2019年浙江杭州中考数学试题及答案

合集下载

2019浙江省杭州市中考数学真题及答案

2019浙江省杭州市中考数学真题及答案

O 12019浙江省杭州市中考数学真题及答案一、选择题:本大题有10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.计算下列各式,值最小的是( )A.2×0+1-9B.2+0×1-9C.2+0-1×9D.2+0+1-9 2.在平面直角坐标系中,点A(m,2)与点B(3,n)关于y 轴对称,则( ) A.m=3,n=2 B.m=-3,n=2 C.m=2,n=3 D.m=-2,n=33.如图,P 为⊙O 外一点,PA 、PB 分别切⊙O 于A,B 两点.若PA=3,则PB=( )A.2B.3C.4D.5 4.已知九年级某班30位学生种树72棵,男生每人种3棵树,女生每人种2棵树,设男生有x 人,则( )A.2x+3(72-x)=30B.3x+2(72-x)=30C.2x+3(30-x)=72D.3x+2(30-x)=725.点点同学对数据26,36,36,46,5■,52进行统计分析,发现其中一个两位数的个位数字被墨水涂污看不到 了,则计算结果与被涂污数字无关的是( )A.平均数B.中位数C.方差D.标准差6.如图,在△ABC 中,点D 、E 分别在AB 和AC 边上,DE ∥BC,M 为BC 边上一点(不与点B,C 重合),连接AM 交DE 于点N,则( )A.AE AN AN AD = B.CE MNMN BD =C.MC NE BM DN =D.BMNE MC DN = 7.在△ABC 中,若一个内角等于另两个内角的差,则( ) A.必有一个内角等于30° B.必有一个内角等于45° C.必有一个内角等于60° D.必有一个内角等于90°8.已知一次函数y 1=ax+b 和y 2=bx+a(a ≠b),函数y 1和y 2的图象可能是( )A B C Dxyxy1 O x y1O xy1O9.如图,一块矩形木板ABCD 斜靠在墙边(OC ⊥OB,点A,B,C,D,O 在同一平面内).已知,,,x BCO b AD a AB =∠==则点A 到OC 的距离等于( ) A. x b x a sin sin + B. x b x a cos cos + C. x b x a cos sin + D. x b x a sin cos +10.在平面直角坐标系中,已知a ≠b,设函数y=(x+a)(x+b)的图象与x 轴有M 个交点,函数y=(ax+1)(bx+1)的图象与x 轴有N 个交点,则( ) A.M=N-1或M=N+1 B.M=N-1或M=N+2 C.M=N 或M=N+1 D.M=N 或M=N-1二、填空题:本大题有6个小题,每小题4分,共24分. 1l.因式分解:1-x 2= .12.某计算机程序第一次算得m 个数据的平均数为x,第二次算得另外n 个数据的平均数为y,则这m+n 个数据的平均数等于 .13.如图是一个圆锥形冰淇淋外壳(不计厚度).已知其母线长为12cm,底面圆半径为3cm,则这个冰淇淋外壳的侧面积等于 cm 2(结果精确到个位). 14.在直角三角形ABC 中,若AC AB =2,则=C cos .15.某函数满足当自变量x=1时,函数值y=0;当自变量x=0时,函数值y=1.写出一个满足条件的函数表达式 .16. 如图,把某矩形纸片ABCD 沿GH EF ,折叠(点H E ,在AD 边上,点G F ,在BC 边上),使点B 和点C 落在AD 边上同一点P 处,A 点的对称点为'A 点,D 点的对称点为'D 点.若︒=∠90FPG ,EP A '△的面积为4,PH D '△的面积为1.则矩形ABCD 的面积等于 .ABCO三、解答题:本大题有7个小题,共66分,解答应写出文字说明、证明过程或演算步骤. 17.(本题满分6分) 化简:.122442----x x x 圆圆的解答如下:()().2422412244222x x x x x x x x +-=--+-=---- 圆圆的解答正确吗?如果不正确,写出正确的解答. 18.(本题满分8分)称量五筐水果的质量,若每筐以50千克为基准,超过基准部分的千克数记为正数,不足基准部分的千克数 记为负数.甲组为实际称量读数,乙组为记录数据.并把所得数据整理成如下统计表和未完成的统计图(单 位:千克).(1)补充完整乙组数据的折线统计图.(2)①甲,乙两组数据的平均数分别为甲x ,乙x ,写出甲x 与乙x 之间的等量关系. ②甲,乙两组数据的方差分别为2甲S ,2乙S ,比较2甲S 与2乙S 的大小,并说明理由.实际称量读数和记录数据统计表序号序号54 53 52 51 50 49 48 47 4 3 2 1 0 -1 -2 -3如图,在ABC △中,BC AB AC <<.(1)已知线段AB 的垂直平分线与BC 边交于点P ,连接AP ,求证:B APC ∠=∠2.(2)以点B 为圆心,线段AB 的长为半径画弧,与BC 边交于点Q ,连接AQ ,若∠AQC =3∠B ,求∠B 的度数.20.(本题满分10分)方方驾驶小汽车匀速地从A 地行驶到B 地,行驶里程为480千米,设小汽车的行驶时间为t(单位:小时), 行驶速度为v(单位:千米/小时),且全程速度限定为不超过120千米/小时. (1)求v 关于t 的函数表达式.(2)方方上午8点驾驶小汽车从A 地出发,①方方需在当天12点48分至14点(含12点8分和14点)间到达B 地,求小汽车行驶速度v 的范围. ②方方能否在当天11点30分前到达B 地?说明理由. 21.(本题满分10分)如图,已知正方形ABCD 的边长为1,正方形CEFG 的面积为S 1,点E 在DC 边上,点G 在BC 的延长线上,设以线段AD 和DE 为邻边的矩形的面积为S 2,且S 1=S 2. (1)求线段CE 的长.(2)若点H 为BC 边的中点,连接HD,求证:HD=HG.设二次函数()()()是实数2121,x x x x x x y --=.(1)甲求得当0=x 时,0=y ;当1=x 时,0=y ;乙求得当21=x 时,21-=y .若甲求得的结果都正确,你认为乙求得的结果正确吗?说明理由.(2)写出二次函数图象的对称轴,并求该函数的最小值(用含1x ,2x 的代数式表示).(3)已知二次函数的图象经过()m ,0和()n ,1两点()是实数n m ,.当1021<<<x x 时,求证:1610<<mn . 23.(本题满分12分)如图,已知锐角三角形ABC 内接于圆O ,.,OA D BC OD 连结于点⊥ (1)若,60︒=∠BAC ①求证:OA OD 21=. ②当1=OA 时,求ABC △面积的最大值.(2)点E 在线段OA 上,OD OE =,连结DE ,设∠ABC =OED m ∠,()是正数n m OED n ACB ,∠=∠. 若ACB ABC ∠∠<,求证:02=+-n m .参考答案一、选择题(每题3分,共30分)二、填空题(每小题4分,共24分) 11. ()()x x -+11 12.nm nymx ++13. 113 14.55223或 15. 112+-=+-=x y x y 或等16. 5610+(提示:易知.,,长度可求出图中相应线段的设∽△△a DH CDH EAB =)三、解答题(共66分)17. (本题满分6分)圆圆的解答不正确.正确的解答如下:()()[].2424224411224422222+-=-+-=--+--=----x x x x x x x x x x x x 18.(1)如图所示. (2)①甲x =乙x +50.序号4 3 2 1 0②2甲S =2乙S .理由如下: 因为()()()()()[]2222224132251乙乙乙乙乙乙x x x x x S -+--+--+-+--=()()()()()[]222225054504950475052504851乙乙乙乙乙x x x x x --+--+--+--+--= ()()()()()[]22222544947524851甲甲甲甲甲x x x x x -+-+-+-+-= =2甲S .所以2甲S =2乙S .19.(本题满分8分)(1)证明:因为点P 在AB 的垂直平分线上, 所以PA=PB, 所以∠PAB=∠B,所以∠APC=∠PAB+∠B=2∠B . (2)根据题意,得BQ=BA, 所以∠BAQ=∠BQA, 设∠B=x ,所以∠AQC=∠B+∠BAQ=3x, 所以∠BAQ=∠BQA=2x,在△ABQ 中,x+2x+2x=180°, 解得x=36°,即∠B=36°. 20.(本题满分10分) (1)根据题意,得vt=480, 所以v=480/t, 因为480>0,所以当v≤120时,t≥4, 所以v=480/t (t≥4).(2)①根据题意,得4.8≤t≤6, 因为480>0,所以480/6≤v ≤480/4.8, 所以80≤v≤100.②方方不能在11点30分前到达B 地.理由如下: 若方方要在11点30分前到达B 地,则t<3.5,所以v>480/3.5>120,所以方方不能在11点30分前到达B 地. 21.(本题满分10分)根据题意,得AD=BC=CD=1,∠BCD=90°, (1)设CE=x(0<x<1),则DE=1-x,因为S 1=S 2,所以x 2=1-x, 解得x=215-(负根舍去)即CE=215-. (2)因为点H 为BC 边的中点, 所以CH=1/2,所以HD=25, 因为CG=CE=215-,点H,C,G 在同一直线上, 所以HG=HC+CG=21+215-=25,所以HD=HG.22.(本题满分12分)(1)乙求得的结果不正确,理由如下: 根据题意,知图象经过点(0,0),(1,0), 所以()1-=x x y , 所以乙求得的结果不正确. (2)函数图象的对称轴为221x x x +=, 当221x x x +=时,函数有最小值()422221221121x x x x x x x x M --=⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+=.(3)因为()()21x x x x y --=, 所以21x x m =,()()2111x x n --=,所以()()212111x x x x mn --=⎥⎥⎦⎤⎢⎢⎣⎡+⎪⎭⎫ ⎝⎛--•⎥⎥⎦⎤⎢⎢⎣⎡+⎪⎭⎫ ⎝⎛--=412141212221x x ,因为1021<<<x x ,并结合函数()1-=x x y 的图象, 所以4141210,41412102221≤+⎪⎭⎫ ⎝⎛--≤+⎪⎭⎫ ⎝⎛--x x <<,所以1610≤mn <, 因为21x x ≠,所以1610<<mn . 23.(本题满分12分) (1)①证明:连接OB,OC, 因为OB=OC,OD⊥BC,所以∠BOD=∠BOC /2=∠BAC /=60°,所以OD=OB/2=OA/2.②作AF⊥BC,垂足为点F,所以AF≤AD≤AO+OD=3/2,等号当点A,O,D 在同一直线上时取到. 由①知,BC=2BD=3,所以△ABC 的面积3432332121=⨯⨯≤⋅=AF BC , 即△ABC 面积的最大值是343.(2)设∠OED=∠ODE=α,∠COD=∠BOD=β, 因为△ABC 是锐角三角形,所以∠AOC+∠AOB+2∠BOD=360°, 即(m+n)α+β=180°(*) 又因为∠ABC<∠ACB,所以∠EOD=∠AOC+∠DOC =2m α+β, 因为∠OED+∠ODE+∠EOD=180°, 所以2(m+1)α+β=180°.(**) 由(*),(**),得m+n=2(m+1), 即m-n+2=0.。

2019年浙江省杭州市中考数学试卷(答案解析版)

2019年浙江省杭州市中考数学试卷(答案解析版)

2019年浙江省杭州市中考数学试卷一、选择题(本大题共10小题,共30.0分)1.计算下列各式,值最小的是()A. B. C. D.2.在平面直角坐标系中,点A(m,2)与点B(3,n)关于y轴对称,则()A. ,B. ,C. ,D. ,3.如图,P为圆O外一点,PA,PB分别切圆O于A,B两点,若PA=3,则PB=()A. 2B. 3C. 4D. 54.已知九年级某班30位学生种树72棵,男生每人种3棵树,女生每人种2棵树,设男生有x人,则()A. B.C. D.5.点点同学对数据26,36,46,5□,52进行统计分析,发现其中一个两位数的各位数字被黑水涂污看不到了,则计算结果与被涂污数字无关的是()A. 平均数B. 中位数C. 方差D. 标准差6.如图,在△ABC中,点D,E分别在AB和AC上,DE∥BC,M为BC边上一点(不与点B,C重合),连接AM交DE于点N,则()A.B.C.D.7.在△ABC中,若一个内角等于另外两个内角的差,则()A. 必有一个内角等于B. 必有一个内角等于C. 必有一个内角等于D. 必有一个内角等于8.已知一次函数y1=ax+b和y2=bx+a(a≠b),函数y1和y2的图象可能是()A. B.C. D.9.如图,一块矩形木板ABCD斜靠在墙边(OC⊥OB,点A,B,C,D,O在同一平面内),已知AB=a,AD=b,∠BCO=x,则点A到OC的距离等于()A.B.C.D.10.在平面直角坐标系中,已知a≠b,设函数y=(x+a)(x+b)的图象与x轴有M个交点,函数y=(ax+1)(bx+1)的图象与x轴有N个交点,则()A. 或B. 或C. 或D. 或二、填空题(本大题共6小题,共24.0分)11.因式分解:1-x2=______.12.某计算机程序第一次算得m个数据的平均数为x,第二次算得另外n个数据的平均数为y,则这m+n个数据的平均数等于______.13.如图是一个圆锥形冰淇淋外壳(不计厚度),已知其母线长为12cm,底面圆半径为3cm,则这个冰淇淋外壳的侧面积等于______cm2(结果精确到个位).14.在直角三角形ABC中,若2AB=AC,则cos C=______.15.某函数满足当自变量x=1时,函数值y=0,当自变量x=0时,函数值y=1,写出一个满足条件的函数表达式______.16.如图,把某矩形纸片ABCD沿EF,GH折叠(点E,H在AD边上,点F,G在BC边上),使点B和点C落在AD边上同一点P处,A点的对称点为A′点,D点的对称点为D′点,若∠FPG=90°,△A′EP的面积为4,△D′PH的面积为1,则矩形ABCD的面积等于______.三、解答题(本大题共7小题,共66.0分)17.化简:--1圆圆的解答如下:--1=4x-2(x+2)-(x2-4)=-x2+2x圆圆的解答正确吗?如果不正确,写出正确的答案.18.称量五筐水果的质量,若每筐以50千克为基准,超过基准部分的千克数记为正数,不足基准部分的千克数记为负数,甲组为实际称量读数,乙组为记录数据,并把所得数据整理成如下统计表和未完成的统计图(单位:千克).实际称量读数和记录数据统计表(1)补充完成乙组数据的折线统计图.(2)①甲,乙两组数据的平均数分别为甲,乙,写出甲与乙之间的等量关系.②甲,乙两组数据的方差分别为S甲2,S乙2,比较S甲2与S乙2的大小,并说明理由.19.如图,在△ABC中,AC<AB<BC.(1)已知线段AB的垂直平分线与BC边交于点P,连接AP,求证:∠APC=2∠B.(2)以点B为圆心,线段AB的长为半径画弧,与BC边交于点Q,连接AQ.若∠AQC=3∠B,求∠B的度数.20.方方驾驶小汽车匀速地从A地行驶到B地,行驶里程为480千米,设小汽车的行驶时间为t(单位:小时),行驶速度为v(单位:千米/小时),且全程速度限定为不超过120千米/小时.(1)求v关于t的函数表达式;(2)方方上午8点驾驶小汽车从A地出发.①方方需在当天12点48分至14点(含12点48分和14点)间到达B地,求小汽车行驶速度v的范围.②方方能否在当天11点30分前到达B地?说明理由.21.如图,已知正方形ABCD的边长为1,正方形CEFG的面积为S1,点E在DC边上,点G在BC的延长线上,设以线段AD和DE为邻边的矩形的面积为S2,且S1=S2.(1)求线段CE的长;(2)若点H为BC边的中点,连接HD,求证:HD=HG.22.设二次函数y=(x-x1)(x-x2)(x1,x2是实数).(1)甲求得当x=0时,y=0;当x=1时,y=0;乙求得当x=时,y=-.若甲求得的结果都正确,你认为乙求得的结果正确吗?说明理由.(2)写出二次函数图象的对称轴,并求该函数的最小值(用含x1,x2的代数式表示).(3)已知二次函数的图象经过(0,m)和(1,n)两点(m,n是实数),当0<x1<x2<1时,求证:0<mn<.23.如图,已知锐角三角形ABC内接于圆O,OD⊥BC于点D,连接OA.(1)若∠BAC=60°,①求证:OD=OA.②当OA=1时,求△ABC面积的最大值.(2)点E在线段OA上,OE=OD,连接DE,设∠ABC=m∠OED,∠ACB=n∠OED(m,n是正数),若∠ABC<∠ACB,求证:m-n+2=0.答案和解析1.【答案】A【解析】解:A.2×0+1-9=-8,B.2+0×1-9=-7C.2+0-1×9=-7D.2+0+1-9=-6,故选:A.有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.本题考查了有理数的混合运算,熟练掌握有理数的运算法则是解题的关键.2.【答案】B【解析】解:∵点A(m,2)与点B(3,n)关于y轴对称,∴m=-3,n=2.故选:B.直接利用关于y轴对称点的性质得出答案.此题主要考查了关于y轴对称点的性质,正确记忆横纵坐标的关系是解题关键.3.【答案】B【解析】解:连接OA、OB、OP,∵PA,PB分别切圆O于A,B两点,∴OA⊥PA,OB⊥PB,在Rt△AOP和Rt△BOP中,,∴Rt△AOP≌Rt△BOP(HL),∴PB=PA=3,故选:B.连接OA、OB、OP,根据切线的性质得出OA⊥PA,OB⊥PB,然后证得Rt△AOP≌Rt△BOP,即可求得PB=PA=3.本题考查了切线长定理,三角形全等的判定和性质,作出辅助线根据全等三角形是解题的关键.4.【答案】D【解析】解:设男生有x人,则女生(30-x)人,根据题意可得:3x+2(30-x)=72.故选:D.直接根据题意表示出女生人数,进而利用30位学生种树72棵,得出等式求出答案.此题主要考查了由实际问题抽象出一元一次方程,正确表示出男女生的植树棵树是解题关键.5.【答案】B【解析】解:这组数据的平均数、方差和标准差都与第4个数有关,而这组数据的中位数为46,与第4个数无关.故选:B.利用平均数、中位数、方差和标准差的定义对各选项进行判断.本题考查了标准差:样本方差的算术平方根表示样本的标准差,它也描述了数据对平均数的离散程度.也考查了中位数、平均数.6.【答案】C【解析】解:∵DN∥BM,∴△ADN∽△ABM,∴=,∵NE∥MC,∴△ANE∽△AMC,∴=,∴=.故选:C.先证明△ADN∽△ABM得到=,再证明△ANE∽△AMC得到=,则=,从而可对各选项进行判断.本题考查了相似三角形的判定与性质:三在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形;灵活运用相似三角形的性质表示线段之间的关系.7.【答案】D【解析】解:∵∠A+∠B+∠C=180°,∠A=∠C-∠B,∴2∠C=180°,∴∠C=90°,∴△ABC是直角三角形,故选:D.根据三角形内角和定理得出∠A+∠B+∠C=180°,把∠C=∠A+∠B代入求出∠C即可.本题考查了三角形内角和定理的应用,能求出三角形最大角的度数是解此题的关键,注意:三角形的内角和等于180°.8.【答案】A【解析】解:A、由①可知:a>0,b>0.∴直线②经过一、二、三象限,故A正确;B、由①可知:a<0,b>0.∴直线②经过一、二、三象限,故B错误;C、由①可知:a<0,b>0.∴直线②经过一、二、四象限,交点不对,故C错误;D、由①可知:a<0,b<0,∴直线②经过二、三、四象限,故D错误.故选:A.根据直线①判断出a、b的符号,然后根据a、b的符号判断出直线②经过的象限即可,做出判断.本题主要考查的是一次函数的图象和性质,掌握一次函数的图象和性质是解题的关键.9.【答案】D【解析】解:作AE⊥OC于点E,作AF⊥OB于点F,∵四边形ABCD是矩形,∴∠ABC=90°,∵∠ABC=∠AEC,∠BCO=x,∴∠EAB=x,∴∠FBA=x,∵AB=a,AD=b,∴FO=FB+BO=a•cosx+b•sinx,故选:D.根据题意,作出合适的辅助线,然后利用锐角三角函数即可表示出点A到OC 的距离,本题得以解决.本题考查解直角三角形的应用-坡度坡角问题、矩形的性质,解答本题的关键是明确题意,利用数形结合的思想解答.10.【答案】C【解析】解:∵y=(x+a)(x+b)=x2+(a+b)x+1,∴△=(a+b)2-4ab=(a-b)2>0,∴函数y=(x+a)(x+b)的图象与x轴有2个交点,∴M=2,∵函数y=(ax+1)(bx+1)=abx2+(a+b)x+1,∴当ab≠0时,△=(a+b)2-4ab=(a-b)2>0,函数y=(ax+1)(bx+1)的图象与x轴有2个交点,即N=2,此时M=N;当ab=0时,不妨令a=0,∵a≠b,∴b≠0,函数y=(ax+1)(bx+1)=bx+1为一次函数,与x轴有一个交点,即N=1,此时M=N+1;综上可知,M=N或M=N+1.故选:C.先把两个函数化成一般形式,若为二次函数,再计算根的判别式,从而确定图象与x轴的交点个数,若一次函数,则与x轴只有一个交点,据此解答.本题主要考查一次函数与二次函数与x轴的交点问题,关键是根据根的判别式的取值确定抛物线与x轴的交点个数,二次项系数为字母的代数式时,要根据系数是否为0,确定它是什么函数,进而确定与x轴的交点个数.11.【答案】(1-x)(1+x)【解析】解:∵1-x2=(1-x)(1+x),故答案为:(1-x)(1+x).根据平方差公式可以将题目中的式子进行因式分解.本题考查因式分解-运用公式法,解题的关键是明确平方差公式,会运用平方差公式进行因式分解.12.【答案】【解析】解:∵某计算机程序第一次算得m个数据的平均数为x,第二次算得另外n个数据的平均数为y,则这m+n个数据的平均数等于:.故答案为:.直接利用已知表示出两组数据的总和,进而求出平均数.此题主要考查了加权平均数,正确得出两组数据的总和是解题关键.13.【答案】113【解析】解:这个冰淇淋外壳的侧面积=×2π×3×12=36π≈113(cm2).故答案为113.利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式计算.本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.14.【答案】或【解析】解:若∠B=90°,设AB=x,则AC=2x,所以BC==x,所以cosC===;若∠A=90°,设AB=x,则AC=2x,所以BC==x,所以cosC===;综上所述,cosC的值为或.故答案为或.讨论:若∠B=90°,设AB=x,则AC=2x,利用勾股定理计算出BC=x,然后根据余弦的定义求cosC的值;若∠A=90°,设AB=x,则AC=2x,利用勾股定理计算出BC=x,然后根据余弦的定义求cosC的值.本题考查了锐角三角函数的定义:熟练掌握锐角三角函数的定义,灵活运用它们进行几何计算.15.【答案】y=-x+1【解析】解:设该函数的解析式为y=kx+b,∵函数满足当自变量x=1时,函数值y=0,当自变量x=0时,函数值y=1,∴解得:,所以函数的解析式为y=-x+1,故答案为:y=-x+1.根据题意写出一个一次函数即可.本题考查了各种函数的性质,题目中x、y均可以取0,故不能是反比例函数.16.【答案】2(5+3)【解析】解:∵四边形ABC是矩形,∴AB=CD,AD=BC,设AB=CD=x,由翻折可知:PA′=AB=x,PD′=CD=x,∵△A′EP的面积为4,△D′PH的面积为1,∴A′E=4D′H,设D′H=a,则A′E=4a,∵△A′EP∽△D′PH,∴=,∴=,∴x2=4a2,∴x=2a或-2a(舍弃),∴PA′=PD′=2a,∵•a•2a=1,∴a=1,∴x=2,∴AB=CD=2,PE==2,PH==,∴AD=4+2++1=5+3,∴矩形ABCD的面积=2(5+3).故答案为2(5+3)设AB=CD=x,由翻折可知:PA′=AB=x,PD′=CD=x,因为△A′EP的面积为4,△D′PH的面积为1,推出A′E=4D′H,设D′H=a,则A′E=4a,由△A′EP∽△D′PH,推出=,推出=,可得x=2a,再利用三角形的面积公式求出a即可解决问题.本题考查翻折变换,矩形的性质,勾股定理,相似三角形的判定和性质等知识,解题的关键是学会利用参数解决问题,属于中考填空题中的压轴题.17.【答案】解:圆圆的解答错误,正确解法:--1=--===-.【解析】直接将分式进行通分,进而化简得出答案.此题主要考查了分式的加减运算,正确进行通分运算是解题关键.18.【答案】解:(1)乙组数据的折线统计图如图所示:(2)①甲=50+乙.②S甲2=S乙2.理由:∵S甲2=[(48-50)2+(52-50)2+(47-50)2+(49-50)2+(54-50)2]=6.8.S乙2=[(-2-0)2+(2-0)2+(-3-0)2+(-1-0)2+(4-0)2]=6.8,∴S甲2=S乙2.【解析】(1)利用描点法画出折线图即可.(2)利用方差公式计算即可判断.本题考查折线统计图,算术平均数,方差等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.19.【答案】解:(1)证明:∵线段AB的垂直平分线与BC边交于点P,∴PA=PB,∴∠B=∠BAP,∵∠APC=∠B+∠BAP,∴∠APC=2∠B;(2)根据题意可知BA=BQ,∴∠BAQ=∠BQA,∵∠AQC=3∠B,∠AQC=∠B+∠BAQ,∴∠BQA=2∠B,∵∠BAQ+∠BQA+∠B=180°,∴5∠B=180°,∴∠B=36°.【解析】(1)根据线段垂直平分线的性质可知PA=PB,根据等腰三角形的性质可得∠B=∠BAP,根据三角形的外角性质即可证得APC=2∠B;(2)根据题意可知BA=BQ,根据等腰三角形的性质可得∠BAQ=∠BQA,再根据三角形的内角和公式即可解答.本题主要考查了等腰三角形的性质、垂直平分线的性质以及三角形的外角性质,难度适中.20.【答案】解:(1)∵vt=480,且全程速度限定为不超过120千米/小时,∴v关于t的函数表达式为:v=,(0≤t≤4).(2)①8点至12点48分时间长为小时,8点至14点时间长为6小时将t=6代入v=得v=80;将t=代入v=得v=100.∴小汽车行驶速度v的范围为:80≤v≤100.②方方不能在当天11点30分前到达B地.理由如下:8点至11点30分时间长为小时,将t=代入v=得v=>120千米/小时,超速了.故方方不能在当天11点30分前到达B地.【解析】(1)由速度乘以时间等于路程,变形即可得速度等于路程比时间,从而得解;(2)①8点至12点48分时间长为小时,8点至14点时间长为6小时,将它们分别代入v关于t的函数表达式,即可得小汽车行驶的速度范围;②8点至11点30分时间长为小时,将其代入v关于t的函数表达式,可得速度大于120千米/时,从而得答案.本题是反比例函数在行程问题中的应用,根据时间速度和路程的关系可以求解,本题属于中档题.21.【答案】解:(1)设正方形CEFG的边长为a,∵正方形ABCD的边长为1,∴DE=1-a,∵S1=S2,∴a2=1×(1-a),解得,(舍去),,即线段CE的长是;(2)证明:∵点H为BC边的中点,BC=1,∴CH=0.5,∴DH=.=,∵CH=0.5,CG=,∴HG=,∴HD=HG.【解析】(1)设出正方形CEFG的边长,然后根据S1=S2,即可求得线段CE的长;(2)根据(1)中的结果可以题目中的条件,可以分别计算出HD和HG的长,即可证明结论成立.本题考查正方形的性质、矩形的性质,解答本题的关键是明确题意,利用数形结合的思想解答.22.【答案】解:(1)当x=0时,y=0;当x=1时,y=0;∴二次函数经过点(0,0),(1,0),∴x1=0,x2=1,∴y═x(x-1)=x2-x,当x=时,y=-,∴乙说点的不对;(2)对称轴为x=,当x=时,y=-是函数的最小值;(3)二次函数的图象经过(0,m)和(1,n)两点,∴m=x1x2,n=1-x1-x2+x1x2,∴mn=[-][-]∵0<x1<x2<1,∴0≤-≤,0≤-≤,∴0<mn<.【解析】(1)将(0,0),(1,0)代入y=(x-x1)(x-x2)求出函数解析式即可求解;(2)对称轴为x=,当x=时,y=-是函数的最小值;(3)将已知两点代入求出m=x1x2,n=1-x1-x2+x1x2,再表示出mn=[-][-],由已知0<x1<x2<1,可求出0≤-≤,0≤-≤,即可求解.本题考查二次函数的性质;函数最值的求法;熟练掌握二次函数的性质,能够将mn准确的用x1和x2表示出来是解题的关键.23.【答案】解:(1)①连接OB、OC,则∠BOD=BOC=∠BAC=60°,∴∠OBC=30°,∴OD=OB=OA;②∵BC长度为定值,∴△ABC面积的最大值,要求BC边上的高最大,当AD过点O时,AD最大,即:AD=AO+OD=,△ABC面积的最大值=×BC×AD=×2OB sin60°×=;(2)如图2,连接OC,设:∠OED=x,则∠ABC=mx,∠ACB=nx,则∠BAC=180°-∠ABC-∠ACB=180°-mx-nx=∠BOC=∠DOC,∵∠AOC=2∠ABC=2mx,∴∠AOD=∠COD+∠AOC=180°-mx-nx+2mx=180°+mx-nx,∵OE=OD,∴∠AOD=180°-2x,即:180°+mx-nx=180°-2x,化简得:m-n+2=0.【解析】(1)①连接OB、OC,则∠BOD=BOC=∠BAC=60°,即可求解;②BC长度为定值,△ABC面积的最大值,要求BC边上的高最大,即可求解;(2)∠BAC=180°-∠ABC-∠ACB=180°-mx-nx=∠BOC=∠DOC,而∠AOD=∠COD+∠AOC=180°-mx-nx+2mx=180°+mx-nx,即可求解.本题为圆的综合运用题,涉及到解直角三角形、三角形内角和公式,其中(2),∠AOD=∠COD+∠AOC是本题容易忽视的地方,本题难度适中.。

