第四章抽样与抽样分布

合集下载

统计学-抽样分布与抽样方法

统计学-抽样分布与抽样方法
重复抽样的特点: ①在重复抽样的过程中,被抽取的总体单位总数始终
保持不变,每一次抽样中各总体单位被抽到的机会 都相同,每次抽样结果相互独立。 ②每一总体单位都有被重复抽取的可能。
5.2 抽样调查的方法
一、两种抽样方式(续):
(2)不重复抽样 ——也称不放回抽样,指被抽到的单位不再放回总
体,每次仅在余下的总体单位中抽取下一个样本的 抽样方法。 特点: ①任一总体单位都不会被重复抽到; ②每次抽样结果都受到以前各次抽取结果的影响,因 此各次抽取结果是不独立的; ③可以一次抽取所需要的样本单位数。 ❖ 在实际应用中通常采用的都是不重复抽样方法。
总体
群1
群2
…… 群k
个体1 个体2 个体3 个体4 个体5 个体6
5.2 抽样调查的方法
3.整群抽样
❖特点:
▪ 抽样时只需群的抽样框,可简化工作量 ▪ 调查的地点相对集中,节省调查费用,方便
调查的实施 ▪ 当群中的元素差异性大时,整群抽样得到的
结果比较好。在理想状态下,每一群是整个 总体小范围内的代表。如对人口普查资料进 行复查,就采用整群抽样的方式。
5.1 抽样调查的概念、特点和作用
五、全及总体和抽样总体 ❖全及总体,简称总体,是指所要认识对象的全
体,是许多同质性单位的集合。通常用大写字 母N来表示(容量)。 ❖抽样总体,简称样本,是从全及总体中随机抽 取出来,代表全及总体部分单位的集合。通常 用小写字母n来表示(容量) 。
▪ 样本容量(Sample size):样本中所含个体的数量。分为 大样本(>30)、小样本(<30)。
▪ 样本个数:又称为样本可能数目。是指从一个总体中可以 抽取的样本个数。
5.2 抽样调查的方法

统计学之抽样与抽样分布

统计学之抽样与抽样分布

的抽样分布
统计推断的过程
• 总体均值
m=?
• 从总体中抽取 • 样本容量为 n 的样本
• 用 作为m 的点估计
• 计算样本平均值
的抽样分布
的抽样分布是指所有可能的样本平均值 的概率分 布
的期望值
E( ) = = 总体平均值
的抽样分布
的标准差

有限总体
无限总体
• 当 n/N < .05时,可以将一个有限总体看作是无限
统计学之抽样与抽样分 布
2020年4月29日星期三
Chapter 7
抽样和抽样分布
本章主要内容
简单随机抽样 点估计 抽样分布 样本平均值 的抽样分布 样本比例 的抽样分布 抽样方法
•n = 100
•n = 30
统计推断
统计推断的目的是利用样本的信息推断总体的信息 总体是指感兴趣的所有元素的集合 样本是总体的一个子集 通过样本统计量对总体参数进行估计 只要抽样方法恰当,通过样本统计量可以对总体参数 进行很好的估计
也就是说,样本平均值在总体平均值+/-10分范围内的 概率为0.5036
•面积 = 2(.2518) = .5036
• 的抽样分布
•980 •990•1000
的抽样分布
的抽样分布是指所有可能的样本比例 的概率分布 的期望值
p = 总体比例
的抽样分布
的标准差 有限总体
无限总体
• 也称为样本比例的标准误
总体

称为有限总体校正因子.
• 也称为样本均值的标准误
的抽样分布
中心极限定理:只要样本容量足够大 (n > 30),不管总 体服从什么分布,样本平均值 都可以认为近似服从 正态分布。

