本提高40%后标价,又以八折优惠卖出,•结果每件仍获利15元,这种服装每件的成本为多少?4、一件夹克按成本提高50%后标价,后因季节关系案标价的8折出售,每件以60元卖出,5、一种药物涨价25%的价格是50元,那么涨价前的价格x满足的方程是____________。
6.某商品的销售价格每件900元,为了参加市场竞争,商店按售价的九折再让利40元销售,些时仍可获利10%,此商品的进价为______.7、某商品进价1500元,提高40%后标价,若打折销售,使其利润率为20%,则此商品是按几折销售的?8、某商场把一个双肩背的书包按进价提高50%标价,然后再按8折(标价的80%)出售,这样商场每卖出一个书包就可赢利8元。
这种书包的进价是多少元?9、商店对某种商品作调价,按原价的8折出售,此时商品的利润率是10%,此商品的进价为1600元。
问商品的原价是多少?10.一商场把彩电按标价的九折出售,仍可获利20%,如果该彩电的进货价是2400元,那么彩电的标价是多少元?11.某商店在某一时间以每件60元的价格卖出两件衣服,其中一件盈利25%,另一件亏损25%,卖这两件衣服总的是盈利还是亏损,或是不盈不亏?二、相遇与追击问题(画草图)1.行程问题中的三个基本量及其关系:路程=速度×时间 时间=路程÷速度 速度=路程÷时间2.行程问题基本类型 (1)相遇问题: 快行路程+慢行路程=总路程 (二者所用时间相同)(2)追及问题: 快行路程=慢行路程+二者初始距离 (二者所用时间相同)(1)相遇问题: 两者的路程之和=环形跑道一圈的长度(2)追及问题: 两者的路程之差=环形跑道一圈的长度错车问题:两者路程和或差=两个车身的长度和1、甲、乙两人每天早晨坚持跑步,甲每秒跑4m ,乙每秒跑6m.(1)如果他们站在百米跑道的两端同时起跑,那么几秒后两人相遇?(2)如乙站在百米跑道的起点处,甲站在他前面10米处,两人同时同向起跑,几秒后乙能追上甲?2、一个自行车队进行训练,训练时所有队员都以35km/h 的速度前进。
等积变形问题 文档
新起点初中辅导
一元一次方程应用(等积变形问题)
等积变形问题
常见几何图形的面积、体积、周长计算公式,依据形虽变,但体积不变.
①圆柱体的体积公式 V=底面积×高=S·h= r2h
②长方体的体积 V=长×宽×高=abc
例题
一.如图,已知圆柱(2)的体积是圆柱(1)的体积的3倍,求圆柱(1)的高(图中φ40表示直径为40毫米)
二.用直径为4cm的圆钢(截面为圆形的实心长条钢材)铸造3个直径为2cm,高为16cm的圆柱形零件,则需要截取多长的圆钢?
三.某铜铁厂要锻造长、宽、高分别为260mm、150 mm、130 mm的长方体毛坯,需要截取截面积为 130 mm2的方钢多长?
四.一个直径为1.2米高为1.5米的圆柱形水桶,已装满水,向一个底面边长为1米的正方形铁盒倒水,当铁盒装满水时,水桶中的水高度下降了多少米。
五.有一块棱长为4厘米的正方体铜块,要将它熔化后铸成长2厘米、宽4厘米的长方体铜块,铸成后的铜块的高是多少厘米(不计损耗)?。
一元一次方程实际应用题之等积变形问题
一元一次方程实际应用题之等积变形问题“等积变形”是以形状改变而体积不变为前提. 常见几何图形的周长、面积、体积公式:1.等长变形问题例题1:用一根长10米的铁丝围成一个长方形.使得长方形的长比宽多1.2米,此时长方形的长是多少米?宽是多少米?分析:抓住总长度不变,也就是长方形的周长等于10米。
可设宽为未知数,进而表示出长,等量关系为:2(长+宽)=10,把相关数值代入可求得宽,进而求得长即可。
解:设长方形的宽为x米,则长为(x+1.2)米.依题意得:2(x+1.2+x)=10,解得x=1.9,∴x=1.2+1.9=3.1,答:长方形的长为3.2米,宽为1.9米。
2.等体积变形问题例题2:要锻造直径为60mm,高为30mm的圆柱形毛坯,需截取直径为40mm的圆钢长是多少毫米?分析:抓住锻造前后的体积不变,此题的等量关系为:锻造前的体积=锻造后的体积.据此列方程求解。
要注意的是,题目中已知直径,需要转化为半径。
解:设需截取直径为40mm的圆钢长xmm,60÷2=30(mm)、40÷2=20(mm);依题意得:π×30^2×30=π×20^2×x解得:x=67.5例题3:有一段钢材可作一个底面直径 8 厘米,高 9 厘米的圆柱形零件。
如果把它改制成高是 12 厘米的圆锥形零件,零件的底面积是多少平方厘米?分析:根据“底面直径8厘米,高9厘米的圆柱形零件”,利用圆柱体积公式,可以求出圆柱的体积,又因为把圆柱形的零件改制成圆锥形零件时,此段钢的体积不变,根据体积不变列出方程求解。