2019年浙江省杭州市中考数学试卷及答案解析

2019年浙江省杭州市中考数学试卷及答案解析

2019年浙江省杭州市中考数学试卷一、选择题:本大题有10个小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的;1.(3分)计算下列各式,值最小的是( )A.2×0+1﹣9B.2+0×1﹣9C.2+0﹣1×9D.2+0+1﹣92.(3分)在平面直角坐标系中,点A(m,2)与点B(3,n)关于y轴对称,则( )A.m=3,n=2B.m=﹣3,n=2C.m=2,n=3D.m=﹣2,n=﹣3 3.(3分)如图,P为圆O外一点,PA,PB分别切圆O于A,B两点,若PA=3,则PB=( )A.2B.3C.4D.54.(3分)已知九年级某班30位学生种树72棵,男生每人种3棵树,女生每人种2棵树,设男生有x人,则( )A.2x+3(72﹣x)=30B.3x+2(72﹣x)=30C.2x+3(30﹣x)=72D.3x+2(30﹣x)=725.(3分)点点同学对数据26,36,46,5□,52进行统计分析,发现其中一个两位数的各位数字被黑水涂污看不到了,则计算结果与被涂污数字无关的是( )A.平均数B.中位数C.方差D.标准差6.(3分)如图,在△ABC中,点D,E分别在AB和AC上,DE∥BC,M为BC边上一点(不与点B,C重合),连接AM交DE于点N,则( )A.=B.=C.=D.=7.(3分)在△ABC中,若一个内角等于另外两个内角的差,则( )A.必有一个内角等于30°B.必有一个内角等于45°C.必有一个内角等于60°D.必有一个内角等于90°8.(3分)已知一次函数y1=ax+b和y2=bx+a(a≠b),函数y1和y2的图象可能是( )A.B.C.D.9.(3分)如图,一块矩形木板ABCD斜靠在墙边(OC⊥OB,点A,B,C,D,O在同一平面内),已知AB=a,AD=b,∠BCO=x,则点A到OC的距离等于( )A.a sin x+b sin x B.a cos x+b cos xC.a sin x+b cos x D.a cos x+b sin x10.(3分)在平面直角坐标系中,已知a≠b,设函数y=(x+a)(x+b)的图象与x轴有M个交点,函数y=(ax+1)(bx+1)的图象与x轴有N个交点,则( )A.M=N﹣1或M=N+1B.M=n﹣1或M=N+2C.M=N或M=N+1D.M=N或M=N﹣1二、填空题:本大题有6个小题,每小题4分,共24分;11.(4分)因式分解:1﹣x2= .12.(4分)某计算机程序第一次算得m个数据的平均数为x,第二次算得另外n个数据的平均数为y,则这m+n个数据的平均数等于 .13.(4分)如图是一个圆锥形冰淇淋外壳(不计厚度),已知其母线长为12cm,底面圆半径为3cm,则这个冰淇淋外壳的侧面积等于 cm2(结果精确到个位).14.(4分)在直角三角形ABC中,若2AB=AC,则cos C= .15.(4分)某函数满足当自变量x=1时,函数值y=0,当自变量x=0时,函数值y=1,写出一个满足条件的函数表达式 .16.(4分)如图,把某矩形纸片ABCD沿EF,GH折叠(点E,H在AD边上,点F,G 在BC边上),使点B和点C落在AD边上同一点P处,A点的对称点为A′点,D点的对称点为D′点,若∠FPG=90°,△A′EP的面积为4,△D′PH的面积为1,则矩形ABCD的面积等于 .三、解答题:本小题7个小题,共66分,解答应写出文字说明、证明过程或演算步骤. 17.(6分)化简:﹣﹣1圆圆的解答如下:﹣﹣1=4x﹣2(x+2)﹣(x2﹣4)=﹣x2+2x圆圆的解答正确吗?如果不正确,写出正确的答案.18.(8分)称量五筐水果的质量,若每筐以50千克为基准,超过基准部分的千克数记为正数,不足基准部分的千克数记为负数,甲组为实际称量读数,乙组为记录数据,并把所得数据整理成如下统计表和未完成的统计图(单位:千克).实际称量读数和记录数据统计表12345序号数据甲组4852474954乙组﹣22﹣3﹣14(1)补充完成乙组数据的折线统计图.(2)①甲,乙两组数据的平均数分别为,,写出与之间的等量关系.②甲,乙两组数据的方差分别为S甲2,S乙2,比较S甲2与S乙2的大小,并说明理由.19.(8分)如图,在△ABC中,AC<AB<BC.(1)已知线段AB的垂直平分线与BC边交于点P,连接AP,求证:∠APC=2∠B.(2)以点B为圆心,线段AB的长为半径画弧,与BC边交于点Q,连接AQ.若∠AQC =3∠B,求∠B的度数.20.(10分)方方驾驶小汽车匀速地从A地行驶到B地,行驶里程为480千米,设小汽车的行驶时间为t(单位:小时),行驶速度为v(单位:千米/小时),且全程速度限定为不超过120千米/小时.(1)求v关于t的函数表达式;(2)方方上午8点驾驶小汽车从A地出发.①方方需在当天12点48分至14点(含12点48分和14点)间到达B地,求小汽车行驶速度v的范围.②方方能否在当天11点30分前到达B地?说明理由.21.(10分)如图,已知正方形ABCD的边长为1,正方形CEFG的面积为S1,点E在DC 边上,点G在BC的延长线上,设以线段AD和DE为邻边的矩形的面积为S2,且S1=S2.(1)求线段CE的长;(2)若点H为BC边的中点,连接HD,求证:HD=HG.22.(12分)设二次函数y=(x﹣x1)(x﹣x2)(x1,x2是实数).(1)甲求得当x=0时,y=0;当x=1时,y=0;乙求得当x=时,y=﹣.若甲求得的结果都正确,你认为乙求得的结果正确吗?说明理由.(2)写出二次函数图象的对称轴,并求该函数的最小值(用含x1,x2的代数式表示).(3)已知二次函数的图象经过(0,m)和(1,n)两点(m,n是实数),当0<x1<x2<1时,求证:0<mn<.23.(12分)如图,已知锐角三角形ABC内接于圆O,OD⊥BC于点D,连接OA.(1)若∠BAC=60°,①求证:OD=OA.②当OA=1时,求△ABC面积的最大值.(2)点E在线段OA上,OE=OD,连接DE,设∠ABC=m∠OED,∠ACB=n∠OED(m,n是正数),若∠ABC<∠ACB,求证:m﹣n+2=0.2019年浙江省杭州市中考数学试卷参考答案与试题解析一、选择题:本大题有10个小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的;1.解:A.2×0+1﹣9=﹣8,B.2+0×1﹣9=﹣7C.2+0﹣1×9=﹣7D.2+0+1﹣9=﹣6,故选:A.2.解:∵点A(m,2)与点B(3,n)关于y轴对称,∴m=﹣3,n=2.故选:B.3.解:连接OA、OB、OP,∵PA,PB分别切圆O于A,B两点,∴OA⊥PA,OB⊥PB,在Rt△AOP和Rt△BOP中,,∴Rt△AOP≌Rt△BOP(HL),∴PB=PA=3,故选:B.4.解:设男生有x人,则女生(30﹣x)人,根据题意可得:3x+2(30﹣x)=72.故选:D.5.解:这组数据的平均数、方差和标准差都与第4个数有关,而这组数据的中位数为46,与第4个数无关.故选:B.6.解:∵DN∥BM,∴△ADN∽△ABM,∴=,∵NE∥MC,∴△ANE∽△AMC,∴=,∴=.故选:C.7.解:∵∠A+∠B+∠C=180°,∠A=∠C﹣∠B,∴2∠C=180°,∴∠C=90°,∴△ABC是直角三角形,故选:D.8.解:A、由①可知:a>0,b>0.∴直线②经过一、二、三象限,故A正确;B、由①可知:a<0,b>0.∴直线②经过一、二、三象限,故B错误;C、由①可知:a<0,b>0.∴直线②经过一、二、四象限,交点不对,故C错误;D、由①可知:a<0,b<0,∴直线②经过二、三、四象限,故D错误.故选:A.9.解:作AE⊥OC于点E,作AF⊥OB于点F,∵四边形ABCD是矩形,∴∠ABC=90°,∵∠ABC=∠AEC,∠BCO=x,∴∠EAB=x,∴∠FBA=x,∵AB=a,AD=b,∴FO=FB+BO=a•cos x+b•sin x,故选:D.10.解:∵y=(x+a)(x+b)=x2+(a+b)x+1,∴△=(a+b)2﹣4ab=(a﹣b)2>0,∴函数y=(x+a)(x+b)的图象与x轴有2个交点,∴M=2,∵函数y=(ax+1)(bx+1)=abx2+(a+b)x+1,∴当ab≠0时,△=(a+b)2﹣4ab=(a﹣b)2>0,函数y=(ax+1)(bx+1)的图象与x轴有2个交点,即N=2,此时M=N;当ab=0时,不妨令a=0,∵a≠b,∴b≠0,函数y=(ax+1)(bx+1)=bx+1为一次函数,与x轴有一个交点,即N=1,此时M=N+1;综上可知,M=N或M=N+1.故选:C.二、填空题:本大题有6个小题,每小题4分,共24分;11.解:∵1﹣x2=(1﹣x)(1+x),故答案为:(1﹣x)(1+x).12.解:∵某计算机程序第一次算得m个数据的平均数为x,第二次算得另外n个数据的平均数为y,则这m+n个数据的平均数等于:.故答案为:.13.解:这个冰淇淋外壳的侧面积=×2π×3×12=36π≈113(cm2).故答案为113.14.解:若∠B=90°,设AB=x,则AC=2x,所以BC==x,所以cos C===;若∠A=90°,设AB=x,则AC=2x,所以BC==x,所以cos C===;综上所述,cos C的值为或.故答案为或.15.解:设该函数的解析式为y=kx+b,∵函数满足当自变量x=1时,函数值y=0,当自变量x=0时,函数值y=1,∴解得:,所以函数的解析式为y=﹣x+1,故答案为:y=﹣x+1.16.解:∵四边形ABC是矩形,∴AB=CD,AD=BC,设AB=CD=x,由翻折可知:PA′=AB=x,PD′=CD=x,∵△A′EP的面积为4,△D′PH的面积为1,∴A′E=4D′H,设D′H=a,则A′E=4a,∵△A′EP∽△D′PH,∴=,∴=,∴x2=4a2,∴x=2a或﹣2a(舍弃),∴PA′=PD′=2a,∵•a•2a=1,∴a=1,∴x=2,∴AB=CD=2,PE==2,PH==,∴AD=4+2++1=5+3,∴矩形ABCD的面积=2(5+3).故答案为2(5+3)三、解答题:本小题7个小题,共66分,解答应写出文字说明、证明过程或演算步骤. 17.解:圆圆的解答错误,正确解法:﹣﹣1=﹣﹣===﹣.18.解:(1)乙组数据的折线统计图如图所示:(2)①=50+.②S甲2=S乙2.理由:∵S甲2=[(48﹣50)2+(52﹣50)2+(47﹣50)2+(49﹣50)2+(54﹣50)2]=6.8.S乙2=[(﹣2﹣0)2+(2﹣0)2+(﹣3﹣0)2+(﹣1﹣0)2+(4﹣0)2]=6.8,∴S甲2=S乙2.19.解:(1)证明:∵线段AB的垂直平分线与BC边交于点P,∴PA=PB,∴∠B=∠BAP,∵∠APC=∠B+∠BAP,∴∠APC=2∠B;(2)根据题意可知BA=BQ,∴∠BAQ=∠BQA,∵∠AQC=3∠B,∠AQC=∠B+∠BAQ,∴∠BQA=2∠B,∵∠BAQ+∠BQA+∠B=180°,∴5∠B=180°,∴∠B=36°.20.解:(1)∵vt=480,且全程速度限定为不超过120千米/小时,∴v关于t的函数表达式为:v=,(0≤t≤4).(2)①8点至12点48分时间长为小时,8点至14点时间长为6小时将t=6代入v=得v=80;将t=代入v=得v=100.∴小汽车行驶速度v的范围为:80≤v≤100.②方方不能在当天11点30分前到达B地.理由如下:8点至11点30分时间长为小时,将t=代入v=得v=>120千米/小时,超速了.故方方不能在当天11点30分前到达B地.21.解:(1)设正方形CEFG的边长为a,∵正方形ABCD的边长为1,∴DE=1﹣a,∵S1=S2,∴a2=1×(1﹣a),解得,(舍去),,即线段CE的长是;(2)证明:∵点H为BC边的中点,BC=1,∴CH=0.5,∴DH==,∵CH=0.5,CG=,∴HG=,∴HD=HG.22.解:(1)当x=0时,y=0;当x=1时,y=0;∴二次函数经过点(0,0),(1,0),∴x1=0,x2=1,∴y═x(x﹣1)=x2﹣x,当x=时,y=﹣,∴乙说点的不对;(2)对称轴为x=,当x=时,y=﹣是函数的最小值;(3)二次函数的图象经过(0,m)和(1,n)两点,∴m=x1x2,n=1﹣x1﹣x2+x1x2,∴mn=[﹣][﹣]∵0<x1<x2<1,∴0≤﹣≤,0≤﹣≤,∴0<mn<.23.解:(1)①连接OB、OC,则∠BOD=BOC=∠BAC=60°,∴∠OBC=30°,∴OD=OB=OA;②∵BC长度为定值,∴△ABC面积的最大值,要求BC边上的高最大,当AD过点O时,AD最大,即:AD=AO+OD=,△ABC面积的最大值=×BC×AD=×2OB sin60°×=;(2)如图2,连接OC,设:∠OED=x,则∠ABC=mx,∠ACB=nx,则∠BAC=180°﹣∠ABC﹣∠ACB=180°﹣mx﹣nx=∠BOC=∠DOC,∵∠AOC=2∠ABC=2mx,∴∠AOD=∠COD+∠AOC=180°﹣mx﹣nx+2mx=180°+mx﹣nx,∵OE=OD,∴∠AOD=180°﹣2x,即:180°+mx﹣nx=180°﹣2x,化简得:m﹣n+2=0.。

2019年浙江省杭州市中考数学试卷(附答案,解析)

2019年浙江省杭州市中考数学试卷(附答案,解析)

2019年浙江省杭州市中考数学试卷一、选择题:本大题有10个小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的;1.(3分)(2019•杭州)计算下列各式,值最小的是()A.2019⨯+-B.2019+⨯-C.2019+-⨯D.2019++-2.(3分)(2019•杭州)在平面直角坐标系中,点(,2)A m与点(3,)B n关于y轴对称,则()A.3m=,2n=B.3m=-,2n=C.2m=,3n=D.2m=-,3n=-3.(3分)(2019•杭州)如图,P为圆O外一点,PA,PB分别切圆O于A,B两点,若3PA=,则(PB= )A.2B.3C.4D.54.(3分)(2019•杭州)已知九年级某班30位学生种树72棵,男生每人种3棵树,女生每人种2棵树,设男生有x人,则()A.23(72)30x x+-=B.32(72)30x x+-=C.23(30)72x x+-=D.32(30)72x x+-=5.(3分)(2019•杭州)点点同学对数据26,36,46,5□,52进行统计分析,发现其中一个两位数的各位数字被黑水涂污看不到了,则计算结果与被涂污数字无关的是()A.平均数B.中位数C.方差D.标准差6.(3分)(2019•杭州)如图,在ABC∆中,点D,E分别在AB和AC上,//DE BC,M为BC边上一点(不与点B,C重合),连接AM交DE于点N,则()A.AD ANAN AE=B.BD MNMN CE=C.DN NEBM MC=D.DN NEMC BM=7.(3分)(2019•杭州)在ABC ∆中,若一个内角等于另外两个内角的差,则( ) A .必有一个内角等于30︒ B .必有一个内角等于45︒C .必有一个内角等于60︒D .必有一个内角等于90︒8.(3分)(2019•杭州)已知一次函数1y ax b =+和2()y bx a a b =+≠,函数1y 和2y 的图象可能是( )A .B .C .D .9.(3分)(2019•杭州)如图,一块矩形木板ABCD 斜靠在墙边(OC OB ⊥,点A ,B ,C ,D ,O 在同一平面内),已知AB a =,AD b =,BCO x ∠=,则点A 到OC 的距离等于( )A .sin sin a x b x +B .cos cos a x b x +C .sin cos a x b x +D .cos sin a x b x +10.(3分)(2019•杭州)在平面直角坐标系中,已知a b ≠,设函数()()y x a x b =++的图象与x 轴有M 个交点,函数(1)(1)y ax bx =++的图象与x 轴有N 个交点,则( ) A .1M N =-或1M N =+ B .1M n =-或2M N =+C .M N =或1M N =+D .M N =或1M N =-二、填空题:本大题有6个小题,每小题4分,共24分; 11.(4分)(2019•杭州)因式分解:21x -= .12.(4分)(2019•杭州)某计算机程序第一次算得m 个数据的平均数为x ,第二次算得另外n 个数据的平均数为y ,则这m n +个数据的平均数等于 .13.(4分)(2019•杭州)一个圆锥形冰淇淋外壳(不计厚度),已知其母线长为12cm ,底面圆半径为3cm ,则这个冰淇淋外壳的侧面积等于 2cm (结果精确到个位).14.(4分)(2019•杭州)在直角三角形ABC 中,若2AB AC =,则cos C = .15.(4分)(2019•杭州)某函数满足当自变量1x =时,函数值0y =,当自变量0x =时,函数值1y =,写出一个满足条件的函数表达式 .16.(4分)(2019•杭州)如图,把某矩形纸片ABCD 沿EF ,GH 折叠(点E ,H 在AD 边上,点F ,G 在BC 边上),使点B 和点C 落在AD 边上同一点P 处,A 点的对称点为A '点,D 点的对称点为D '点,若90FPG ∠=︒,△A EP '的面积为4,△D PH '的面积为1,则矩形ABCD 的面积等于 .三、解答题:本小题7个小题,共66分,解答应写出文字说明、证明过程或演算步骤. 17.(6分)(2019•杭州)化简:242142x x x ---- 圆圆的解答如下:22242142(2)(4)242x x x x x x x x --=-+--=-+-- 圆圆的解答正确吗?如果不正确,写出正确的答案.18.(8分)(2019•杭州)称量五筐水果的质量,若每筐以50千克为基准,超过基准部分的千克数记为正数,不足基准部分的千克数记为负数,甲组为实际称量读数,乙组为记录数据,并把所得数据整理成如下统计表和未完成的统计图(单位:千克).实际称量读数和记录数据统计表序号 数据 1 2 3 4 5甲组 4852 47 49 54 乙组2- 23-1-4(1)补充完成乙组数据的折线统计图.(2)①甲,乙两组数据的平均数分别为x甲,x乙,写出x甲与x乙之间的等量关系.②甲,乙两组数据的方差分别为2S甲,2S乙,比较2S甲与2S乙的大小,并说明理由.19.(8分)(2019•杭州)如图,在ABC∆中,AC AB BC<<.(1)已知线段AB的垂直平分线与BC边交于点P,连接AP,求证:2APC B∠=∠.(2)以点B为圆心,线段AB的长为半径画弧,与BC边交于点Q,连接AQ.若3AQC B∠=∠,求B∠的度数.20.(10分)(2019•杭州)方方驾驶小汽车匀速地从A地行驶到B地,行驶里程为480千米,设小汽车的行驶时间为t(单位:小时),行驶速度为v(单位:千米/小时),且全程速度限定为不超过120千米/小时.(1)求v关于t的函数表达式;(2)方方上午8点驾驶小汽车从A地出发.①方方需在当天12点48分至14点(含12点48分和14点)间到达B地,求小汽车行驶速度v的范围.②方方能否在当天11点30分前到达B地?说明理由.21.(10分)(2019•杭州)如图,已知正方形ABCD的边长为1,正方形CEFG的面积为1S,点E在DC边上,点G 在BC 的延长线上,设以线段AD 和DE 为邻边的矩形的面积为2S ,且12S S =. (1)求线段CE 的长;(2)若点H 为BC 边的中点,连接HD ,求证:HD HG =.22.(12分)(2019•杭州)设二次函数121()()(y x x x x x =--,2x 是实数). (1)甲求得当0x =时,0y =;当1x =时,0y =;乙求得当12x =时,12y =-.若甲求得的结果都正确,你认为乙求得的结果正确吗?说明理由.(2)写出二次函数图象的对称轴,并求该函数的最小值(用含1x ,2x 的代数式表示).(3)已知二次函数的图象经过(0,)m 和(1,)n 两点(m ,n 是实数),当1201x x <<<时,求证:1016mn <<. 23.(12分)(2019•杭州)如图,已知锐角三角形ABC 内接于圆O ,OD BC ⊥于点D ,连接OA . (1)若60BAC ∠=︒, ①求证:12OD OA =.②当1OA =时,求ABC ∆面积的最大值.(2)点E 在线段OA 上,OE OD =,连接DE ,设ABC m OED ∠=∠,(ACB n OED m ∠=∠,n 是正数),若ABC ACB ∠<∠,求证:20m n -+=.2019年浙江省杭州市中考数学试卷参考答案与试题解析一、选择题:本大题有10个小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的;1.(3分)计算下列各式,值最小的是()A.2019++-+-⨯D.2019⨯+-B.2019+⨯-C.2019【考点】1G:有理数的混合运算【分析】有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.【解答】解:.20198A⨯+-=-,B.20197+⨯-=-+-⨯=-C.20197D.20196++-=-,故选:A.2.(3分)在平面直角坐标系中,点(,2)A m与点(3,)B n关于y轴对称,则()A.3n=D.2m=,3n=-m=-,3m=-,2m=,2n=B.3n=C.2【考点】5P:关于x轴、y轴对称的点的坐标【分析】直接利用关于y轴对称点的性质得出答案.【解答】解:点(,2)A m与点(3,)B n关于y轴对称,∴=-,2n=.m3故选:B.3.(3分)如图,P为圆O外一点,PA,PB分别切圆O于A,B两点,若3PB=)PA=,则(A.2B.3C.4D.5【考点】MC:切线的性质【分析】连接OA、OB、OP,根据切线的性质得出OA PA⊥,然后证得Rt AOP Rt BOP∆≅∆,⊥,OB PB即可求得3==.PB PA【解答】解:连接OA 、OB 、OP ,PA ,PB 分别切圆O 于A ,B 两点,OA PA ∴⊥,OB PB ⊥,在Rt AOP ∆和Rt BOP ∆中, OA OBOP OP=⎧⎨=⎩, Rt AOP Rt BOP(HL)∴∆≅∆, 3PB PA ∴==,故选:B .4.(3分)已知九年级某班30位学生种树72棵,男生每人种3棵树,女生每人种2棵树,设男生有x 人,则( )A .23(72)30x x +-=B .32(72)30x x +-=C .23(30)72x x +-=D .32(30)72x x +-=【考点】89:由实际问题抽象出一元一次方程【分析】直接根据题意表示出女生人数,进而利用30位学生种树72棵,得出等式求出答案. 【解答】解:设男生有x 人,则女生(30)x -人,根据题意可得: 32(30)72x x +-=.故选:D .5.(3分)点点同学对数据26,36,46,5□,52进行统计分析,发现其中一个两位数的各位数字被黑水涂污看不到了,则计算结果与被涂污数字无关的是( ) A .平均数B .中位数C .方差D .标准差【考点】1W :算术平均数;4W :中位数;7W :方差;8W :标准差 【分析】利用平均数、中位数、方差和标准差的定义对各选项进行判断.【解答】解:这组数据的平均数、方差和标准差都与第4个数有关,而这组数据的中位数为46,与第4个数无关. 故选:B .6.(3分)如图,在ABC ∆中,点D ,E 分别在AB 和AC 上,//DE BC ,M 为BC 边上一点(不与点B ,C 重合),连接AM 交DE 于点N ,则( )A.AD ANAN AE=B.BD MNMN CE=C.DN NEBM MC=D.DN NEMC BM=【考点】9S:相似三角形的判定与性质【分析】先证明ADN ABM∆∆∽得到DN ANBM AM=,再证明ANE AMC∆∆∽得到NE ANMC AM=,则DN NEBM MC=,从而可对各选项进行判断.【解答】解://DN BM,ADN ABM∴∆∆∽,∴DN AN BM AM=,//NE MC,ANE AMC∴∆∆∽,∴NE AN MC AM=,∴DN NE BM MC=.故选:C.7.(3分)在ABC∆中,若一个内角等于另外两个内角的差,则()A.必有一个内角等于30︒B.必有一个内角等于45︒C.必有一个内角等于60︒D.必有一个内角等于90︒【考点】7K:三角形内角和定理【分析】根据三角形内角和定理得出180A B C∠+∠+∠=︒,把C A B∠=∠+∠代入求出C∠即可.【解答】解:180A B C∠+∠+∠=︒,C A B∠=∠+∠,2180C∴∠=︒,90C∴∠=︒,ABC∴∆是直角三角形,故选:D.8.(3分)已知一次函数1y ax b =+和2()y bx a a b =+≠,函数1y 和2y 的图象可能是( )A .B .C .D .【考点】3F :一次函数的图象【分析】根据直线①判断出a 、b 的符号,然后根据a 、b 的符号判断出直线②经过的象限即可,做出判断.【解答】解:A 、由①可知:0a >,0b >.∴直线②经过一、二、三象限,故A 正确;B 、由①可知:0a <,0b >.∴直线②经过一、二、三象限,故B 错误;C 、由①可知:0a <,0b >.∴直线②经过一、二、四象限,交点不对,故C 错误;D 、由①可知:0a <,0b <,∴直线②经过二、三、四象限,故D 错误.故选:A .9.(3分)如图,一块矩形木板ABCD 斜靠在墙边(OC OB ⊥,点A ,B ,C ,D ,O 在同一平面内),已知AB a =,AD b =,BCO x ∠=,则点A 到OC 的距离等于( )A .sin sin a x b x +B .cos cos a x b x +C .sin cos a x b x +D .cos sin a x b x +【考点】9T :解直角三角形的应用-坡度坡角问题;LB :矩形的性质【分析】根据题意,作出合适的辅助线,然后利用锐角三角函数即可表示出点A 到OC 的距离,本题得以解决.【解答】解:作AE OC ⊥于点E ,作AF OB ⊥于点F , 四边形ABCD 是矩形, 90ABC ∴∠=︒,ABC AEC ∠=∠,BCO x ∠=, EAB x ∴∠=, FBA x ∴∠=, AB a =,AD b =,cos sin FO FB BO a x b x ∴=+=+,故选:D .10.(3分)在平面直角坐标系中,已知a b ≠,设函数()()y x a x b =++的图象与x 轴有M 个交点,函数(1)(1)y ax bx =++的图象与x 轴有N 个交点,则( )A .1M N =-或1M N =+B .1M n =-或2M N =+C .M N =或1M N =+D .M N =或1M N =-【考点】HA :抛物线与x 轴的交点【分析】先把两个函数化成一般形式,若为二次函数,再计算根的判别式,从而确定图象与x 轴的交点个数,若一次函数,则与x 轴只有一个交点,据此解答. 【解答】解:2()()()1y x a x b x a b x =++=+++,∴△22()4()0a b ab a b =+-=->,∴函数()()y x a x b =++的图象与x 轴有2个交点,2M ∴=,函数2(1)(1)()1y ax bx abx a b x =++=+++,∴当0ab ≠时,△22()4()0a b ab a b =+-=->,函数(1)(1)y ax bx =++的图象与x 轴有2个交点,即2N =,此时M N =;当0ab =时,不妨令0a =,a b ≠,0b ∴≠,函数(1)(1)1y ax bx bx =++=+为一次函数,与x 轴有一个交点,即1N =,此时1M N =+; 综上可知,M N =或1M N =+. 故选:C .二、填空题:本大题有6个小题,每小题4分,共24分; 11.(4分)因式分解:21x -= (1)(1)x x -+ . 【考点】54:因式分解-运用公式法【分析】根据平方差公式可以将题目中的式子进行因式分解. 【解答】解:21(1)(1)x x x -=-+, 故答案为:(1)(1)x x -+.12.(4分)某计算机程序第一次算得m 个数据的平均数为x ,第二次算得另外n 个数据的平均数为y ,则这m n +个数据的平均数等于 mx nym n++ . 【考点】2W :加权平均数【分析】直接利用已知表示出两组数据的总和,进而求出平均数.【解答】解:某计算机程序第一次算得m 个数据的平均数为x ,第二次算得另外n 个数据的平均数为y , 则这m n +个数据的平均数等于:mx nym n ++. 故答案为:mx nym n++. 13.(4分)一个圆锥形冰淇淋外壳(不计厚度),已知其母线长为12cm ,底面圆半径为3cm ,则这个冰淇淋外壳的侧面积等于 113 2cm (结果精确到个位). 【考点】1H :近似数和有效数字;MP :圆锥的计算【分析】利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式计算.【解答】解:这个冰淇淋外壳的侧面积21231236113()2cm ππ=⨯⨯⨯=≈.故答案为113.14.(4分)在直角三角形ABC 中,若2AB AC =,则cos C = 或 . 【考点】1T :锐角三角函数的定义【分析】讨论:若90B ∠=︒,设AB x =,则2AC x =,利用勾股定理计算出BC =,然后根据余弦的定义求cos C 的值;若90A ∠=︒,设AB x =,则2AC x =,利用勾股定理计算出BC =,然后根据余弦的定义求cos C 的值.【解答】解:若90B ∠=︒,设AB x =,则2AC x =,所以22(2)3BC x x x =-=,所以33cos 22BC x C AC x ===; 若90A ∠=︒,设AB x =,则2AC x =,所以22(2)5BC x x x =+=,所以225cos 55AC x C BC x===; 综上所述,cos C 的值为32或255. 故答案为32或255. 15.(4分)某函数满足当自变量1x =时,函数值0y =,当自变量0x =时,函数值1y =,写出一个满足条件的函数表达式 1y x =-+ .【考点】4G :反比例函数的性质;6F :正比例函数的性质;5F :一次函数的性质;3H :二次函数的性质【分析】根据题意写出一个一次函数即可. 【解答】解:设该函数的解析式为y kx b =+,函数满足当自变量1x =时,函数值0y =,当自变量0x =时,函数值1y =, ∴01k b b +=⎧⎨=⎩解得:11k b =-⎧⎨=⎩,所以函数的解析式为1y x =-+, 故答案为:1y x =-+.16.(4分)如图,把某矩形纸片ABCD 沿EF ,GH 折叠(点E ,H 在AD 边上,点F ,G 在BC 边上),使点B 和点C 落在AD 边上同一点P 处,A 点的对称点为A '点,D 点的对称点为D '点,若90FPG ∠=︒,△A EP '的面积为4,△D PH '的面积为1,则矩形ABCD 的面积等于 2(535)+ .【考点】LB :矩形的性质;PB :翻折变换(折叠问题)【分析】设AB CD x ==,由翻折可知:PA AB x '==,PD CD x '==,因为△A EP '的面积为4,△D PH'的面积为1,推出4A E D H '=',设D H a '=,则4A E a '=,由△A EP '∽△D PH ',推出D H PD PA EA ''='',推出4a xx a=,可得2x a =,再利用三角形的面积公式求出a 即可解决问题. 【解答】解:四边形ABC 是矩形, AB CD ∴=,AD BC =,设AB CD x ==,由翻折可知:PA AB x '==,PD CD x '==, △A EP '的面积为4,△D PH '的面积为1,4A E D H ∴'=',设D H a '=,则4A E a '=,△A EP '∽△D PH ',∴D H PD PA EA ''='', ∴4a xx a=, 224x a ∴=,2x a ∴=或2a -(舍弃), 2PA PD a ∴'='=,1212a a =, 1a ∴=, 2x ∴=,2AB CD ∴==,PE =PH =,415AD ∴=+=+,∴矩形ABCD 的面积2(5=+.故答案为2(5+三、解答题:本小题7个小题,共66分,解答应写出文字说明、证明过程或演算步骤. 17.(6分)化简:242142x x x ---- 圆圆的解答如下:22242142(2)(4)242x x x x x x x x --=-+--=-+-- 圆圆的解答正确吗?如果不正确,写出正确的答案. 【考点】6B :分式的加减法【分析】直接将分式进行通分,进而化简得出答案.【解答】解:圆圆的解答错误, 正确解法:242142x x x ---- 42(2)(2)(2)(2)(2)(2)(2)(2)(2)x x x x x x x x x x +-+=---+-+-+ 24244(2)(2)x x x x x ---+=-+ 22(2)(2)x x x x -=-+ 2xx =-+. 18.(8分)称量五筐水果的质量,若每筐以50千克为基准,超过基准部分的千克数记为正数,不足基准部分的千克数记为负数,甲组为实际称量读数,乙组为记录数据,并把所得数据整理成如下统计表和未完成的统计图(单位:千克).实际称量读数和记录数据统计表序号 数据 1 2 3 4 5甲组 4852 47 49 54 乙组2- 23-1-4(1)补充完成乙组数据的折线统计图.(2)①甲,乙两组数据的平均数分别为x 甲,x 乙,写出x 甲与x 乙之间的等量关系.②甲,乙两组数据的方差分别为2S 甲,2S 乙,比较2S 甲与2S 乙的大小,并说明理由.【考点】1W :算术平均数;VD :折线统计图;7W :方差 【分析】(1)利用描点法画出折线图即可. (2)利用方差公式计算即可判断.【解答】解:(1)乙组数据的折线统计图如图所示:(2)①50x x =+乙甲.②22S S =乙甲.理由:(2222221[(4850)(5250)(4750)(4950)5450) 6.85S ⎤=-+-+-+-+-=⎦甲. (2222221[(20)(20)(30)(10)40) 6.85S ⎤=--+-+--+--+-=⎦乙, 22S S ∴=乙甲.19.(8分)如图,在ABC ∆中,AC AB BC <<.(1)已知线段AB 的垂直平分线与BC 边交于点P ,连接AP ,求证:2APC B ∠=∠.(2)以点B 为圆心,线段AB 的长为半径画弧,与BC 边交于点Q ,连接AQ .若3AQC B ∠=∠,求B ∠的度数.【考点】KG :线段垂直平分线的性质;KH :等腰三角形的性质【分析】(1)根据线段垂直平分线的性质可知PA PB=,根据等腰三角形的性质可得B BAP∠=∠,根据三角形的外角性质即可证得2APC B=∠;(2)根据题意可知BA BQ=,根据等腰三角形的性质可得BAQ BQA∠=∠,再根据三角形的内角和公式即可解答.【解答】解:(1)证明:线段AB的垂直平分线与BC边交于点P,PA PB∴=,B BAP∴∠=∠,APC B BAP∠=∠+∠,2APC B∴∠=∠;(2)根据题意可知BA BQ=,BAQ BQA∴∠=∠,3AQC B∠=∠,AQC B BAQ∠=∠+∠,2BQA B∴∠=∠,180BAQ BQA B∠+∠+∠=︒,5180B∴∠=︒,36B∴∠=︒.20.(10分)方方驾驶小汽车匀速地从A地行驶到B地,行驶里程为480千米,设小汽车的行驶时间为t(单位:小时),行驶速度为v(单位:千米/小时),且全程速度限定为不超过120千米/小时.(1)求v关于t的函数表达式;(2)方方上午8点驾驶小汽车从A地出发.①方方需在当天12点48分至14点(含12点48分和14点)间到达B地,求小汽车行驶速度v的范围.②方方能否在当天11点30分前到达B地?说明理由.【考点】GA:反比例函数的应用【分析】(1)由速度乘以时间等于路程,变形即可得速度等于路程比时间,从而得解;(2)①8点至12点48分时间长为245小时,8点至14点时间长为6小时,将它们分别代入v关于t的函数表达式,即可得小汽车行驶的速度范围;②8点至11点30分时间长为72小时,将其代入v关于t的函数表达式,可得速度大于120千米/时,从而得答案.【解答】解:(1)480vt=,且全程速度限定为不超过120千米/小时,v ∴关于t 的函数表达式为:480v t=,(04)t . (2)①8点至12点48分时间长为245小时,8点至14点时间长为6小时 将6t =代入480v t =得80v =;将245t =代入480v t=得100v =. ∴小汽车行驶速度v 的范围为:80100v .②方方不能在当天11点30分前到达B 地.理由如下: 8点至11点30分时间长为72小时,将72t =代入480v t =得9601207v =>千米/小时,超速了. 故方方不能在当天11点30分前到达B 地.21.(10分)如图,已知正方形ABCD 的边长为1,正方形CEFG 的面积为1S ,点E 在DC 边上,点G 在BC 的延长线上,设以线段AD 和DE 为邻边的矩形的面积为2S ,且12S S =. (1)求线段CE 的长;(2)若点H 为BC 边的中点,连接HD ,求证:HD HG =.【考点】LB :矩形的性质;LE :正方形的性质【分析】(1)设出正方形CEFG 的边长,然后根据12S S =,即可求得线段CE 的长;(2)根据(1)中的结果可以题目中的条件,可以分别计算出HD 和HG 的长,即可证明结论成立. 【解答】解:(1)设正方形CEFG 的边长为a , 正方形ABCD 的边长为1, 1DE a ∴=-, 12S S =,21(1)a a ∴=⨯-, 解得,1512a =-(舍去),2512a =-, 即线段CE 512-; (2)证明:点H 为BC 边的中点,1BC =, 0.5CH ∴=,25052DH ∴=,0.5CH =,12CG =,HG ∴ HD HG ∴=.22.(12分)设二次函数121()()(y x x x x x =--,2x 是实数). (1)甲求得当0x =时,0y =;当1x =时,0y =;乙求得当12x =时,12y =-.若甲求得的结果都正确,你认为乙求得的结果正确吗?说明理由.(2)写出二次函数图象的对称轴,并求该函数的最小值(用含1x ,2x 的代数式表示).(3)已知二次函数的图象经过(0,)m 和(1,)n 两点(m ,n 是实数),当1201x x <<<时,求证:1016mn <<. 【考点】HA :抛物线与x 轴的交点;3H :二次函数的性质;7H :二次函数的最值;5H :二次函数图象上点的坐标特征【分析】(1)将(0,0),(1,0)代入12()()y x x x x =--求出函数解析式即可求解; (2)对称轴为122x x x +=,当122x x x +=时,212()4x x y -=-是函数的最小值;(3)将已知两点代入求出12m x x =,12121n x x x x =--+,再表示出22121111[()][()]2424mn x x =--+--+,由已知1201x x <<<,可求出211110()244x --+,221110()244x --+,即可求解. 【解答】解:(1)当0x =时,0y =;当1x =时,0y =;∴二次函数经过点(0,0),(1,0),10x ∴=,21x =,2(1)y x x x x ∴==-=-, 当12x =时,14y =-, ∴乙说点的不对;(2)对称轴为122x x x +=, 当122x x x +=时,212()4x x y -=-是函数的最小值;(3)二次函数的图象经过(0,)m 和(1,)n 两点, 12m x x ∴=,12121n x x x x =--+,22121111[()][()]2424mn x x ∴=--+--+1201x x <<<,211110()244x ∴--+,221110()244x --+, 1016mn ∴<<. 23.(12分)如图,已知锐角三角形ABC 内接于圆O ,OD BC ⊥于点D ,连接OA . (1)若60BAC ∠=︒, ①求证:12OD OA =.②当1OA =时,求ABC ∆面积的最大值.(2)点E 在线段OA 上,OE OD =,连接DE ,设ABC m OED ∠=∠,(ACB n OED m ∠=∠,n 是正数),若ABC ACB ∠<∠,求证:20m n -+=.【考点】MR :圆的综合题【分析】(1)①连接OB 、OC ,则1602BOD BOC BAC ∠==∠=︒,即可求解;②BC 长度为定值,ABC ∆面积的最大值,要求BC 边上的高最大,即可求解; (2)11801802BAC ABC ACB mx nx BOC DOC∠=︒-∠-∠=︒--=∠=∠,而1802180AOD COD AOC mx nx mx mx nx ∠=∠+∠=︒--+=︒+-,即可求解.【解答】解:(1)①连接OB 、OC ,则1602BOD BOC BAC ∠==∠=︒,30OBC ∴∠=︒,1122OD OB OA ∴==;②BC 长度为定值,ABC ∴∆面积的最大值,要求BC 边上的高最大,当AD 过点O 时,AD 最大,即:32AD AO OD =+=, ABC ∆面积的最大值113332sin 602224BC AD OB =⨯⨯=⨯︒⨯=; (2)如图2,连接OC ,设:OED x ∠=,则ABC mx ∠=,ACB nx ∠=,则11801802BAC ABC ACB mx nx BOC DOC ∠=︒-∠-∠=︒--=∠=∠,22AOC ABC mx ∠=∠=,1802180AOD COD AOC mx nx mx mx nx ∴∠=∠+∠=︒--+=︒+-, OE OD =,1802AOD x ∴∠=︒-,即:1801802mx nx x ︒+-=︒-, 化简得:20m n -+=.考试小提示试卷一张一张,发的是希望;考试一场一场,考的是能力;笔尖一动一动,动的是梦想;问候一声一声,道的是真情;考试日,愿你们认真、细心做题,取得好成绩。