统计学抽样与抽样分布ppt课件

统计学抽样与抽样分布ppt课件
4. 在大规模的抽样调查中,经常被采用的方法
精选
21
概率抽样(小结)
精选
22
非概率抽样
n也叫非随机抽样,是指从研究目的出发,根据调查者的 经验或判断,从总体中有意识地抽取若干单位构成样本。 n重点调查、典型调查、配额抽样(是按照一定标准或一 定条件分配样本单位数量,然后由调查者在规定的数额内 主观地抽取样本)、方便抽样(指调查者按其方便任意选 取样本。如商场柜台售货员拿着厂家的调查表对顾客的调 查)等就属于非随机抽样。 n优点:及时了解总体大致情况,总结经验教训,在进行 大规模抽样调查之前的试点。 n缺点:非随机抽样容易产生倾向性误差,并且误差不能 计算和控制 ,也就无法说明调查结果的可靠程度。
4. 特别是在标志值相差悬殊时,由于划分了类型,一
方面缩小了组内方差,另一方面也保证各组都能抽 取一定的样本单位,所以,分层抽样较之纯随机抽 样可以提高样本的代表性,能获得更为满意的效果
精选
16
分层抽样
(stratified sampling)续
Ü 优点:
Ü 除了可以对总体进行估计外,还可以对各层的子总 体进行估计
精选
23
概率抽样与非概率抽样
概率抽样
抽样类型
非概率抽样
简单随机抽样 分层随机抽样 整群抽样 系统抽样 多阶段抽样
方便抽样 判断抽样
其他非概率抽样
精选
24
重复抽样与非重复抽样
n重复抽样,又称回置抽样,是指从总体的N个
单位中,每次抽取一个单位后,再将其放回总 体中参加下一次抽选,连续抽n次,即得到一 个样本。
n重复:42=16个。它们是
n
AA AB AC AD; BA BB BC BD
n

教育与心理统计学 第四章 抽样理论与参数估计考研笔记-精品

教育与心理统计学  第四章 抽样理论与参数估计考研笔记-精品

第四章抽样理论与参数估计第一节抽样理论的基本知识分层抽样,又叫分层随机抽样,这种抽样方法是按照总体已有的某些特征,承认总体中已有的差异,按差异将总体分为几个不同的部分,每一部分称为一个层,在每一个层中实行简单随机抽样。

它充分利用了总体的已知信息,因而是一种非常适用的抽样方法,其样本代表性及推论的精确性一般优于简单随机抽样。

分层的原则是层与层之间的变异越大越好,各层内的变异要小。

试述分层抽样的原则和方法?分层抽样是按照总体上已有的某些特征,将总体分成几个不同部分,在分别在每一部分中随机抽样。

分层的总的原则是:各层内的变异要小,而层与层之间的变异越大越好。

在具体操作中,没有一成不变的标准,研究人员可根据研究需要依照多个分层标准,视具体情况而定。

⑷两阶段随机抽样两阶段随机抽样首先将总体分成M个部分,每一部分叫做一个"集团"(或"群"),第一步从M个集团中随机抽取m个"集团”作为第一阶段样本,第二步是分别从所选取的m个"集团”中抽取个体(g构成第二阶段样本。