解:零件的底面积是x平方厘米。
8÷2=4(厘米)依题意得:3×π×4^2×9=x×12解得:x=36π答:零件的底面积是36π平方厘米。
3.等面积变形问题例题4:如图,某小学将一块梯形空地改成宽为30m的长方形运动场地,要求面积不变.若在改造后的运动场地,小王、小李两人同时从点A出发,小李沿着长方形边顺时针跑,小王则是逆时针跑,并且小王每秒比小李多跑2m,经过10秒钟他们相遇.(1)求长方形的长;(2)求小王、小李两人的速度分析:(1)求得原梯形的面积,利用面积不变和长方形的面积求得长方形的长即可;(2)设小李的速度是xm/s,则小王的速度是(x+2)m/s,利用10秒钟他们相遇所走的路程为长方形的周长列出方程解决问题。
等积变形问题归纳总结
等积变形问题归纳总结等积变形是数学中一个经典而重要的问题,涉及到几何和代数两个方面。
这类问题一般给定一个几何形状,然后要求找到一个变形的方法,使得该形状在变形后保持等面积不变。
在这篇文章中,我将对等积变形问题进行归纳和总结,介绍常见的等积变形方法及其应用。
一、等积变形的概念和意义等积变形是指通过某种方式改变一个几何形状,使得变形后的形状与原来的形状面积相等。
这个问题在工程、建筑、地理测量等领域有着广泛的应用。
等积变形的主要目的是在不改变面积的情况下,改变某个几何形状的外观或者其他性质。
在实际应用中,等积变形可以用于设计优化、曲面造型、地图绘制等方面。
二、等积变形的常见方法1. 平移变形:平移是最简单的等积变形方法之一。
平移变形是通过将几何形状整体平行地移动,使得形状的外观发生变化,但面积保持不变。
平移变形的关键是保持对称性,即移动后的形状与原来的形状在空间中仍具有相同的位置关系。
2. 旋转变形:旋转变形是通过将几何形状绕一个确定的旋转点旋转一定角度,使得形状的外观发生变化,但面积保持不变。
旋转变形的关键是确定旋转中心和旋转角度,以及保持旋转后的形状与原来的形状在空间中具有相同的位置关系。
3. 缩放变形:缩放变形是通过改变几何形状的尺寸,使得形状的外观发生变化,但面积保持不变。
缩放变形可以分为等比例缩放和非等比例缩放两种方式。
等比例缩放是将形状的所有尺寸同时按照相同的比例进行缩放;非等比例缩放是将形状的各个尺寸分别按照不同的比例进行缩放。
4. 拉伸变形:拉伸变形是通过改变几何形状的某个方向的尺寸,使得形状的外观发生变化,但面积保持不变。
拉伸变形可以在一维、二维和三维空间中进行。
在一维空间中,拉伸变形是指改变线段的长度;在二维空间中,拉伸变形是指改变面的某个方向的尺寸;在三维空间中,拉伸变形是指改变体的某个方向的尺寸。
5. 弯曲变形:弯曲变形是通过施加外力将几何形状弯曲,使得形状的外观发生变化,但面积保持不变。
等积变形练习题
等积变形练习题等积变形是一种在数学中常见的概念,它涉及到图形或物体形态的变化,同时保持其面积或体积不变。
通过等积变形,我们可以研究图形之间的关系以及解决一些复杂的数学问题。
本文将介绍一些常见的等积变形练习题,帮助读者加深对等积变形的理解与应用。
1. 矩形的等积变形假设有一片固定面积的矩形,在等积变形的过程中,我们可以改变矩形的长和宽,但保持面积不变。
那么问题来了:在固定面积条件下,矩形的长和宽的关系是怎样的?解答:设矩形的长为x,宽为y,由题意可知xy=常数。
我们可以通过解方程的方法来找出x和y的关系。
将这个方程改写为y=常数/x的形式,其中常数为C。
这意味着y和x成反比例关系,当x增大时,y会减小;当x减小时,y会增大。
这样我们就找到了矩形的等积变形规律。
2. 圆的等积变形与矩形不同,圆的等积变形是指在保持圆的面积不变的情况下改变圆的半径。
现在考虑一个具体的例子:题目:一个圆的半径为r,它的面积为S。
将该圆按照一定的方式等面积地变形成一个新的圆,新的圆的半径为r'。
请问,r'与r之间的关系是怎样的?解答:圆的面积公式为S=πr²,保持面积不变意味着S=πr²=π(r')²。
将这个方程进行变形,可以得到r' = √(S/π)。
也就是说,在等积变形的过程中,圆的半径与原来的半径r之间的关系是r' = √(r²S/S'),其中S'是新圆的面积。
3. 立方体的等积变形对于一个正立方体,它的体积可以通过边长的立方来计算。
在等积变形中,我们可以改变立方体的边长,但保持体积不变。
接下来让我们看一个例子:题目:一个正立方体的边长为a,它的体积为V。
将该立方体等面积地变形成一个新的立方体,新的立方体的边长为b。