2019年中考 2019浙江省杭州市中考数学试题(Word版,含答案)

2019年中考 2019浙江省杭州市中考数学试题(Word版,含答案)

(m +n) 个数据的平均数等于
.
13.如图,一个圆锥形冰激凌外壳(不计厚度).已知其母线长为12cm,底面圆半径为 3cm,则这个
冰激凌外壳的侧面积等于
cm2 (计算结果精确到个位).
A1
A
E
D1 P
D
B
F
G
C
第 13 题图
14.在直角三角形 ABC 中,若 2AB = AC ,则 cos C =
乙乙乙乙乙乙乙乙乙乙乙乙乙乙
乙乙
乙乙
1
23
4
5
乙 乙 48 52 47 49 54
乙 乙 -2 2 -3 -1 4
⑴补充完整乙组数据的折线统计图;
乙乙乙乙乙乙
54 53 52 51 50 49 48 47
乙乙乙乙乙乙 4
3 2 1 0 -1
-2 -3
1 2 3 4 5 乙乙 1 2 3 4 5 乙乙
()
王老师编辑整理
y O 1x
y O 1x
y
1
O
x
y
O1 x
A.
B.
C.
D.
9.如图,一块矩形木板 ABCD 斜靠在墙边,( OC ^ OB ,点 A、B、C、D、O 在同一平面内),已知
AB = a , AD = b ,ÐBOC = x .则点 A 到 OC 的距离等于
()
A. a sin x +b sin x
所以 HG=HC+CG= +
= ,所以 HD=HG
2 22
22.(本题满分 12 分)
(1)乙求得的结果不正确,理由如下:
根据题意,知图象经过点(0,0),(1,0),
所以 y x(x 1) ,

2019年浙江杭州中考数学试题及答案

2019年浙江杭州中考数学试题及答案

2019年浙江省杭州市中考数学试题与答案一、选择题(共10小题)1.(3分)(2019•一模)下列计算结果为负数的是()A.﹣|﹣3|B.(﹣3)0C.(﹣3)2D.(﹣3)﹣22.(3分)(2010•安顺)下列关于的说法中错误的是()A.是无理数B.3<<4C .是12的算术平方根D.不能再化简3.(3分)(2011•枣庄)已知是二元一次方程组的解,则a﹣b的值为()A.﹣1B.1C.2D.34.(3分)(2019•一模)不等式组的整数解共有()A.2个B.3个C.4个D.5个5.(3分)(2019•一模)如图,如果从半径为3的圆形纸片剪去圆周的一个扇形,将留下的扇形围成一个圆锥(接缝处不重叠),那么这个圆锥的高为()A.2B.C.4D.6.(3分)(2019•一模)一元二次方程x(x﹣2)=﹣(x﹣2)的根是()A.﹣1B.2C.1或2D.﹣1或27.(3分)(2019•一模)张大伯在中国银行存入10000元人民币,并在存单上留下了6位数的密码,每个数字都是0﹣9这十个数字中的一个,但由于年龄的缘故,张大伯忘记了密码中间的两个数字,那么张大伯最多可能实验多少次,才能正确输入密码()A.1次B.50次C.100次D.200次8.(3分)(2019•一模)一个长方体的三视图如图所示,若其俯视图为正方形,则这个长方体的体积为()A.18B36C48D72...9.(3分)(2019•一模)如图,在锐角△中,6,∠45°,∠的平分线交于点D,M,N分别是和上的动点,则的最小值是()A.B.6C.D.310.(3分)(2019•一模)从1,2,3,4,5这五个数中,任取两个数p和q (p≠q),构成函数y1﹣2和y2,使两个函数图象的交点在直线2的右侧,则这样的有序数组(p,q)共有()A.7组B.9组C.11组D.13组二.填空题(共6小题)11.(3分)(2019•一模)实数a,b在数轴上的位置如图所示,那么化简﹣﹣的结果是.12.(3分)(2019•一模)分解因式:﹣2a3+4a2﹣2 .13.(3分)(2019•一模)如图,已知点B(1,﹣2)是⊙O上一点,过点B 作⊙O的切线交x轴于点A,则∠.14.(3分)(2019•一模)数学老师布置10道选择题作业,批阅后得到如下统计表.根据表中数据可知,这45名同学答对题数组成的样本的中位数是题,众数是题.答对题数78910人数41816715.(3分)(2019•一模)抛物线2x2与坐标轴有两个交点,则字母c的取值满足的条件是.16.(3分)(2007•新疆)如图是一个边长为1的正方形组成的网络,△与△A1B1C1都是格点三角形(顶点在网格交点处),并且△∽△A1B1C1,则△与△A1B1C1的相似比是.三.解答题(共7小题)17.(2019•一模)计算:当430°﹣(﹣1)0,60°时,求[1﹣]÷+的值.18.(2011•随州)为了加强食品安全管理,有关部门对某大型超市的甲、乙两种品牌食用油共抽取18瓶进行检测,检测结果分成“优秀“、“合格“和“不合格”三个等级,数据处理后制成以下折线统计图和扇形统计图.(1)甲、乙两种品牌食用油各被抽取了多少瓶用于检测?(2)在该超购买一瓶乙品牌食用油,请估计能买到“优秀”等级的概率是多少?19.(2019•一模)某海防哨所O发现在他的东偏北60°方向,距离哨所400m 的A处有一艘船向正东方向航行,经过2分钟后到达哨所的东北方向的B处,问船从A处到B处航速是多少千米/小时(精确到1千米/小时)?(参考数据≈1.414,≈1.732,≈2.236).20.(2019•一模)如图,在△中,⊥,垂足为D.(1)尺规作图(不写作法,保留作图痕迹):作△的外接圆⊙O,作直径,连接;(2)若10,8,6,求的长.21.(2019•一模)如图,△的面积为1,分别取、两边的中点A1、B1,记四边形A11的面积为S1;再分别取A1C、B1C的中点A2、B2,记四边形A2A1B1B2的面积为S2;再分别取A2C、B2C的中点A3、B3,依次取下去…(1)由已知,可求得S1= ,S2= ,S100= ;(2)利用这一图形,计算.22.(2019•一模)已知二次函数2﹣2的图象与y轴相交于点C,与x轴交于点A,B两点(点A在点B的左侧),其对称轴与x轴交于点D,连接.(1)点C的坐标为,点A的坐标为;(2)抛物线上是否存在点E,使得△为等边三角形?若存在,求出所有符合条件的点E的坐标;若不存在,请说明理由;(3)点P为x轴下方的抛物线上的一个动点,连接,,记△的面积为S,问S 取何值时,相应的点P有且只有2个?23.(2019•一模)如图,矩形的4个顶点都在圆O上,将矩形绕点0按顺时针方向旋转α度,其中0°<α≤90°,旋转后的矩形落在弓形内的部分可能是三角形(如图1)、直角梯形(如图2)、矩形(如图3).已知6,8.(1)如图3,当α=度时,旋转后的矩形落在弓形内的部分呈矩形,此时该矩形的周长是;(2)如图2,当旋转后的矩形落在弓形内的部分是直角梯形时,设A2D2、B2C2分别与相交于点为E、F,求证:A2,2E;(3)在旋转过程中,设旋转后的矩形落在弓形内的部分为三角形、直角梯形、矩形时所对应的周长分别是、c2、c3,圆O的半径为R,当c123=6R时,求c1的值;(4)如图1,设旋转后A1B1、A1D1与分别相交于点M、N,当旋转到△A1正好是等腰三角形时,判断圆O的直径与△A1周长的大小关系,并说明理由.2019年浙江省杭州市中考数学试题与答案解析一、选择题(共10小题)1.(3分)(2019•一模)下列计算结果为负数的是()A.﹣|﹣3|B.(﹣3)0C.(﹣3)2D.(﹣3)﹣2考点:负整数指数幂;绝对值;有理数的乘方;零指数幂.专题:计算题.分析:负数就是大于0的数,可以先对每个选项进行化简,再判断正负即可.解答:解:A、﹣|﹣3﹣3,是负数,故选项正确;B、(﹣3)0=1>0,是正数,故选项错误;C、(﹣3)2=9>0,是正数,故选项错误;D、(﹣3)﹣2=>0,是正数,故选项错误.故选A.点评:对于负指数次幂的定义特别要注意,a ﹣,不要出现(﹣3)﹣2=﹣9的错误.2.(3分)(2010•安顺)下列关于的说法中错误的是()A.是无理数B3<<4.C .是12的算术平方根D.不能再化简考点:二次根式的乘除法.分析:根据化简二次根式的法则可知.解答:解:因为=2,所以能再化简.故选D.点评:化简二次根式,关键是看被开方数有没有能开得尽方的因数和因式.3.(3分)(2011•枣庄)已知是二元一次方程组的解,则a﹣b的值为()A.﹣1B.1C.2D.3考点:二元一次方程的解.专题:计算题;压轴题.分析:根据二元一次方程组的解的定义,将代入原方程组,分别求得a、b的值,然后再来求a﹣b的值.解答:解:∵已知是二元一次方程组的解,∴由①+②,得2,③由①﹣②,得3,④∴a﹣﹣1;故选A.点评:此题考查了二元一次方程组的解法.二元一次方程组的解法有两种:代入法和加减法,不管哪种方法,目的都是“消元”.4.(3分)(2019•一模)不等式组的整数解共有()A.2个B.3个C.4个D.5个考点:一元一次不等式组的整数解;不等式的性质;解一元一次不等式.专题:计算题.分根据不等式的性质求出不等式的解集,根据找不等式组解集的规律找出不析:等式组的解集即可.解答:解:,由①得:x≥﹣2,由②得:x<3,∴不等式组的解集是﹣2≤x<3,∴不等式组的整数解是﹣2,﹣1,0,1,2,共5个.故选D.点评:本题主要考查对不等式的性质,解一次不等式(组),一元一次不等式的整数解等知识点的理解和掌握,能根据不等式的解集找出不等式组的解集是解此题的关键.5.(3分)(2019•一模)如图,如果从半径为3的圆形纸片剪去圆周的一个扇形,将留下的扇形围成一个圆锥(接缝处不重叠),那么这个圆锥的高为()A.2B.C.4D.考点:圆锥的计算.分析:因为圆锥的高,底面半径,母线构成直角三角形,首先求得剩下扇形的圆心角的度数和弧长,然求得底面半径,利用勾股定理求得圆锥的高即可.解解:∵从半径为3的圆形纸片剪去圆周的一个扇形,答:∴剩下的扇形的角度=360°×=240°,∴留下的扇形的弧长4π,∴圆锥的底面半径2,∴圆锥的高.故选B.点评:主要考查了圆锥的性质,要知道(1)圆锥的高,底面半径,母线构成直角三角形,(2)此扇形的弧长等于圆锥底面周长,扇形的半径等于圆锥的母线长.解此类题目要根据所构成的直角三角形的勾股定理作为等量关系求解.6.(3分)(2019•一模)一元二次方程x(x﹣2)=﹣(x﹣2)的根是()A.﹣1B.2C.1或2D.﹣1或2考点:解一元二次方程-因式分解法.分析:先移项,再分解因式,进得出两个一元一次方程,求出方程的解即可.解答:解:x(x﹣2)=﹣(x﹣2),x(x﹣2)+(x﹣2)=0,(x﹣2)(1)=0,x﹣2=0,1=0,x1=﹣1,x2=2,故选D.点评:本题考查了解一元二次方程的应用,解此题的关键是能把一元二次方程转化成一元一次方程.7.(3分)(2019•一模)张大伯在中国银行存入10000元人民币,并在存单上留下了6位数的密码,每个数字都是0﹣9这十个数字中的一个,但由于年龄的缘故,张大伯忘记了密码中间的两个数字,那么张大伯最多可能实验多少次,才能正确输入密码()A.1次B.50次C.100次D.200次考点:推理与论证.分析:得到中间两个空数的可能情况即可.解答:解:∵0﹣9这个十个数字中任取两个组合共有100种取法,∴王大伯最多可能试验100次,才能正确输入密码.故选:C.点评:此题主要考查了推理与论证,解决本题的关键是得到0﹣9这个十个数字中任取两个组合共有100种取法.8.(3分)(2019•一模)一个长方体的三视图如图所示,若其俯视图为正方形,则这个长方体的体积为()A.18B.36C.48D.72考点:由三视图判断几何体.分析:根据对角线为3,俯视图是一个正方形,则边长为3,再根据长方体体积计算公式即可解答.解答:解:∵俯视图为正方形,根据主视图可得:正方形可得边长为3,长方体的高为4,∴长方体的体积:3×3×4=36.故选B.点评:此题考查了由三视图判断几何体,用到的知识点是三视图的基本知识以与长方体体积计算公式.9.(3分)(2019•一模)如图,在锐角△中,6,∠45°,∠的平分线交于点D,M,N分别是和上的动点,则的最小值是()A.B.6C.D.3考点:轴对称-最短路线问题.分作⊥,垂足为H,交于M′点,过M′点作M′N′⊥,垂足为N′,析:则′′N′为所求的最小值,再根据是∠的平分线可知M′′N′,再由锐角三角函数的定义即可得出结论.解答:解:如图,作⊥,垂足为H,交于M′点,过M′点作M′N′⊥,垂足为N′,则′′N′为所求的最小值.∵是∠的平分线,∴M′′N′,∴是点B到直线的最短距离(垂线段最短),∵6,∠45°,∴•45°=6×=3.∵的最小值是′′N′′′3.故选C.点评:本题考查的是轴对称﹣最短路线问题,解答此类问题时要从已知条件结合图形认真思考,通过角平分线性质,垂线段最短,确定线段和的最小值.10.(3分)(2019•一模)从1,2,3,4,5这五个数中,任取两个数p和q (p≠q),构成函数y1﹣2和y2,使两个函数图象的交点在直线2的右侧,则这样的有序数组(p,q)共有()A.7组B.9组C.11组D.13组考两条直线相交或平行问题.分析:﹣2的解就是两个函数图象的交点的横坐标,交点在直线2的右侧,即横坐标大于2,则可以得到p,q的关系式,然后列举从1、2,3,4,5这五个数中,任取两个数得到的所有情况,判断是否满足p,q的关系即可.解答:解:根据题意得:﹣2,解得,则两个函数图象的交点的横坐标是,则当两个函数图象的交点在直线2的右侧时:>2,当p﹣1≠0时,则q>2p﹣4,在1,2,3,4,5这,五个数中,任取两个数有:(1,2),(1,3),(1,4),(1,5),(2,1)(2,3),(2,4),(2,5),(3,1),(3,2),(3,4),(3,5),(4,1),(4,2)(4,3),(4,5),(5,1)(5,2),(5,3),(5,4)共有20种情况.满足q>2p﹣4的有:(2,1),(2,3)(2,4),(2,5),(3,4),(3,5),(4,5)共7种情况.故这样的有序数组(p,q)共有7组.故选:A.点评:本题是一次函数与列举法的综合应用,根据条件,得到p,q满足的关系是关键.二.填空题(共6小题)11.(3分)(2019•一模)实数a,b在数轴上的位置如图所示,那么化简﹣﹣的结果是﹣b .考点:二次根式的性质与化简;实数与数轴.专计算题.分析:由数轴可得到a>0,b<0,<,根据和绝对值的性质即可得到答案.解答:解:∵a>0,b<0,<,∴原式﹣b﹣﹣b﹣a=﹣b.故答案为﹣b.点评:本题考查了二次根式的性质与化简:.也考查了绝对值的性质.12.(3分)(2019•一模)分解因式:﹣2a3+4a2﹣2 ﹣2a(a﹣1)2.考点:提公因式法与公式法的综合运用.分析:先提取公因式﹣2a,再根据完全平方公式进行二次分解.完全平方公式:a2±22=(a±b)2.解答:解:﹣2a3+4a2﹣2﹣2a(a2﹣21)=﹣2a(a﹣1)2.故答案为:﹣2a(a﹣1)2.点评:本题考查了提公因式法,公式法分解因式,提取公因式后利用完全平方公式进行二次分解,注意分解要彻底.13.(3分)(2019•一模)如图,已知点B(1,﹣2)是⊙O上一点,过点B 作⊙O的切线交x轴于点A,则∠.考点:切线的性质;坐标与图形性质.分析:过点B作⊥x轴于点C.故∠∠90°,点B(1,﹣2)所以1,2.由切线的性质得∠90°,∠∠90°,故∠∠,∠∠.解答:解:过点B作⊥x轴于点C.∴∠∠90°.∵点B(1,﹣2),∴1,2.∵是⊙O的切线,∴∠90°;∴∠∠90°,∴∠∠,∴∠∠.点评:本题主要考查了切线的性质以与点的坐标、锐角三角函数的求法.作出辅助线得出∠∠是解题的关键.14.(3分)(2019•一模)数学老师布置10道选择题作业,批阅后得到如下统计表.根据表中数据可知,这45名同学答对题数组成的样本的中位数是9 题,众数是8 题.答对题数78910人数418167考点:众数;中位数.分析:结合图表根据众数和中位数的定义解答.解答:解:∵一共有45人,∴中位数为第23人的成绩,∴中位数为9题;答对8个题的有18人,人数最多,所以众数是8题.故答案为9;8.点评:本题为统计题,考查众数与中位数的意义,一组数据中出现次数最多的数据叫做众数.平均数是指在一组数据中所有数据之和再除以数据的个数.它是反映数据集中趋势的一项指标.将一组数据从小到大依次排列,把中间数据(或中间两数据的平均数)叫做中位数.中位数把样本数据分成了相同数目的两部分.15.(3分)(2019•一模)抛物线2x2与坐标轴有两个交点,则字母c的取值满足的条件是或0 .考点:抛物线与x轴的交点;根的判别式.专题:探究型.分析:根据抛物线与x轴有两个交点可知二次函数过原点或与x轴相切.故分两种情况解答:①将(0,0)代入解析式;②△=0.解答:解:∵抛物线2x2与坐标轴有两个交点,①将(0,0)代入解析式得0;②△=1﹣80,解得.故答案为:,0.点评:本题考查的是抛物线与x轴的交点与根的判别式,熟知抛物线与x轴的交点问题与一元二次方程根的关系是解答此题的关键.16.(3分)(2007•新疆)如图是一个边长为1的正方形组成的网络,△与△A1B1C1都是格点三角形(顶点在网格交点处),并且△∽△A1B1C1,则△与△A1B1C1的相似比是.考点:相似三角形的性质;勾股定理.专压轴题;网格型.题:分析:先利用勾股定理求出,那么:A′C′即是相似比.解答:解:由图可知,A1C1=1,∴△与△A1B1C1的相似比是:1.点评:本题考查对相似三角形性质的理解,相似三角形边长的比等于相似比.解答此题的关键是找出相似三角形的对应边.三.解答题(共7小题)17.(2019•一模)计算:当430°﹣(﹣1)0,60°时,求[1﹣]÷+的值.考点:分式的化简求值;零指数幂;特殊角的三角函数值.专题:计算题.分析:原式第一项括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分后利用同分母分式的加法法则计算得到最简结果,利用特殊角的三角函数值与零指数幂法则求出x与y的值,代入计算即可求出值.解答:解:原式=•+=•+=﹣+=,当430°﹣(﹣1)0=2﹣1=1,60°=3时,原式.点评:此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.18.(2011•随州)为了加强食品安全管理,有关部门对某大型超市的甲、乙两种品牌食用油共抽取18瓶进行检测,检测结果分成“优秀“、“合格“和“不合格”三个等级,数据处理后制成以下折线统计图和扇形统计图.(1)甲、乙两种品牌食用油各被抽取了多少瓶用于检测?(2)在该超购买一瓶乙品牌食用油,请估计能买到“优秀”等级的概率是多少?考点:折线统计图;扇形统计图;概率公式.专题:图表型;数形结合.分析:(1)读折线统计图可知,不合格等级的有1瓶,读扇形统计图可知甲种品牌有不合格的,且只有1瓶,由此可求出甲种品牌的数量,据此解答即可.(2)根据随机事件概率大小的求法,找准两点:①符合条件的情况数目;②全部情况的总数;二者的比值就是其发生的概率的大小.解答:解:(1)1÷1010(瓶),18﹣10=8(瓶),即甲种品牌有10瓶,乙种品牌有8瓶.(2)∵甲,乙优秀瓶总数为10瓶,其中甲品牌食用油的优秀占到60%,∴甲的优秀瓶数为10×606(瓶)∴乙的优秀瓶数为:10﹣(10×60%)=4(瓶),又∵乙种品牌共有8瓶,∴能买到“优秀”等级的概率是=.点评:本题考查的是扇形统计图和折线统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.19.(2019•一模)某海防哨所O发现在他的东偏北60°方向,距离哨所400m 的A处有一艘船向正东方向航行,经过2分钟后到达哨所的东北方向的B处,问船从A处到B处航速是多少千米/小时(精确到1千米/小时)?(参考数据≈1.414,≈1.732,≈2.236).考点:解直角三角形的应用-方向角问题.分析:根据题意先画出图形,再分别解直角三角形与直角三角形,求出200米,200米,然后根据﹣求出的长,则问题可求.解答:解:作⊥于点C.由题意有400米,在直角三角形中,∠90°﹣60°=30°,所以200米,200米.在直角三角形中,∠45°,所以,200米,所以﹣200﹣200米,所以速度为(200﹣200)÷2=100﹣100(米/分)≈4千米/时.答:船从A处到B处航速约是4千米/小时.点评:本题考查了解直角三角形的应用﹣方向角问题,涉与到锐角三角函数、实数的运算、解直角三角形,难度适中.体现了数学与生活的密切联系,同时也进行了实数运算方面的进一步考查,根据题意准确画出图形是解题的关键.20.(2019•一模)如图,在△中,⊥,垂足为D.(1)尺规作图(不写作法,保留作图痕迹):作△的外接圆⊙O,作直径,连接;(2)若10,8,6,求的长.考点:作图—复杂作图;三角形的外接圆与外心.分析:(1)首先利用三角形外接圆的作法得出,的垂直平分线,进而得出圆心位置,进而得出符合题意的图形;(2)利用三角形相似的判定与性质得出=,进而求出即可.解答:解:(1)如图所示:(2)∵是⊙O直径,∴∠90°,∵∠∠E,∠∠,∴△∽△,∴=,∵6,8,∴2,∴=,解得:.点评:此题主要考查了三角形的外接圆的作法以与相似三角形的判定与性质等知识,得出的长进而求出是解题关键.21.(2019•一模)如图,△的面积为1,分别取、两边的中点A1、B1,记四边形A11的面积为S1;再分别取A1C、B1C的中点A2、B2,记四边形A2A1B1B2的面积为S2;再分别取A2C、B2C的中点A3、B3,依次取下去…(1)由已知,可求得S1= ,S2= ,S100= ;(2)利用这一图形,计算.考点:相似三角形的判定与性质;三角形中位线定理.专题:规律型.分析:(1)首先计算出第一个和第二个、第三个三角形的面积找到规律即可求出问题的答案;(2)根据(1)中的规律计算即可.解答:解:(1)∵A1、B1分别是、两边的中点,且△的面积为1,∴△A1B1C的面积为1×=.∴四边形A11的面积=△的面积﹣△A1B1C 的面积1﹣;∴四边形A2A1B1B2的面积=△A1B1C的面积﹣△A2B2C的面积=﹣=.…,∴第n个四边形的面积=,∴S100=.故答案为:,,;(2)由(1)可知:=()=.点评:本题考查了三角形的中位线性质定理和相似三角形的性质,同时也考查了学生通过特例分析从而归纳总结出一般结论的能力.22.(2019•一模)已知二次函数2﹣2的图象与y轴相交于点C,与x轴交于点A,B两点(点A在点B的左侧),其对称轴与x轴交于点D,连接.(1)点C的坐标为(0,﹣2),点A的坐标为(﹣4,0);(2)抛物线上是否存在点E,使得△为等边三角形?若存在,求出所有符合条件的点E的坐标;若不存在,请说明理由;(3)点P为x轴下方的抛物线上的一个动点,连接,,记△的面积为S,问S 取何值时,相应的点P有且只有2个?考点:二次函数综合题.分析:(1)抛物线的解析式中,令0可得二次函数与y轴交点C的纵坐标,令0可得二次函数与x轴交点的横坐标;(2)若在x轴下方的抛物线上存在一点E,使△为等边三角形,先由4,根据等边三角形的性质得出点E的坐标为(﹣2,﹣2),再将﹣2代入2﹣2,求出y的值,即可判断点E是否在抛物线上;(3)过点B、点O分别作的平行线,记为l1,l2,与平行且与抛物线2﹣2只有一个交点的直线记为l3,设此唯一交点为T.利用待定系数法求得直线的解析式为﹣x﹣2,直线l3的解析式为﹣x﹣4.设直线l3与y轴的交点为H,直线l2与抛物线在x轴下方的交点为N,则H(0,﹣4).作⊥直线l3于点M ,得出△∽△,根据相似三角形对应边成比例得到=,求出,即直线l3与之间的距离为.由2,得出直线l2与之间的距离也是,根据三角形的面积公式求出S △△×2×=4,则4时,相应的点P有且只有2个,就是点T和点N.在直线l2与直线l3之间,S的值对应的点P有三个;在直线l1与直线l2之间,S的值对应的点P只有一个.解答:解:(1)∵2﹣2,∴当0时,﹣2,∴点C的坐标为(0,﹣2).当0时,x2﹣2=0,即:x2+3x﹣4=0,解得﹣4和1,∴点A的坐标为(﹣4,0),点B的坐标为(1,0).故答案为(0,﹣2),(﹣4,0);(2)若在x轴下方的抛物线上存在一点E,使△为等边三角形,则因为4,所以点E的坐标为(﹣2,﹣2),但当﹣2时,×(﹣2)2+×(﹣2)﹣2=﹣3≠﹣2,所以点E不在抛物线上,所以不存在符合要求的点E;(3)过点B、点O分别作的平行线,记为l1,l2,与平行且与抛物线2﹣2只有一个交点的直线记为l3,设此唯一交点为T.可求得直线的解析式为﹣x﹣2,直线l3的解析式为﹣x﹣4.设直线l3与y轴的交点为H,直线l2与抛物线在x轴下方的交点为N,则H(0,﹣4).作⊥直线l3于点M,则△∽△,∴=,即=,,∴直线l3与之间的距离为.∵2,∴直线l2与之间的距离也是,∴S △△×2×=4,∴4时,相应的点P有且只有2个,就是点T和点N.在直线l2与直线l3之间,对于每一条与平行的直线l,在的另一侧,有且只有一条直线l′,使得l′∥∥l,且这三条平行线之间的距离相等,直线l 与l′与抛物线共有三个交点,这三个点分别与构成的三角形面积相等,即此时S的值对应的点P有三个.在直线l1与直线l2之间,平行于的直线与抛物线在x轴下方只有一个交点,所以此时S的值对应的点P只有一个.故只有当4时,相应的点P有且只有2个.点评:本题是二次函数的综合题型,其中涉与到二次函数图象上点的坐标特征,运用待定系数法求一次函数的解析式,等边三角形的性质,相似三角形的判定与性质,三角形的面积等知识,综合性较强,有一定难度.理解题意、运用数形结合思想是解题的关键.23.(2019•一模)如图,矩形的4个顶点都在圆O上,将矩形绕点0按顺时针方向旋转α度,其中0°<α≤90°,旋转后的矩形落在弓形内的部分可能是三角形(如图1)、直角梯形(如图2)、矩形(如图3).已知6,8.(1)如图3,当α=90 度时,旋转后的矩形落在弓形内的部分呈矩形,此时该矩形的周长是14 ;(2)如图2,当旋转后的矩形落在弓形内的部分是直角梯形时,设A2D2、B2C2分别与相交于点为E、F,求证:A2,2E;(3)在旋转过程中,设旋转后的矩形落在弓形内的部分为三角形、直角梯形、矩形时所对应的周长分别是、c2、c3,圆O的半径为R,当c123=6R时,求c1的值;(4)如图1,设旋转后A1B1、A1D1与分别相交于点M、N,当旋转到△A1正好是等腰三角形时,判断圆O的直径与△A1周长的大小关系,并说明理由.考点:圆内接四边形的性质;矩形的性质;直角梯形;圆心角、弧、弦的关系;圆周角定理.专题:计算题;证明题;探究型.分析:(1)根据矩形的性质可以得到旋转角应是90°,根据矩形的长和宽即可计算得到的矩形的周长;(2)根据旋转得到对应点之间的弧相等,再根据等弧所对的圆周角相等和等角对等边进行证明;(3)根据矩形的外接圆的圆心即是其对角线的交点,得到矩形的外接圆的半径等于其对角线的一半5,再根据(1)和(2)的思路,可以求得它们的周长分别是8,再进一步求得C1的长;(4)根据矩形的角都是直角,则该三角形应是等腰直角三角形.根据等腰直角三角形的性质和矩形的长和宽列方程求得三角形的周长,再进一步运用求差法比较其大小.解答:解:(1)当α=90°时,旋转后的矩形落在弓形内的部分呈矩形,此时该矩形的周长是6×2+(8﹣6)=14.(2)①如图,连接A2D,∵=,∴∠2=∠2D2;∴A2.②如图,连接2∵2C2,∴=;∴﹣=﹣;∴=;∴∠2C2=∠2;∴2E.(3)由(1)(2)得C2=14,C3=14∵6,8,∠90°,∴5,当C123=6R时,C1=2;(4)如图,设A1B1交于P,A1,,∵△A1正好是等腰三角形,∠A1=90°,∴∠A1∠A1∠45°;∴,∴8…(一);同(1)①可证1P;∴A1B 1116…(二);(二)﹣(一)得:a ﹣2;∴a﹣,即A1M ﹣;∴△A1的周长8+;而⊙O的直径为10,∴⊙O的直径与△A1的周长差为10﹣(8+)=2﹣>0;∴⊙O的直径大于△A1的周长.点评:此题综合运用了旋转的性质和等腰三角形的判定和性质.综合性强,难度较大.参与本试卷答题和审题的老师有:;;2-9;600;111;;210;;;杨金岭;;;;;王岑;;;;;;心若在(排名不分先后)菁优网2014年12月14日。