一般而言,两阶段抽样相对于简单随机抽样,标准误要大些,但是,两阶段抽样简便易行,节省经草贼,因而它是大规模调查研究中常被使用的抽样方法。

例如,如果我们要了解全国城市初中二年级学生的身高,第一步我们可以从全国几百个城市中随机抽取几十个城市作为第一阶段的样本。

第二步,在第一阶段随机抽取出来的城市中再随机抽取初中二年级的学生。

(二)非旃抽样非概率抽样不是完全按随机原则选取样本,有方便抽样、判断抽样。

方便抽样是由调查人员自由、方便地选择被调查者的非随机选样。

判断抽样是通过某些条件过滤,然后选择某些被调查者参与调查的抽样法。

当采取非概率抽样的方法选取样本时,研究者要说明采用此种方取样的原因以及对研究结果可能造成的影响。

第二节抽样分布[统计量分布、基本随机变量函数的分布]总体:又称母全体、全域,指具有某种特征的一类事物的全体。

第四章 抽样

第四章 抽样
第四章 抽 样
主讲人: 张建鹏 要内容
一、抽样的意义与作用 二、概率抽样的原理与程序 三、概率抽样方法 四、非概率抽样方法 五、样本规模与抽样误差
2
一、抽样的意义与作用
1. 相关概念 (1). 总体(population):构成它的所有元素的集合 N 表示。元素则是构成总体的基本的单元。 如:海医学生新闻获得方式调查 某市居民家庭生活状况 (2). 样本(sample):从总体中按一定方式抽取的一部 分元素的集合。用n表示 如:从海医1万名学生中,按一定方式抽取300人进行 调查,这300人构成该总体的一个样本。
28
分层(最佳)抽样法
定义:又称非比例抽样法,根据各层样本标准差 的大小确定各层的样本数目的方法。 计算公式为:
ni = n * ( N i Si / ∑ N i Si )
(1)
式中:ni ----- 各类型应抽选的样本单位数 n ----- 样本单位数 Ni ----- 各类型的调查单位数 Si ----- 各类型调查单位数的样本标准差
14
抽样设计的五个步骤 1)定义目标总体 (如上述案例中正在上学的 年龄在8-17岁的年轻人) 2)制定抽样框 (例如上述案例中的所有县及 县内的城市和城镇) 3)选择一种抽样技术 (如上述案例中的三段 分层概率抽样) 4)实际抽取样本 (样本容量,1000名;执行 抽样过程和对调查员指令) 5)评估样本质量 (如检测样本平均年龄是否 与全国普查数据一致或接近)
33
整群抽样与分层抽样的比较
特征 样本来源 抽样目的 划分原则 整群抽样 一个或几个 不提高成本而提 高抽样效率 分层抽样 所有层 不提高成本而提 高精度
群中的个体异质, 层中个体同质, 群间同质 层间异质

(04)第4章+抽样与抽样分布

(04)第4章+抽样与抽样分布

4-6
统计学
STATISTICS
例题分析
♦ 假定我们刚刚已取了飞机制造所用的铆钉的25个 假定我们刚刚已取了飞机制造所用的铆钉的25个
一组的样本。检测铆钉的抗剪强度,破坏每个铆 钉所需的力是响应变量。对这组样本,可以求得 各种描述性的测量(均值、方差等)。 ♦ 然而,我们的感兴趣的是总体,并不是样本自身。 被测试的铆钉在测试时已被破坏,不能再用在飞 机的制造上,所以我们肯定不能测试所有的铆钉。 我们必须从这组样本或几组这样的样本来决定总 体的某些特性。 ♦ 因此,我们必须设法推断信息,也即基于样本的 观测结果作出总体的推断
(例题分析) 例题分析)
计算出各样本的均值,如下表。 计算出各样本的均值,如下表。并给出样本均 值的抽样分布
4 - 32
样本均值的抽样分布
统计学
STATISTICS
(例题分析) 例题分析)
【例】设一个总体,含有4个元素(个体) ,即总体单位 设一个总体,含有4个元素(个体) 数N=4。4 个个体分别为x1=1,x2=2,x3=3,x4=4 。总 个个体分别为x 体的均值、 体的均值、方差及分布如下 总体分布
4 - 17
统计学
STATISTICS
分层抽样
分层抽样
统计学
STATISTICS
(stratified sampling) sampling)
♦ 分层抽样:在抽样之前先将总体的单位按 分层抽样:
某种特征或某种规则划分为若干层(类), 然后从不同的层中独立、随机地抽取一定 数量的单位组成一个样本,也称分类抽样 数量的单位组成一个样本,也称分类抽样 sampling) (stratified sampling) ♦ 在分层或分类时,应使层内各单位的差异 尽可能小,而使层与层之间的差异尽可能 大