请问,b与a之间的关系是怎样的?解答:立方体的体积公式为V=a³,保持体积不变意味着a³=b³。
一元一次方程的等积变形问题
方程两边同乘或同除一个含有未知数的式子,可以消去分母,使方程化为一元一次方程。
通过这种方式,可以将方程中的某些项消去,简化方程。
方程两边同乘或同除一个含有未知数的式子
等积变形的步骤与技巧
#O3
识别等积变形的机会
观察方程 在解一元一次方程时,要时刻观察方程的形式,判断是否可以通过等积变形简化问题。 寻找等式两边的共同因子 如果等式两边有共同因子,可以通过提取共同因子简化方程。 寻找等式两边的同类项 如果等式两边有同类项,可以通过合并同类项简化方程。
03
重量不变问题
在称重过程中,当两个物体质量相等时,可以通过等积变形来求解相关问题。
01
体积不变问题
在容器中装有一定体积的水,将水倒入另一个容器,保持水的体积不变,可以通过等积变形来求解相关问题。
02
面积不变问题
在平面几何中,当两个相似图形面积相等时,可以通过等积变形来求解相关问题。
数学题目中的等积变形ຫໍສະໝຸດ 在解代数方程时,可以通过等积变形将方程转化为更易于解决的形式。
在几何图形中,可以通过等积变形将图形转化为更易于计算面积或体积的形式。
几何图形的等积变形
代数方程的等积变形
等积变形在解题中的应用
简化计算过程
通过等积变形可以将复杂的问题转化为简单的问题,从而简化计算过程。
寻找未知数
在某些问题中,可以通过等积变形来寻找未知数,从而解决问题。
解决实际问题
在解决实际问题时,等积变形可以帮助我们更好地理解问题,并找到合适的解决方案。
等积变形的注意事项与挑战
#O5
等积变形的适用范围
等积变形适用于解一元一次方程时,当方程的解为分数或根号形式时,需要进行等积变形。
小学五年级数学思维专题训练—等积变形(含答案解析)
小学五年级数学思维专题训练—等积变形例1.长方形ABCD的面积是40平方厘米,E、F、G、H分别为AD、AH、DH、BC的中点,三角形EFG的面积是平方厘米例 2.梯形ABCD中,AE与DC平行,S ABE∆=15,S BCF∆= .例3。
如下图所示,长方形ABCD内的阴影部分的面积之和为70,AB=8,AD= 15.四边EFGO 的面积为。
例4.如下图所示,在平行四边形ABCD中,已知三角形ABP.BPC的面积分别是73、100,求三角形BPD的面积.例5.如下图所示,BD是平行四边形ABCD的对角线,EF平行于BD,如果三角形ABE的面积是12平方厘米,那么三角形AFD的面积是平方厘米。
例6.如下图所示,已知AE=EC,CD=DB,S ABC =60,求四边形FDCE的面积.例7.如右图所示,正方形ABC D和正方形ECGF并排放置,BF与CD相交于点H,已知AB=6厘米,则阴影部分的面积是平方厘米.例8.如下图所示,E、F、G、H分别是四边形ABCD各边的中点,EG与FH交于点O,S1、S2、S3及S4分别表示4个小四边形的面积.试比较S1+S3与S2+S4的大小.例9.将长15厘米、宽9厘米的长方形的长和宽都分成三等份,长方形内任意一点与分点及顶点连结,如右图所示,则阴影部分的面积是 平方厘米.例10.右图所示ABCD 是个直角梯形(∠DAB=∠ABC= 900),以 , AD 为一边向外作长方形ADEF ,其面积为6.36平方厘米,连接BE 交AD 于P ,再连接PC .则图中阴影部分的面积是 平方厘米。
A.6.36B.3.18C.2.12D.1.59例11.如下图所示,平行四边形内有两个大小一样的正六边形,那么阴影部分的面积占平行四边形面积的 。
A .21B .32C .52D .125例12.如下图所示,矩形ABCD 的面积是24平方厘米,三角形ADM 与三角形BCN 的面积之和是7.8平方厘米,则四边形PMON 的面积是 平方厘米.例13.一个矩形分成4个不同的三角形(如下图),绿色三角形面积占矩形面积的15%,黄色三角形的面积是21平方厘米.问:矩形的面积是多少平方厘米?例14.如下图所示,正方形每条边上的三个点(端点除外)都是这条边的四等分点,则阴影部分的面积是正方形面积的。
等积变形篇