【真题】2019年浙江省杭州市中考数学试卷含解析答案

【真题】2019年浙江省杭州市中考数学试卷含解析答案

浙江省杭州市2019年中考数学试卷一、选择题:本大题有10个小题,每小题3分,共30分。

1.1.计算下列各式,值最小的是(计算下列各式,值最小的是(计算下列各式,值最小的是() A. A. 2×0+12×0+12×0+1-9 -9 -9 B. B. 2+0×12+0×12+0×1-9 -9 -9 C. C. 2+0-2+0-2+0-1×91×91×9 D. D. 2+0+1-9 2+0+1-9 【答案】 A【考点】有理数的加减乘除混合运算有理数的加减乘除混合运算 【解析】【解答】解:【解答】解:A.A.A.∵原式∵原式∵原式=0+1-9=-8=0+1-9=-8=0+1-9=-8,, B.B.∵原式∵原式∵原式=2+0-9=-7=2+0-9=-7=2+0-9=-7,, C.C.∵原式∵原式∵原式=2+0-9=-7=2+0-9=-7=2+0-9=-7,, D.D.∵原式∵原式∵原式=2+1-9=-6=2+1-9=-6=2+1-9=-6,, ∵-8-8<<-7-7<<-6-6,, ∴值最小的是∴值最小的是-8. -8. 故答案为:故答案为:A. A.【分析】先分别计算出每个代数式的值,再比较大小,从而可得答案【分析】先分别计算出每个代数式的值,再比较大小,从而可得答案. .2.2.在平面直角坐标系中,点在平面直角坐标系中,点A (m ,2)与点B (3,n )关于y 轴对称,则(轴对称,则( ) A. A. m=3m=3m=3,,n=2 n=2 B. B. m=-3m=-3m=-3,,n=2 n=2 C. C. m=3m=3m=3,,n=2 n=2 B.m=-2B.m=-2,,n=3 【答案】 B【考点】关于坐标轴对称的点的坐标特征关于坐标轴对称的点的坐标特征【解析】【解答】解:∵【解答】解:∵A A (m ,2)与B (3,n )关于y 轴对称,轴对称,∴m=-3m=-3,,n=2. 故答案为:故答案为:B. B.【分析】关于y 轴对称的点的特征:横坐标互为相反数,纵坐标不变,依此即可得出答案轴对称的点的特征:横坐标互为相反数,纵坐标不变,依此即可得出答案. . 3.3.如图,如图,如图,P P 为⊙为⊙O O 外一点,外一点,PA PA PA,,PB 分别切⊙分别切⊙O O 于A ,B 两点,若PA=3PA=3,则,则PB=PB=(( )A. A. 2 2 2B. 3 3C. 4 4D. D. 5 5 【答案】 B【考点】切线长定理切线长定理【解析】【解答】解:∵【解答】解:∵PA PA PA、、PB 分别为⊙分别为⊙O O 的切线,的切线, ∴PA=PB PA=PB,, 又∵又∵PA=3PA=3PA=3,, ∴PB=3. 故答案为:故答案为:B. B.【分析】根据切线长定理可得PA=PB PA=PB,结合题意可得答案,结合题意可得答案,结合题意可得答案. .4.4.已知九年级某班已知九年级某班30位学生种树72株,男生每人种3棵树,女生每人种2棵树棵树..设e 男生有人,则( ) A. A. 2x+32x+32x+3((72-x 72-x))=30 =30 B. B. 3x+23x+23x+2((72-x 72-x))=30 =30 C. C. 2x+32x+32x+3((30-x 30-x))=72 =72 D. D. 3x+23x+23x+2((30-x 30-x))=72 【答案】 D【考点】一元一次方程的其他应用一元一次方程的其他应用 【解析】【解答】解:依题可得,【解答】解:依题可得, 3x+23x+2((30-x 30-x))=72. 故答案为:故答案为:D. D.【分析】男生种树棵数【分析】男生种树棵数++女生种树棵数女生种树棵数=72=72=72,依此列出一元一次方程即可,依此列出一元一次方程即可,依此列出一元一次方程即可. .5.5.点点同学对数据点点同学对数据2626,,3636,,3636,,4646,5■,,5■,,5■,5252进行统计分析,发现其中一个两位数的个位数字被墨水涂污看不到了,则计算结果与被涂污数字无关的是(到了,则计算结果与被涂污数字无关的是() A. A. 平均数平均数平均数 B. B. 中位中位数 C. C. 方方差 D. D. 标准差标准差标准差 【答案】 B【考点】中位数中位数【解析】【解答】解:依题可得,【解答】解:依题可得, 这组数据的中位数为:这组数据的中位数为:=41=41,,∴计算结果与被涂污数字无关的是中位数∴计算结果与被涂污数字无关的是中位数. . 故答案为:故答案为:B. B.【分析】中位数:将一组数据从小到大或从大到小排列,如果是奇数个数,则处于中间的那个数即为中位数;若是偶数个数,则中间两个数的平均数即为中位数;依此可得答案若是偶数个数,则中间两个数的平均数即为中位数;依此可得答案. .6.6.如图,在△如图,在△如图,在△ABC ABC 中,点D ,E 分别在AB 和AC 边上,边上,DE DE DE∥∥BC BC,,M 为BC 边上一点(不与点B 、C 重合),连接AM 交DE 于点N ,则(,则()A.B. C.D.【答案】 C【考点】平行线分线段成比例平行线分线段成比例 【解析】【解答】解:【解答】解:A.A.A.∵∵DE DE∥∥BC BC,, ∴ , , ∴ , ,∵ ≠ , ∴≠,故错误,故错误,A A 不符合题意;不符合题意; B.B.∵∵DE DE∥∥BC BC,, ∴ , , ∴ , ,∵≠,∴ ≠ ,故错误,故错误,B B 不符合题意;不符合题意; C.C.∵∵DE DE∥∥BC BC,, ∴ , ,∴=,故正确,故正确,C C 符合题意;符合题意; D.D.∵∵DE DE∥∥BC BC,,∴ , ,∴ = , 即=,故错误,故错误,D D 不符合题意;不符合题意; 故答案为:故答案为:C. C.【分析】根据平行线截线段成比例逐一分析即可判断对错,从而可得答案【分析】根据平行线截线段成比例逐一分析即可判断对错,从而可得答案. .7.7.在△在△在△ABC ABC 中,若一个内角等于另两个内角的差,则(中,若一个内角等于另两个内角的差,则( ) A. A. 必有一个内角等于必有一个内角等于30°30° B. B. 必有一个内角等于45°45° C. C. 必有一个内角等于必有一个内角等于60°60° D. D. 必有一个内角等于90°90° 【答案】 D【考点】三角形内角和定理三角形内角和定理 【解析】【解答】解:设△【解答】解:设△ABC ABC 的三个内角分别为A 、B 、C ,依题可得,,依题可得, A=B-C ①,①,又∵A+B+C=180°②,又∵A+B+C=180°②, ②-①得:①得: 2B=180°,2B=180°, ∴B=90°,∴B=90°,∴△∴△ABC ABC 必有一个内角等于90°.90°. 故答案为:故答案为:D. D.【分析】根据题意列出等式A=B-C A=B-C①,再由三角形内角和定理得①,再由三角形内角和定理得A+B+C=180°②,由②A+B+C=180°②,由②--①可得B=90°,B=90°,由此即由此即可得出答案可得出答案. .8.8.已知一次函数已知一次函数y 1=ax+b 和y 2=bx+a =bx+a(a≠b),函数(a≠b),函数y 1和y 2的图象可能是(的图象可能是()A ABC B CD 【答案】 A【考点】一次函数图象、性质与系数的关系一次函数图象、性质与系数的关系【解析】【解答】解:【解答】解:A.A.A.∵∵y 1=ax+b 图像过一、二、三象限,图像过一、二、三象限, ∴a >0,b >0,又∵又∵y y 2=bx+a 图像过一、二、三象限,图像过一、二、三象限, ∴b >0,a 0,a>>0, 故正确,故正确,A A 符合题意;符合题意;B.B.∵∵y 1=ax+b 图像过一、二、三象限,图像过一、二、三象限, ∴a >0,b >0,又∵又∵y y 2=bx+a 图像过一、二、四象限,图像过一、二、四象限, ∴b <0,a 0,a>>0,故矛盾,故矛盾,B B 不符合题意;不符合题意;C.C.∵∵y 1=ax+b 图像过一、二、四象限,图像过一、二、四象限, ∴a <0,b >0,又∵又∵y y 2=bx+a 图像过一、二、四象限,图像过一、二、四象限,∴b <0,a 0,a>>0, 故矛盾,故矛盾,C C 不符合题意;不符合题意;D.D.∵∵y 1=ax+b 图像过二、三、四象限,图像过二、三、四象限, ∴a <0,b <0,又∵又∵y y 2=bx+a 图像过一、三、四象限,图像过一、三、四象限, ∴b >0,a 0,a<<0,故矛盾,故矛盾,D D 不符合题意;不符合题意; 故答案为:故答案为:A. A.【分析】根据一次函数图像与系数的关系:【分析】根据一次函数图像与系数的关系:k k >0,b >0时,图像经过一、二、三象限;时,图像经过一、二、三象限;k k >0,b <0时,图像经过一、三、四象限;经过一、三、四象限;k k <0,b <0时,图像经过二、三、四象限;时,图像经过二、三、四象限;k k >0,b >0时,图像经过一、二、四象限;依此逐一分析即可得出答案依此逐一分析即可得出答案. .9.9.如图,如图,一块矩形木板ABCD 斜靠在墙边(OC OC⊥⊥OB OB,,点A ,B ,C ,D ,O 在同一平面内).已知AB=a AB=a,,AD=b AD=b,,∠BCO=x BCO=x,,则点A 到OC 的距离等于(的距离等于()A. A. asinx+bsinx asinx+bsinx asinx+bsinxB. B. acosx+bcosx acosx+bcosx acosx+bcosxC. C. asinx+bcosx. asinx+bcosx. asinx+bcosx.D. D. acosx+bsinx acosx+bsinx 【答案】 D【考点】解直角三角形的应用解直角三角形的应用【解析】【解答】解:作AG AG⊥⊥OC 交OC 于点G ,交BC 于点H ,如图,,如图,∵四边形ABCD 为矩形,为矩形,AD=b AD=b AD=b,, ∴∠ABH=90°,∴∠ABH=90°,AD=BC=b AD=BC=b AD=BC=b,, ∵OB OB⊥⊥OC OC,, ∴∠O=90°,∴∠O=90°,又∵∠又∵∠HCG+HCG+HCG+∠GHC=90°,∠∠GHC=90°,∠∠GHC=90°,∠AHB+AHB+AHB+∠BAH=90°,∠∠BAH=90°,∠∠BAH=90°,∠GHC=GHC=GHC=∠∠AHB AHB,∠,∠,∠BC0=x BC0=x BC0=x,, ∴∠∴∠HCG=HCG=HCG=∠∠BAH=x BAH=x,, 在Rt Rt△△ABH 中,中, ∵cos cos∠∠BAH=cosx= ,AB=a AB=a,,∴AH=,∵tan tan∠∠BAH=tanx= , ∴BH=a·tanx,∴BH=a·tanx,∴CH=BC-BH=b-CH=BC-BH=b-a·tanx,a·tanx,a·tanx, 在Rt Rt△△CGH 中,中,∵sin sin∠∠HCG=sinx= ,∴GH=GH=((b-b-a·tanx)·sinx=bsinx a·tanx)·sinx=bsinx a·tanx)·sinx=bsinx-atanxsinx -atanxsinx -atanxsinx,, ∴AG=AH+HG= +bsinx-atanxsinx +bsinx-atanxsinx,,=+bsinx-,=bsinx+acosx. 故答案为:故答案为:D. D.【分析】作AG AG⊥⊥OC 交OC 于点G ,交BC 于点H ,由矩形性质得∠ABH=90°,,由矩形性质得∠ABH=90°,AD=BC=b AD=BC=b AD=BC=b,根据等角的余角相等得,根据等角的余角相等得∠HCG=HCG=∠∠BAH=x BAH=x,在,在Rt Rt△△ABH 中,根据锐角三角函数余弦定义cosx= 得AH= ,根据锐角三角函数正切定义tanx=得BH=a·tanx,从而可得CH 长,在Rt Rt△△CGH 中,根据锐角三角函数正弦定义sinx= 得GH=bsinx-atanxsinx GH=bsinx-atanxsinx,由,由AG=AH+HG 计算即可得出答案计算即可得出答案. .10.10.在平面直角坐标系中,在平面直角坐标系中,已知a≠b,设函数y=(x+a x+a))(x+b x+b))的图象与x 轴有M 个交点,函数y=(ax+1ax+1))(bx+1bx+1))的图象与x 轴有N 个交点,则(个交点,则() A. A. M=N-1M=N-1或M=N+1 M=N+1 B. B. M=N-1M=N-1或M=N+2 M=N+2 C. C. M=N M=N 或M=N+1 M=N+1 D. D. M=N M=N 或M=N-1 【答案】 C【考点】二次函数图象与坐标轴的交点问题二次函数图象与坐标轴的交点问题 【解析】【解答】解:∵【解答】解:∵y=y=y=((x+a x+a)()()(x+b x+b x+b),),),∴函数图像与x 轴交点坐标为轴交点坐标为 :(:(-a -a -a,,0),(),(-b -b -b,,0),), 又∵又∵y=y=y=((ax+1ax+1)()()(bx+1bx+1bx+1),),),∴函数图像与x 轴交点坐标为轴交点坐标为 :(:(- - ,0),(),(- - ,0),), ∵a≠b,∵a≠b, ∴M=N M=N,或,或M=N+1. 故答案为:故答案为:C. C.【分析】根据函数解析式分别得出图像与x 轴的交点坐标,根据题意a≠b 分等于0和不等于0的情况即可得出两个交点个数之间的关系式,从而得出答案出两个交点个数之间的关系式,从而得出答案. .二、填空题:本大题有6个小题,每小题4分,共24分, 11.11.因式分解:因式分解:因式分解:1-x 1-x 2=________. 【答案】 (1+x 1+x)()()(1-x 1-x 1-x)) 【考点】因式分解﹣运用公式法因式分解﹣运用公式法 【解析】【解答】解:∵原式【解答】解:∵原式==(1+x 1+x)()()(1-x 1-x 1-x)).故答案为:(故答案为:(1+x 1+x 1+x)()()(1-x 1-x 1-x)).【分析】根据因式分解的方法——公式法因式分解即可得出答案【分析】根据因式分解的方法——公式法因式分解即可得出答案. . 12.12.某计算机程序第一次算得某计算机程序第一次算得m 个数据的平均数为x ,第二次算得另外n 个数据的平均数为y ,则这m+n 个数据的平均数等于的平均数等于________________________。

2019浙江杭州_中考_数学_试题卷及答案共6页word资料

2019浙江杭州_中考_数学_试题卷及答案共6页word资料

2019年杭州市各类高中招生文化考试数学参考答案一、选择题 题号 12 3 4 5 6 7 8 9 10 答案ABDBDDACCC选择题解析 1、A 2、B解析:如图624cm cm cm ∴-=,则两圆关系为内含3、D4、B解析:如图:4180A A ∠+∠=o Q ,36C A ∴∠=∠=o5、D解析:2363:()A p q p q -=-,232:(12)(6)2B a b c ab abc ÷=,223:3(31)31m C m m m ÷-=-6、D7、A 解析:2213272803m ⨯===>,A 中2536m <<,B 中1625m <<,C 和D 直接排除8、C解析:如图因为在RT ABO ∆中,//OC BA ,36AOC ∠=o,所以36BAO ∠=o,54OBA ∠=o如图做BE OC ⊥,sin sin36BO BAO AB AB=∠⋅=⋅o ,而sin sin 54BE BOE OB OB =∠⋅=⋅o ,而1AB =,sin36sin54BE ∴=o o ,即点A 到OC 的距离。

9、C解析:如图由所给的抛物线解析式可得A ,C 为定值(1,0)A -,(0,3)C -则10AC =,而3(,0)B k , ⑴ 0k >,则可得① AC BC =,则有223()310k +=,可得3k =② AC AB =,则有3110k +=,可得3101k =-, ③ AB BC =,则有23319()k k +=+,可得34k =⑵ 0k <,B 只能在A 的左侧④ 只有AC AB =,则有3110k --=,可得3101k =-+10、C解析:对方程组进行化简可得211x a y a =+⎧⎨=-⎩①31a -≤≤Q ,5213a ∴-≤+≤,仅从x 的取值范围可得知①错误②当2a =-时,33x y =-⎧⎨=⎩,则,x y 的值互为相反数,则②正确③当1a =时,30x y =⎧⎨=⎩,而方程43x y a +=-=,则,x y 也是此方程的解,则③正确⑤ 1x ≤,则211a +≤,则0a ≤,而题中所给31a -≤≤,则30a -≤≤,114a ≤-≤ 则14y ≤≤,选项④正确二、填空题11、2,1; 12、43m +,1; 13、6.56; 14、232b -≤≤; 15、15,1或9; 16、(1,1),(2,3),(0,2),(2,2)-----填空题解析 11、(1)2,(2)112、(1)43m +,(2)1解析:原代数式=(4)(4)43(4)3m m m m +-+=-,代入1m =-得原式=113、6.56解析:设年利率为%x ,由题可得不等式1000(1%)1065.6x +≥,解得 6.56x ≥ 解析:因为0a > 则0a >,而要使得不等式的值小于0,则只有30a -<,所以可得03a <<,可得2322a -<-<,则232b -≤≤14、 (1)15,(2)1或9解析:由题意可知, V Sh =,代入可易得下底面积为215cm而2200cm 为总的侧面积,则每一条底边所在的侧面积为250cm ,因为高为10cm ,所以菱形底边长为5cm ,而底面积为215cm ,所以高3AE cm =① 如图,E 在菱形内部EC BC BE =-,222594BE AB BE =-=-=,所以1EC =② 如图,E 在菱形外部EC BC BE =+,9EC =解析:如图三、解答题17、解:原式=2222232()()2228m m m m m m m m m m m -++---=-⨯⋅=-观察38m -,则原式表示一个能被8整除的数18、 解:k 只能-1,当1k =,函数为44y x =-+,是一次函数,一次函数无最值, 当2k =,函数为243y x x =-+,为二次函数,而此函数开口向上, 则无最大值当1k =-,函数为2246y x x =--+,为二次函数,此函数开口向下,有最大值,变形为22(1)8y x =-++,则当1x =-时,max 8y =19、解:(1)作图略(2)如图作外接圆由题可得,222(3)(4)(5)a a a +=, 222AB BC AC ∴+=,则ABC ∆为直角三角形,而=90ABC ∠o ,则AC 为外接圆的直径2=62ABC AB BC S a ∆⋅=,而2225=()24AC S aππ=圆 20、解:(1)第三边长为6,(212<<边长中,任意整数边长即可);(2)设第三边长为L ,由三角形的性质可得7575L -<<+,即212L <<,而组中最多有n 个三角形 =34567891011L ∴,,,,,,,,,则=9n ;(3)在这组三角形个数最多时,即=9n ,而要使三角形周长为偶数,且两条定边的和为12, 则第三边也必须为偶数, 则=46810L ,,,21、解:(1)在梯形ABCD 中,AD//BC ,AB CD =,而在正ABE ∆和正DCF ∆中,AB AE =,DC DF =且60BAE CDF ∠=∠=oAE DF ∴=且EAD FDA ∠=∠且AD 公共(2)如图作BH AD ⊥,CK AD ⊥,则有BC HK =同理22CD CK KD ==而234AEB DCF S S a ∆∆==而由题得AEB DCF S S S ∆∆+=梯22、解:(1)当2k =-时,(1,2)A -A Q 在反比例函数图像上∴设反比例函数为ky x =, 代入A 点坐标可得2k =-(2)要使得反比例函数与二次函数都是y 随着x 的增大而增大, 而对于二次函数2y kx kx k =+-,其对称轴为12x =-,要使二次函数满足上述条件,在0k <的情况下, 则x 必须在对称轴的左边,即12x <-时,才能使得y 随着x 的增大而增大∴ 综上所述,则0k <,且12x <-(3)由(2)可得15(,)24Q k --ABQ ∆Q 是以AB 为斜边的直角三角形A Q 点与B 点关于原点对称,所以原点O 平分AB 又Q 直角三角形中斜边上的中线是斜边的一半 作AD OC ⊥,QC OC ⊥ 而2221OA AD OD k =+=+则233k =,或233k =- 23、解:(1)OB AT ⊥Q ,且AE CE ⊥Q∴在CAE ∆和COB ∆中,90AEC CBO ∠=∠=o(图为一种可能的情况)而BCO ACE ∠=∠(2)33AE =Q ,30A ∠=o连结OM在MOB ∆中,OM R =,222MNMB ==, 而在COB ∆中,332BO BC OC == 又OC EC OM R +==Q 整理得2181150R R +-=23R ∴=-(不符合题意,舍去),或5R = 则5R =(3)在EF 同一侧,COB ∆经过平移、旋转和相似变换(无轴对称变换)后这样的三角形有3个,如图, 顶点在圆上的三角形如图所示,连结FO 过圆心交O e 于D ,连结DE 5EF =Q ,直径10FD =,可得30FDE ∠=o53ED ∴=,则510531553EFD C ∆=++=+ 由(2)可得33COB C ∆=+,1553533EFD OBC C C ∆∆+∴==+ (此问也可以通过相似比得出答案)。

2019年浙江杭州中考数学试卷(含解析)

2019年浙江杭州中考数学试卷(含解析)

2019年浙江省杭州市初中毕业、升学考试数学一、选择题:本大题有10个小题,每小题3分,共30分.在每小题綸出的四个迭项中,只有一项是符合题目要求的.1.(2019浙江省杭州市,1,3分)计算下列各式,值最小的是【】A.2×0+1-9 B.2+0×1-9 C.2+0-1×9 D.2+0+1-9【答案】A【解析】有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.A.2×0+1-9=-8,B.2+0×1-9=-7,C.2+0-1×9=-7,D.2+0+1-9=-6,故选:A.【知识点】有理数的混合运算2.(2019浙江省杭州市,2,3分)在平面直角坐标系中,点A(m,2)与点B(3,n)关于y轴对称,则【】A.m=3,n=2B.m=-3,n=2C.m=2,n=3D.m=-2,n=3【答案】B【解析】A,B关于y轴对称,则横坐标互为相反数,纵坐标相同,故选:B.【知识点】直角坐标系内点的坐标特征3.(2019浙江省杭州市,3,3分)如图,P为⊙O外一点,PA、PB分别切⊙O于A、B两点,若PA=3,则PB=【】A.2 B.3 C.4 D.5【答案】B【解析】因为P A和PB与⊙O相切,根据切线长定理,可知:P A=PB=3,故选:B.【知识点】切线长定理4.(2019浙江省杭州市,4,3分)已知九年级某班30位学生种树72棵,男生每人种3棵树,女生每人种2棵树.设男生有x人,则【】A.2x+3(72-x)=30 B.3x+2(72-x)=30 C.2x+3(30-x)=72 D.3x+2(30-x)=72【答案】D【解析】设男生有x人,则女生(30-x)人,根据题意可得:3x+2(30-x)=72.故选:D.【知识点】一次方程(组)及应用模型思想应用意识5.(2019浙江省杭州市,5,3分)点点同学对数据26,36,36,46,5█,52进行统计分析.发现其中一个两位数的个位数字被墨水涂污看不到了,则计算结果与被涂污数字无关的是【】A.平均数 B.中位数 C.方差 D.标准差【答案】B【解析】这组数据的平均数、方差和标准差都与第4个数有关,而这组数据的中位数为46,与第4个数无关.故选:B.【知识点】统计的应用6.(2019浙江省杭州市,6,3分)如图,在△ABC中,点D,E分别在AB和AC边上,DE∥BC,M为BC边上一点(不与点B,C重合)连接AM交DE干点N,则【】A.AD ANAN AE= B.BD MNMN CE= C.DN NEBM MC= D.DN NEMC BM=N E A B C D M【答案】C【解析】根据DE ∥BC ,可得△ADN ∽△ABM 与△ANE ∽△AMC ,再应用相似三角形的性质可得结论.∵DN ∥BM ,∴△ADN ∽△ABM ,∴DN AN BM AM =,∵NE ∥MC ,∴△ANE ∽△AMC ,∴NE AN MC AM =,∴DN NE BM MC=.故选:C . 【知识点】相似三角形的判定与性质7.(2019浙江省杭州市,7,3分)在△ABC 中,若一个内角等于另两个内角的差,则 【 】A.必有一个内角等干30°B.必有一个内角等于45°C.必有一个内角等于60°D.必有一个内角等于90°【答案】D【解析】∵∠A+∠B+∠C=180°,∠A=∠C-∠B ,∴2∠C=180°,∴∠C=90°,∴△ABC 是直角三角形,故选:D .【知识点】三角形内角和定理8.(2019浙江省杭州市,8,3分)已知一次函数y 1=ax +b 和y 2=bx +a (a ≠b ),函数y 1和y 2的图象可能是【 】xy 1O x y 1O x y 1O xy1OA B C D【答案】A【解析】根据直线①判断出a 、b 的符号,然后根据a 、b 的符号判断出直线②经过的象限即可,做出判断.A 、由①可知:a >0,b >0,∴直线②经过一、二、三象限,故A 正确;B 、由①可知:a <0,b >0,∴直线②经过一、二、三象限,故B 错误;C 、由①可知:a <0,b >0,∴直线②经过一、二、四象限,交点不对,故C 错误;D 、由①可知:a <0,b <0,∴直线②经过二、三、四象限,故D 错误.故选:A .【知识点】一次函数的图象和性质9. (2019浙江省杭州市,9,3分)如图,一块矩形木板ABCD 斜靠在墙边(OC ⊥OB ,点A ,B ,C ,D ,O 在同一平面内),已知AB=a ,AD=b ,∠BCO=x ,则点A 到OC 的距离等于【 】A .asinx+bsinxB .acosx+bcosxC .asinx+bcosxD .acosx+bsinx【答案】D【解析】作AE ⊥OC 于点E ,作AF ⊥OB 于点F ,∵四边形ABCD 是矩形,∴∠ABC=90°,∵∠ABC=∠AEC ,∠BCO=x ,∴∠EAB=x ,∴∠FBA=x ,∵AB=a ,AD=b ,∴FO=FB+BO=a •cosx+b •sinx ,故选:D .【知识点】三角函数 矩形的性质10.(2019浙江省杭州市,10,3分)在平面直角坐标系中,已知a ≠b ,设函数y=(x+a )(x+b )的图象与x 轴有M 个交点,函数y=(ax+1)(bx+1)的图象与x 轴有N 个交点,则 【 】 A .M=N-1或M=N+1 B .M=n-1或M=N+2 C .M=N 或M=N+1 D .M=N 或M=N-1【答案】A 【解析】先把两个函数化成一般形式,若为二次函数,再计算根的判别式,从而确定图象与x 轴的交点个数,若一次函数,则与x 轴只有一个交点,据此解答.∵y=(x+a )(x+b )=x 2+(a+b )x+1,∴(a+b )2-4ab=(a-b )2>0,∴函数y=(x+a )(x+b )的图象与x 轴有2个交点,∴M=2,∵函数y=(ax+1)(bx+1)=abx 2+(a+b )x+1,∴当ab ≠0时,(a+b )2-4ab=(a-b )2>0,函数y=(ax+1)(bx+1)的图象与x 轴有2个交点,即N=2,此时M=N ;当ab=0时,不妨令a=0,∵a ≠b ,∴b ≠0,函数y=(ax+1)(bx+1)=bx+1为一次函数,与x 轴有一个交点,即N=1,此时M=N+1;综上可知,M=N 或M=N+1.故选:C .【知识点】二次函数图象及其性质 抛物线与x 轴的交点二、填空题:本大题有6个小题,每小题4分,共24分。

【中考真题】2019年浙江省杭州市中考数学真题试卷(附答案)

【中考真题】2019年浙江省杭州市中考数学真题试卷(附答案)
绝密★启用前
2019年浙江省杭州市中考数学真题试卷(附答案)
注意事项:
1.答题前填写好自己的姓名、班级、考号等信息
2.请将答案正确填写在答题卡上
第I卷(选择题)
一、单选题
1.计算下列各式,值最小的是( )
A. B. C. D.
2.在平面直角坐标系中,点 与点 关于y轴对称,则( )
A. , B. , C. , D. ,
② ,交点为 ,此时
③ ,交点为 ,此时
综上所述, 或
故选C.
【点睛】
本题考查二次函数与坐标轴的交点,解题的关键是分情况讨论a,b.
10.(1+x)(1-x)
【解析】
【分析】
根据平方差公式即可得到答案.
【详解】
对 用平方差公式,得
【点睛】
本题考查因式分解,解题的关键是熟练掌握因式分解的方法.
11. .
【解析】
【分析】
根据加权平均数的基本求法,平均数等于总和除以个数,即可得到答案.
【详解】
平均数等于总和除以个数,所以平均数 .
【点睛】
本题考查求加权平均数,解题的关键是掌握加权平均数的基本求法.
12.113.
【解析】
【分析】
根据圆锥侧面积公式 ,代入题中数据,即可得到答案.
【详解】
根据题中数据,结合圆锥侧面积公式得:
【解析】
【分析】
(1)根据统计表中的信息即可得出答案;
(2)①先求出甲、乙的平均数,即可得出 与 之间的等量关系;
②先计算 、 ,再对 与 的大小进行比较.
【详解】
(1)补全折线统计图,如图所示.
(2)① .
② ,理由如下:
因为