第四篇抽样和分布1(药学)PPT课件

第四篇抽样和分布1(药学)PPT课件
该法要求各层间差异尽可能大,才能得到有较 好代表性的样本,并便于各层间分析比较。
24
4、整群抽样 先将总体分成若干互不重叠部分(称为群),再 从各群中随机抽取某群或几群作为样本。 例:调查某年级学生上网情况
可把每班作为一群,从中随机抽取一班或几班作 为样本。
该法适用于大规模调查,易于组织,节省人 力物力,但误差较大,适于群体差异较小的调 查对象。
8
实例 研究某地区12岁儿童生长发育情 况,总体和个体应为什么? 显然,总体为该地区的全体儿童
个体为每一个儿童。
当然,衡量儿童生长发育情况要通过诸如身高、 体重等数量指标进行,所以对总体的研究实际上 是对该地区的全体儿童的这些指标值概率分布进 行研究。
9
根据研究指标的多少,总体分为 一维总体-研究一项描述指标,常用随机变量X表示; 多维总体-研究多项描述指标,常用随机向量表示,
14
一般地,对有限总体,应采用有放回抽样,对 无限总体(或数量较多),可采用无放回抽样 (近似看作有放回),否则违背独立性。
简单随机抽样具体实施的方法: 抽签法
随机数法
15
三、统计量(Statistic )
样本是对总体的代表和反映,抽样的目的是利用样本值对 总体进行统计推断。
而对总体进行统计推断,常根据需要的不同,利用样本构 造一些包含所需要的多种信息的量,就是关于样本 X1 ,X2 ,…,Xn的一些函数,这些函数统称为统计量。
3
例如,在几何学中要证明“等腰三角形底角相等”, 只须从“等腰”这个前提出发,运用几何公理,一步一 步推出这个结论.这是演绎推理。
而一个习惯于统计思想的人,可能这样推理: 做很多大小形状不一的等腰三角形,实地测量 其底角,看差距如何,根据所得资料看看可否作 出“底角相等”的结论. 这样做就是归纳式的方法.

抽样及抽样分布

抽样及抽样分布

分层抽样 概念:分层抽样又称类型抽样。首先将总体单
位按某一个标志分层;然后在各层按随机抽样的方 法分别抽出各层的样本。
特点:分层抽样在层内是抽样调查,层间是全面调
查,所以分层时应该尽量让每层内的变异程度小,
而层间的变异程度大。分层抽样的抽样误差较简单 随机抽样小,样本具有很好的代表性。
抽样平均误差的计算公式:
z
(
X 1
X
)
2
( 1
2
)
s2 1
s2 2
n1 n2
渐近服从标准正态分布。
如果: X1 和 X2 是两个非正态总体,当和样本容
量足够大,
z
(
X1
X
2
)
(1
2
)
s2 1
s2 2
n1 n2
渐近服从标准正态分布。
NEXT
二、样本成数及成数差的抽样 分布
成数的概念 样本成数的分布 两个总体样本成数差的分布
,则样本的成数为p n1
n

例如,某工厂生产某种电子元件,某批产品
共10000件,其中不合格品100件原则抽100件,其中
有3件不合格品,则样本的成数为p 3% 。
NEXT
样本成数的分布
用途:推断或估计总体的成数。例如某项改革 方案工人的支持率,产品的正品率等。
假设A、B、C、D、E5位同学的统计学成绩分别为: 80、 86、90、92、96。可计算得总体均值为88.8,总体方 差为29.76。现在随机从中抽容量为2的样本。
重复抽样的所有可能的样本:
样本(AA)(AB)(AC)(AD)(AE)
均值 80 83 85
86 88
样本 (BA)(BB) (BC) (BD)(BE)

统计学原理chart4

统计学原理chart4

样本 46,34 46,38 46,42 46,46 46,50 50,34 50,38 50,42 50,46 50,50
X 42(元) X N
2( X ) ( X
X )2 32(元2 ) N
样本平 均数 x 40 42 44 46 48 42 44 46 48 50
三、不重置抽样分布
样本 样本平 均数 x 样本 样本 均数 x
(一)样本平均数的分布
某班组5个工人的日工资为 34,38 34、38、42、46、50元。 34,42
X 42(元) X N
2
34,46 34,50 38,34 38,42 38,46 38,50
36 38 40 42 36 40 42 44 38 40 44 46
( x x )2 f (x) 4(元) f
(二)两个重要结论:
1.重置抽样的样本平均数的平均数等于总体平
均数,即
x X,E(x) X
2.重置抽样的抽样平均数的标准差等于总体标
准差除以样本单位数的平方根。即
(X )
x n
抽样平均数的标准差反映所有的样本平均数与 总体平均数的平均误差,又称为抽样平均误差 (或抽样标准误差),即
x
2 ( X ) N n
n ( N 1
)
2 ( X ) ( N n) x (x ) n
N 1
2 ( X ) (1 n ) 当N很大时,N 1 N ,有, n
N
n/N称为抽样比。
(三)不重置抽样样本成数的分布
对于(0,1)分布的总体,总体平均数为:X P P
某班组5个工人的日工资 为34、38、42、46、50元。

