随机过程课程设计
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《随机过程》
课程设计(论文)
题目: 连续马尔科夫过程的转移
概率及应用
学院:理学院
专业:数学与应用数学
班级:数学09-2班
学生姓名:姜德月
学生学号: 2009026249
指导教师:蔡吉花
2011 年 12 月 20 日
目录
课程设计任务书 -------------------------------------------------------------------------------------------------- I 摘要 --------------------------------------------------------------------------------------------------------------- I I 第1章绪论----------------------------------------------------------------------------------------------------- - 1 - 第2章连续时间马尔可夫链基本理论 ------------------------------------------------------------------ - 2 -
2.1定义............................................................ - 2 -
2.2转移概率........................................................ - 2 -第3章柯尔莫哥洛夫微分方程 --------------------------------------------------------------------------- - 3 -
3.1跳跃强度........................................................ - 3 -
3.2 Q矩阵......................................................... - 3 -
3.3柯尔莫哥洛夫向后方程............................................ - 4 -
3.4柯尔莫哥洛夫向前方程............................................ - 4 -第4章马尔可夫过程研究的问题的分析--------------------------------------------------------------- - 5 -
4.1连续参数随机游动问题............................................ - 5 -第5章计算结果及程序------------------------------------------------------------------------------------- - 6 - 第6章结论和展望 ----------------------------------------------------------------------------------------- - 11 - 参考文献 ------------------------------------------------------------------------------------------------------- - 11 - 评阅书 ------------------------------------------------------------------------------------------------- - 12 -
随机过程课程设计任务书
摘 要
马尔可夫过程(MarKov Process)是一个典型的随机过程。设()X t 是一随机过程,当过程在时刻0t 所处的状态为已知时,时刻0()t t t 所处的状态与过程在0t 时刻之前的状态无关,这个特性成为无后效性。
本文主要阐述连续马尔科夫过程的转移概率定义、性质及其应用,以及科尔莫哥洛夫向前、向后方程,Q 矩阵。主要研究机器维修,排队,以及随机游动等实际问题,根据实际问题来求解微分方程。并用MATLAB ,对其结果进行了合理性的分析,使得我们能更好的理解和应用连续马尔可夫过程,并能用柯尔莫哥洛夫向前向后方程,Q 矩阵,MATLAB 求解实际问题。
关键字 马尔科夫过程 转移概率 柯尔莫哥洛夫 微分方程数值求解 随机游动
连续马尔科夫过程的转移概率及其应用
第1章 绪论
1951年前后,伊藤清建立的随机微分方程的理论,为马尔可夫过程的研究开辟了新的道路。1954年前后, W.费勒将半群方法引入马尔可夫过程的研究。流形上的马尔可夫过程、马尔可夫向量场等都是正待深入研究的领域。
类重要的随机过程,它的原始模型马尔可夫链,由俄国数学家Α.Α.马尔可夫于1907年提出。人们在实际中常遇到具有下述特性的随机过程:在已知它目前的状态(现在)的条件下,它未来的演变(将来)不依赖于它以往的演变(过去)。这种已知“现在”的条件下,“将来”与“过去”独立的特性称为马尔可夫性,具有这种性质的随机过程叫做马尔可夫过程。荷花池中一只青蛙的跳跃是马尔可夫过程的一个形象化的例子。青蛙依照它瞬间或起的念头从一片荷叶上跳到另一片荷叶上,因为青蛙是没有记忆的,当现在所处的位置已知时,它下一步跳往何处和它以往走过的路径无关。如果将荷叶编号并用012,,......x x x 分别表示青蛙最初处的荷叶号码及第一次、第二次、……跳跃后所处的荷叶号码,那么{},0n x n ≥ 就是马尔可夫过程。液体中微粒所作的布朗运动,传染病受感染的人数,原子核中一自由电子在电子层中的跳跃,人口增长过程等等都可视为马尔可夫过程。还有些过程(例如某些遗传过程)在一定条件下可以用马尔可夫过程来近似。
关于马尔可夫过程的理论研究,1931年Α.Η.柯尔莫哥洛夫发表了《概率论的解析方法》,首先将微分方程等分析方法用于这类过程,奠定了它的理论基础。1951年前后,伊藤清在P.莱维和C.H.伯恩斯坦等人工作的基础上,建立了随机微分方程的理论,为研究马尔可夫过程开辟了新的道路。1954年前后,W.弗勒将泛函分析中的半群方法引入马尔可夫过程的研究中,Ε.Б.登金(又译邓肯)等并赋予它概率意义(如特征算子等)。50年代初,角谷静夫和J.L.杜布等发现了布朗运动与偏微分方程论中狄利克雷问题的关系,后来G.A.亨特研究了相当一般的马尔可夫过程(亨特过程)与 位势的关系。目前,流形上的马尔可夫过程、马尔可夫场等都是正待深入研究的领域。