浙江杭州2019中考试题数学卷(解析版)

浙江杭州2019中考试题数学卷(解析版)

一、选择题1. =( )A .2B .3C .4D .5 【答案】B【解析】试题分析:算术平方根的概念:一般地,如果一个正数x 的平方等于a ,即x 2=a ,那么这个正数x 叫做a 的算术平方根.依此即可求解考点:算术平方根2.如图,已知直线a ∥b ∥c ,直线m 交直线a ,b ,c 于点A ,B ,C ,直线n 交直线a ,b ,c 于点D ,E ,F ,若21 BC AB ,则EFDE =( )A .B .C .32 D .1 【答案】B考点:平行线分线段成比例3.下列选项中,如图所示的圆柱的三视图画法正确的是( )A .B .C .D .【答案】A【解析】试题分析:根据从正面看到的图叫做主视图,从左面看到的图叫做左视图,从上面看到的图叫做俯视图,可得答案.该圆柱体的主视图、俯视图均为矩形,左视图为圆,考点:简单几何体的三视图4.如图是某市2016年四月每日的最低气温(℃)的统计图,则在四月份每日的最低气温这组数据中,中位数和众数分别是()A .14℃,14℃B .15℃,15℃C .14℃,15℃D .15℃,14℃【答案】A【解析】考点:(1)、众数;(2)、条形统计图;(3)、中位数5.下列各式变形中,正确的是( )A .x 2•x 3=x 6B .=|x| C .(x 2﹣)÷x=x ﹣1 D .x 2﹣x+1=(x ﹣)2+41 【答案】B【解析】试题分析:直接利用二次根式的性质以及同底数幂的乘法运算法则和分式的混合运算法则分别化简求出答案.A 、x 2•x 3=x 5,故此选项错误;B 、=|x|,正确;C 、(x 2﹣)÷x=x ﹣,故此选项错误;D 、x 2﹣x+1=(x ﹣)2+,故此选项错误;考点:(1)、二次根式的性质与化简;(2)、同底数幂的乘法;(3)、多项式乘多项式;(4)、分式的混合运算6.已知甲煤场有煤518吨,乙煤场有煤106吨,为了使甲煤场存煤是乙煤场的2倍,需要从甲煤场运煤到乙煤场,设从甲煤场运煤x 吨到乙煤场,则可列方程为( )A .518=2B .518﹣x=2×106C .518﹣x=2D .518+x=2 【答案】C【解析】试题分析:设从甲煤场运煤x 吨到乙煤场,根据题意列出方程解答即可.设从甲煤场运煤x 吨到乙煤场,可得:518﹣x=2,考点:由实际问题抽象出一元一次方程7.设函数y=x k(k ≠0,x >0)的图象如图所示,若z=y1,则z 关于x 的函数图象可能为( )A.B.C.D.【答案】D【解析】考点:反比例函数的图象8.如图,已知AC是⊙O的直径,点B在圆周上(不与A、C重合),点D在AC的延长线上,连接BD交⊙O于点E,若∠AOB=3∠ADB,则()A.DE=EB B.2DE=EB C.3DE=DO D.DE=OB【答案】D【解析】考点:圆周角定理9.已知直角三角形纸片的两条直角边长分别为m和n(m<n),过锐角顶点把该纸片剪成两个三角形,若这两个三角形都为等腰三角形,则()A.m2+2mn+n2=0 B.m2﹣2mn+n2=0 C.m2+2mn﹣n2=0 D.m2﹣2mn﹣n2=0【答案】C【解析】试题分析:如图,根据等腰三角形的性质和勾股定理可得m2+m2=(n﹣m)2,整理即可求解m2+m2=(n﹣m)2, 2m2=n2﹣2mn+m2, m2+2mn﹣n2=0.考点:(1)、等腰直角三角形;(2)、等腰三角形的性质10.设a,b是实数,定义@的一种运算如下:a@b=(a+b)2﹣(a﹣b)2,则下列结论:①若a@b=0,则a=0或b=0②a@(b+c)=a@b+a@c③不存在实数a,b,满足a@b=a2+5b2④设a,b是矩形的长和宽,若矩形的周长固定,则当a=b时,a@b最大.其中正确的是()A.②③④B.①③④C.①②④D.①②③【答案】C【解析】试题分析:根据新定义可以计算出啊各个小题中的结论是否成立,从而可以判断各个小题中的说法是否正确,从而可以得到哪个选项是正确的.考点:(1)、因式分解的应用;(2)、整式的混合运算;(3)、二次函数的最值二、填空题(每题4分)11.tan60°= .【答案】【解析】试题分析:根据特殊角的三角函数值直接得出答案即可考点:特殊角的三角函数值12.已知一包糖果共有5种颜色(糖果只有颜色差别),如图是这包糖果分布百分比的统计图,在这包糖果中任意取一粒,则取出糖果的颜色为绿色或棕色的概率是 .【答案】21 【解析】试题分析:先求出棕色所占的百分比,再根据概率公式列式计算即可得解.棕色所占的百分比为:1﹣20%﹣15%﹣30%﹣15%=1﹣80%=20%, 所以,P (绿色或棕色)=30%+20%=50%=21. 考点: (1)、概率公式;(2)、扇形统计图13.若整式x 2+ky 2(k 为不等于零的常数)能在有理数范围内因式分解,则k 的值可以是 (写出一个即可).【答案】-1【解析】试题分析:令k=﹣1,使其能利用平方差公式分解即可.令k=﹣1,整式为x2﹣y2=(x+y)(x ﹣y),考点:因式分解-运用公式法14.在菱形ABCD中,∠A=30°,在同一平面内,以对角线BD为底边作顶角为120°的等腰三角形BDE,则∠EBC的度数为.【答案】105°或45°【解析】考点:(1)、菱形的性质;(2)、等腰三角形的性质15.在平面直角坐标系中,已知A(2,3),B(0,1),C(3,1),若线段AC与BD互相平分,则点D关于坐标原点的对称点的坐标为.【答案】(﹣5,﹣3)【解析】试题分析:直接利用平行四边形的性质得出D点坐标,进而利用关于原点对称点的性质得出答案.如图所示:∵A(2,3),B(0,1),C(3,1),线段AC与BD互相平分,∴D点坐标为:(5,3),∴点D关于坐标原点的对称点的坐标为:(﹣5,﹣3).考点:(1)、关于原点对称的点的坐标;(2)、平行四边形的判定与性质16.已知关于x 的方程=m 的解满足(0<n <3),若y >1,则m 的取值范围是 . 【答案】52<m <32 【解析】考点:(1)、分式方程的解;(2)、二元一次方程组的解;(3)、解一元一次不等式三、解答题17.计算6÷(﹣3121 ),方方同学的计算过程如下,原式=6÷(-21)+6÷31=﹣12+18=6.请你判断方方的计算过程是否正确,若不正确,请你写出正确的计算过程.【答案】-36【解析】试题分析:根据有理数的混合运算顺序,先算括号里面的,再根据除法法则进行计算即可 试题解析:方方的计算过程不正确,正确的计算过程是:原式=6÷(﹣21+)=6÷(﹣)=6×(﹣6)=﹣36. 考点:有理数的除法18.某汽车厂去年每个季度汽车销售数量(辆)占当季汽车产量(辆)百分比的统计图如图所示.根据统计图回答下列问题:(1)若第一季度的汽车销售量为2100辆,求该季的汽车产量;(2)圆圆同学说:“因为第二,第三这两个季度汽车销售数量占当季汽车产量是从75%降到50%,所以第二季度的汽车产量一定高于第三季度的汽车产量”,你觉得圆圆说的对吗?为什么?【答案】(1)、3000辆;(2)、说法不对,理由见解析【解析】考点:折线统计图19.如图,在△ABC中,点D,E分别在边AB,AC上,∠AED=∠B,射线AG分别交线段DE,BC于点F,G,且.(1)求证:△ADF∽△ACG;(2)若,求的值.【答案】(1)、证明过程见解析;(2)、1.【解析】考点:相似三角形的判定与性质20.把一个足球垂直水平地面向上踢,时间为t (秒)时该足球距离地面的高度h (米)适用公式h=20t ﹣5t 2(0≤t ≤4).(1)当t=3时,求足球距离地面的高度;(2)当足球距离地面的高度为10米时,求t ;(3)若存在实数t 1,t 2(t 1≠t 2)当t=t 1或t 2时,足球距离地面的高度都为m (米),求m 的取值范围.【答案】(1)、15米;(2)、t=2+2或t=2-2;(3)、0≤m <20【解析】试题分析:(1)、将t=3代入解析式可得;(2)、根据h=10可得关于t 的一元二次方程,解方程即可;(3)、由题意可得方程20t ﹣t 2=m 的两个不相等的实数根,由根的判别式即可得m 的范围.试题解析:(1)、当t=3时,h=20t ﹣5t 2=20×3﹣5×9=15(米),∴当t=3时,足球距离地面的高度为15米;(2)、∵h=10, ∴20t ﹣5t 2=10,即t 2﹣4t+2=0, 解得:t=2+2或t=2﹣2, 故经过2+2或2﹣2时,足球距离地面的高度为10米;(3)、∵m ≥0,由题意得t 1,t 2是方程20t ﹣5t 2=m 的两个不相等的实数根,∴b 2﹣4ac=202﹣20m >0, ∴m <20, 故m 的取值范围是0≤m <20.考点:(1)、一元二次方程的应用;(2)、二次函数的应用21.如图,已知四边形ABCD 和四边形DEFG 为正方形,点E 在线段DE 上,点A ,D ,G 在同一直线上,且AD=3,DE=1,连接AC ,CG , AE ,并延长AE 交CG 于点H .(1)求sin ∠EAC 的值.(2)求线段AH 的长.【答案】(1)、55;(2)、1056 【解析】考点:(1)、正方形的性质;(2)、全等三角形的判定与性质;(3)、解直角三角形22.已知函数y1=ax2+bx,y2=ax+b(ab≠0).在同一平面直角坐标系中.(1)若函数y1的图象过点(﹣1,0),函数y2的图象过点(1,2),求a,b的值.(2)若函数y2的图象经过y1的顶点.①求证:2a+b=0;②当1<x<时,比较y1,y2的大小.【答案】(1)、a=1,b=1;(2)、①、证明过程见解析;②、当a>0时,y1<y2;当a<0时,y1>y2.【解析】试题解析:(1)、由题意得:,解得:,故a=1,b=1.(2)、①、∵y1=ax2+bx=a,∴函数y1的顶点为(﹣,﹣),∵函数y2的图象经过y1的顶点,∴﹣=a(﹣)+b,即b=﹣,∵ab≠0,∴﹣b=2a,∴2a+b=0.②、∵b=﹣2a,∴y1=ax2﹣2ax=ax(x﹣2),y2=ax﹣2a,∴y1﹣y2=a(x﹣2)(x﹣1).∵1<x<,∴x﹣2<0,x﹣1>0,(x﹣2)(x﹣1)<0.当a>0时,a(x﹣2)(x﹣1)<0,y1<y2;当a<0时,a(x﹣1)(x﹣1)>0,y1>y2.考点:二次函数综合题23.在线段AB的同侧作射线AM和BN,若∠MAB与∠NBA的平分线分别交射线BN,AM于点E,F,AE和BF交于点P.如图,点点同学发现当射线AM,BN交于点C;且∠ACB=60°时,有以下两个结论:①∠APB=120°;②AF+BE=AB.那么,当AM∥BN时:(1)点点发现的结论还成立吗?若成立,请给予证明;若不成立,请求出∠APB的度数,写出AF,BE,AB长度之间的等量关系,并给予证明;(2)设点Q为线段AE上一点,QB=5,若AF+BE=16,四边形ABEF的面积为32,求AQ 的长.【答案】(1)、∠APB=90°,AF+BE=2AB;理由见解析;(2)、AQ=43﹣3或43+3【解析】(2)、如图1,过点F作FG⊥AB于G,∵AF=BE,AF∥BE,∴四边形ABEF是平行四边形,∵AF+BE=16,∴AB=AF=BE=8,∵323=8×FG,∴FG=43,在Rt△FAG中,AF=8,∴∠FAG=60°,当点G在线段AB上时,∠FAB=60°,当点G在线段BA延长线时,∠FAB=120°,①如图2,当∠FAB=60°时,∠PAB=30°,∴PB=4,PA=43,∵BQ=5,∠BPA=90°,∴PQ=3,∴AQ=43﹣3或AQ=43+3.考点:四边形综合题。

浙江省杭州市2019年中考真题数学试题(含解析)

浙江省杭州市2019年中考真题数学试题(含解析)

一、选择题:本大题有10个小题,每小题3分,共30分。

1.计算下列各式,值最小的是()A. 2×0+1-9B. 2+0×1-9C. 2+0-1×9D. 2+0+1-9【答案】 A【考点】有理数的加减乘除混合运算【解析】【解答】解:A.∵原式=0+1-9=-8,B.∵原式=2+0-9=-7,C.∵原式=2+0-9=-7,D.∵原式=2+1-9=-6,∵-8<-7<-6,∴值最小的是-8.故答案为:A.【分析】先分别计算出每个代数式的值,再比较大小,从而可得答案.2.在平面直角坐标系中,点A(m,2)与点B(3,n)关于y轴对称,则()A. m=3,n=2B. m=-3,n=2C. m=3,n=2 B.m=-2,n=3【答案】 B【考点】关于坐标轴对称的点的坐标特征【解析】【解答】解:∵A(m,2)与B(3,n)关于y轴对称,∴m=-3,n=2.故答案为:B.【分析】关于y轴对称的点的特征:横坐标互为相反数,纵坐标不变,依此即可得出答案.3.如图,P为⊙O外一点,PA,PB分别切⊙O于A,B两点,若PA=3,则PB=()A. 2B. 3C. 4D. 5【答案】 B【考点】切线长定理【解析】【解答】解:∵PA、PB分别为⊙O的切线,∴PA=PB,又∵PA=3,∴PB=3.故答案为:B.【分析】根据切线长定理可得PA=PB,结合题意可得答案.4.已知九年级某班30位学生种树72株,男生每人种3棵树,女生每人种2棵树.设e男生有人,则()A. 2x+3(72-x)=30B. 3x+2(72-x)=30C. 2x+3(30-x)=72 D. 3x+2(30-x)=72【答案】 D【考点】一元一次方程的其他应用【解析】【解答】解:依题可得,3x+2(30-x)=72.故答案为:D.【分析】男生种树棵数+女生种树棵数=72,依此列出一元一次方程即可.5.点点同学对数据26,36,36,46,5■,52进行统计分析,发现其中一个两位数的个位数字被墨水涂污看不到了,则计算结果与被涂污数字无关的是()A. 平均数B. 中位数 C. 方差 D. 标准差【答案】 B【考点】中位数【解析】【解答】解:依题可得,这组数据的中位数为:=41,∴计算结果与被涂污数字无关的是中位数.故答案为:B.【分析】中位数:将一组数据从小到大或从大到小排列,如果是奇数个数,则处于中间的那个数即为中位数;若是偶数个数,则中间两个数的平均数即为中位数;依此可得答案.6.如图,在△ABC中,点D,E分别在AB和AC边上,DE∥BC,M为BC边上一点(不与点B、C重合),连接AM交DE于点N,则()A. B. C.D.【答案】 C【考点】平行线分线段成比例【解析】【解答】解:A.∵DE∥BC,∴,,∴,,∵≠ ,∴≠ ,故错误,A不符合题意;B.∵DE∥BC,∴,,∴,,∵≠ ,∴≠ ,故错误,B不符合题意;C.∵DE∥BC,∴,,∴= ,故正确,C符合题意;D.∵DE∥BC,∴,,∴= ,即= ,故错误,D不符合题意;故答案为:C.【分析】根据平行线截线段成比例逐一分析即可判断对错,从而可得答案.7.在△ABC中,若一个内角等于另两个内角的差,则()A. 必有一个内角等于30°B.必有一个内角等于45°C. 必有一个内角等于60°D.必有一个内角等于90°【答案】 D【考点】三角形内角和定理【解析】【解答】解:设△ABC的三个内角分别为A、B、C,依题可得,A=B-C ①,又∵A+B+C=180°②,②-①得:2B=180°,∴B=90°,∴△ABC必有一个内角等于90°.故答案为:D.【分析】根据题意列出等式A=B-C①,再由三角形内角和定理得A+B+C=180°②,由②-①可得B=90°,由此即可得出答案.8.已知一次函数y1=ax+b和y2=bx+a(a≠b),函数y1和y2的图象可能是()A B C D【答案】 A【考点】一次函数图象、性质与系数的关系【解析】【解答】解:A.∵y1=ax+b图像过一、二、三象限,∴a>0,b>0,又∵y2=bx+a图像过一、二、三象限,∴b>0,a>0,故正确,A符合题意;B.∵y1=ax+b图像过一、二、三象限,∴a>0,b>0,又∵y2=bx+a图像过一、二、四象限,∴b<0,a>0,故矛盾,B不符合题意;C.∵y1=ax+b图像过一、二、四象限,∴a<0,b>0,又∵y2=bx+a图像过一、二、四象限,∴b<0,a>0,故矛盾,C不符合题意;D.∵y1=ax+b图像过二、三、四象限,∴a<0,b<0,又∵y2=bx+a图像过一、三、四象限,∴b>0,a<0,故矛盾,D不符合题意;故答案为:A.【分析】根据一次函数图像与系数的关系:k>0,b>0时,图像经过一、二、三象限;k>0,b<0时,图像经过一、三、四象限;k<0,b<0时,图像经过二、三、四象限;k>0,b>0时,图像经过一、二、四象限;依此逐一分析即可得出答案.9.如图,一块矩形木板ABCD斜靠在墙边(OC⊥OB,点A,B,C,D,O在同一平面内).已知AB=a,AD=b,∠BCO=x,则点A到OC的距离等于()A. asinx+bsinxB. acosx+bcosxC. asinx+bcosx.D. acosx+bsinx【答案】 D【考点】解直角三角形的应用【解析】【解答】解:作AG⊥OC交OC于点G,交BC于点H,如图,∵四边形ABCD为矩形,AD=b,∴∠ABH=90°,AD=BC=b,∵OB⊥OC,∴∠O=90°,又∵∠HCG+∠GHC=90°,∠AHB+∠BAH=90°,∠GHC=∠AHB,∠BC0=x,∴∠HCG=∠BAH=x,在Rt△ABH中,∵cos∠BAH=cosx= ,AB=a,∴AH= ,∵tan∠BAH=tanx= ,∴BH=a·tanx,∴CH=BC-BH=b-a·tanx,在Rt△CGH中,∵sin∠HCG=sinx= ,∴GH=(b-a·tanx)·sinx=bsinx-atanxsinx,∴AG=AH+HG= +bsinx-atanxsinx,= +bsinx- ,=bsinx+acosx.故答案为:D.【分析】作AG⊥OC交OC于点G,交BC于点H,由矩形性质得∠ABH=90°,AD=BC=b,根据等角的余角相等得∠HCG=∠BAH=x,在Rt△ABH中,根据锐角三角函数余弦定义cosx= 得AH= ,根据锐角三角函数正切定义tanx= 得BH=a·tanx,从而可得CH长,在Rt△CGH中,根据锐角三角函数正弦定义sinx= 得GH=bsinx-atanxsinx,由AG=AH+HG计算即可得出答案.10.在平面直角坐标系中,已知a≠b,设函数y=(x+a)(x+b)的图象与x轴有M个交点,函数y=(ax+1)(bx+1)的图象与x轴有N个交点,则()A. M=N-1或M=N+1B. M=N-1或M=N+2C. M=N或M=N+1 D. M=N或M=N-1【答案】 C【考点】二次函数图象与坐标轴的交点问题【解析】【解答】解:∵y=(x+a)(x+b),∴函数图像与x轴交点坐标为:(-a,0),(-b,0),又∵y=(ax+1)(bx+1),∴函数图像与x轴交点坐标为:(- ,0),(- ,0),∵a≠b,∴M=N,或M=N+1.故答案为:C.【分析】根据函数解析式分别得出图像与x轴的交点坐标,根据题意a≠b分等于0和不等于0的情况即可得出两个交点个数之间的关系式,从而得出答案.二、填空题:本大题有6个小题,每小题4分,共24分,11.因式分解:1-x2=________.【答案】(1+x)(1-x)【考点】因式分解﹣运用公式法【解析】【解答】解:∵原式=(1+x)(1-x).故答案为:(1+x)(1-x).【分析】根据因式分解的方法——公式法因式分解即可得出答案.12.某计算机程序第一次算得m个数据的平均数为x,第二次算得另外n个数据的平均数为y,则这m+n个数据的平均数等于________。

浙江省杭州市2019年中考数学真题试题(含解析)

浙江省杭州市2019年中考数学真题试题(含解析)

中考干货大提醒考前提前20分钟到场,稳定一下情绪!考试一定一定一定要放松,大考前深呼吸,做五组深呼吸,真的超级有用!可以让紧张感变淡好多!不用在意别人的想法,你只需要自己学好、把自己变得更优秀!!!不要太过于关注排名,它只能反映你目前的情况,不会决定你下一场考试的结果。

一定要有错题本!!一定!!!!注意知识点总结和归纳,形成网状知识结构!考前一个月每天每科一份卷子保持手感!浙江省杭州市2019年中考数学试卷一、选择题:本大题有10个小题,每小题3分,共30分。

1.计算下列各式,值最小的是()A. 2×0+1-9B. 2+0×1-9C. 2+0-1×9D. 2+0+1-9【答案】 A【考点】有理数的加减乘除混合运算【解析】【解答】解:A.∵原式=0+1-9=-8,B.∵原式=2+0-9=-7,C.∵原式=2+0-9=-7,D.∵原式=2+1-9=-6,∵-8<-7<-6,∴值最小的是-8.故答案为:A.【分析】先分别计算出每个代数式的值,再比较大小,从而可得答案.2.在平面直角坐标系中,点A(m,2)与点B(3,n)关于y轴对称,则()A. m=3,n=2B. m=-3,n=2 C. m=3,n=2 B.m=-2,n=3【答案】 B【考点】关于坐标轴对称的点的坐标特征【解析】【解答】解:∵A(m,2)与B(3,n)关于y轴对称,∴m=-3,n=2.故答案为:B.【分析】关于y轴对称的点的特征:横坐标互为相反数,纵坐标不变,依此即可得出答案.3.如图,P为⊙O外一点,PA,PB分别切⊙O于A,B两点,若PA=3,则PB=()A. 2B. 3C. 4D. 5【答案】 B【考点】切线长定理【解析】【解答】解:∵PA、PB分别为⊙O的切线,∴PA=PB,又∵PA=3,∴PB=3.故答案为:B.【分析】根据切线长定理可得PA=PB,结合题意可得答案.4.已知九年级某班30位学生种树72株,男生每人种3棵树,女生每人种2棵树.设e男生有人,则()A. 2x+3(72-x)=30B. 3x+2(72-x)=30C. 2x+3(30-x)=72 D. 3x+2(30-x)=72【答案】 D【考点】一元一次方程的其他应用【解析】【解答】解:依题可得,3x+2(30-x)=72.故答案为:D.【分析】男生种树棵数+女生种树棵数=72,依此列出一元一次方程即可.5.点点同学对数据26,36,36,46,5■,52进行统计分析,发现其中一个两位数的个位数字被墨水涂污看不到了,则计算结果与被涂污数字无关的是()A. 平均数B. 中位数C. 方差 D. 标准差【答案】 B【考点】中位数【解析】【解答】解:依题可得,这组数据的中位数为:=41,∴计算结果与被涂污数字无关的是中位数.故答案为:B.【分析】中位数:将一组数据从小到大或从大到小排列,如果是奇数个数,则处于中间的那个数即为中位数;若是偶数个数,则中间两个数的平均数即为中位数;依此可得答案.6.如图,在△ABC中,点D,E分别在AB和AC边上,DE∥BC,M为BC边上一点(不与点B、C重合),连接AM交DE于点N,则()A. B. C.D.【答案】 C【考点】平行线分线段成比例【解析】【解答】解:A.∵DE∥BC,∴,,∴,,∵≠ ,∴≠ ,故错误,A不符合题意;B.∵DE∥BC,∴,,∴,,∵≠ ,∴≠ ,故错误,B不符合题意;C.∵DE∥BC,∴,,∴= ,故正确,C符合题意;D.∵DE∥BC,∴,,∴= ,即= ,故错误,D不符合题意;故答案为:C.【分析】根据平行线截线段成比例逐一分析即可判断对错,从而可得答案.7.在△ABC中,若一个内角等于另两个内角的差,则()A. 必有一个内角等于30°B. 必有一个内角等于45°C. 必有一个内角等于60°D. 必有一个内角等于90°【答案】 D【考点】三角形内角和定理【解析】【解答】解:设△ABC的三个内角分别为A、B、C,依题可得,A=B-C ①,又∵A+B+C=180°②,②-①得:2B=180°,∴B=90°,∴△ABC必有一个内角等于90°.故答案为:D.【分析】根据题意列出等式A=B-C①,再由三角形内角和定理得A+B+C=180°②,由②-①可得B=90°,由此即可得出答案.8.已知一次函数y1=ax+b和y2=bx+a(a≠b),函数y1和y2的图象可能是()A B C D【答案】 A【考点】一次函数图象、性质与系数的关系【解析】【解答】解:A.∵y1=ax+b图像过一、二、三象限,∴a>0,b>0,又∵y2=bx+a图像过一、二、三象限,∴b>0,a>0,故正确,A符合题意;B.∵y1=ax+b图像过一、二、三象限,∴a>0,b>0,又∵y2=bx+a图像过一、二、四象限,∴b<0,a>0,故矛盾,B不符合题意;C.∵y1=ax+b图像过一、二、四象限,∴a<0,b>0,又∵y2=bx+a图像过一、二、四象限,∴b<0,a>0,故矛盾,C不符合题意;D.∵y1=ax+b图像过二、三、四象限,∴a<0,b<0,又∵y2=bx+a图像过一、三、四象限,∴b>0,a<0,故矛盾,D不符合题意;故答案为:A.【分析】根据一次函数图像与系数的关系:k>0,b>0时,图像经过一、二、三象限;k>0,b<0时,图像经过一、三、四象限;k<0,b<0时,图像经过二、三、四象限;k>0,b>0时,图像经过一、二、四象限;依此逐一分析即可得出答案.9.如图,一块矩形木板ABCD斜靠在墙边(OC⊥OB,点A,B,C,D,O在同一平面内).已知AB=a,AD=b,∠BCO=x,则点A到OC的距离等于()A. asinx+bsinxB. acosx+bcosxC. asinx+bcosx.D. acosx+bsin x【答案】 D【考点】解直角三角形的应用【解析】【解答】解:作AG⊥OC交OC于点G,交BC于点H,如图,∵四边形ABCD为矩形,AD=b,∴∠ABH=90°,AD=BC=b,∵OB⊥OC,∴∠O=90°,又∵∠HCG+∠GHC=90°,∠AHB+∠BAH=90°,∠GHC=∠AHB,∠BC0=x,∴∠HCG=∠BAH=x,在Rt△ABH中,∵cos∠BAH=cosx= ,AB=a,∴AH= ,∵tan∠BAH=tanx= ,∴BH=a·tanx,∴CH=BC-BH=b-a·ta nx,在Rt△CGH中,∵sin∠HCG=sinx= ,∴GH=(b-a·tanx)·sinx=bsinx-atanxsinx,∴AG=AH+HG= +bsinx-atanxsinx,= +bsinx- ,=bsinx+acosx.故答案为:D.【分析】作AG⊥OC交OC于点G,交BC于点H,由矩形性质得∠ABH=90°,AD=BC=b,根据等角的余角相等得∠HCG=∠BAH=x,在Rt△ABH中,根据锐角三角函数余弦定义cosx= 得AH= ,根据锐角三角函数正切定义tanx= 得BH=a·tanx,从而可得CH长,在Rt△CGH中,根据锐角三角函数正弦定义sinx= 得GH=bsinx-atanxsinx,由AG=AH+HG计算即可得出答案.10.在平面直角坐标系中,已知a≠b,设函数y=(x+a)(x+b)的图象与x轴有M个交点,函数y=(ax+1)(bx+1)的图象与x轴有N个交点,则()A. M=N-1或M=N+1B. M=N-1或M=N+2C. M=N或M=N+1 D. M=N或M=N-1【答案】 C【考点】二次函数图象与坐标轴的交点问题【解析】【解答】解:∵y=(x+a)(x+b),∴函数图像与x轴交点坐标为:(-a,0),(-b,0),又∵y=(ax+1)(bx+1),∴函数图像与x轴交点坐标为:(- ,0),(- ,0),∵a≠b,∴M=N,或M=N+1.故答案为:C.【分析】根据函数解析式分别得出图像与x轴的交点坐标,根据题意a≠b分等于0和不等于0的情况即可得出两个交点个数之间的关系式,从而得出答案.二、填空题:本大题有6个小题,每小题4分,共24分,11.因式分解:1-x2=________.【答案】(1+x)(1-x)【考点】因式分解﹣运用公式法【解析】【解答】解:∵原式=(1+x)(1-x).故答案为:(1+x)(1-x).【分析】根据因式分解的方法——公式法因式分解即可得出答案.12.某计算机程序第一次算得m个数据的平均数为x,第二次算得另外n个数据的平均数为y,则这m+n个数据的平均数等于________。

2019年浙江省杭州市中考数学试卷(附答案与解析)

2019年浙江省杭州市中考数学试卷(附答案与解析)