4.3抽样分布

4.3抽样分布

(3) X与S2相互独立
(4) X ~ t(n 1)
Sn
已知, 2未知
(5) n ( Xi )2 ~ 2 (n)
i1
已知
LOGO
例1 设总体X 服从正态分布N (12, 2 ), 抽取容量为
25的样本,求样本均值X大于12.5的概率.如果(1)已
知 12;(2)未知,但已知样本方差S2 3.6.
n1 n2


F(n1,
n

2


.
LOGO
4.3.2 正态总体的抽样分布
由于要求具体抽样分布是困难的,有时甚至是不可 能的。正态总体的抽样分布有详尽的研究,本节主要 学习正态总体的抽样分布。
掌握正态分布、 2分布、t分布、F分布的一些结论
对于正态总体抽样分布的学习非常有用. 主要学习单个正态总体的抽样分布以及多个正态总
i1
于是P
10
i1
Xi 2
4
P
1 0.52
10 i1
Xi2
16
查表求02.10(10) 16.由此可得
P
10 i1
Xi
2
4
0.10.
(2) 由题设及定理4.3.2, 9S 2
0.52
10
P i1
(Xi
X )2
1
2.85
P
0.52
10 i1
查表得02.25(9) 11.4,由此可求得
n
n
该定理的证明由正态分布的性质3.1.10可得。
注意:当样本来自非正态总体时,若总体均值为,方差 为 样 本量2(充有分限大且时不,X为近零似)服,从由N中(心, 极)2.限定理可以证明当

四章样本及抽样分布

四章样本及抽样分布

E(X )
1 n
n i 1
E( X i )
D(X )
1 n2
n
2
D(Xi )
i 1
n
X ~ N(, 2 )
n
X ~ N (0, 1) / n
iid
2.若X1,,X n ~ N (, 2 ), 则 (1) X与S 2相互独立; (2) 2
(n 1)S 2
2
~
2 (n 1);
(3)T X ~ t(n 1).
第四 章 样本及抽样分布
引言 run 随机样本 抽样分布
4.1 随机样本 一、总体与样本
1. 总体:研究对象旳全体。 一般指研究对象旳某项数量指标。 构成总体旳元素称为个体。
从本质上讲,总体就是所研究旳随机变量或 随机变量旳分布。
2. 样本:来自总体旳部分个体X1, … ,Xn 假如满足: (1)同分布性: Xi, i=1,…,n与总体同分布. (2)独立性: X1,… ,Xn 相互独立; 则称为容量为n 旳简朴随
P{ 1
1
P{ 1 F
F (n2 , n1)}
} 1
F F1 (n1, n2 )
P{ 1
1 }
得证!
F F1 (n1, n2 )
4.3 正态总体旳抽样分布定理
iid
1.若X1 ,,Xn ~ N(, 2 ), 则U
X / n
~
N(0, 1)
证明:
X
1 n
n i 1
Xi
是n 个独立旳正态随 机变量旳线性组合,故 服从正态分布
i 1
称为自由度为n的 2 分布.
2.2—分布旳密度函数f(y)曲线
f
(y)

田间试验与统计方法第四章理论分布和抽样分布

田间试验与统计方法第四章理论分布和抽样分布

•事件间的关系
•A
•积事 件AB
•B
•和事件A+B
•A+B, “或A发生,或B发生”。 •AB, “A和B同时发生或相继发生”
•A
•B
•互斥事件
•A·B=V,事件A和B互斥或互不相容
•A
•B
•对立事件
•A+B=U,A·B=V,事件B为事件A的对立事件,并记B为

二、概 率
研究随机试验,仅知道可能发生哪些随机事件是不够的,还需了解各种随机事 件发生的可能性大小,以揭示这些事件的内在的统计规律性,从而指导实践。
• 如果每次抽5个单株,抽n=400次,则理论上我们能够得 到y=2的次数应为: • 理论次数=400×P(2)=400×0.3364=134.56(次)分布表(p=0.35,q=0.65)


受害株数(y)
•图4.1 棉株受危害的概率分布图 •(p=0.35,n=5)
这就要求有一个能够刻划事件发生可能性大小的数量指标, 这指标应该是事件本身所固有的,且不随人的主观意志而改变 ,人们称之为概率(probability)。
事件A的概率记为P(A)。