等积变形篇丁志浩物体的形状虽然改变了,但是其面积或体积仍然保持不变.这类问题我们可以称为等积变形问题.在等积变形问题中,变化前后的体积或面积相等,往往是列方程所需的重要的相等关系.1.面积不变问题例1将图(1)三角形纸片沿虚线叠成图(2),原三角形图(1)的面积是图(2)(粗实线图形)面积的1.5倍,已知图(2)中阴影部分的面积之和为1,求重叠部分的面积.解析:首先要看清题意,其中图(2)中粗实线图形面积就是图(3)中三个角上的小三角形面积和重叠部分面积的总和,这个题目中的等量关系我们可以从图中不难看出,就是整个三角形的面积是三个角上小三角形(从图(3)中看)面积和重叠(从图(2)中看)部分面积的总和的1.5倍.如果设重叠部分面积为x,将折叠还原后,则原三角形的面积是(2x+1),图(2)中粗实线部分面积是(x+1),等量关系为:原三角形的面积=1.5粗实线部分面积解:设重叠部分面积为x.根据题意,得1.5(x+1)=2x+1.解得x=1.所以重叠部分的面积为1.例2如图2,“回”字形的道路宽为1米,整个“回”字形的长为8米,宽为7米,一个人从入口点A沿着道路走到终点B,他共走了多少米?分析:如果我们直接解这个问题,这里有重复部分,是个十分麻烦问题,现在需要对这个问题转化,可以看作用一米宽的拖把把这块区域托一遍,我们以走直线方式拖地,那么拖把走过区域是长方形,长方形的宽是一定的,是一米.而长方形的长就是拖把走过路程.长方形的面积就等于回字形面积,直接就可以算出拖把走过的路程是56米.而这正是人要走的路程.这时候我们可以看到这和拖把是否走直线没有关系了,只要拖把的宽度一定,它走过的路程就定下来,就是56米.我们也可以这样来看:所有小路连在一起可以组成一个宽1米的长长的长方形,因为长方形场地“充满”了小路,所以小路的面积等于长方形场地的面积.解:设小路的总长度为x米.根据题意,得x×1=8×7.解得x=56.所以从入口A处走到终点B,至少要走56米.2.体积不变问题例3 用直径为90mm的圆柱形玻璃杯(已装满水,且水足够多)向一个内底面积为131× 131mm2,内高为81mm的长方体铁盒倒水,当铁盒装满水时,玻璃杯中水的高度下降了多少?(结果保留π)分析:因为铁盒里水是满的,所以水的体积就等于铁盒的容积.根据长方体的体积公式可以计算出水的体积是131×131×81 mm3 ,圆柱形玻璃杯中减少的的体积为圆柱的底面积乘以水下降的高度.显然玻璃杯里倒掉的水的体积和长方体铁盒里所装的水的体积相等,所以等量关系为:玻璃杯里倒掉的水的体积=长方体铁盒的容积.解:设玻璃杯中水的高度下降了xmm.根据题意,得π·(90÷2)2x=131×131×81.解得π44.686x. 经检验,它符合题意.所以玻璃杯中水的高度下降了π44.686mm.例4将一个长、宽、高分别为15厘米、12厘米和8厘米的长方体钢块锻造成一个底面(正方形)边长为12厘米的长方体零件钢坯,试问是锻造前的长方体钢块表面积大还是锻造后的长方体零件钢坯表面积大?请你进行比较.分析:锻造前长方体钢块的体积为15×12×8cm3,锻造后长方体零件钢坯体积为12×12×它的高cm3.虽然钢块的形状发生了变化,但是钢块的体积没有变化.因此可得长方钢块体的体积=长方体零件钢坯体积,如果设长方体零件钢坯高为x厘米,得15×12×8=12×12×x.显然可以算出它的高=10厘米,但问题到此并没有结束,最终要比较它们的表面积的. 锻造前长方体钢块的表面积为为2×(12×15+15×8+12×8)平方厘米,锻造后长方体零件钢坯的表面积是2×(12×12+12×10+12×10)平方厘米.解:设锻造后的长方体零件钢坯的高为x厘米.根据题意,得5×12×8=12×12×x.解得10x=.所以锻造后的长方体零件钢坯表面积为:2(121212101210)768⨯⨯+⨯+⨯=(平方厘米).而锻造前的长方体钢块表面积为:2(1512158128)792⨯⨯+⨯+⨯=(平方厘米).所以锻造前的长方体钢块表面积比锻造后的长方体零件钢坯表面积大.例5 一种圆筒状包装的,如图3所示,其规格为“20cm×60m”,经测量这筒保鲜膜的内径、外径的长分别是3.2cm、4.0cm,则这种保鲜膜的厚度约为多少厘米?(π取3.14,结果保留两位有效数字)分析:当我们把圆筒状包装的保鲜膜展开时原来的形状可以看成长方体,根据长方体的体积公式可以计算出此时的体积为20ⅹ6000ⅹ保鲜膜的厚度,需要说明的是20 cm指展开后鲜膜的宽,也是展开前圆筒状包装的高,60 m是保鲜膜展开后的长度(单位要统一).圆筒状时可以看成圆柱体,我们要注意这个圆柱是空心的,计算时不能忘了减去空心部分.展开前后形状虽然改变了,但体积不变.即圆筒状包装体积=长方体的体积.解:设这种保鲜膜的厚度为x cm.根据题意,得223.2202060002x ⎡⎤4⎛⎫⎛⎫π-=⨯⎢⎥⎪ ⎪2⎝⎭⎝⎭⎢⎥⎣⎦.解得0.00075x≈.所以这种保鲜膜的厚度约为0.00075cm.例6 一张桌子有一个桌面和四条桌腿,做一张桌面需要木材0.03m3,做一条桌腿需要木材0.002m3,现做一批这样的桌子,恰好用去木材3.8m3,共做了多少张桌子?