数学试卷 第1页(共14页) 数学试卷 第2页(共14页)绝密★启用前2019年浙江省杭州市中考试卷数 学试题卷一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1.计算下列各式,值最小的是( ) A .20+19⨯-B .2019+⨯-C .2019+-⨯D .2019++- 2.在平面直角坐标系中,点(),2A m 与点()3,b n 关于y 轴对称,则( )A .3m =,2n =B .3m =-,2n =C .2m =,3n =D .2m =-,3n =3.如图,P 为⊙O 外一点,PA 、PB 分别切⊙O 于A 、B 两点,若3PA =,则PB =( )A .2B .3C .4D .54.已知九年级某班30位同学种树72棵,男生每人种3棵,女生每人种2棵,设男生x 人,则( )A .()237230x x +-=B .()327230x x +-=C .()233072x x +-=D .()323072x x +-=5.点点同学对数据26,36,36,46,5■,52进行统计分析,发现其中一个两位数被墨水涂污看不到了,则计算结果与被涂污数字无关的是( )A .平均数B .中位数C .方差D .标准差6.如图,在ABC △中,D 、E 分别在AB 边和AC 边上,//DE BC ,M 为BC 边上一点(不与B 、C 重合),连结AM 交DE 于点N ,则( )A .AD AN AN AE =B .BD MN MN CE =C .DN NEBM MC=D .DN NE MC BM=7.在ABC △中,若一个内角等于另外两个角的差,则( )A .必有一个角等于30︒B .必有一个角等于45︒C .必有一个角等于60︒D .必有一个角等于90︒8.已知一次函数1y ax b =+和2y bx a =+()a b ≠,函数1y 和2y 的图象可能是 ( )ABCD9.如图,一块矩形木板ABCD 斜靠在墙边,(OC OB ⊥,点A 、B 、C 、D 、O 在同一平面内),已知AB a =,AD b =,BCO x ∠=.则点A 到OC 的距离等于 ( )A .sin sin a x b x +B .cos cos a x b x +C .sin cos a x b x +D .cos sin a x b x +10.在平面直角坐标系中,已知a b ≠,设函数()()y x a x b =++的图像与x 轴有M 个交点,函数()()11y ax bx =++的图像与x 轴有N 个交点,则( )A .1M N =-或1M N =+B .1M N =-或2M N =+C .M N =或1M N =+D .M N =或1M N =-二、填空题(本大题有6小题,每小题4分,共24分) 11.因式分解:21x -= .12.某计算机程序第一次算得m 个数据的平均数为x ,第二次算得另外n 个数据的平均PE N MD CBA毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共14页) 数学试卷 第4页(共14页)数为y ,则这m n +个数据的平均数等于 .13.如图,一个圆锥形冰激凌外壳(不计厚度).已知其母线长为12cm ,底面圆半径为3cm ,则这个冰激凌外壳的侧面积等于 2cm (计算结果精确到个位).14.在直角三角形ABC 中,若2AB AC =,则cos C = .15.某函数满足当自变量1x =时,函数值0y =;当自变量0x =时,函数值1y =,写出一个满足条件的函数表达式 .16.如图,把某矩形纸片ABCD 沿EF 、GH 折叠(点E 、H 在AD 边上,点F 、G 在BC 边上),使得点B 、点C 落在AD 边上同一点P 处,A 点的对称点为A '点,D 点的对称点为D '点,若90FPG ∠=︒,A EP '△的面积为4,D PH '△的面积为1,则矩形ABCD 的面积等于 .三、解答题(本大题有7个小题,共66分.解答应写出文字说明、证明过程或演算步骤) 17.(本题满分6分)化简:242142x x x ----圆圆的解答如下: ()()2224214224422x x x x x x x x--=-+----=-+ 圆圆的解答正确吗?如果不正确,写出正确的解答.18.(本题满分8分)称重五筐水果的质量,若每筐以50千克为基准,超过基准部分的千克数记为正数,不足基准部分的千克数记为负数,甲组为实际称重读数,乙组为记录数据,并把所得数据整理成如下统计表和未完成的统计图(单位:千克)(1)补充完整乙组数据的折线统计图;(2)①甲、乙两组数据的平均数分别为x 甲、x 乙,写出x 甲与x 乙之间的等量关系;②甲、乙两组数据的平均数分别为2S 甲、2S 乙,比较2S 甲与2S 乙的大小,并说明理由.19.(本题满分8分)如图,在ABC △中,AC AB BC <<.(1)已知线段AB 的垂直平分线与BC 边交于点P ,连结AP ,求证:2APC B ∠=∠; (2)以点B 为圆心,线段AB 的长为半径画弧,与BC 边交于点Q ,连结AQ ,若3AQC B ∠=∠,求B ∠的度数.第19题图D 1A 1GPFECDBAPCBAQABCH数学试卷 第5页(共14页) 数学试卷 第6页(共14页)20.(本题满分10分)方方驾驶小汽车匀速地从A 地行使到B 地,行驶里程为480千米,设小汽车的行使时间为t (单位:小时),行使速度为v (单位:千米/小时),且全程速度限定为不超过120千米/小时.(1)求v 关于t 的函数表达式;(2)方方上午8点驾驶小汽车从A 出发,①方方需在当天12点48分至14点(含12点48分和14点)间到达B 地,求小汽车行驶速度v 的范围.②方方能否在当天11点30分前到达B 地?说明理由.21.(本题满分10分)如图,已知正方形ABCD 的边长为1,正方形CEFG 的面积为1S ,点E 在CD 边上,点G 在BC 的延长线上,设以线段AD 和DE 为邻边的矩形的面积为2S ,且12S S =. (1)求线段CE 的长;(2)若点H 为BC 边的中点,连结HD ,求证:HD HG =.第21题图22.(本题满分12分)设二次函数()()12y x x x x =--(1x 、2x 是实数).(1)甲求得当0x =时,0y =;当1x =时,0y =,乙求得当12x =时,12y =-.若甲求得的结果都正确,你认为乙求得的结果正确吗?说明理由;(2)写出二次函数的对称轴,并求出该函数的最小值(用含1x 、2x 的代数式表示); (3)已知二次函数的图像经过()0,m ,()1,n 两点(m 、n 是实数),当1201x x <<<时,求证:1016mn <<.23.(本题满分12分)如图,已知锐角ABC △内接于⊙O ,OD BC ⊥于点D ,连结OA. (1)若60BAC ∠=︒,①求证:12OD OA =;②当1OA =时,求ABC △面积的最大值;(2)点E 在线段OA 上,OE OD =,连接DE ,设ABC m OED ∠=∠,ACB n OED ∠=∠(m 、n 是正数),若ABC ACB ∠<∠,求证:20m n -+=.第23题图GFE HDCBA-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------毕业学校_____________ 姓名________________ 考生号________________________________ _____________数学试卷 第7页(共14页) 数学试卷 第8页(共14页)2019年浙江省杭州市中考试卷数学答案解析1.【答案】A 【解析】8A =- 7B =- 7C =- 6D =-【考点】实数 2.【答案】B【解析】A ,B 关于y 轴对称,则横坐标互为相反数,纵坐标相同 【考点】直角坐标系 3.【答案】B【解析】因为P A 和PB 与⊙O 相切,所以P A =PB =3 【考点】圆与切线长 4.【答案】D【解析】设男生x 人,则女生有(30)x -人,由题意得:()323072x x +-= 【考点】一元一次方程 5.【答案】B【解析】这组数据中的中位数是41,与涂污数字无关 【考点】数据 6.【答案】C【解析】∵//DE BC ,∴ADN ABM △∽△,ANE AMC △∽△ ∴,DN AN AN NE DN NEBM AM AM MC BM MC==⇒=【考点】相似三角形 7.【答案】D【解析】设三角形的一个内角为x ,另一个角为y ,则三个角为(180)x y ︒--,则有三种情况:①(180)9090x y x y y x y =-︒--⇒=+=或 ②(180)9090y x x y x x y =---⇒=+=或③(180)9090x y x y x y --=-⇒==或 综上所述,必有一个角等于90° 【考点】三角形内角和8.【答案】A【解析】①当0,0a b >>,1y 、2y 的图象都经过一、二、三象限 ②当0,0a b <<,1y 、2y 的图象都经过二、三、四象限③当0,0a b ><,1y 的图象都经过一、三、四象限,2y 的图象都经过一、二、四象限 ④当0,0a b <>,1y 的图象都经过一、二、四象限,2y 的图象都经过一、三、四象限 满足题意的只有A 【考点】一次函数的图象 9.【答案】D【解析】过点A 作AE OB ⊥于点E , 因为四边形ABCD 是矩形,且AB a AD b =,= 所以90BC AD b ABC ∠︒==,= 所以ABE BCO x ∠∠== 因为sin OB x BC =,cos BEx AB= 所以sin OB b x =,cos BE a x =所以点A 到OC 的距离cos sin d BE OB a x b x =+=+ 【考点】三角函数、矩形的性质 10.【答案】C【解析】对于函数()()y x a x b =++,当0y =时,函数与x 轴两交点为0,a -()、0,b -(),∵a b ≠,所以有2个交点,故2M = 对于函数()()11y ax bx =++①0a b ≠≠,交点为11(,0),(,0)a b--,此时2N M N =⇒=②0,0a b =≠,交点为1(,0)b -,此时11N M N =⇒=+③0,0b a =≠,交点为1(,0)a-,此时11N M N =⇒=+数学试卷 第9页(共14页)数学试卷 第10页(共14页)综上所述,M N =或1M N =+ 【考点】二次函数与x 轴交点问题 11.【答案】(1)(1)x x +-【解析】二项用平方差公式,22211(1)(1)x x x x -=-=+- 【考点】因式分解 12.【答案】mx nym n++【解析】平均数等于总和除以个数,所以平均数mx nym n+=+【考点】数据统计 13.【答案】113【解析】3123636 3.14113.04113S rl πππ==⨯⨯==⨯=≈ 【考点】圆锥的侧面积 14. 【解析】如图所示,分两种情况讨论,AC 可以是直角边,也可以是斜边 ①当AC 是斜边,设AB x =,则2AC x =,由勾股定理可得:BC =,则cos BC C AC === ②当AC 是直角边,设AB x =,则2AC x =,由勾股定理可得:BC =,则cos 5AC C BC ====综上所述,cos C =【考点】解直角三角形15.【答案】1y x =-+或21y x =-+或1y x =-等 【解析】答案不唯一,可以是一次函数,也可以是二次函数 【考点】函数的解析式 16.【答案】10 【解析】∵'A E PF ∴''A EP D PH ∠=∠又∵'90A A ∠=∠=︒,'90D D ∠=∠=︒ ∴''A D ∠=∠ ∴''A EP D PH △~△又∵''AB CD AB A P CD D P ===,, ∴' 'A P D P = 设''A P D P x ==∵''41A EP D PH S S =△△:: ∴'2'2A E D P x == ∴2'112422A EP A E A P x x S x ''⨯⨯=⨯⨯===△ ∵0x > ∴2x =∴''2A P D P == ∴'2'4A E D P == ∴EP =∴1=2PH EP =∴112DH D H A P ''=== ∴415AD AE EP PH DH =+++=+=+ ∴2AB A P '==∴25)10ABCD S AB AD =⨯=⨯=矩形 【考点】矩形性质,折叠17.【答案】圆圆的解答不正确.正确解答如下:原式242(2)4(2)(2)(2)(2)(2)(2)x x x x x x x x x +-=--+-+-+-24(24)(4)(2)(2)x x x x x -+--=+-(2)(2)(2)x x x x --=+-2x数学试卷 第11页(共14页) 数学试卷 第12页(共14页)2x x =-+. 【考点】分式的加减运算18.【答案】(1)补全折线统计图,如图所示.(2)①50x x =+甲乙.②22S S =乙甲,理由如下:因为2222221[(2)(2)(3)(1)(4)]5S x x x x x =--+-+--+--+-乙乙乙乙乙乙222221[(4850)(5250)(4750)(4950)(5450)]5x x x x x =--+--+--+--+--乙乙乙乙乙 222221[(48)(52)(47)(49)(54)]5x x x x x =-+-+-+-+-甲甲甲甲甲 2S =甲, 所以22S S =乙甲.【考点】平均数和方差19.【答案】(1)证明:因为点P 在AB 的垂直平分线上, 所以PA PB =, 所以PAB B ∠=∠,所以2APC PAB B B ∠=∠+∠=∠. (2)根据题意,得BQ BA =, 所以BAQ BQA ∠=∠, 设B x ∠=,所以3AQC B BAQ x ∠=∠+∠=, 所以2BAQ BQA x ∠=∠=, 在ABQ △中,22180x x x ++=︒, 解得,,即36B ∠=︒.【考点】垂直平分线性质,三角形外角,内角的性质,等腰三角形性质,方程思想 20.【答案】(1)根据题意,得480vt =, 所以480v t=, 因为4800>,所以当120v ≤时,4t ≥, 所以480(4)v t t=≥ (2)①根据题意,得4.86t ≤≤, 因为4800>, 所以4804806 4.8v ≤≤, 所以80100v ≤≤②方方不能在11点30分前到达B 地.理由如下: 若方方要在11点30分前到达B 地,则 3.5t <, 所以4801203.5v >>,所以方方不能在11点30分前到达B 地. 【考点】反比例函数及其应用,不等式性质21.【答案】根据题意,得1AD BC CD ===,90BCD ∠=︒. (1)设01CE x x =(<<),则1DE x =-, 因为12S S =,所以21x x =-,解得x =(负根舍去),即CE(2)因为点H 为BC 边的中点, 所以12CH =,所以HD =,数学试卷 第13页(共14页) 数学试卷 第14页(共14页)因为512CG CE ==-,点H ,C ,G 在同一直线上,所以1515222HG HC CG +-===+,所以HD HG =【考点】方程思想,勾股定理22.【答案】(1)乙求得的结果不正确,理由如下: 根据题意,知图象经过点(0,0),(1,0), 所以(1)y x x =-, 当12x =时,1111(1)2242y =⨯-=-≠-,所以乙求得的结果不正确. (2)函数图象的对称轴为122x x x +=, 当时,函数有最小值M ,212121212()224x x x x x x M x x ++-⎛⎫⎛⎫=--=- ⎪⎪⎝⎭⎝⎭(3)因为12()()y x x x x =--, 所以12m x x =,12(1)(1)n x x =--,所以2212121122(1)(1)()()mn x x x x x x x x =--=--22121111[()][()]2424x x =--+⋅--+因为1201x x <<<,并结合函数(1)y x x =-的图象,所以211110()244x --+≤<,221110()244x --+<≤所以1016mn ≤<,因为12x x ≠,所以1016mn <<【考点】二次函数,待定系数法求二次函数解析式,二次函数的图像和性质,点在函数图像上的运用、判断23.【答案】(1)①证明:连接OB ,OC , 因为OB OC =,OD BC ⊥, 所以1126022BOD BOC BAC ∠=∠=⨯∠=︒, 所以1122OD OB OA == ②作AF BC ⊥,垂足为点F , 所以32AF AD AO OD ≤≤+=,等号当点A ,O ,D 在同一直线上时取到 由①知,23BC BD ==,所以ABC △的面积1133332224BC AF =⋅≤⨯⨯= 即ABC △面积的最大值是334(2)设OED ODE α∠=∠=,COD BOD β∠=∠=, 因为ABC △是锐角三角形,所以2360AOC AOB BOD ∠+∠+∠=︒, 即()180m n αβ++=(*) 又因为ABC ACB ∠∠<, 所以EOD AOC DOC ∠=∠+∠2m αβ=+因为180OED ODE EOD ∠+∠+∠=︒, 所以2(1)180m αβ++=(**) 由(*),(**),得2(1)m n m +=+, 即20m n -+=【考点】圆周角定理,等腰三角形性质,含30°角的直角三角形,不等式性质,三角形内角和定理,代数式变形能力,设元方程思想等综合运用。

2019年浙江省杭州市中考数学试题(含分析解答)

2019年浙江省杭州市中考数学试题(含分析解答)
20.(10.00 分)设一次函数 y=kx+b(k,b 是常数,k≠0)的图象过 A(1,3),B(﹣1,﹣1)两 点. (1)求该一次函数的表达式;
第 4 页(共 24 页)
(2)若点(2a+2,a2)在该一次函数图象上,求 a 的值. (3)已知点 C(x1,y1)和点 D(x2,y2)在该一次函数图象上,设 m=(x1﹣x2)(y1﹣y2),判断反比 例函数 y= 的图象所在的象限,说明理由. 21.(10.00 分)如图,在△ABC 中,∠ACB=90°,以点 B 为圆心,BC 长为半径画弧,交线 段 AB 于点 D;以点 A 为圆心,AD 长为半径画弧,交线段 AC 于点 E,连结 CD. (1)若∠A=28°,求∠ACD 的度数. (2)设 BC=a,AC=b. ①线段 AD 的长是方程 x2+2ax﹣b2=0 的一个根吗?说明理由. ②若 AD=EC,求 的值.
a
5.0~5.5
3
5.5~6.0
1
(1)求 a 的值
(2)已知收集的可回收垃圾以 0.8 元/kg 被回收,该年级这周收集的可回收垃圾被回
收后所得金额能否达到 50 元?
19.(8.00 分)如图,在△ABC 中,AB=AC,AD 为 BC 边上的中线,DE⊥AB 于点 E. (1)求证:△BDE∽△CAD. (2)若 AB=13,BC=10,求线段 DE 的长.
第 1 页(共 24 页)
A.(θ1+θ4)﹣(θ2+θ3)=30° B.(θ2+θ4)﹣(θ1+θ3)=40° C.(θ1+θ2)﹣(θ3+θ4)=70° D.(θ1+θ2)+(θ3+θ4)=180° 9.(3.00 分)四位同学在研究函数 y=x2+bx+c(b,c 是常数)时,甲发现当 x=1 时,函数有 最小值;乙发现﹣1 是方程 x2+bx+c=0 的一个根;丙发现函数的最小值为 3;丁发现当 x=2 时,y=4,已知这四位同学中只有一位发现的结论是错误的,则该同学是( ) A.甲 B.乙 C.丙 D.丁 10.(3.00 分)如图,在△ABC 中,点 D 在 AB 边上,DE∥BC,与边 AC 交于点 E,连结 BE.记△ADE,△BCE 的面积分别为 S1,S2( )

2019年浙江省杭州市中考数学试卷附分析答案

2019年浙江省杭州市中考数学试卷附分析答案

平面内),已知 AB=a,AD=b,∠BCO=x,则点 A 到 OC 的距离等于( )
A.asinx+bsinx
B.acosx+bcosx
C.asinx+bcosx
D.acosx+bsinx
10.(3 分)在平面直角坐标系中,已知 a≠b,设函数 y=(x+a)(x+b)的图象与 x 轴有 M
个交点,函数 y=(ax+1)(bx+1)的图象与 x 轴有 N 个交点,则( )
C.4
, tt ∴Rt△AOP≌Rt△BOP(HL),
第 7页(共 20页)
D.5
∴PB=PA=3,
故选:B.
4.(3 分)已知九年级某班 30 位学生种树 72 棵,男生每人种 3 棵树,女生每人种 2 棵树,
设男生有 x 人,则( )
A.2x+3(72﹣x)=30
B.3x+2(72﹣x)=30
C.M=N 或 M=N+1
D.M=N 或 M=N﹣1
第 10页(共 20页)
【解答】解:∵y=(x+a)(x+b),a≠b,
∴函数 y=(x+a)(x+b)的图象与 x 轴有 2 个交点,
∴M=2,
∵函数 y=(ax+1)(bx+1)=abx2+(a+b)x+1,
∴当 ab≠0 时,△=(a+b)2﹣4ab=(a﹣b)2>0,函数 y=(ax+1)(bx+1)的图象与
B.2+0×1﹣9=﹣7
C.2+0﹣1×9=﹣7
) C.2+0﹣1×9
D.2+0+1﹣9

2019年浙江杭州中考数学试题及答案

2019年浙江杭州中考数学试题及答案

2019年浙江省杭州市中考数学试题与答案一、选择题(共10小题)1.(3分)(2019•一模)下列计算结果为负数的是()A.﹣|﹣3|B.(﹣3)0C.(﹣3)2D.(﹣3)﹣22.(3分)(2010•安顺)下列关于的说法中错误的是()A.是无理数B.3<<4C .是12的算术平方根D.不能再化简3.(3分)(2011•枣庄)已知是二元一次方程组的解,则a﹣b的值为()A.﹣1B.1C.2D.34.(3分)(2019•一模)不等式组的整数解共有()A.2个B.3个C.4个D.5个5.(3分)(2019•一模)如图,如果从半径为3的圆形纸片剪去圆周的一个扇形,将留下的扇形围成一个圆锥(接缝处不重叠),那么这个圆锥的高为()A.2B.C.4D.6.(3分)(2019•一模)一元二次方程x(x﹣2)=﹣(x﹣2)的根是()A.﹣1B.2C.1或2D.﹣1或27.(3分)(2019•一模)张大伯在中国银行存入10000元人民币,并在存单上留下了6位数的密码,每个数字都是0﹣9这十个数字中的一个,但由于年龄的缘故,张大伯忘记了密码中间的两个数字,那么张大伯最多可能实验多少次,才能正确输入密码()A.1次B.50次C.100次D.200次8.(3分)(2019•一模)一个长方体的三视图如图所示,若其俯视图为正方形,则这个长方体的体积为()A.18B36C48D72...9.(3分)(2019•一模)如图,在锐角△中,6,∠45°,∠的平分线交于点D,M,N分别是和上的动点,则的最小值是()A.B.6C.D.310.(3分)(2019•一模)从1,2,3,4,5这五个数中,任取两个数p和q (p≠q),构成函数y1﹣2和y2,使两个函数图象的交点在直线2的右侧,则这样的有序数组(p,q)共有()A.7组B.9组C.11组D.13组二.填空题(共6小题)11.(3分)(2019•一模)实数a,b在数轴上的位置如图所示,那么化简﹣﹣的结果是.12.(3分)(2019•一模)分解因式:﹣2a3+4a2﹣2 .13.(3分)(2019•一模)如图,已知点B(1,﹣2)是⊙O上一点,过点B 作⊙O的切线交x轴于点A,则∠.14.(3分)(2019•一模)数学老师布置10道选择题作业,批阅后得到如下统计表.根据表中数据可知,这45名同学答对题数组成的样本的中位数是题,众数是题.答对题数78910人数41816715.(3分)(2019•一模)抛物线2x2与坐标轴有两个交点,则字母c的取值满足的条件是.16.(3分)(2007•新疆)如图是一个边长为1的正方形组成的网络,△与△A1B1C1都是格点三角形(顶点在网格交点处),并且△∽△A1B1C1,则△与△A1B1C1的相似比是.三.解答题(共7小题)17.(2019•一模)计算:当430°﹣(﹣1)0,60°时,求[1﹣]÷+的值.18.(2011•随州)为了加强食品安全管理,有关部门对某大型超市的甲、乙两种品牌食用油共抽取18瓶进行检测,检测结果分成“优秀“、“合格“和“不合格”三个等级,数据处理后制成以下折线统计图和扇形统计图.(1)甲、乙两种品牌食用油各被抽取了多少瓶用于检测?(2)在该超购买一瓶乙品牌食用油,请估计能买到“优秀”等级的概率是多少?19.(2019•一模)某海防哨所O发现在他的东偏北60°方向,距离哨所400m 的A处有一艘船向正东方向航行,经过2分钟后到达哨所的东北方向的B处,问船从A处到B处航速是多少千米/小时(精确到1千米/小时)?(参考数据≈1.414,≈1.732,≈2.236).20.(2019•一模)如图,在△中,⊥,垂足为D.(1)尺规作图(不写作法,保留作图痕迹):作△的外接圆⊙O,作直径,连接;(2)若10,8,6,求的长.21.(2019•一模)如图,△的面积为1,分别取、两边的中点A1、B1,记四边形A11的面积为S1;再分别取A1C、B1C的中点A2、B2,记四边形A2A1B1B2的面积为S2;再分别取A2C、B2C的中点A3、B3,依次取下去…(1)由已知,可求得S1= ,S2= ,S100= ;(2)利用这一图形,计算.22.(2019•一模)已知二次函数2﹣2的图象与y轴相交于点C,与x轴交于点A,B两点(点A在点B的左侧),其对称轴与x轴交于点D,连接.(1)点C的坐标为,点A的坐标为;(2)抛物线上是否存在点E,使得△为等边三角形?若存在,求出所有符合条件的点E的坐标;若不存在,请说明理由;(3)点P为x轴下方的抛物线上的一个动点,连接,,记△的面积为S,问S 取何值时,相应的点P有且只有2个?23.(2019•一模)如图,矩形的4个顶点都在圆O上,将矩形绕点0按顺时针方向旋转α度,其中0°<α≤90°,旋转后的矩形落在弓形内的部分可能是三角形(如图1)、直角梯形(如图2)、矩形(如图3).已知6,8.(1)如图3,当α=度时,旋转后的矩形落在弓形内的部分呈矩形,此时该矩形的周长是;(2)如图2,当旋转后的矩形落在弓形内的部分是直角梯形时,设A2D2、B2C2分别与相交于点为E、F,求证:A2,2E;(3)在旋转过程中,设旋转后的矩形落在弓形内的部分为三角形、直角梯形、矩形时所对应的周长分别是、c2、c3,圆O的半径为R,当c123=6R时,求c1的值;(4)如图1,设旋转后A1B1、A1D1与分别相交于点M、N,当旋转到△A1正好是等腰三角形时,判断圆O的直径与△A1周长的大小关系,并说明理由.2019年浙江省杭州市中考数学试题与答案解析一、选择题(共10小题)1.(3分)(2019•一模)下列计算结果为负数的是()A.﹣|﹣3|B.(﹣3)0C.(﹣3)2D.(﹣3)﹣2考点:负整数指数幂;绝对值;有理数的乘方;零指数幂.专题:计算题.分析:负数就是大于0的数,可以先对每个选项进行化简,再判断正负即可.解答:解:A、﹣|﹣3﹣3,是负数,故选项正确;B、(﹣3)0=1>0,是正数,故选项错误;C、(﹣3)2=9>0,是正数,故选项错误;D、(﹣3)﹣2=>0,是正数,故选项错误.故选A.点评:对于负指数次幂的定义特别要注意,a ﹣,不要出现(﹣3)﹣2=﹣9的错误.2.(3分)(2010•安顺)下列关于的说法中错误的是()A.是无理数B3<<4.C .是12的算术平方根D.不能再化简考点:二次根式的乘除法.分析:根据化简二次根式的法则可知.解答:解:因为=2,所以能再化简.故选D.点评:化简二次根式,关键是看被开方数有没有能开得尽方的因数和因式.3.(3分)(2011•枣庄)已知是二元一次方程组的解,则a﹣b的值为()A.﹣1B.1C.2D.3考点:二元一次方程的解.专题:计算题;压轴题.分析:根据二元一次方程组的解的定义,将代入原方程组,分别求得a、b的值,然后再来求a﹣b的值.解答:解:∵已知是二元一次方程组的解,∴由①+②,得2,③由①﹣②,得3,④∴a﹣﹣1;故选A.点评:此题考查了二元一次方程组的解法.二元一次方程组的解法有两种:代入法和加减法,不管哪种方法,目的都是“消元”.4.(3分)(2019•一模)不等式组的整数解共有()A.2个B.3个C.4个D.5个考点:一元一次不等式组的整数解;不等式的性质;解一元一次不等式.专题:计算题.分根据不等式的性质求出不等式的解集,根据找不等式组解集的规律找出不析:等式组的解集即可.解答:解:,由①得:x≥﹣2,由②得:x<3,∴不等式组的解集是﹣2≤x<3,∴不等式组的整数解是﹣2,﹣1,0,1,2,共5个.故选D.点评:本题主要考查对不等式的性质,解一次不等式(组),一元一次不等式的整数解等知识点的理解和掌握,能根据不等式的解集找出不等式组的解集是解此题的关键.5.(3分)(2019•一模)如图,如果从半径为3的圆形纸片剪去圆周的一个扇形,将留下的扇形围成一个圆锥(接缝处不重叠),那么这个圆锥的高为()A.2B.C.4D.考点:圆锥的计算.分析:因为圆锥的高,底面半径,母线构成直角三角形,首先求得剩下扇形的圆心角的度数和弧长,然求得底面半径,利用勾股定理求得圆锥的高即可.解解:∵从半径为3的圆形纸片剪去圆周的一个扇形,答:∴剩下的扇形的角度=360°×=240°,∴留下的扇形的弧长4π,∴圆锥的底面半径2,∴圆锥的高.故选B.点评:主要考查了圆锥的性质,要知道(1)圆锥的高,底面半径,母线构成直角三角形,(2)此扇形的弧长等于圆锥底面周长,扇形的半径等于圆锥的母线长.解此类题目要根据所构成的直角三角形的勾股定理作为等量关系求解.6.(3分)(2019•一模)一元二次方程x(x﹣2)=﹣(x﹣2)的根是()A.﹣1B.2C.1或2D.﹣1或2考点:解一元二次方程-因式分解法.分析:先移项,再分解因式,进得出两个一元一次方程,求出方程的解即可.解答:解:x(x﹣2)=﹣(x﹣2),x(x﹣2)+(x﹣2)=0,(x﹣2)(1)=0,x﹣2=0,1=0,x1=﹣1,x2=2,故选D.点评:本题考查了解一元二次方程的应用,解此题的关键是能把一元二次方程转化成一元一次方程.7.(3分)(2019•一模)张大伯在中国银行存入10000元人民币,并在存单上留下了6位数的密码,每个数字都是0﹣9这十个数字中的一个,但由于年龄的缘故,张大伯忘记了密码中间的两个数字,那么张大伯最多可能实验多少次,才能正确输入密码()A.1次B.50次C.100次D.200次考点:推理与论证.分析:得到中间两个空数的可能情况即可.解答:解:∵0﹣9这个十个数字中任取两个组合共有100种取法,∴王大伯最多可能试验100次,才能正确输入密码.故选:C.点评:此题主要考查了推理与论证,解决本题的关键是得到0﹣9这个十个数字中任取两个组合共有100种取法.8.(3分)(2019•一模)一个长方体的三视图如图所示,若其俯视图为正方形,则这个长方体的体积为()A.18B.36C.48D.72考点:由三视图判断几何体.分析:根据对角线为3,俯视图是一个正方形,则边长为3,再根据长方体体积计算公式即可解答.解答:解:∵俯视图为正方形,根据主视图可得:正方形可得边长为3,长方体的高为4,∴长方体的体积:3×3×4=36.故选B.点评:此题考查了由三视图判断几何体,用到的知识点是三视图的基本知识以与长方体体积计算公式.9.(3分)(2019•一模)如图,在锐角△中,6,∠45°,∠的平分线交于点D,M,N分别是和上的动点,则的最小值是()A.B.6C.D.3考点:轴对称-最短路线问题.分作⊥,垂足为H,交于M′点,过M′点作M′N′⊥,垂足为N′,析:则′′N′为所求的最小值,再根据是∠的平分线可知M′′N′,再由锐角三角函数的定义即可得出结论.解答:解:如图,作⊥,垂足为H,交于M′点,过M′点作M′N′⊥,垂足为N′,则′′N′为所求的最小值.∵是∠的平分线,∴M′′N′,∴是点B到直线的最短距离(垂线段最短),∵6,∠45°,∴•45°=6×=3.∵的最小值是′′N′′′3.故选C.点评:本题考查的是轴对称﹣最短路线问题,解答此类问题时要从已知条件结合图形认真思考,通过角平分线性质,垂线段最短,确定线段和的最小值.10.(3分)(2019•一模)从1,2,3,4,5这五个数中,任取两个数p和q (p≠q),构成函数y1﹣2和y2,使两个函数图象的交点在直线2的右侧,则这样的有序数组(p,q)共有()A.7组B.9组C.11组D.13组考两条直线相交或平行问题.分析:﹣2的解就是两个函数图象的交点的横坐标,交点在直线2的右侧,即横坐标大于2,则可以得到p,q的关系式,然后列举从1、2,3,4,5这五个数中,任取两个数得到的所有情况,判断是否满足p,q的关系即可.解答:解:根据题意得:﹣2,解得,则两个函数图象的交点的横坐标是,则当两个函数图象的交点在直线2的右侧时:>2,当p﹣1≠0时,则q>2p﹣4,在1,2,3,4,5这,五个数中,任取两个数有:(1,2),(1,3),(1,4),(1,5),(2,1)(2,3),(2,4),(2,5),(3,1),(3,2),(3,4),(3,5),(4,1),(4,2)(4,3),(4,5),(5,1)(5,2),(5,3),(5,4)共有20种情况.满足q>2p﹣4的有:(2,1),(2,3)(2,4),(2,5),(3,4),(3,5),(4,5)共7种情况.故这样的有序数组(p,q)共有7组.故选:A.点评:本题是一次函数与列举法的综合应用,根据条件,得到p,q满足的关系是关键.二.填空题(共6小题)11.(3分)(2019•一模)实数a,b在数轴上的位置如图所示,那么化简﹣﹣的结果是﹣b .考点:二次根式的性质与化简;实数与数轴.专计算题.分析:由数轴可得到a>0,b<0,<,根据和绝对值的性质即可得到答案.解答:解:∵a>0,b<0,<,∴原式﹣b﹣﹣b﹣a=﹣b.故答案为﹣b.点评:本题考查了二次根式的性质与化简:.也考查了绝对值的性质.12.(3分)(2019•一模)分解因式:﹣2a3+4a2﹣2 ﹣2a(a﹣1)2.考点:提公因式法与公式法的综合运用.分析:先提取公因式﹣2a,再根据完全平方公式进行二次分解.完全平方公式:a2±22=(a±b)2.解答:解:﹣2a3+4a2﹣2﹣2a(a2﹣21)=﹣2a(a﹣1)2.故答案为:﹣2a(a﹣1)2.点评:本题考查了提公因式法,公式法分解因式,提取公因式后利用完全平方公式进行二次分解,注意分解要彻底.13.(3分)(2019•一模)如图,已知点B(1,﹣2)是⊙O上一点,过点B 作⊙O的切线交x轴于点A,则∠.考点:切线的性质;坐标与图形性质.分析:过点B作⊥x轴于点C.故∠∠90°,点B(1,﹣2)所以1,2.由切线的性质得∠90°,∠∠90°,故∠∠,∠∠.解答:解:过点B作⊥x轴于点C.∴∠∠90°.∵点B(1,﹣2),∴1,2.∵是⊙O的切线,∴∠90°;∴∠∠90°,∴∠∠,∴∠∠.点评:本题主要考查了切线的性质以与点的坐标、锐角三角函数的求法.作出辅助线得出∠∠是解题的关键.14.(3分)(2019•一模)数学老师布置10道选择题作业,批阅后得到如下统计表.根据表中数据可知,这45名同学答对题数组成的样本的中位数是9 题,众数是8 题.答对题数78910人数418167考点:众数;中位数.分析:结合图表根据众数和中位数的定义解答.解答:解:∵一共有45人,∴中位数为第23人的成绩,∴中位数为9题;答对8个题的有18人,人数最多,所以众数是8题.故答案为9;8.点评:本题为统计题,考查众数与中位数的意义,一组数据中出现次数最多的数据叫做众数.平均数是指在一组数据中所有数据之和再除以数据的个数.它是反映数据集中趋势的一项指标.将一组数据从小到大依次排列,把中间数据(或中间两数据的平均数)叫做中位数.中位数把样本数据分成了相同数目的两部分.15.(3分)(2019•一模)抛物线2x2与坐标轴有两个交点,则字母c的取值满足的条件是或0 .考点:抛物线与x轴的交点;根的判别式.专题:探究型.分析:根据抛物线与x轴有两个交点可知二次函数过原点或与x轴相切.故分两种情况解答:①将(0,0)代入解析式;②△=0.解答:解:∵抛物线2x2与坐标轴有两个交点,①将(0,0)代入解析式得0;②△=1﹣80,解得.故答案为:,0.点评:本题考查的是抛物线与x轴的交点与根的判别式,熟知抛物线与x轴的交点问题与一元二次方程根的关系是解答此题的关键.16.(3分)(2007•新疆)如图是一个边长为1的正方形组成的网络,△与△A1B1C1都是格点三角形(顶点在网格交点处),并且△∽△A1B1C1,则△与△A1B1C1的相似比是.考点:相似三角形的性质;勾股定理.专压轴题;网格型.题:分析:先利用勾股定理求出,那么:A′C′即是相似比.解答:解:由图可知,A1C1=1,∴△与△A1B1C1的相似比是:1.点评:本题考查对相似三角形性质的理解,相似三角形边长的比等于相似比.解答此题的关键是找出相似三角形的对应边.三.解答题(共7小题)17.(2019•一模)计算:当430°﹣(﹣1)0,60°时,求[1﹣]÷+的值.考点:分式的化简求值;零指数幂;特殊角的三角函数值.专题:计算题.分析:原式第一项括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分后利用同分母分式的加法法则计算得到最简结果,利用特殊角的三角函数值与零指数幂法则求出x与y的值,代入计算即可求出值.解答:解:原式=•+=•+=﹣+=,当430°﹣(﹣1)0=2﹣1=1,60°=3时,原式.点评:此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.18.(2011•随州)为了加强食品安全管理,有关部门对某大型超市的甲、乙两种品牌食用油共抽取18瓶进行检测,检测结果分成“优秀“、“合格“和“不合格”三个等级,数据处理后制成以下折线统计图和扇形统计图.(1)甲、乙两种品牌食用油各被抽取了多少瓶用于检测?(2)在该超购买一瓶乙品牌食用油,请估计能买到“优秀”等级的概率是多少?考点:折线统计图;扇形统计图;概率公式.专题:图表型;数形结合.分析:(1)读折线统计图可知,不合格等级的有1瓶,读扇形统计图可知甲种品牌有不合格的,且只有1瓶,由此可求出甲种品牌的数量,据此解答即可.(2)根据随机事件概率大小的求法,找准两点:①符合条件的情况数目;②全部情况的总数;二者的比值就是其发生的概率的大小.解答:解:(1)1÷1010(瓶),18﹣10=8(瓶),即甲种品牌有10瓶,乙种品牌有8瓶.(2)∵甲,乙优秀瓶总数为10瓶,其中甲品牌食用油的优秀占到60%,∴甲的优秀瓶数为10×606(瓶)∴乙的优秀瓶数为:10﹣(10×60%)=4(瓶),又∵乙种品牌共有8瓶,∴能买到“优秀”等级的概率是=.点评:本题考查的是扇形统计图和折线统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.19.(2019•一模)某海防哨所O发现在他的东偏北60°方向,距离哨所400m 的A处有一艘船向正东方向航行,经过2分钟后到达哨所的东北方向的B处,问船从A处到B处航速是多少千米/小时(精确到1千米/小时)?(参考数据≈1.414,≈1.732,≈2.236).考点:解直角三角形的应用-方向角问题.分析:根据题意先画出图形,再分别解直角三角形与直角三角形,求出200米,200米,然后根据﹣求出的长,则问题可求.解答:解:作⊥于点C.由题意有400米,在直角三角形中,∠90°﹣60°=30°,所以200米,200米.在直角三角形中,∠45°,所以,200米,所以﹣200﹣200米,所以速度为(200﹣200)÷2=100﹣100(米/分)≈4千米/时.答:船从A处到B处航速约是4千米/小时.点评:本题考查了解直角三角形的应用﹣方向角问题,涉与到锐角三角函数、实数的运算、解直角三角形,难度适中.体现了数学与生活的密切联系,同时也进行了实数运算方面的进一步考查,根据题意准确画出图形是解题的关键.20.(2019•一模)如图,在△中,⊥,垂足为D.(1)尺规作图(不写作法,保留作图痕迹):作△的外接圆⊙O,作直径,连接;(2)若10,8,6,求的长.考点:作图—复杂作图;三角形的外接圆与外心.分析:(1)首先利用三角形外接圆的作法得出,的垂直平分线,进而得出圆心位置,进而得出符合题意的图形;(2)利用三角形相似的判定与性质得出=,进而求出即可.解答:解:(1)如图所示:(2)∵是⊙O直径,∴∠90°,∵∠∠E,∠∠,∴△∽△,∴=,∵6,8,∴2,∴=,解得:.点评:此题主要考查了三角形的外接圆的作法以与相似三角形的判定与性质等知识,得出的长进而求出是解题关键.21.(2019•一模)如图,△的面积为1,分别取、两边的中点A1、B1,记四边形A11的面积为S1;再分别取A1C、B1C的中点A2、B2,记四边形A2A1B1B2的面积为S2;再分别取A2C、B2C的中点A3、B3,依次取下去…(1)由已知,可求得S1= ,S2= ,S100= ;(2)利用这一图形,计算.考点:相似三角形的判定与性质;三角形中位线定理.专题:规律型.分析:(1)首先计算出第一个和第二个、第三个三角形的面积找到规律即可求出问题的答案;(2)根据(1)中的规律计算即可.解答:解:(1)∵A1、B1分别是、两边的中点,且△的面积为1,∴△A1B1C的面积为1×=.∴四边形A11的面积=△的面积﹣△A1B1C 的面积1﹣;∴四边形A2A1B1B2的面积=△A1B1C的面积﹣△A2B2C的面积=﹣=.…,∴第n个四边形的面积=,∴S100=.故答案为:,,;(2)由(1)可知:=()=.点评:本题考查了三角形的中位线性质定理和相似三角形的性质,同时也考查了学生通过特例分析从而归纳总结出一般结论的能力.22.(2019•一模)已知二次函数2﹣2的图象与y轴相交于点C,与x轴交于点A,B两点(点A在点B的左侧),其对称轴与x轴交于点D,连接.(1)点C的坐标为(0,﹣2),点A的坐标为(﹣4,0);(2)抛物线上是否存在点E,使得△为等边三角形?若存在,求出所有符合条件的点E的坐标;若不存在,请说明理由;(3)点P为x轴下方的抛物线上的一个动点,连接,,记△的面积为S,问S 取何值时,相应的点P有且只有2个?考点:二次函数综合题.分析:(1)抛物线的解析式中,令0可得二次函数与y轴交点C的纵坐标,令0可得二次函数与x轴交点的横坐标;(2)若在x轴下方的抛物线上存在一点E,使△为等边三角形,先由4,根据等边三角形的性质得出点E的坐标为(﹣2,﹣2),再将﹣2代入2﹣2,求出y的值,即可判断点E是否在抛物线上;(3)过点B、点O分别作的平行线,记为l1,l2,与平行且与抛物线2﹣2只有一个交点的直线记为l3,设此唯一交点为T.利用待定系数法求得直线的解析式为﹣x﹣2,直线l3的解析式为﹣x﹣4.设直线l3与y轴的交点为H,直线l2与抛物线在x轴下方的交点为N,则H(0,﹣4).作⊥直线l3于点M ,得出△∽△,根据相似三角形对应边成比例得到=,求出,即直线l3与之间的距离为.由2,得出直线l2与之间的距离也是,根据三角形的面积公式求出S △△×2×=4,则4时,相应的点P有且只有2个,就是点T和点N.在直线l2与直线l3之间,S的值对应的点P有三个;在直线l1与直线l2之间,S的值对应的点P只有一个.解答:解:(1)∵2﹣2,∴当0时,﹣2,∴点C的坐标为(0,﹣2).当0时,x2﹣2=0,即:x2+3x﹣4=0,解得﹣4和1,∴点A的坐标为(﹣4,0),点B的坐标为(1,0).故答案为(0,﹣2),(﹣4,0);(2)若在x轴下方的抛物线上存在一点E,使△为等边三角形,则因为4,所以点E的坐标为(﹣2,﹣2),但当﹣2时,×(﹣2)2+×(﹣2)﹣2=﹣3≠﹣2,所以点E不在抛物线上,所以不存在符合要求的点E;(3)过点B、点O分别作的平行线,记为l1,l2,与平行且与抛物线2﹣2只有一个交点的直线记为l3,设此唯一交点为T.可求得直线的解析式为﹣x﹣2,直线l3的解析式为﹣x﹣4.设直线l3与y轴的交点为H,直线l2与抛物线在x轴下方的交点为N,则H(0,﹣4).作⊥直线l3于点M,则△∽△,∴=,即=,,∴直线l3与之间的距离为.∵2,∴直线l2与之间的距离也是,∴S △△×2×=4,∴4时,相应的点P有且只有2个,就是点T和点N.在直线l2与直线l3之间,对于每一条与平行的直线l,在的另一侧,有且只有一条直线l′,使得l′∥∥l,且这三条平行线之间的距离相等,直线l 与l′与抛物线共有三个交点,这三个点分别与构成的三角形面积相等,即此时S的值对应的点P有三个.在直线l1与直线l2之间,平行于的直线与抛物线在x轴下方只有一个交点,所以此时S的值对应的点P只有一个.故只有当4时,相应的点P有且只有2个.点评:本题是二次函数的综合题型,其中涉与到二次函数图象上点的坐标特征,运用待定系数法求一次函数的解析式,等边三角形的性质,相似三角形的判定与性质,三角形的面积等知识,综合性较强,有一定难度.理解题意、运用数形结合思想是解题的关键.23.(2019•一模)如图,矩形的4个顶点都在圆O上,将矩形绕点0按顺时针方向旋转α度,其中0°<α≤90°,旋转后的矩形落在弓形内的部分可能是三角形(如图1)、直角梯形(如图2)、矩形(如图3).已知6,8.(1)如图3,当α=90 度时,旋转后的矩形落在弓形内的部分呈矩形,此时该矩形的周长是14 ;(2)如图2,当旋转后的矩形落在弓形内的部分是直角梯形时,设A2D2、B2C2分别与相交于点为E、F,求证:A2,2E;(3)在旋转过程中,设旋转后的矩形落在弓形内的部分为三角形、直角梯形、矩形时所对应的周长分别是、c2、c3,圆O的半径为R,当c123=6R时,求c1的值;(4)如图1,设旋转后A1B1、A1D1与分别相交于点M、N,当旋转到△A1正好是等腰三角形时,判断圆O的直径与△A1周长的大小关系,并说明理由.考点:圆内接四边形的性质;矩形的性质;直角梯形;圆心角、弧、弦的关系;圆周角定理.专题:计算题;证明题;探究型.分析:(1)根据矩形的性质可以得到旋转角应是90°,根据矩形的长和宽即可计算得到的矩形的周长;(2)根据旋转得到对应点之间的弧相等,再根据等弧所对的圆周角相等和等角对等边进行证明;(3)根据矩形的外接圆的圆心即是其对角线的交点,得到矩形的外接圆的半径等于其对角线的一半5,再根据(1)和(2)的思路,可以求得它们的周长分别是8,再进一步求得C1的长;(4)根据矩形的角都是直角,则该三角形应是等腰直角三角形.根据等腰直角三角形的性质和矩形的长和宽列方程求得三角形的周长,再进一步运用求差法比较其大小.解答:解:(1)当α=90°时,旋转后的矩形落在弓形内的部分呈矩形,此时该矩形的周长是6×2+(8﹣6)=14.(2)①如图,连接A2D,∵=,∴∠2=∠2D2;∴A2.②如图,连接2∵2C2,∴=;∴﹣=﹣;∴=;∴∠2C2=∠2;∴2E.(3)由(1)(2)得C2=14,C3=14∵6,8,∠90°,∴5,当C123=6R时,C1=2;(4)如图,设A1B1交于P,A1,,∵△A1正好是等腰三角形,∠A1=90°,∴∠A1∠A1∠45°;∴,∴8…(一);同(1)①可证1P;∴A1B 1116…(二);(二)﹣(一)得:a ﹣2;∴a﹣,即A1M ﹣;∴△A1的周长8+;而⊙O的直径为10,∴⊙O的直径与△A1的周长差为10﹣(8+)=2﹣>0;∴⊙O的直径大于△A1的周长.点评:此题综合运用了旋转的性质和等腰三角形的判定和性质.综合性强,难度较大.参与本试卷答题和审题的老师有:;;2-9;600;111;;210;;;杨金岭;;;;;王岑;;;;;;心若在(排名不分先后)菁优网2014年12月14日。