•二、概率 (一)概率的统计定义
思考:投掷一枚硬币,出现正面的概
率是多大?(0表示反面,1表示正 面)反复做它,那么所有出现正面 的结果平均值是多少?
• 随机变量是指随机变数所取的某一个实数值。表示随机现象 结果的变量,也就是在随机试验中被测定的量,所取得的值称 为观察值。
• 例1:抛硬币试验,两种结果:

用数“1”表示“币值面向上”, “0”表示“国徽面向上”

把 0,1作为变量y的取值

抽样分布

抽样分布

x
/ n
x s/ n
N (0,1)
t=
N ( , )
2
t分布
总体方差未知或样本容量n小于30时,标准离差的分布呈t分布。
四、 t 分布
对于不同的自由度,t分布有不同的曲线。
四、 t 分布
( 1 ) t分布曲线左右对称,围绕平均数μt =0 向两侧递降。 (2)t分布受自由度df=n-1制约,每个df都有一条t分布曲线。 (3)df小,t值离散程度大。 (4)和正态分布相比,t分布的顶端偏低,尾部偏高,自由度
2 s1 F 2 s2
此F值具有s12的自由度df1=n1-1和s22的自由度 df2=n2-1。
六、 F 分布
df1 df1 df2 1 ( ) df1 df 2 2 F 2 2 2 f (F ) df1 df2 df1 df 2 df1 df2 ( ) ( ) (df1 F df2 ) 2 2 2
F分布是随自由度df1和df2进行变化的一组曲线。
F分布的概率累积函数
f (F )

F
0
f ( F )dF
六、F 分布
1
F分布的平均数μF=1 ,F的取值区间为[0,+∝ )
F分布曲线的形状仅决定于df1和df2。在df1=1或2时, 2 F分布曲线呈严重倾斜的反向J型,当df1≧ 3时,转
为左偏曲线。
第四章:统计数的分布——抽样分布
从总体中抽取的样本提供的信息仅是总体的一部分,它不能 提供完全准确的信息,必然存在着一定的误差。 对于样本容量相同的多次随机抽样样本,其统计量是变异的, 且其取值有一定的概率,即样本统计量也是一个随机变量,此 分布规律称为抽样分布(sampling distribution)。

抽样和抽样分布培训课件(PPT 49张)

抽样和抽样分布培训课件(PPT 49张)

