社会影响力分析——模型、方法和评价
统计师如何进行社会网络分析和影响力评估
统计师如何进行社会网络分析和影响力评估社会网络分析(Social Network Analysis,SNA)和影响力评估是统计师在处理大量数据时经常使用的工具和技术。
通过对社交媒体平台、组织内部关系、用户行为模式等进行分析,统计师能够揭示出人们之间的连接方式和影响力强弱,为决策提供科学依据。
本文将介绍统计师如何进行社会网络分析和影响力评估,并探讨其在实践中的应用。
一、社会网络分析的基本原理与方法社会网络分析是一种基于图论和复杂网络理论的方法,通过构建网络模型、分析节点和边的关系,以及测量各种网络指标,来揭示出社会系统中的关键信息。
统计师在进行社会网络分析时,可以遵循以下基本原理和方法:1. 构建网络模型:将社会关系抽象成网络中的节点和边。
节点代表个体,边代表两个个体之间的关系。
统计师可以根据研究目的和数据特点选择适当的网络模型,如有向网络、无向网络、加权网络等。
2. 分析节点和边的关系:通过计算节点的度、中心性和群聚系数等指标,了解节点在网络中的重要性和连接程度。
同时,还可以分析边的强度、传递性和传播力等属性,揭示出关系的特点和影响力。
3. 测量网络指标:统计师可以利用网络指标来揭示网络的结构和演化规律。
例如,可以计算网络的密度、直径和连通分量等指标,了解网络的聚集程度、长度和群体划分情况。
二、社会网络分析在实践中的应用1. 社交媒体分析:统计师可以利用社会网络分析来研究用户在社交媒体平台上的行为和关系。
通过构建用户之间的社交图谱,可以发现用户之间的交流模式、兴趣关注度以及信息传播路径。
这对于企业进行精准广告投放、舆情监测和用户画像分析等方面具有重要意义。
2. 组织内部关系分析:统计师可以根据员工之间的合作关系和信息流动情况,分析组织内部的社会网络结构。
通过揭示出组织内部信息流动的瓶颈和关键人物,可以为组织改进运营效率、优化团队协作提供参考依据。
3. 社会影响力评估:社会网络分析还可以用于评估个人、组织或产品的影响力。
政策评估的理论、模型与方法
政策评估的理论、模型与方法政策评估是公共政策领域中至关重要的一环,它有助于了解政策的制定、实施和效果,进而为政策制定者提供有价值的信息和建议。
本文将简要介绍政策评估的基本概念和理论,阐述如何建立政策评估的模型,并介绍政策评估的方法论,最后结合具体案例进行分析,并对未来发展趋势和应用前景进行探讨。
政策评估是对政策制定、实施和效果进行全面、系统地评价和评估的过程。
它旨在了解政策的可行性、效果和影响,从而为政策的调整和优化提供依据。
政策评估包括政策制定方面的评估,如政策目标是否合理、政策措施是否完善等;政策实施方面的评估,如实施过程中存在的问题、政策执行力度等;以及政策效果方面的评估,如政策是否达到预期目标、政策产出等。
建立政策评估模型是进行政策评估的关键环节,包括以下三个步骤:数据采集:收集与政策相关的数据是进行政策评估的基础。
数据来源可以包括政府部门、学术研究、媒体报道等。
数据处理:对采集到的数据进行清洗、整理和分析。
这包括对数据的筛选、标准化和量化等。
模型构建:根据采集和处理后的数据,构建适合的政策评估模型。
这可以包括定性和定量模型的建立,如回归分析、因子分析、结构方程模型等。
统计学方法:运用统计学原理,对收集到的数据进行描述性统计和推断性统计。
如通过均值、方差、相关系数等描述性统计指标,对数据进行初步分析;通过回归分析、因子分析等推断性统计方法,探究数据之间的因果关系和内在。
主观性的客观性评价方法:在评价政策的实施效果时,可以采用客观指标为主、主观指标为辅的方法。
例如,通过政府公报、新闻报道等途径收集客观数据,运用数学模型或算法对数据进行处理和分析;同时,也可以通过调查问卷、个案访谈等方式收集群众的主观感受和意见,了解群众对政策的满意度和认可度。
结合专家意见的综合性评价方法:在评价政策的制定和实施效果时,可以邀请相关领域的专家学者进行评估。
专家们可以根据自己的专业知识和经验,对政策的制定和实施提出独立的意见和建议。