2019年浙江杭州中考数学试卷及详细答案解析(word版)

2019年浙江杭州中考数学试卷及详细答案解析(word版)

2019年浙江省杭州市中考数学试卷一、选择题:本大题有10个小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的;1.(3分)计算下列各式,值最小的是()A.2×0+1﹣9B.2+0×1﹣9C.2+0﹣1×9D.2+0+1﹣92.(3分)在平面直角坐标系中,点A(m,2)与点B(3,n)关于y轴对称,则()A.m=3,n=2B.m=﹣3,n=2C.m=2,n=3D.m=﹣2,n=﹣3 3.(3分)如图,P为圆O外一点,P A,PB分别切圆O于A,B两点,若P A=3,则PB=()A.2B.3C.4D.54.(3分)已知九年级某班30位学生种树72棵,男生每人种3棵树,女生每人种2棵树,设男生有x人,则()A.2x+3(72﹣x)=30B.3x+2(72﹣x)=30C.2x+3(30﹣x)=72D.3x+2(30﹣x)=725.(3分)点点同学对数据26,36,46,5□,52进行统计分析,发现其中一个两位数的个位数字被黑水涂污看不到了,则计算结果与被涂污数字无关的是()A.平均数B.中位数C.方差D.标准差6.(3分)如图,在△ABC中,点D,E分别在AB和AC上,DE∥BC,M为BC边上一点(不与点B,C重合),连接AM交DE于点N,则()A.ADAN =ANAEB.BDMN=MNCEC.DNBM=NEMCD.DNMC=NEBM7.(3分)在△ABC中,若一个内角等于另外两个内角的差,则()A.必有一个内角等于30°B.必有一个内角等于45°C.必有一个内角等于60°D.必有一个内角等于90°8.(3分)已知一次函数y1=ax+b和y2=bx+a(a≠b),函数y1和y2的图象可能是()A.B.C.D.9.(3分)如图,一块矩形木板ABCD斜靠在墙边(OC⊥OB,点A,B,C,D,O在同一平面内),已知AB=a,AD=b,∠BCO=x,则点A到OC的距离等于()A.a sin x+b sin x B.a cos x+b cos xC.a sin x+b cos x D.a cos x+b sin x10.(3分)在平面直角坐标系中,已知a≠b,设函数y=(x+a)(x+b)的图象与x轴有M 个交点,函数y=(ax+1)(bx+1)的图象与x轴有N个交点,则()A.M=N﹣1或M=N+1B.M=N﹣1或M=N+2C.M=N或M=N+1D.M=N或M=N﹣1二、填空题:本大题有6个小题,每小题4分,共24分;11.(4分)因式分解:1﹣x2=.12.(4分)某计算机程序第一次算得m个数据的平均数为x,第二次算得另外n个数据的平均数为y,则这m+n个数据的平均数等于.13.(4分)如图是一个圆锥形冰淇淋外壳(不计厚度),已知其母线长为12cm,底面圆半径为3cm,则这个冰淇淋外壳的侧面积等于cm2(结果精确到个位).14.(4分)在直角三角形ABC中,若2AB=AC,则cos C=.15.(4分)某函数满足当自变量x=1时,函数值y=0,当自变量x=0时,函数值y=1,写出一个满足条件的函数表达式.16.(4分)如图,把某矩形纸片ABCD沿EF,GH折叠(点E,H在AD边上,点F,G在BC边上),使点B和点C落在AD边上同一点P处,A点的对称点为A′点,D点的对称点为D′点,若∠FPG=90°,△A′EP的面积为4,△D′PH的面积为1,则矩形ABCD的面积等于.三、解答题:本小题7个小题,共66分,解答应写出文字说明、证明过程或演算步骤.17.(6分)化简:4xx2−4−2x−2−1圆圆的解答如下:4x x2−4−2x−2−1=4x﹣2(x+2)﹣(x2﹣4)=﹣x2+2x圆圆的解答正确吗?如果不正确,写出正确的答案.18.(8分)称量五筐水果的质量,若每筐以50千克为基准,超过基准部分的千克数记为正数,不足基准部分的千克数记为负数,甲组为实际称量读数,乙组为记录数据,并把所得数据整理成如下统计表和未完成的统计图(单位:千克).实际称量读数和记录数据统计表序号数据12345甲组4852474954乙组﹣22﹣3﹣14(1)补充完成乙组数据的折线统计图.(2)①甲,乙两组数据的平均数分别为x甲,x乙,写出x甲与x乙之间的等量关系.②甲,乙两组数据的方差分别为S甲2,S乙2,比较S甲2与S乙2的大小,并说明理由.19.(8分)如图,在△ABC中,AC<AB<BC.(1)已知线段AB的垂直平分线与BC边交于点P,连接AP,求证:∠APC=2∠B.(2)以点B为圆心,线段AB的长为半径画弧,与BC边交于点Q,连接AQ.若∠AQC =3∠B,求∠B的度数.20.(10分)方方驾驶小汽车匀速地从A地行驶到B地,行驶里程为480千米,设小汽车的行驶时间为t(单位:小时),行驶速度为v(单位:千米/小时),且全程速度限定为不超过120千米/小时.(1)求v关于t的函数表达式;(2)方方上午8点驾驶小汽车从A地出发.①方方需在当天12点48分至14点(含12点48分和14点)间到达B地,求小汽车行驶速度v的范围.②方方能否在当天11点30分前到达B地?说明理由.21.(10分)如图,已知正方形ABCD的边长为1,正方形CEFG的面积为S1,点E在DC 边上,点G在BC的延长线上,设以线段AD和DE为邻边的矩形的面积为S2,且S1=S2.(1)求线段CE的长;(2)若点H为BC边的中点,连接HD,求证:HD=HG.22.(12分)设二次函数y=(x﹣x1)(x﹣x2)(x1,x2是实数).(1)甲求得当x=0时,y=0;当x=1时,y=0;乙求得当x=12时,y=−12.若甲求得的结果都正确,你认为乙求得的结果正确吗?说明理由.(2)写出二次函数图象的对称轴,并求该函数的最小值(用含x1,x2的代数式表示).(3)已知二次函数的图象经过(0,m)和(1,n)两点(m,n是实数),当0<x1<x2<1时,求证:0<mn<1 16.23.(12分)如图,已知锐角三角形ABC内接于圆O,OD⊥BC于点D,连接OA.(1)若∠BAC=60°,①求证:OD=12OA.②当OA=1时,求△ABC面积的最大值.(2)点E在线段OA上,OE=OD,连接DE,设∠ABC=m∠OED,∠ACB=n∠OED (m,n是正数),若∠ABC<∠ACB,求证:m﹣n+2=0.2019年浙江省杭州市中考数学试卷参考答案与试题解析一、选择题:本大题有10个小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的;1.(3分)计算下列各式,值最小的是()A.2×0+1﹣9B.2+0×1﹣9C.2+0﹣1×9D.2+0+1﹣9【解答】解:A.2×0+1﹣9=﹣8,B.2+0×1﹣9=﹣7C.2+0﹣1×9=﹣7D.2+0+1﹣9=﹣6,故选:A.2.(3分)在平面直角坐标系中,点A(m,2)与点B(3,n)关于y轴对称,则()A.m=3,n=2B.m=﹣3,n=2C.m=2,n=3D.m=﹣2,n=﹣3【解答】解:∵点A(m,2)与点B(3,n)关于y轴对称,∴m=﹣3,n=2.故选:B.3.(3分)如图,P为圆O外一点,P A,PB分别切圆O于A,B两点,若P A=3,则PB=()A.2B.3C.4D.5【解答】解:连接OA、OB、OP,∵P A,PB分别切圆O于A,B两点,∴OA⊥P A,OB⊥PB,在Rt△AOP和Rt△BOP中,{OA=OBOP=OP,∴Rt△AOP≌Rt△BOP(HL),∴PB=P A=3,故选:B.4.(3分)已知九年级某班30位学生种树72棵,男生每人种3棵树,女生每人种2棵树,设男生有x人,则()A.2x+3(72﹣x)=30B.3x+2(72﹣x)=30C.2x+3(30﹣x)=72D.3x+2(30﹣x)=72【解答】解:设男生有x人,则女生(30﹣x)人,根据题意可得:3x+2(30﹣x)=72.故选:D.5.(3分)点点同学对数据26,36,46,5□,52进行统计分析,发现其中一个两位数的个位数字被黑水涂污看不到了,则计算结果与被涂污数字无关的是()A.平均数B.中位数C.方差D.标准差【解答】解:这组数据的平均数、方差和标准差都与第4个数有关,而这组数据的中位数为46,与第4个数无关.故选:B.6.(3分)如图,在△ABC中,点D,E分别在AB和AC上,DE∥BC,M为BC边上一点(不与点B,C重合),连接AM交DE于点N,则()A.ADAN =ANAEB.BDMN=MNCEC.DNBM=NEMCD.DNMC=NEBM【解答】解:∵DN∥BM,∴△ADN∽△ABM,∴DNBM =AN AM,∵NE∥MC,∴△ANE∽△AMC,∴NEMC =ANAM,∴DNBM =NE MC.故选:C.7.(3分)在△ABC中,若一个内角等于另外两个内角的差,则()A.必有一个内角等于30°B.必有一个内角等于45°C.必有一个内角等于60°D.必有一个内角等于90°【解答】解:∵∠A+∠B+∠C=180°,∠A=∠C﹣∠B,∴2∠C=180°,∴∠C=90°,∴△ABC是直角三角形,故选:D.8.(3分)已知一次函数y1=ax+b和y2=bx+a(a≠b),函数y1和y2的图象可能是()A.B.C.D.【解答】解:A、由①可知:a>0,b>0.∴直线②经过一、二、三象限,故A正确;B、由①可知:a<0,b>0.∴直线②经过一、二、三象限,故B错误;C、由①可知:a<0,b>0.∴直线②经过一、二、四象限,交点不对,故C错误;D、由①可知:a<0,b<0,∴直线②经过二、三、四象限,故D错误.故选:A.9.(3分)如图,一块矩形木板ABCD斜靠在墙边(OC⊥OB,点A,B,C,D,O在同一平面内),已知AB=a,AD=b,∠BCO=x,则点A到OC的距离等于()A.a sin x+b sin x B.a cos x+b cos xC.a sin x+b cos x D.a cos x+b sin x【解答】解:作AE⊥OC于点E,作AF⊥OB于点F,∵四边形ABCD是矩形,∴∠ABC=90°,∵∠ABC=∠AEC,∠BCO=x,∴∠EAB=x,∴∠FBA=x,∵AB=a,AD=b,∴FO=FB+BO=a•cos x+b•sin x,故选:D.10.(3分)在平面直角坐标系中,已知a≠b,设函数y=(x+a)(x+b)的图象与x轴有M 个交点,函数y=(ax+1)(bx+1)的图象与x轴有N个交点,则()A.M=N﹣1或M=N+1B.M=N﹣1或M=N+2C.M=N或M=N+1D.M=N或M=N﹣1【解答】解:∵y =(x +a )(x +b )=x 2+(a +b )x +1, ∴△=(a +b )2﹣4ab =(a ﹣b )2>0,∴函数y =(x +a )(x +b )的图象与x 轴有2个交点, ∴M =2,∵函数y =(ax +1)(bx +1)=abx 2+(a +b )x +1,∴当ab ≠0时,△=(a +b )2﹣4ab =(a ﹣b )2>0,函数y =(ax +1)(bx +1)的图象与x 轴有2个交点,即N =2,此时M =N ;当ab =0时,不妨令a =0,∵a ≠b ,∴b ≠0,函数y =(ax +1)(bx +1)=bx +1为一次函数,与x 轴有一个交点,即N =1,此时M =N +1; 综上可知,M =N 或M =N +1. 故选:C .二、填空题:本大题有6个小题,每小题4分,共24分; 11.(4分)因式分解:1﹣x 2= (1﹣x )(1+x ) . 【解答】解:∵1﹣x 2=(1﹣x )(1+x ), 故答案为:(1﹣x )(1+x ).12.(4分)某计算机程序第一次算得m 个数据的平均数为x ,第二次算得另外n 个数据的平均数为y ,则这m +n 个数据的平均数等于mx+ny m+n.【解答】解:∵某计算机程序第一次算得m 个数据的平均数为x ,第二次算得另外n 个数据的平均数为y ,则这m +n 个数据的平均数等于:mx+ny m+n.故答案为:mx+ny m+n.13.(4分)如图是一个圆锥形冰淇淋外壳(不计厚度),已知其母线长为12cm ,底面圆半径为3cm ,则这个冰淇淋外壳的侧面积等于 113 cm 2(结果精确到个位).【解答】解:这个冰淇淋外壳的侧面积=12×2π×3×12=36π≈113(cm 2).故答案为113.14.(4分)在直角三角形ABC 中,若2AB =AC ,则cos C =√32或2√55. 【解答】解:若∠B =90°,设AB =x ,则AC =2x ,所以BC =√(2x)2−x 2=√3x ,所以cos C =BC AC =√3x 2x =√32; 若∠A =90°,设AB =x ,则AC =2x ,所以BC =√(2x)2+x 2=√5x ,所以cos C =ACBC =2x √5x=2√55; 综上所述,cos C 的值为√32或2√55. 故答案为√32或2√55. 15.(4分)某函数满足当自变量x =1时,函数值y =0,当自变量x =0时,函数值y =1,写出一个满足条件的函数表达式 y =﹣x +1 . 【解答】解:设该函数的解析式为y =kx +b ,∵函数满足当自变量x =1时,函数值y =0,当自变量x =0时,函数值y =1, ∴{k +b =0b =1 解得:{k =−1b =1,所以函数的解析式为y =﹣x +1, 故答案为:y =﹣x +1.16.(4分)如图,把某矩形纸片ABCD 沿EF ,GH 折叠(点E ,H 在AD 边上,点F ,G 在BC 边上),使点B 和点C 落在AD 边上同一点P 处,A 点的对称点为A ′点,D 点的对称点为D ′点,若∠FPG =90°,△A ′EP 的面积为4,△D ′PH 的面积为1,则矩形ABCD 的面积等于 2(5+3√5) .【解答】解:∵四边形ABC 是矩形, ∴AB =CD ,AD =BC ,设AB =CD =x ,由翻折可知:P A ′=AB =x ,PD ′=CD =x , ∵△A ′EP 的面积为4,△D ′PH 的面积为1, ∴A ′E =4D ′H ,设D ′H =a ,则A ′E =4a , ∵△A ′EP ∽△D ′PH , ∴D′H PA′=PD′EA′,∴a x=x 4a,∴x 2=4a 2,∴x =2a 或﹣2a (舍弃), ∴P A ′=PD ′=2a , ∵12•a •2a =1,∴a =1, ∴x =2,∴AB =CD =2,PE =√22+42=2√5,PH =√12+22=√5, ∴AD =4+2√5+√5+1=5+3√5, ∴矩形ABCD 的面积=2(5+3√5). 故答案为2(5+3√5)三、解答题:本小题7个小题,共66分,解答应写出文字说明、证明过程或演算步骤. 17.(6分)化简:4x x 2−4−2x−2−1圆圆的解答如下:4x x 2−4−2x−2−1=4x ﹣2(x +2)﹣(x 2﹣4)=﹣x 2+2x圆圆的解答正确吗?如果不正确,写出正确的答案. 【解答】解:圆圆的解答错误, 正确解法:4x x 2−4−2x−2−1=4x(x−2)(x+2)−2(x+2)(x−2)(x+2)−(x−2)(x+2)(x−2)(x+2)=4x−2x−4−x 2+4(x−2)(x+2)=2x−x 2(x−2)(x+2) =−x x+2. 18.(8分)称量五筐水果的质量,若每筐以50千克为基准,超过基准部分的千克数记为正数,不足基准部分的千克数记为负数,甲组为实际称量读数,乙组为记录数据,并把所得数据整理成如下统计表和未完成的统计图(单位:千克).实际称量读数和记录数据统计表序号 数据 12345甲组 48 52 47 49 54 乙组﹣22﹣3﹣14(1)补充完成乙组数据的折线统计图.(2)①甲,乙两组数据的平均数分别为x 甲,x 乙,写出x 甲与x 乙之间的等量关系. ②甲,乙两组数据的方差分别为S 甲2,S 乙2,比较S 甲2与S 乙2的大小,并说明理由. 【解答】解:(1)乙组数据的折线统计图如图所示:(2)①x甲=50+x乙.②S甲2=S乙2.理由:∵S甲2=15[(48﹣50)2+(52﹣50)2+(47﹣50)2+(49﹣50)2+(54﹣50)2]=6.8.S乙2=15[(﹣2﹣0)2+(2﹣0)2+(﹣3﹣0)2+(﹣1﹣0)2+(4﹣0)2]=6.8,∴S甲2=S乙2.19.(8分)如图,在△ABC中,AC<AB<BC.(1)已知线段AB的垂直平分线与BC边交于点P,连接AP,求证:∠APC=2∠B.(2)以点B为圆心,线段AB的长为半径画弧,与BC边交于点Q,连接AQ.若∠AQC =3∠B,求∠B的度数.【解答】解:(1)证明:∵线段AB的垂直平分线与BC边交于点P,∴P A=PB,∴∠B=∠BAP,∵∠APC =∠B +∠BAP , ∴∠APC =2∠B ;(2)根据题意可知BA =BQ , ∴∠BAQ =∠BQA ,∵∠AQC =3∠B ,∠AQC =∠B +∠BAQ , ∴∠BQA =2∠B ,∵∠BAQ +∠BQA +∠B =180°, ∴5∠B =180°, ∴∠B =36°.20.(10分)方方驾驶小汽车匀速地从A 地行驶到B 地,行驶里程为480千米,设小汽车的行驶时间为t (单位:小时),行驶速度为v (单位:千米/小时),且全程速度限定为不超过120千米/小时.(1)求v 关于t 的函数表达式;(2)方方上午8点驾驶小汽车从A 地出发.①方方需在当天12点48分至14点(含12点48分和14点)间到达B 地,求小汽车行驶速度v 的范围.②方方能否在当天11点30分前到达B 地?说明理由.【解答】解:(1)∵vt =480,且全程速度限定为不超过120千米/小时, ∴v 关于t 的函数表达式为:v =480t ,(0≤t ≤4). (2)①8点至12点48分时间长为245小时,8点至14点时间长为6小时将t =6代入v =480t 得v =80;将t =245代入v =480t 得v =100. ∴小汽车行驶速度v 的范围为:80≤v ≤100.②方方不能在当天11点30分前到达B 地.理由如下:8点至11点30分时间长为72小时,将t =72代入v =480t 得v =9607>120千米/小时,超速了.故方方不能在当天11点30分前到达B 地.21.(10分)如图,已知正方形ABCD 的边长为1,正方形CEFG 的面积为S 1,点E 在DC边上,点G 在BC 的延长线上,设以线段AD 和DE 为邻边的矩形的面积为S 2,且S 1=S 2.(1)求线段CE 的长;(2)若点H 为BC 边的中点,连接HD ,求证:HD =HG .【解答】解:(1)设正方形CEFG 的边长为a , ∵正方形ABCD 的边长为1, ∴DE =1﹣a , ∵S 1=S 2,∴a 2=1×(1﹣a ),解得,a 1=−√52−12(舍去),a 2=√52−12, 即线段CE 的长是√52−12; (2)证明:∵点H 为BC 边的中点,BC =1, ∴CH =0.5,∴DH =√12+0.52=√52, ∵CH =0.5,CG =√52−12, ∴HG =√52, ∴HD =HG .22.(12分)设二次函数y =(x ﹣x 1)(x ﹣x 2)(x 1,x 2是实数).(1)甲求得当x =0时,y =0;当x =1时,y =0;乙求得当x =12时,y =−12.若甲求得的结果都正确,你认为乙求得的结果正确吗?说明理由.(2)写出二次函数图象的对称轴,并求该函数的最小值(用含x 1,x 2的代数式表示). (3)已知二次函数的图象经过(0,m )和(1,n )两点(m ,n 是实数),当0<x 1<x 2<1时,求证:0<mn <116.【解答】解:(1)当x=0时,y=0;当x=1时,y=0;∴二次函数经过点(0,0),(1,0),∴x1=0,x2=1,∴y═x(x﹣1)=x2﹣x,当x=12时,y=−14,∴乙说点的不对;(2)对称轴为x=x1+x2 2,当x=x1+x22时,y=−(x1−x2)24是函数的最小值;(3)二次函数的图象经过(0,m)和(1,n)两点,∴m=x1x2,n=1﹣x1﹣x2+x1x2,∴mn=[−(x1−12)2+14][−(x2−12)2+14]∵0<x1<x2<1,∴0≤−(x1−12)2+14≤14,0≤−(x2−12)2+14≤14,∴0<mn<1 16.23.(12分)如图,已知锐角三角形ABC内接于圆O,OD⊥BC于点D,连接OA.(1)若∠BAC=60°,①求证:OD=12OA.②当OA=1时,求△ABC面积的最大值.(2)点E在线段OA上,OE=OD,连接DE,设∠ABC=m∠OED,∠ACB=n∠OED (m,n是正数),若∠ABC<∠ACB,求证:m﹣n+2=0.【解答】解:(1)①连接OB、OC,则∠BOD=12BOC=∠BAC=60°,∴∠OBC=30°,∴OD=12OB=12OA;②∵BC长度为定值,∴△ABC面积的最大值,要求BC边上的高最大,当AD过点O时,AD最大,即:AD=AO+OD=3 2,△ABC面积的最大值=12×BC×AD=12×2OB sin60°×32=3√34;(2)如图2,连接OC,设:∠OED=x,则∠ABC=mx,∠ACB=nx,则∠BAC=180°﹣∠ABC﹣∠ACB=180°﹣mx﹣nx=12∠BOC=∠DOC,∵∠AOC=2∠ABC=2mx,∴∠AOD=∠COD+∠AOC=180°﹣mx﹣nx+2mx=180°+mx﹣nx,∵OE=OD,∴∠AOD=180°﹣2x,即:180°+mx﹣nx=180°﹣2x,化简得:m﹣n+2=0.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