0.07 0.5279 0.5675 0.6064 0.6443 0.6808 0.7157 0.7486 0.7794 0.8078 0.8340 0.8577 0.8790 0.8980 0.9147 0.9292 0.9418 0.9525 0.9616 0.9693 0.9756 0.9808 0.9850 0.9884 0.9911 0.9932 0.9949 0.9962 0.9972 0.9979 0.9985 0.9989
7
自有限总体的抽样
• 无放回抽样:一个元素一旦选入样本,就从总体中剔除, 不能再次被选入。 • 放回抽样:一个元素一旦选入样本,仍被放回总体中。
先前被选入的元素可能再次被选,并且在样本中可出现
多次(多于一次)。
8
自无限总体的抽样
• 无限总体经常被定义为一个持续进行的过程,总体的元 素由在相同条件下过程无限运行下去产生的每一项构成。 在这种情况下,对总体内所有项排列是不可能的。
14
点估计
样本均值 51814.00美元 样本标准差
3347.72美元
样本比率 0.63
点估计的 统计过程
15
由30名管理人员组成的简单随机样本的点估计值
16
由30名管理人员组成的500个简单随机样本的点估计值
17
由30名管理人员组成的500个简单随机样本的抽样分布
• 抽样分布:样本统计量所有可能值构成的概率分布。
0.04 0.5160 0.5557 0.5948 0.6331 0.6700 0.7054 0.7389 0.7704 0.7995 0.8264 0.8508 0.8729 0.8925 0.9099 0.9251 0.9382 0.9495 0.9591 0.9671 0.9738 0.9793 0.9838 0.9875 0.9904 0.9927 0.9945 0.9959 0.9969 0.9977 0.9984 0.9988
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2)抽签法 )
4.1.2分层抽样 分层抽样(stratified sampling) 分层抽样
将总体单位按某种特征或某种规则 划分为不同的层, 划分为不同的层,然后从不同的层中独 随机地抽取样本,又称类型抽样 立、随机地抽取样本,又称类型抽样 保证样本的结构与总体的结构比较 相近, 相近,从而提高估计的精度
4.3样本均值的抽样分布与中心极限定理 样本均值的抽样分布与中心极限定理
当总体服从正态分布N 当总体服从正态分布 N(,σ2)时 , 来自该总体的所有 容量为n的样本的均值 也服从正态分布, 容量为n的样本的均值x也服从正态分布,x 的数 学期望为 方差为σ 学期望为,方差为σ2/n。即x~N(,σ2/n)
概率抽样(probability sampling) 概率抽样
1. 2.
根据一个已知的概率来抽取样本单位, 根据一个已知的概率来抽取样本单位 , 也 称随机抽样 特点 按一定的概率以随机原则抽取样本 每个单位被抽中的概率是已知的, 每个单位被抽中的概率是已知的,或是 可以计算出来的
4.1.1简单随机抽样 简单随机抽样(simple random 简单随机抽样 sampling)
.3 .2
=
∑X
i=1
N
i
N
N i
= 2.5
2
.1 0 1 2 3 4
σ 2 = i=1
பைடு நூலகம்
∑(X )
N
= 1.25
样本均值的抽样分布
现从总体中抽取 n = 2 的简单随机样本 , 的简单随机样本, 重复抽样条件下 共有4 16个样本 条件下, 个样本。 在 重复抽样 条件下 , 共有 42=16 个样本 。 所 有样本的结果如下表
4.1.4整群抽样 整群抽样(cluster sampling) 整群抽样
将总体中若干个单位合并为组(群 抽样时直 将总体中若干个单位合并为组 群 ),抽样时直 接抽取群, 接抽取群,然后对中选群中的所有单位全 部实施调查 调查的地点相对集中, 节省调查费用, 调查的地点相对集中 , 节省调查费用 , 方便调查的实施 缺点是估计的精度较差
16个样本的均值 个样本的均值 第一个 观察值 1 2 3 4 第二个观察值 1 1.0 1.5 2.0 2.5 2 1.5 2.0 2.5 3.0 3 2.0 2.5 3.0 3.5 4 2.5 3.0 3.5 4.0 4 3 2 1 0 1 1.5 2 2.5 3 3.5 4
P(x)
x
样本均值的抽样分布
4.2 抽样分布
一、抽样分布(sampling distribution)的概念 抽样分布 的概念
1.
样本统计量的概率分布, 样本统计量的概率分布,是一种理论分布 在重复选取容量为n的样本时, 在重复选取容量为 的样本时,由该统计量 的样本时 的所有可能取值形成的相对频数分布 随机变量是 样本统计量 样本均值, 样本比例, 样本均值 样本比例,样本方差等 结果来自容量相同的所有可能样本 结果来自容量相同的所有可能样本 容量相同 提供了样本统计量长远而稳定的信息, 提供了样本统计量长远而稳定的信息,是进行推 断的理论基础, 断的理论基础,也是抽样推断科学性的重要依据