分析:解决这个问题关键是找出一个能表示实际问题全部意义的相等关系,我们要注意的是:一张桌子有一个桌面和四条腿,那么整张桌子所需的木材的体积是四条腿的和一个桌面的,如果设共做桌子X张,我们就容易用X表示出做桌腿所需木材的体积是4ⅹ0.002X m3 ,做桌面所需的木材的体积是0.03X m3 .因此这个问题中就有这样的相等关系:做桌面所需木材的体积+做桌腿所需木材的体积=3.8m3解:设共做了x张桌子.根据题意,得0.003x+4×0.002x=3.8.解得x=100.所以共做100张桌子.同步练习1.现有直径为0.8米的圆柱形钢坯30米,可足够锻造直径为0.4米,长为3米的圆柱形机轴多少根?2.德鑫轧钢厂要把一种底面直径6厘米,长1米的圆柱形钢锭,轧制成长4.5米,外径3厘米的无缝钢管,如果不计加工过程中的损耗,则这种无缝钢管的内径是()A. 0.25厘米 B. 2厘米C.1 厘米 D. 0.5厘米3.用直径为90 mm的圆柱形玻璃杯(已装满水)向一个由底面积为125×125 mm2内高为81mm的长方体铁盒倒水时,当倒满铁盒时玻璃杯中的水的高度下降多少?(结果保留整数π≈3.14)4.圆柱(1)的底面直径为10厘米,高为18厘米;圆柱(2)的底面直径为8厘米.已知圆柱(2)的体积是圆柱(1)的体积的1.5倍,求圆柱(2)的高.5.将内径为200毫米的圆柱形水桶中的满桶水倒入一个内部长、宽、高分别为300毫米、300毫米、80毫米的长方体铁盒,正好倒满,求圆柱形水桶的水高(精确到1毫米,≈3.14).6.一张圆桌由一个桌面和四条腿组成,如果1m三次方,木料可制作圆桌的桌面50个,或制桌腿300条,现有5m三次方,木料,请你设计一下,用多少木料.7.如图是两个圆柱体的容器,它们的半径分别是4cm和8cm,高分别为16cm和10cm,先在第一个容器中倒满水,然后将其全部倒入第二个容器中.(1)倒完后,第二个容器水面的高度是多少?(2)如右图把容器1口朝上插入容器2水位又升高多少?容器2同步练习1.现有直径为0.8米的圆柱形钢坯30米,可足够锻造直径为0.4米,长为3米的圆柱形机轴多少根?1、分析:变形前钢坯的体积等于变形后所有圆柱形机轴的总体积2.德鑫轧钢厂要把一种底面直径6厘米,长1米的圆柱形钢锭,轧制成长4.5米,外径3厘米的无缝钢管,如果不计加工过程中的损耗,则这种无缝钢管的内径是()A. 0.25厘米 B. 2厘米C.1 厘米 D. 0.5厘米3.用直径为90 mm的圆柱形玻璃杯(已装满水)向一个由底面积为125×125 mm2内高为81mm的长方体铁盒倒水时,玻璃杯中的水的高度下降多少?(结果保留整数π≈3.14)4.圆柱(1)的底面直径为10厘米,高为18厘米;圆柱(2)的底面直径为8厘米.已知圆柱(2)的体积是圆柱(1)的体积的1.5倍,求圆柱(2)的高.5.将内径为200毫米的圆柱形水桶中的满桶水倒入一个内部长、宽、高分别为300毫米、300毫米、80毫米的长方体铁盒,正好倒满,求圆柱形水桶的水高(精确到1毫米,≈3.14).6.一张圆桌由一个桌面和四条腿组成,如果1m三次方,木料可制作圆桌的桌面50个,或制桌腿300条,现有5m三次方,木料,请你设计一下,用多少木料.7.如图是两个圆柱体的容器,它们的半径分别是4cm和8cm,高分别为16cm和10cm,先在第一个容器中倒满水,然后将其全部倒入第二个容器中.(1)倒完后,第二个容器水面的高度是多少?(2)如右图把容器1口朝上插入容器2水位又升高多少?容器2。
5年级等积变形
等积变形有一个富翁留了一块三角形的土地给两个儿子,两个儿子要求平分这块地,这可伤透了他们的脑筋,因为他们不知道怎样去测量、平分。
同学们,你们能想出多少种方法将这块土地平分成个面积相等的三角形吗?根据这个问题,你能得出什么结论?结论一:。
思维探索例1:你有什么方法将任意一个三角形分成6个面积相等的三角形?如图,把△ABC的底边BC四等分,那么甲、乙两个三角形的面积谁大,为AB的面积是多少?如果△AC的面积是,那么AAB的面积是多少?如图,已知是BC的中点,是C的中点,是AC的中点。
已知三角形的面积是平方厘米,那么三角形ABC的面积是多少平方厘米?A思维探索例:(平行线间的等积变形)如下图,△和厶夹在一组平行线之间,且有公共底边,那么△和厶的面积关系是怎样的?结论拓展:夹在平行线间的一组同底三角形面积相等例:如图,在梯形中共有个三角形,其中面积相等的三角形有哪几对?即学即练如下图,在梯形A中,梯形A的面积是,AA的面积融会贯通例:如图,在直角三角形A中,D、E分别是A、A的中点,如果△AED的面积是即学即练如下图,在AA中,D、E是所在边的中点,如果AA的面积是,那么△DE的面积是多少?例:如图,A和DE都是长方形,A的长是厘米,的长是厘米。