-社会网络分析方法
-社会网络分析方法
社会网络分析是一种研究社会关系和网络结构的方法,它可以揭示人际关系、信息传播和网络演化等社会现象。
社会网络分析的主要方法包括以下几个方面:
1. 社会网络数据的收集和整理:社会网络数据可以通过问卷调查、观察记录、社交媒体数据挖掘等方式收集。
数据整理包括数据清洗、数据转换和数据存储等过程。
2. 社会网络可视化:通过使用可视化工具和技术,将社会网络数据以图形形式呈现出来。
社会网络的节点表示个体,边表示个体之间的联系,可以直观地展示社会网络结构和特征。
3. 社会网络度量和分析:通过计算社会网络的度、中心性、密度、连通性等指标,来描述社会网络的结构和特征。
例如,度中心性可以衡量个体在网络中的重要性,而密度可以反映网络内部的联系紧密程度。
4. 社会网络模型:通过建立数学模型,来模拟和预测社会网络的发展和演化。
常用的模型包括小世界网络模型、无标度网络模型等。
5. 社会网络影响力分析:研究社会网络中信息传播的过程和机制,揭示个体对
社会网络的影响力和信息传播的路径。
常用的影响力分析方法包括信息传播模型、影响力传播模型等。
6. 社会网络社群发现:通过挖掘社会网络中的社群结构,找出具有相似特征和相互关联的个体群体。
社群发现有助于理解社会网络中的内部结构和个体间的相互作用。
社会网络分析方法可以应用于各个领域,如社会学、心理学、管理学等,用于研究个体行为、组织关系、社会动力学等问题,并帮助决策者做出更加有效的决策。
基于大数据的社交媒体影响力分析与评估
基于大数据的社交媒体影响力分析与评估随着现代社会的发展,社交媒体已经成为人们日常生活不可或缺的一部分。
人们在社交媒体上发布各种信息,同时也通过社交媒体获取大量的信息。
社交媒体的影响力日益增强,越来越多的人开始关注和评估社交媒体上的影响力。
本文将探讨基于大数据的社交媒体影响力分析与评估。
一、社交媒体影响力的概念社交媒体影响力指的是一个个体或者组织在社交媒体上的影响力大小。
影响力包括影响力广度和影响力深度。
影响力广度指的是影响的范围,即受到影响的人数;影响力深度指的是影响的程度,即受到影响的人对信息的接受程度。
社交媒体平台上可以通过一系列指标来评估影响力,包括粉丝数、转发数、评论数、点赞数等。
这些指标可以反映某一位用户在社交媒体上影响力的大小。
二、影响力分析的必要性社交媒体上信息量大,传播速度快,传播效果明显。
对于企业、政府和个人来说,掌握社交媒体的影响力是很重要的。
影响力分析可以帮助用户了解自己在社交媒体上的影响力水平,以及与其他用户的影响力对比情况。
通过分析自己在社交媒体上的影响力,用户可以进一步制定和调整自己在社交媒体上的宣传策略,提高自己的口碑和品牌知名度。
同时,影响力分析也可以帮助企业和政府机构了解公众的反馈、需求和意见,进一步改进和完善产品和服务。
对于个人用户来说,影响力分析还可以帮助他们了解自己在社交媒体上的形象和声誉。
三、基于大数据的影响力分析方法基于大数据的影响力分析是一种基于数据挖掘和机器学习等技术的分析方法。
这种方法可以通过收集、整理和分析大量的数据,快速、准确地评估用户在社交媒体上的影响力。
在影响力分析中,数据来源是非常重要的。
对于社交媒体影响力的评估需要用到不同社交媒体平台的用户数据,比如新浪微博、微信、抖音、ins、Twitter等。
同时,还需要收集用户在社交媒体平台上发表的文章、评论、点赞等信息,用于分析用户的影响力。
影响力分析过程中的关键是特征选取和评估模型。
特征选取指的是从样本数据中选出能够有效反映影响力的特征和指标,比如用户粉丝数、转发数、评论数、点赞数等。
swot分析法案例(浅析SWOT分析模型)
swot分析法案例(浅析SWOT分析模型)「正所谓时势造英雄,越是动乱的时代就越是能够创造英雄,并不是英雄突然变多了,而是时代需要这样的“英雄”来改变什么。
」一、SWOT概述在商业战略中,SWOT分析模型经常被运用在竞争分析环境下。
这一概念首次出现是在20世纪80年代初,由美国旧金山大学管理学教授海因茨·韦里克(Heinz·Weihrich)提出,后经麦肯锡咨询公司优化才得以实现商业化应用。