2.
3. 4.
二、抽样分布的形成过程
总 体
样 本
计算样本统计量 如:样本均值、 样本均值、 比例、 比例、方差
三、样本均值的抽样分布(举例说明) 举例说明)
【 例 】 设一个总体 , 含有 4 个元素 ( 个体 ) , 即总 设一个总体,含有4 个元素(个体) 体单位数N 体单位数N=4。4 个个体分别为X1=1、X2=2、X3=3 个个体分别为X 总体的均值、 、X4=4 。总体的均值、方差及分布如下 总体分布 总体均值和总体方差
一个任意分 布的总体
σx =
σ
n
当样本容量足够 大时( 大时(n ≥ 30) , 样本均值的抽样 分布逐渐趋于正 态分布
x =
x
中心极限定理 (central limit theorem)
x 的分布趋 于正态分布 的过程
数学期望与方差) 样本均值的抽样分布(数学期望与方差 数学期望与方差
1.
样本均值的数学期望
σ =10
n=4 σx = 5 n =16 σ x = 2.5
= 50
X
x = 50
x
总体分布
抽样分布
中心极限定理(central limit theorem) 中心极限定理
中心极限定理:设从均值为,方差为σ 2的一个任 中心极限定理: 意总体中抽取容量为n的样本, 充分大时, 意总体中抽取容量为n的样本,当n充分大时,样本 均值的抽样分布近似服从均值为 方差为σ 均值的抽样分布近似服从均值为、方差为σ2/n的正 态分布
i= 1 i
∑x
n
M (1.0 2.5)2 +L+ (4.0 2.5)2 σ2 = = 0.625 = 16 n
式中: 式中:M为样本数目 比较及结论:1. 样本均值的均值(数学期望)等于 比较及结论: 样本均值的均值(数学期望) 总体均值; 样本均值的方差等于总体方差的1/n 总体均值; 2. 样本均值的方差等于总体方差的1/n
E(x) =
2.
样本均值的方差 重复抽样 不重复抽样
2 σx =
σ2
n
2 σx =
σ 2 N n
n N 1
抽样分布与总体分布的关系
总体分布
正态分布
非正态分布
大样本 小样本
正态分布
正态分布
非正态分布
4.4样本比率(成数)的抽样分布 样本比率(成数) 样本比率
总体中具有某种特征的单位占全部单位的 比例称为总体比例(总体成数),记为P; 比例称为总体比例(总体成数),记为 ; 总体比例 ),记为 样本中具有此种特征单位占全部样本单位 的比例称为样本比例 样本成数),记为p 样本比例( ),记为 的比例称为样本比例(样本成数),记为 可证明总体均值为P,总体方差为P(1-P), 证明总体均值为 总体均值 总体方差为 根据中心极限定理, 根据中心极限定理, 在大样本下(一般保证nP和 nP 在大样本下(一般保证nP和n(1-P)皆大于 5),样本比例近似服从正态分布: ),样本比例近似服从正态分布 样本比例近似服从正态分布: /n) p N(P,P(1-P)/n)
所有可能的n 的样本( 所有可能的 = 2 的样本(共16个) 个 第一个 观察值 1 2 3 4 第二个观察值 1 1,1 2,1 3,1 4,1 2 1,2 2,2 3,2 4,2 3 1,3 2,3 3,3 4,3 4 1,4 2,4 3,4 4,4
计算出各样本的均值,如下表。 计算出各样本的均值,如下表。 并给出样本均值的抽样分布
1.
2.
从总体N个单位中随机地抽取 个单位作 从总体 个单位中随机地抽取n个单位作 个单位中随机地抽取 为样本, 为样本,使得每一个容量为样本都有相同 的机会(概率) 的机会(概率)被抽中 抽取元素的具体方法有重复抽样 重复抽样和 抽取元素的具体方法有重复抽样和不重复 抽样
1)直接抽选法 ) 3)随机数码表法 )
样本均值的分布与总体分布的比较
总体分布
.3 .2 .1 0 1 2 3 4
P(x)
4 3 2 1 0
抽样分布
1 1.5 2 2.5 3 3.5 4
= 2.5
σ2 =1.25
x = 2.5 2 σ x = 0.625
x
所有样本均值的均值和方差
1.0 +1.5 +L+ 4.0 x = = = 2.5 = M 16 n ∑(xi x )2 2 σ x = i=1
第四章 抽样与抽样分布
抽样与抽样估计的过程
总体
推断估计
样 本
样本统计量 例如:样本 例如: 均值、 均值、比例 、方差
4.1 常用的抽样方法 抽样方法 概率抽样
简 单 随 机 抽 样 等 距 随 机 抽 样 分 层 随 机 抽 样 整 群 随 机 抽 样
多 阶 段 随 机 抽 样
非概率抽样
方 便 抽 样 主 观 抽 样 定 额 抽 样 样 滚 雪 球 ” 抽 “
4.1.3系统抽样 系统抽样(systematic 系统抽样 sampling)
将总体中的所有单位(抽样单位 按 将总体中的所有单位 抽样单位)按 抽样单位 一定顺序排列, 一定顺序排列,在规定的范围内随机地 抽取一个单位作为初始单位, 抽取一个单位作为初始单位,然后按事 先规定好的规则确定其他样本单位。 先规定好的规则确定其他样本单位。又 等距抽样、 称等距抽样、机械抽样
相关文档
最新文档