精心整理2019年浙江省杭州市中考数学试题及答案一、选择题(共10小题)1.(3分)(2019?一模)下列计算结果为负数的是()A.﹣|﹣3| B.(﹣3)0C.(﹣3)2D.(﹣3)﹣22.(3分)(2010?安顺)下列关于的说法中错误的是()A.是无理数B.3<<4C.是12的算术平方根D.不能再化简3.(3分)(2011?枣庄)已知是二元一次方程组的解,则a﹣b的值为()A.﹣1 B.1C.2D.34.(3分)(2019?一模)不等式组的整数解共有()A.2个B.3个C.4个D.5个5.(3分)(2019?一模)如图,如果从半径为3cm的圆形纸片剪去圆周的一个扇形,将留下的扇形围成一个圆锥(接缝处不重叠),那么这个圆锥的高为()A.2cm B.cm C.4cm D.cm6.(3分)(2019?一模)一元二次方程x(x﹣2)=﹣(x﹣2)的根是()A.x=﹣1 B.x=2 C.x=1或x=2 D.x=﹣1或x=2 7.(3分)(2019?一模)张大伯在中国银行存入10000元人民币,并在存单上留下了6位数的密码,每个数字都是0﹣9这十个数字中的一个,但由于年龄的缘故,张大伯忘记了密码中间的两个数字,那么张大伯最多可能实验多少次,才能正确输入密码()A.1次B.50次C.100次D.200次8.(3分)(2019?一模)一个长方体的三视图如图所示,若其俯视图为正方形,则这个长方体的体积为()A.18 B.36 C.48 D.729.(3分)(2019?一模)如图,在锐角△ABC中,AB=6,∠BAC=45°,∠BAC的平分线交BC于点D,M,N分别是AD和AB上的动点,则BM+MN的最小值是()A.B.6C.D.310.(3分)(2019?一模)从1,2,3,4,5这五个数中,任取两个数p和q(p≠q),构成函数y1=px ﹣2和y2=x+q,使两个函数图象的交点在直线x=2的右侧,则这样的有序数组(p,q)共有()A.7组B.9组C.11组D.13组二.填空题(共6小题)11.(3分)(2019?一模)实数a,b在数轴上的位置如图所示,那么化简|a﹣b|﹣的结果是_________.12.(3分)(2019?一模)分解因式:﹣2a3+4a2﹣2a=_________.13.(3分)(2019?一模)如图,已知点B(1,﹣2)是⊙O上一点,过点B作⊙O的切线交x轴于点A,则tan∠BAO=_________.14.(3分)(2019?一模)数学老师布置10道选择题作业,批阅后得到如下统计表.根据表中数据可知,这45名同学答对题数组成的样本的中位数是_________题,众数是_________题.答对题数7 8 9 10人数 4 18 16 715.(3分)(2019?一模)抛物线y=2x2+x+c与坐标轴有两个交点,则字母c的取值满足的条件是_________.16.(3分)(2007?新疆)如图是一个边长为1的正方形组成的网络,△ABC与△A1B1C1都是格点三角形(顶点在网格交点处),并且△ABC∽△A1B1C1,则△ABC与△A1B1C1的相似比是_________.三.解答题(共7小题)17.(2019?一模)计算:当x=4sin30°﹣(﹣1)0,y=tan60°时,求[1﹣]÷+的值.18.(2011?随州)为了加强食品安全管理,有关部门对某大型超市的甲、乙两种品牌食用油共抽取18瓶进行检测,检测结果分成“优秀“、“合格“和“不合格”三个等级,数据处理后制成以下折线统计图和扇形统计图.(1)甲、乙两种品牌食用油各被抽取了多少瓶用于检测?(2)在该超购买一瓶乙品牌食用油,请估计能买到“优秀”等级的概率是多少?19.(2019?一模)某海防哨所O发现在他的东偏北60°方向,距离哨所400m的A处有一艘船向正东方向航行,经过2分钟后到达哨所的东北方向的B处,问船从A处到B处航速是多少千米/小时(精确到1千米/小时)?(参考数据≈1.414,≈1.732,≈2.236).20.(2019?一模)如图,在△ABC中,AD⊥BC,垂足为D.(1)尺规作图(不写作法,保留作图痕迹):作△ABC的外接圆⊙O,作直径AE,连接BE;(2)若AB=10,AC=8,AD=6,求BE的长.21.(2019?一模)如图,△ABC的面积为1,分别取AC、BC两边的中点A1、B1,记四边形A1ABB1的面积为S1;再分别取A1C、B1C的中点A2、B2,记四边形A2A1B1B2的面积为S2;再分别取A2C、B2C的中点A3、B3,依次取下去…(1)由已知,可求得S1=_________,S2=_________,S100=_________;(2)利用这一图形,计算.22.(2019?一模)已知二次函数y=x2+x﹣2的图象与y轴相交于点C,与x轴交于点A,B两点(点A在点B的左侧),其对称轴与x轴交于点D,连接AC.(1)点C的坐标为_________,点A的坐标为_________;(2)抛物线上是否存在点E,使得△EOA为等边三角形?若存在,求出所有符合条件的点E的坐标;若不存在,请说明理由;(3)点P为x轴下方的抛物线上的一个动点,连接PA,PC,记△PAC的面积为S,问S取何值时,相应的点P有且只有2个?23.(2019?一模)如图,矩形ABCD的4个顶点都在圆O上,将矩形ABCD绕点0按顺时针方向旋转α度,其中0°<α≤90°,旋转后的矩形落在弓形AD内的部分可能是三角形(如图1)、直角梯形(如图2)、矩形(如图3).已知AB=6,AD=8.(1)如图3,当α=_________度时,旋转后的矩形落在弓形内的部分呈矩形,此时该矩形的周长是_________;(2)如图2,当旋转后的矩形落在弓形内的部分是直角梯形时,设A2D2、B2C2分别与AD相交于点为E、F,求证:A2F=DF,AE=B2E;(3)在旋转过程中,设旋转后的矩形落在弓形AD内的部分为三角形、直角梯形、矩形时所对应的周长分别是c l、c2、c3,圆O的半径为R,当c1+c2+c3=6R时,求c1的值;(4)如图1,设旋转后A1B1、A1D1与AD分别相交于点M、N,当旋转到△A1MN正好是等腰三角形时,判断圆O的直径与△A1MN周长的大小关系,并说明理由.2019年浙江省杭州市中考数学试题及答案解析一、选择题(共10小题)1.(3分)(2019?一模)下列计算结果为负数的是()A.﹣|﹣3| B.(﹣3)0C.(﹣3)2D.(﹣3)﹣2考点:负整数指数幂;绝对值;有理数的乘方;零指数幂.专题:计算题.分析:负数就是大于0的数,可以先对每个选项进行化简,再判断正负即可.解答:解:A、﹣|﹣3|=﹣3,是负数,故选项正确;B、(﹣3)0=1>0,是正数,故选项错误;C、(﹣3)2=9>0,是正数,故选项错误;D、(﹣3)﹣2=>0,是正数,故选项错误.故选A.点评:对于负指数次幂的定义特别要注意,a﹣p=,不要出现(﹣3)﹣2=﹣9的错误.2.(3分)(2010?安顺)下列关于的说法中错误的是()A.是无理数B.3<<4C.是12的算术平方根D.不能再化简考点:二次根式的乘除法.分析:根据化简二次根式的法则可知.解答:解:因为=2,所以能再化简.故选D.点评:化简二次根式,关键是看被开方数有没有能开得尽方的因数和因式.3.(3分)(2011?枣庄)已知是二元一次方程组的解,则a﹣b的值为()A.﹣1 B.1C.2D.3考点:二元一次方程的解.专题:计算题;压轴题.分析:根据二元一次方程组的解的定义,将代入原方程组,分别求得a、b的值,然后再来求a﹣b的值.解答:解:∵已知是二元一次方程组的解,∴由①+②,得a=2,③由①﹣②,得b=3,④∴a﹣b=﹣1;故选A.点评:此题考查了二元一次方程组的解法.二元一次方程组的解法有两种:代入法和加减法,不管哪种方法,目的都是“消元”.4.(3分)(2019?一模)不等式组的整数解共有()A.2个B.3个C.4个D.5个考点:一元一次不等式组的整数解;不等式的性质;解一元一次不等式.专题:计算题.分析:根据不等式的性质求出不等式的解集,根据找不等式组解集的规律找出不等式组的解集即可.解答:解:,由①得:x≥﹣2,由②得:x<3,∴不等式组的解集是﹣2≤x<3,∴不等式组的整数解是﹣2,﹣1,0,1,2,共5个.故选D.点评:本题主要考查对不等式的性质,解一次不等式(组),一元一次不等式的整数解等知识点的理解和掌握,能根据不等式的解集找出不等式组的解集是解此题的关键.5.(3分)(2019?一模)如图,如果从半径为3cm的圆形纸片剪去圆周的一个扇形,将留下的扇形围成一个圆锥(接缝处不重叠),那么这个圆锥的高为()A.2cm B.cm C.4cm D.cm考点:圆锥的计算.分析:因为圆锥的高,底面半径,母线构成直角三角形,首先求得剩下扇形的圆心角的度数和弧长,然求得底面半径,利用勾股定理求得圆锥的高即可.解答:解:∵从半径为3cm的圆形纸片剪去圆周的一个扇形,∴剩下的扇形的角度=360°×=240°,∴留下的扇形的弧长==4π,∴圆锥的底面半径r==2cm,∴圆锥的高==cm.故选B.点评:主要考查了圆锥的性质,要知道(1)圆锥的高,底面半径,母线构成直角三角形,(2)此扇形的弧长等于圆锥底面周长,扇形的半径等于圆锥的母线长.解此类题目要根据所构成的直角三角形的勾股定理作为等量关系求解.6.(3分)(2019?一模)一元二次方程x(x﹣2)=﹣(x﹣2)的根是()A.x=﹣1 B.x=2 C.x=1或x=2 D.x=﹣1或x=2考点:解一元二次方程-因式分解法.分析:先移项,再分解因式,进得出两个一元一次方程,求出方程的解即可.解答:解:x(x﹣2)=﹣(x﹣2),x(x﹣2)+(x﹣2)=0,(x﹣2)(x+1)=0,x﹣2=0,x+1=0,x1=﹣1,x2=2,故选D.点评:本题考查了解一元二次方程的应用,解此题的关键是能把一元二次方程转化成一元一次方程.7.(3分)(2019?一模)张大伯在中国银行存入10000元人民币,并在存单上留下了6位数的密码,每个数字都是0﹣9这十个数字中的一个,但由于年龄的缘故,张大伯忘记了密码中间的两个数字,那么张大伯最多可能实验多少次,才能正确输入密码()A.1次B.50次C.100次D.200次考点:推理与论证.分析:得到中间两个空数的可能情况即可.解答:解:∵0﹣9这个十个数字中任取两个组合共有100种取法,∴王大伯最多可能试验100次,才能正确输入密码.故选:C.点评:此题主要考查了推理与论证,解决本题的关键是得到0﹣9这个十个数字中任取两个组合共有100种取法.8.(3分)(2019?一模)一个长方体的三视图如图所示,若其俯视图为正方形,则这个长方体的体积为()A.18 B.36 C.48 D.72考点:由三视图判断几何体.分析:根据对角线为3,俯视图是一个正方形,则边长为3,再根据长方体体积计算公式即可解答.解答:解:∵俯视图为正方形,根据主视图可得:正方形可得边长为3,长方体的高为4,∴长方体的体积:V=3×3×4=36.故选B.点评:此题考查了由三视图判断几何体,用到的知识点是三视图的基本知识以及长方体体积计算公式.9.(3分)(2019?一模)如图,在锐角△ABC中,AB=6,∠BAC=45°,∠BAC的平分线交BC于点D,M,N分别是AD和AB上的动点,则BM+MN的最小值是()A.B.6C.D.3考点:轴对称-最短路线问题.分析:作BH⊥AC,垂足为H,交AD于M′点,过M′点作M′N′⊥AB,垂足为N′,则BM′+M′N′为所求的最小值,再根据AD是∠BAC的平分线可知M′H=M′N′,再由锐角三角函数的定义即可得出结论.解答:解:如图,作BH⊥AC,垂足为H,交AD于M′点,过M′点作M′N′⊥AB,垂足为N′,则BM′+M′N′为所求的最小值.∵AD是∠BAC的平分线,∴M′H=M′N′,∴BH是点B到直线AC的最短距离(垂线段最短),∵AB=6,∠BAC=45°,∴BH=AB?sin45°=6×=3.∵BM+MN的最小值是BM′+M′N′=BM′+M′H=BH=3.故选C.点评:本题考查的是轴对称﹣最短路线问题,解答此类问题时要从已知条件结合图形认真思考,通过角平分线性质,垂线段最短,确定线段和的最小值.10.(3分)(2019?一模)从1,2,3,4,5这五个数中,任取两个数p和q(p≠q),构成函数y1=px﹣2和y2=x+q,使两个函数图象的交点在直线x=2的右侧,则这样的有序数组(p,q)共有()A.7组B.9组C.11组D.13组考点:两条直线相交或平行问题.分析:px﹣2=x+q的解就是两个函数图象的交点的横坐标,交点在直线x=2的右侧,即横坐标大于2,则可以得到p,q的关系式,然后列举从1、2,3,4,5这五个数中,任取两个数得到的所有情况,判断是否满足p,q的关系即可.解答:解:根据题意得:px﹣2=x+q,解得x=,则两个函数图象的交点的横坐标是,则当两个函数图象的交点在直线x=2的右侧时:>2,当p﹣1≠0时,则q>2p﹣4,在1,2,3,4,5这,五个数中,任取两个数有:(1,2),(1,3),(1,4),(1,5),(2,1)(2,3),(2,4),(2,5),(3,1),(3,2),(3,4),(3,5),(4,1),(4,2)(4,3),(4,5),(5,1)(5,2),(5,3),(5,4)共有20种情况.满足q>2p﹣4的有:(2,1),(2,3)(2,4),(2,5),(3,4),(3,5),(4,5)共7种情况.故这样的有序数组(p,q)共有7组.故选:A.点评:本题是一次函数与列举法的综合应用,根据条件,得到p,q满足的关系是关键.二.填空题(共6小题)11.(3分)(2019?一模)实数a,b在数轴上的位置如图所示,那么化简|a﹣b|﹣的结果是﹣b.考点:二次根式的性质与化简;实数与数轴.专题:计算题.分析:由数轴可得到a>0,b<0,|a|<|b|,根据=|a|和绝对值的性质即可得到答案.解答:解:∵a>0,b<0,|a|<|b|,∴原式=a﹣b﹣|a|=a﹣b﹣a=﹣b.故答案为﹣b.点评:本题考查了二次根式的性质与化简:=|a|.也考查了绝对值的性质.12.(3分)(2019?一模)分解因式:﹣2a3+4a2﹣2a=﹣2a(a﹣1)2.考点:提公因式法与公式法的综合运用.分析:先提取公因式﹣2a,再根据完全平方公式进行二次分解.完全平方公式:a2±2ab+b2=(a±b)2.解答:解:﹣2a3+4a2﹣2a=﹣2a(a2﹣2a+1)=﹣2a(a﹣1)2.故答案为:﹣2a(a﹣1)2.点评:本题考查了提公因式法,公式法分解因式,提取公因式后利用完全平方公式进行二次分解,注意分解要彻底.13.(3分)(2019?一模)如图,已知点B(1,﹣2)是⊙O上一点,过点B作⊙O的切线交x轴于点A,则tan∠BAO=.考点:切线的性质;坐标与图形性质.分析:过点B作BC⊥x轴于点C.故∠COB+∠OBC=90°,点B(1,﹣2)所以OC=1,BC=2.由切线的性质得∠OBA=90°,∠COB+∠BAO=90°,故∠BAO=∠OBC,tan∠BAO=tan∠OBC=.解答:解:过点B作BC⊥x轴于点C.∴∠COB+∠OBC=90°.∵点B(1,﹣2),∴OC=1,BC=2.∵AB是⊙O的切线,∴∠OBA=90°;∴∠COB+∠BAO=90°,∴∠BAO=∠OBC,∴tan∠BAO=tan∠OBC=.点评:本题主要考查了切线的性质以及点的坐标、锐角三角函数的求法.作出辅助线得出∠BAO=∠OBC是解题的关键.14.(3分)(2019?一模)数学老师布置10道选择题作业,批阅后得到如下统计表.根据表中数据可知,这45名同学答对题数组成的样本的中位数是9题,众数是8题.答对题数7 8 9 10人数 4 18 16 7考点:众数;中位数.分析:结合图表根据众数和中位数的定义解答.解答:解:∵一共有45人,∴中位数为第23人的成绩,∴中位数为9题;答对8个题的有18人,人数最多,所以众数是8题.故答案为9;8.点评:本题为统计题,考查众数与中位数的意义,一组数据中出现次数最多的数据叫做众数.平均数是指在一组数据中所有数据之和再除以数据的个数.它是反映数据集中趋势的一项指标.将一组数据从小到大依次排列,把中间数据(或中间两数据的平均数)叫做中位数.中位数把样本数据分成了相同数目的两部分.15.(3分)(2019?一模)抛物线y=2x2+x+c与坐标轴有两个交点,则字母c的取值满足的条件是c=或c=0.考点:抛物线与x轴的交点;根的判别式.专题:探究型.分析:根据抛物线与x轴有两个交点可知二次函数过原点或与x轴相切.故分两种情况解答:①将(0,0)代入解析式;②△=0.解答:解:∵抛物线y=2x2+x+c与坐标轴有两个交点,①将(0,0)代入解析式得c=0;②△=1﹣8c=0,解得c=.故答案为:c=,c=0.点评:本题考查的是抛物线与x轴的交点及根的判别式,熟知抛物线与x轴的交点问题与一元二次方程根的关系是解答此题的关键.16.(3分)(2007?新疆)如图是一个边长为1的正方形组成的网络,△ABC与△A1B1C1都是格点三角形(顶点在网格交点处),并且△ABC∽△A1B1C1,则△ABC与△A1B1C1的相似比是.考点:相似三角形的性质;勾股定理.专题:压轴题;网格型.分析:先利用勾股定理求出AC,那么AC:A′C′即是相似比.解答:解:由图可知AC==,A1C1=1,∴△ABC与△A1B1C1的相似比是:1.点评:本题考查对相似三角形性质的理解,相似三角形边长的比等于相似比.解答此题的关键是找出相似三角形的对应边.三.解答题(共7小题)17.(2019?一模)计算:当x=4sin30°﹣(﹣1)0,y=tan60°时,求[1﹣]÷+的值.考点:分式的化简求值;零指数幂;特殊角的三角函数值.专题:计算题.分析:原式第一项括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分后利用同分母分式的加法法则计算得到最简结果,利用特殊角的三角函数值及零指数幂法则求出x与y的值,代入计算即可求出值.解答:解:原式=?+=?+=﹣+=,当x=4sin30°﹣(﹣1)0=2﹣1=1,y=tan60°=3时,原式==.点评:此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.18.(2011?随州)为了加强食品安全管理,有关部门对某大型超市的甲、乙两种品牌食用油共抽取18瓶进行检测,检测结果分成“优秀“、“合格“和“不合格”三个等级,数据处理后制成以下折线统计图和扇形统计图.(1)甲、乙两种品牌食用油各被抽取了多少瓶用于检测?(2)在该超购买一瓶乙品牌食用油,请估计能买到“优秀”等级的概率是多少?考点:折线统计图;扇形统计图;概率公式.专题:图表型;数形结合.分析:(1)读折线统计图可知,不合格等级的有1瓶,读扇形统计图可知甲种品牌有不合格的,且只有1瓶,由此可求出甲种品牌的数量,据此解答即可.(2)根据随机事件概率大小的求法,找准两点:①符合条件的情况数目;②全部情况的总数;二者的比值就是其发生的概率的大小.解答:解:(1)1÷10%=10(瓶),18﹣10=8(瓶),即甲种品牌有10瓶,乙种品牌有8瓶.(2)∵甲,乙优秀瓶总数为10瓶,其中甲品牌食用油的优秀占到60%,∴甲的优秀瓶数为10×60%=6(瓶)∴乙的优秀瓶数为:10﹣(10×60%)=4(瓶),又∵乙种品牌共有8瓶,∴能买到“优秀”等级的概率是=.点评:本题考查的是扇形统计图和折线统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.19.(2019?一模)某海防哨所O发现在他的东偏北60°方向,距离哨所400m的A处有一艘船向正东方向航行,经过2分钟后到达哨所的东北方向的B处,问船从A处到B处航速是多少千米/小时(精确到1千米/小时)?(参考数据≈1.414,≈1.732,≈2.236).考点:解直角三角形的应用-方向角问题.分析:根据题意先画出图形,再分别解直角三角形AOC与直角三角形BOC,求出AC=200米,BC=200米,然后根据AB=BC﹣AC求出AB的长,则问题可求.解答:解:作AC⊥OC于点C.由题意有OA=400米,在直角三角形AOC中,∠AOC=90°﹣60°=30°,所以AC=200米,OC=200米.在直角三角形OBC中,∠BOC=45°,所以,BC=OC=200米,所以AB=BC﹣AC=200﹣200米,所以速度为(200﹣200)÷2=100﹣100(米/分)≈4千米/时.答:船从A处到B处航速约是4千米/小时.点评:本题考查了解直角三角形的应用﹣方向角问题,涉及到锐角三角函数、实数的运算、解直角三角形,难度适中.体现了数学与生活的密切联系,同时也进行了实数运算方面的进一步考查,根据题意准确画出图形是解题的关键.20.(2019?一模)如图,在△ABC中,AD⊥BC,垂足为D.(1)尺规作图(不写作法,保留作图痕迹):作△ABC的外接圆⊙O,作直径AE,连接BE;(2)若AB=10,AC=8,AD=6,求BE的长.考点:作图—复杂作图;三角形的外接圆与外心.分析:(1)首先利用三角形外接圆的作法得出AB,BC的垂直平分线,进而得出圆心位置,进而得出符合题意的图形;(2)利用三角形相似的判定与性质得出=,进而求出即可.解答:解:(1)如图所示:(2)∵AE是⊙O直径,∴∠ABE=90°,∵∠C=∠E,∠ADC=∠ABE,∴△ABE∽△ADC,∴=,∵AD=6,AC=8,∴DC=2,∴=,解得:BE=.点评:此题主要考查了三角形的外接圆的作法以及相似三角形的判定与性质等知识,得出DC的长进而求出是解题关键.21.(2019?一模)如图,△ABC的面积为1,分别取AC、BC两边的中点A1、B1,记四边形A1ABB1的面积为S1;再分别取A1C、B1C的中点A2、B2,记四边形A2A1B1B2的面积为S2;再分别取A2C、B2C的中点A3、B3,依次取下去…(1)由已知,可求得S1=,S2=,S100=;(2)利用这一图形,计算.考点:相似三角形的判定与性质;三角形中位线定理.专题:规律型.分析:(1)首先计算出第一个和第二个、第三个三角形的面积找到规律即可求出问题的答案;(2)根据(1)中的规律计算即可.解答:解:(1)∵A1、B1分别是AC、BC两边的中点,且△ABC的面积为1,∴△A1B1C的面积为1×=.∴四边形A1ABB1的面积=△ABC的面积﹣△A1B1C的面积==1﹣;∴四边形A2A1B1B2的面积=△A1B1C的面积﹣△A2B2C的面积=﹣=.…,∴第n个四边形的面积=,∴S100=.故答案为:,,;(2)由(1)可知:=()=.点评:本题考查了三角形的中位线性质定理和相似三角形的性质,同时也考查了学生通过特例分析从而归纳总结出一般结论的能力.22.(2019?一模)已知二次函数y=x2+x﹣2的图象与y轴相交于点C,与x轴交于点A,B两点(点A在点B的左侧),其对称轴与x轴交于点D,连接AC.(1)点C的坐标为(0,﹣2),点A的坐标为(﹣4,0);(2)抛物线上是否存在点E,使得△EOA为等边三角形?若存在,求出所有符合条件的点E的坐标;若不存在,请说明理由;(3)点P为x轴下方的抛物线上的一个动点,连接PA,PC,记△PAC的面积为S,问S取何值时,相应的点P有且只有2个?考点:二次函数综合题.分析:(1)抛物线的解析式中,令x=0可得二次函数与y轴交点C的纵坐标,令y=0可得二次函数与x轴交点的横坐标;(2)若在x轴下方的抛物线上存在一点E,使△EOA为等边三角形,先由OA=4,根据等边三角形的性质得出点E的坐标为(﹣2,﹣2),再将x=﹣2代入y=x2+x﹣2,求出y的值,即可判断点E是否在抛物线上;(3)过点B、点O分别作AC的平行线,记为l1,l2,与AC平行且与抛物线y=x2+x﹣2只有一个交点的直线记为l3,设此唯一交点为T.利用待定系数法求得直线AC的解析式为y=﹣x﹣2,直线l3的解析式为y=﹣x﹣4.设直线l3与y轴的交点为H,直线l2与抛物线在x 轴下方的交点为N,则H(0,﹣4).作CM⊥直线l3于点M,得出△CMH∽△AOC,根据相似三角形对应边成比例得到=,求出CM=,即直线l3与AC之间的距离为.由CH=CO=2,得出直线l2与AC之间的距离也是,根据三角形的面积公式求出S△TAC=S△NAC=×2×=4,则S=4时,相应的点P有且只有2个,就是点T和点N.在直线l2与直线l3之间,S的值对应的点P有三个;在直线l1与直线l2之间,S的值对应的点P只有一个.解答:解:(1)∵y=x2+x﹣2,∴当x=0时,y=﹣2,∴点C的坐标为(0,﹣2).当y=0时,x2+x﹣2=0,即:x2+3x﹣4=0,解得x=﹣4和x=1,∴点A的坐标为(﹣4,0),点B的坐标为(1,0).故答案为(0,﹣2),(﹣4,0);(2)若在x轴下方的抛物线上存在一点E,使△EOA为等边三角形,则因为OA=4,所以点E的坐标为(﹣2,﹣2),但当x=﹣2时,y=×(﹣2)2+×(﹣2)﹣2=﹣3≠﹣2,所以点E不在抛物线上,所以不存在符合要求的点E;(3)过点B、点O分别作AC的平行线,记为l1,l2,与AC平行且与抛物线y=x2+x﹣2只有一个交点的直线记为l3,设此唯一交点为T.可求得直线AC的解析式为y=﹣x﹣2,直线l3的解析式为y=﹣x﹣4.设直线l3与y轴的交点为H,直线l2与抛物线在x轴下方的交点为N,则H(0,﹣4).作CM⊥直线l3于点M,则△CMH∽△AOC,∴=,即=,CM=,∴直线l3与AC之间的距离为.∵CH=CO=2,∴直线l2与AC之间的距离也是,∴S△TAC=S△NAC=×2×=4,∴S=4时,相应的点P有且只有2个,就是点T和点N.在直线l2与直线l3之间,对于每一条与AC平行的直线l,在AC的另一侧,有且只有一条直线l′,使得l′∥AC∥l,且这三条平行线之间的距离相等,直线l与l′与抛物线共有三个交点,这三个点分别与AC构成的三角形面积相等,即此时S的值对应的点P有三个.在直线l1与直线l2之间,平行于AC的直线与抛物线在x轴下方只有一个交点,所以此时S的值对应的点P只有一个.故只有当S=4时,相应的点P有且只有2个.点评:本题是二次函数的综合题型,其中涉及到二次函数图象上点的坐标特征,运用待定系数法求一次函数的解析式,等边三角形的性质,相似三角形的判定与性质,三角形的面积等知识,综合性较强,有一定难度.理解题意、运用数形结合思想是解题的关键.23.(2019?一模)如图,矩形ABCD的4个顶点都在圆O上,将矩形ABCD绕点0按顺时针方向旋转α度,其中0°<α≤90°,旋转后的矩形落在弓形AD内的部分可能是三角形(如图1)、直角梯形(如图2)、矩形(如图3).已知AB=6,AD=8.(1)如图3,当α=90度时,旋转后的矩形落在弓形内的部分呈矩形,此时该矩形的周长是14;(2)如图2,当旋转后的矩形落在弓形内的部分是直角梯形时,设A2D2、B2C2分别与AD相交于点为E、F,求证:A2F=DF,AE=B2E;(3)在旋转过程中,设旋转后的矩形落在弓形AD内的部分为三角形、直角梯形、矩形时所对应的周长分别是c l、c2、c3,圆O的半径为R,当c1+c2+c3=6R时,求c1的值;(4)如图1,设旋转后A1B1、A1D1与AD分别相交于点M、N,当旋转到△A1MN正好是等腰三角形时,判断圆O的直径与△A1MN周长的大小关系,并说明理由.考点:圆内接四边形的性质;矩形的性质;直角梯形;圆心角、弧、弦的关系;圆周角定理.专题:计算题;证明题;探究型.分析:(1)根据矩形的性质可以得到旋转角应是90°,根据矩形的长和宽即可计算得到的矩形的周长;(2)根据旋转得到对应点之间的弧相等,再根据等弧所对的圆周角相等和等角对等边进行证明;(3)根据矩形的外接圆的圆心即是其对角线的交点,得到矩形的外接圆的半径等于其对角线的一半5,再根据(1)和(2)的思路,可以求得它们的周长分别是8,再进一步求得C1的长;(4)根据矩形的角都是直角,则该三角形应是等腰直角三角形.根据等腰直角三角形的性质和矩形的长和宽列方程求得三角形的周长,再进一步运用求差法比较其大小.解答:解:(1)当α=90°时,旋转后的矩形落在弓形内的部分呈矩形,此时该矩形的周长是6×2+(8﹣6)=14.(2)①如图,连接A2D,∵=,∴∠ADA2=∠DA2D2;∴A2F=DF.②如图,连接AB2∵AD=B2C2,∴=;∴﹣=﹣;∴=;∴∠AB2C2=∠DAB2;∴AE=B2E.(3)由(1)(2)得C2=14,C3=14∵AB=6,AD=8,∠A=90°,∴R=5,当C1+C2+C3=6R时,C1=2;(4)如图,设A1B1交AB于P,A1M=a,AM=b,∵△A1MN正好是等腰三角形,∠A1=90°,∴∠A1NM=∠A1MN=∠AMP=45°;∴MN==a,∴AD=AM+MN+ND=b+a+a=8…(一);同(1)①可证AP=B1P;∴A1B1=A1M+MP+PB1=a+b+b=6…(二);(二)﹣(一)得:a﹣b=2;∴a﹣b=,即A1M﹣AM=;∴△A1MN的周长=AD+=8+;而⊙O的直径为10,∴⊙O的直径与△A1MN的周长差为10﹣(8+)=2﹣>0;∴⊙O的直径大于△A1MN的周长.点评:此题综合运用了旋转的性质和等腰三角形的判定和性质.综合性强,难度较大.参与本试卷答题和审题的老师有:zhxl;HLing;lf2-9;nhx600;zjx111;sjzx;gbl210;lantin;ZJX;杨金岭;gsls;zcx;wdzyzlhx;HJJ;王岑;CJX;sks;lbz;yangwy;MMCH;心若在(排名不分先后)菁优网2014年12月14日。

相关文档
最新文档