根据SWOT所制定的策略,需要基于内外部的现状条件综合分析,然后根据趋势作相应的变更。
因此也被称作“态势分析法”,即通过分析,将与主体相关的优势、劣势、机会和威胁进行统筹综效,并运用系统性思维来制定一份具备决策性质的策略结论。
既然是关乎商业决策的分析,那么交给老板、利益相关者就好,身为用户体验设计师又何必去了解这方面的内容呢?SWOT从核心优势上来看,主要是用来协助相关者分析特定对象的优势和劣势,以及特定对象在所处内外部环境中所收到造成的积极或者消极影响。
因此SWOT将目光聚焦在企业和产品(以下统称企业)的内外因素上,帮助企业制定符合自身的发展战略。
对于设计师来说,可以配合竞争用户调研、营销分析等竞品分析行为。
二、SWOT模型构成SWOT的命名是四个象限的首字母缩写,即:•优势(Strengths);•劣势(Weakness);•机会(Opportunity);•威胁(Threats)。
这种分析方法的好处是可以站在维度视角审视全局:优势和机会对于企业来说是最理想化的维度,而劣势和威胁则需要根据环境进行综合分析,争取转变为企业发展的动因。
上图是模型的矩阵结构,可以看出S、W、O、T是四个单一维度,彼此独立,但却可以通过交叉重叠产生不同的结论。
我们先来拆解一下这四个维度的构成属性:随着全球经济一体化的日趋完善,并基于信息网络的便利性和消费需求的多元化,为诸多企业创造出了更为开放同时更具波动的市场环境。
社会网络分析中的影响力传播模型比较
社会网络分析中的影响力传播模型比较社会网络分析是一种研究社会关系网络中信息传播、影响力传播等现象的方法。
而影响力传播模型是用来描述和预测一个人、组织或者观点在社交网络中传播、扩散的过程和效果的模型。
在社交网络的分析中,选择适合的影响力传播模型对于理解和预测信息传播的效果具有重要意义。
本文将比较和探讨几种常见的影响力传播模型,并分析它们的优劣之处。
1. 独立级联模型(Independent Cascade Model,IC Model)独立级联模型是影响力传播模型中应用最广泛的一种模型。
它基于独立级联假设,认为每个节点在决定是否转发信息时是独立进行决策的。
也就是说,每个节点有一定的转发概率,如果接收到信息后,根据这一概率决定是否转发给自己的邻居节点。
优点:- 模型简单明了,易于理解和应用。
- 能够较好地模拟信息在社交网络中的传播过程。
- 可以通过模拟和实验计算的方式来推导影响力的扩散规律。
缺点:- 忽略了节点之间的互动和协作,缺乏现实性。
- 不考虑节点内部的属性和特征,无法充分描述个体对信息传播的影响力。
2. 线性阈值模型(Linear Threshold Model,LT Model)线性阈值模型是另一种常用的影响力传播模型。
它基于节点的阈值设定,认为每个节点对信息的传播有一个阈值,只有当其邻居节点中转发该信息的节点数量超过阈值时,该节点才会转发信息。
优点:- 考虑了节点之间的互动和协作。
- 能够更好地模拟个体对信息传播的影响力。
缺点:- 阈值设定较为复杂,需要精确的参数估计,实际应用中难以获得。
- 忽略了节点内部的属性和特征,无法充分描述个体对信息传播的影响力。
3. 双阈值模型(Threshold Model with Multiple Thresholds)双阈值模型是对线性阈值模型的扩展和改进。
它认为每个节点对信息传播有两个阈值,一个表示接受和传播信息的阈值,一个表示拒绝和忽略信息的阈值。
影响力传播模型
影响力传播模型影响力传播模型是一种研究信息、观念、产品等在社会网络中传播过程的模型。
该模型基于社会网络理论,通过分析社会网络中节点(个体)之间的关系和传播路径,来揭示信息传播的规律。
影响力传播模型的主要观点是,信息或观念的传播受到个体节点的影响力驱动,而这种影响力又受到个体节点在社交网络中的位置、属性等因素的影响。
具体来说,影响力传播模型认为,个体节点在社会网络中具有不同的影响力,这种影响力可以通过节点之间的互动关系、节点属性等因素来衡量。