那么图中阴影部分的面积是多少平方厘米?即学即练在边长为厘米的正方形中有一点,将点分别和四条边的中点相连,如下图,求阴影部分的面积。
练习册知识导航一个三角形的面积变化与否取决于它的高和底的乘积,而不仅仅取决于高或底的变化。
同时也告诉我们:一个三角形在面积不改变的情况下,可以有无数多个不同的形状。
为便于实际问题的研究,我们还会常常用到以下结论:()等底等高的两个三角形面积相等;()底在同一条直线上并且相等,该底所对的角的的顶点是同一个点或在与底平行精彩文档如图, 是直角的直线上,这两个三角形面积相等;()若两个三角形的高(或底)相等,其中一个三角形的底(或高)是另一个三角形的几倍,那么这个三角形的面积也是另一个三角形面积的几倍。
热点:关于立体图形的等积变形问题-2024年小升初数学(解析版)
热点:关于立体图形的等积变形问题一、填空题。
1在一个长20分米、宽9分米、高7分米的长方体容器内注入3.6分米深的水,然后放入一个棱长为6分米的正方体铁块,则水位上升了()分米。
【答案】0.9【分析】水的水位只有3.6分米,则可以将水看成一个长20分米、宽9分米、高3.6分米的长方体,则水的体积是=长×宽×高。
放入正方体方块虽然水位上升了,但是水的体积没有发生改变。
但是底面积发生可改变。
现在水的高度=水的体积÷底面积。
注意:求的是水位上升的高度。
水位上升的高度=现在水的高度-开始水的高度。
【详解】20×9×3.6=648(立方分米)20×9-6×6=180-36=144(平方分米)648÷144=4.5(分米)4.5-3.6=0.9(分米)则水位上升了0.9米。
2把一个底面是半径4分米、高是6分米的圆柱体铁块,熔铸成一个底面半径是3分米的圆锥体,这个圆锥体的高是()分米,体积是()立方分米。
【答案】32301.44【分析】根据题意可知,把一个圆柱体铁块熔铸成一个圆锥体,铁块的形状变了,但体积不变;先根据圆柱的体积公式V=πr2h,求出这个铁块的体积,也就是圆锥的体积;再根据圆锥的高h=3V÷S,求出这个圆锥体的高。
【详解】铁块的体积:3.14×42×6=3.14×16×6=50.24×6=301.44(立方分米)圆锥的底面积:3.14×32=3.14×9=28.26(平方分米)圆锥的高:301.44×3÷28.26=904.32÷28.26=32(分米)这个圆锥体的高是32分米,体积是301.44立方分米。
3一个密闭的长方体容器,它的长、宽、高分别是10cm、10cm、20cm,容器如图1放置时,容器内水的高度是10cm。
等积变形练习题
• 9、一个长8分米,宽5分米,高6分米 的玻璃缸内有2分米的水,将一个石 块放入水中,水面上升到2.5分米,这 个石块的体积有多大?
• 10、一个长方体玻璃缸,底面是2分 米的正方形,向容器内倒入5.4升水, 再把一个梨子放入水中,量得水深 1.5分米,这个梨子的体积有多大?
• 11、一个长方体玻璃缸,底面积是 200平方厘米,高是8厘米,里面 盛有4厘米深的水,现在将一块石 头放入水中,水面升高2厘米。这 块石头的体积是多少立方厘米?
• 12、一个长方体玻璃容器,从里面 量长和宽都为2分米。向容器中倒 入5.5升水,在把一个苹果浸没在 水中,这时容器内的水深是1.5分 米。这个苹果的体积是多少?
• 13、在一个长25厘米、宽12厘 米、高20厘米的长方体玻璃容 缸中放入一个棱长9厘米的正方 体铁块,然后在玻璃缸中加入 一些水,使铁块完全浸没在水 中。当铁块从水中取出时,玻 璃缸中的水会下降多少厘米?
• 6、两个容器,甲正方体(棱长6分 米),乙长方体(长8分米、宽和 高都是6分米),将甲容器的水装 满倒入乙容器,乙容器水面有多高?
•
• 7、一个货车的车厢是棱长4米,宽 2.5米,高1.5米的长方体,将它装满 石子,铺在一个长20米,宽5米的路 上,能铺多厚?
• 8、一个棱长5分米的玻璃缸 内有水100升,将一个石块投 入缸内,水面上升了1厘米,这 个石块的体积是多少?
一个货车的车厢是棱长4米宽25米高15米的长方体将它装满石子铺在一个长20分米的玻璃缸内有水100升将一个石块投入缸内水面上升了1厘米这个石块的体积是多少
等积变形练习题
1、用一块体积是2000立方厘米的钢块锻造 成一根横截面面积是20平方厘米长方体方
钢,这根长方体方钢长多少?
等积变形题目五年级
等积变形题目五年级等积变形是指图形在形状发生改变的过程中,其面积大小保持不变的一种变形。
例如,一个四边形可以变成正方形、长方形、梯形或不规则的其他几边形,只要其面积大小保持不变,就是等积变形。
1.问题:有一个长方体,它的长、宽、高分别是a、b、c(a>b>c),现在进行等积变形,把长方体的长变成d,宽和高保持不变。
请问变形后的长方体与原长方体的体积相比,是变大还是变小?解析:因为等积变形不改变物体的体积,所以原长方体和变形后的长方体的体积是相等的。
2.问题:有一个正方体,边长为a,现在进行等积变形,把正方体的边长变成d,请问变形后的正方体与原正方体的体积相比,是变大还是变小?解析:因为等积变形不改变物体的体积,所以原正方体和变形后的正方体的体积是相等的。
3.问题:有一个三角形,它的底边为a,高为h,现在进行等积变形,把三角形的底边变成d,高保持不变。
请问变形后的三角形与原三角形的面积相比,是变大还是变小?解析:因为等积变形不改变三角形的面积,所以原三角形和变形后的三角形的面积是相等的。
4.问题:有一个正方形,边长为a,现在进行等积变形,把正方形的边长变成d,请问变形后的正方形与原正方形的面积相比,是变大还是变小?解析:因为等积变形不改变正方形的面积,所以原正方形和变形后的正方形的面积是相等的。
5.问题:有一个长方形,长为a,宽为b,现在进行等积变形,把长方形的长变成d,宽保持不变。
请问变形后的长方形与原长方形的面积相比,是变大还是变小?解析:因为等积变形不改变长方形的面积,所以原长方形和变形后的长方形的面积是相等的。
2024年 三角形中的重要模型等积模型(含答案)
专题07 三角形中的重要模型-等积模型三角形的面积问题在中考数学几何模块中占据着重要地位,等积变形是中学几何里面一个非常重要的思想,下面的五大模型也都是依托等积变形思想变化而成的,也是学生必须掌握的一块内容。
本专题就三角形中的等积模型(蝴蝶(风筝)模型,燕尾模型,鸟头模型,沙漏模型,金字塔模型)进行梳理及对应试题分析,方便掌握。
模型1. 等积变换基础模型1)等底等高的两个三角形面积相等;如图1,当AB //CD ,则ACD BCD S S =△△; 反之,如果ACD BCD S S =△△,则可知直线AB //CD 。
图1 图2 图32)两个三角形高相等,面积比等于它们的底之比;两个三角形底相等,面积比等于它们的高之比。
如图2,当点D 是BC 边上的动点时,则S △ABD ∶S △ADC =BD ∶DC 。
如图3,当点D 是BC 边上的动点,BE ⊥AD ,CF ⊥AD 时,则S △ABD ∶S △ADC =BE ∶CF 。
A .4B .3【答案】D 【分析】利用三角形面积公式,等高的三角形的面积比等于底边的比,由此利用已知条件可以分别求出BDC BED S S 、V V .A.9B.【答案】B【分析】利用中线等分三角形的面积进行求解即可.V【详解】解:∵BD是ABC【答案】12【分析】根据高相等的两个三角形的面积之比等于底之比可得答案.【详解】解::QCG GF=【答案】14.4【分析】连接BF , 12BDC ABC S S =V V ;根据示为2BDC S V 和3S V∵CD 为AB 边上中线,∵2BE CE =, S \V 2ABC BDC S S \==V V(1)如图2,延长ABC V 的边BC 到点D ,使CD BC =,连接DA (用含a 的代数式表示);(2)如图3,延长ABC V 的边BC 到点D ,延长边CA 到点E ,使面积为2S ,则2S = (用含a 的代数式表示);(3)在图3的基础上延长AB 到点F ,使BF AB =,连接FD ,积为3S ,则3S =(用含a 的代数式表示);Q 延长ABC V 的边BC 到点D ,延长边CA 到点E ,使CD BC =,AE \12ACD AED ECD S S S D D D ==,ACD ABC S D ,22ECD ABC S S a D D \==,即2S (3)由(2)得2ECD ABC S S D D ==同理:22EFA ABC S S a D D ==,2ECD BFD S a D D =,3ECD EFA S S S S D D \=++∵点E 是线段AD 的中点,12BCE ABC S =V .∥,连接,若过C作CE AB模型2.蝴蝶(风筝)模型蝴蝶模型(定理)提供了解决不规则四边形的面积问题的一个途径。
等积变形问题
等积变形问题【复习】1.(1)等底等高的圆柱体和圆锥体体积之和是28立方米, 圆柱体的体积是多少?(2)一个圆柱体和一个圆锥体等底等高,它们的体积相差50.24立方厘米。
如果圆锥体的底面半径是2厘米,这个圆锥体的高是多少厘米?2.(1)把一个棱长是10分米的正方形木块,削成一个最大的圆柱,需要削去多少立方分米的木块?(2)一个圆柱体木块,底面直径和高都是10厘米,若把它加工成一个最大的圆锥,这个圆锥的体积是多少立方厘米?3.(1)前进镇去年水稻总产量是2400吨,比小麦总产量多20%,小麦总产量是多少吨?(2)青山果园的苹果树和梨树一共有120棵,其中梨树的棵数是苹果树的1/4,青山果园的苹果树和梨树各有多少棵?(3)一只圆柱形玻璃杯,内底面直径是8厘米,内装药水的深度是16厘米,恰好占整杯容量的4/5。
这只玻璃杯最多能盛药水多少毫升?4.(1)某停车场,共停着18辆三轮车和小轿车,它们的轮子共有66个,问三轮车和小轿车各有几辆?(2)一群鸵鸟和斑马,眼睛共有100只,脚共有156只,问鸵鸟几只?斑马几匹?1一、等积变形问题1. (1)把一个体积是282.6立方厘米的铁块熔铸成一个底面半径是6厘米的圆锥形机器零件,求圆锥零件的高?(2)在一个直径是20厘米的圆柱形容器里,放入一个底面半径3里米的圆锥形铁块,全部浸没在水中,这时水面上升0.3厘米。
圆锥形铁块的高是多少厘米?(3)把一个底面半径是6厘米,高是10厘米的圆锥形容器灌满水,然后把水倒入一个底面半径是5厘米的圆柱形容器里,求圆柱形容器内水面的高度?(4)一个圆锥形沙堆,底面周长是12.56米,高6米,将这些沙铺在宽10米的道路上铺0.04厘米厚,可以铺多少米长?(5)把一个长、宽、高分别为9厘米、7厘米、3厘米的长方体铁块和一个棱长是5厘米的正方体铁块,熔铸成一个圆柱体, 这个圆柱体的底面直径是20厘米, 高是多少厘米?2二、阴影面积1.计算下面各图中阴影部分的面积。
最新等积变形专项练习
等积变形专项练习
1.在一个底面积是31.4平方厘米的长方体玻璃容器中,有一个底面半径是1厘米的圆锥形铝块完全浸在水中,当从水中取出铝块时,容器的水面下降了0.2厘米。
这个圆锥形铝块高多少厘米?
2.用半径10cm高7cm的圆柱形泥巴揉成半径一样大的圆锥形,圆锥的高是多少厘米呢?
3.一个圆柱形的水桶,内部的底面半径是20厘米,高是45厘米,里面盛有30厘米深的水。
将一个底面半径是15厘米的圆锥形铁块完全沉进水里,水不溢出,水面上升了3厘米,圆锥形铁块的高是多少?
4.有一段钢可做一个底面直径8厘米,高9厘米的圆柱形零件。
如果把它改制成高是12厘米的圆锥形零件,零件的底面积是多少平方厘米?
5.一个圆柱形容器的底面半径是4分米,高6分米,里面盛满水,把水倒在棱长是8分米的正方体容器中,水深多少分米?
6.将一个底面直径是20厘米、高是9厘米的金属圆锥,全部浸没在直径是40厘米的圆柱形水槽中且水未溢出。
水槽中的水面会升高多少厘米?
7.把一个长2米的圆柱截去4分米后,原来的表面积就减少了25.12平方分米,原来圆柱的体积是多少立方分米?
8.在一个底面是边长为2分米的正方形的长方形水槽中,放入一块青铜(完全浸没在水中),水面上升1分米且水未溢出。
(水槽厚度忽略不计)
(1)求这块青铜的体积。
(2)如果把这块青铜铸成一个底面直径是2分米的圆柱,它的高是多少?(得数保留一位小数)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
等积变形问题——一元一次方程的应用题
一知识点
“等积变形”是以形状改变而体积不变为前提.
常用等量关系为:形状面积变了,周长没变;原料体积=成品体积.
二试试身手
1、一块正方形铁皮,四角截去4个一样的小正方形,折成底面边长是50cm的无盖长方体盒子,容积是45000.,求原来正方形铁皮的边长。
2、用直径为4cm的圆钢,锻造一个重0.62kg的零件毛坯,如果这种钢每立方厘米重7.8g,应截圆钢多长?
3、把直径6cm,长16cm的圆钢锻造成半径为4cm的圆钢。
求锻造后的圆钢的长。
4、直径为30厘米,高为50厘米的圆柱形瓶里存满了饮料,现把饮料倒入底面直径为10厘米的圆柱形小杯中,刚好倒满20杯,求小杯子的高。
5 现有直径为0.8米的圆柱形钢坯长30米,可足够锻造直径为0.4米,长为3米的圆柱形机轴多少根?
6 用直径为90mm的圆柱形玻璃杯(已装满水),向一个由底面积为125*125mm,内高为81mm的长方体铁盒倒满水时,玻璃杯中的水的高度下降多少mm?(结果保留整数, π=3.14)
7 把内径为200mm,高为500mm的圆柱形铁桶,装满水后慢慢地向内径为160mm,高为400mm 的空木桶装满水后,铁桶内水位下降了多少?
8 要锻造一个直径为8cm高为4cm的圆柱形毛坯,至少应截取直径为4cm的圆钢多少cm。