影响力传播模型在许多领域都有广泛的应用。
例如,在市场营销中,企业可以通过分析消费者的社交网络,找到具有影响力的节点,从而有效地推广产品。
在公共卫生领域,影响力传播模型可以帮助研究者了解健康信息在人群中的传播方式,为制定健康教育策略提供依据。
此外,该模型还在政治传播、信息安全等领域发挥着重要作用。
然而,影响力传播模型也存在一些局限性。
首先,该模型基于一定的假设,例如所有节点的传播能力是固定的,传播过程是随机的等,这些假设可能与实际情况存在一定差距。
其次,影响力传播模型主要关注信息的传播路径和速度,而忽略了信息传播的内容和质量。
此外,由于社会网络的复杂性和动态性,模型的建立和求解过程具有一定的难度。
以下是几个应用影响力传播模型进行市场分析的应用实例:1.社交媒体营销:在社交媒体时代,品牌或产品的影响力可以通过社交网络传播,进而影响消费者的购买决策。
企业可以利用影响力传播模型分析社交媒体上的用户互动和传播路径,找到具有影响力的节点或群体,制定针对性的营销策略,提高品牌或产品的曝光度和销售量。
2.口碑营销:口碑是消费者对产品或服务的一种重要评价方式。
通过影响力传播模型,企业可以分析消费者之间的口碑传播路径和影响力,了解哪些消费者具有较大的影响力,进而制定口碑营销策略,提高产品或服务的知名度和美誉度。
3.品牌传播:品牌传播是企业向消费者传递品牌价值的重要手段。
通过影响力传播模型,企业可以分析品牌在社交网络中的传播路径和影响力,了解哪些传播渠道和内容对品牌传播效果最好,进而优化品牌传播策略,提高品牌知名度和忠诚度。
公益慈善项目社会贡献评估
公益慈善项目社会贡献评估公益慈善项目在社会中扮演着重要的角色,对社会的发展和提升具有深远的影响。
评估公益慈善项目的社会贡献,不仅有助于了解项目的实际效果,还能为项目的改进提供指导和建议。
本文将介绍公益慈善项目社会贡献评估的重要性以及评估的方法和工具。
一、公益慈善项目社会贡献的重要性公益慈善项目的目标是为社会提供帮助和改善社会问题。
评估这些项目的社会贡献可以帮助我们了解项目是否达到预期目标,并根据评估结果进行调整和优化。
此外,社会贡献评估还可以为项目的申请资金、宣传报道和合作伙伴寻找提供有力的证据和数据支持。
二、公益慈善项目社会贡献评估的方法和工具1. 目标评估法目标评估法是最常用的评估方法之一。
该方法通过设定明确的目标,并制定相应的指标和评估标准,来评估慈善项目是否实现了预期目标。
评估过程中需要收集和分析各项数据和证据,从而对项目的效果进行客观和全面的评估。
2. 社会影响力评估法社会影响力评估法是一种综合的评估方法,旨在评估慈善项目对社会带来的影响和变化。
此方法通过定量和定性的数据收集,分析项目的正面和负面影响,并采用特定的模型和工具来量化和评估这些影响。
常用的工具包括逻辑模型和社会影响力评价矩阵等。
3. 创新评估法创新评估法是一种面向项目创新性和独特性评估的方法。
对于那些以新的方式解决社会问题的慈善项目,创新评估法可以帮助评估项目的独特性和创新性,并提出改进建议。
创新评估法通常采用定性研究和案例分析等方法来了解项目的独特性和创新性。
4. 效果评估法效果评估法是评估慈善项目成果和效果的一种方法。
这种方法通过对项目的实施过程和结果进行评估,来了解项目的实际效果和贡献。
在评估过程中,需要收集和分析项目的各项数据和证据,以确定项目的实际影响和改变。
三、公益慈善项目社会贡献评估实施的步骤1. 确定目标和指标在进行评估之前,需要明确项目的目标和预期效果,并制定相应的指标和评估标准。
这些指标和评估标准应该具体、可衡量和可操作。
社会网络的理论建模与分析方法
社会网络的理论建模与分析方法引言社会网络理论作为一门跨学科的领域,涵盖了多个学科的知识,包括社会学、心理学、统计学和计算机科学等。
社会网络的理论建模和分析方法是研究社会网络中人际关系、信息传播、群体行为等重要问题的基础工具。
本文将介绍社会网络的基本概念和理论模型,并介绍一些常用的社会网络分析方法。
1. 社会网络概述社会网络是指由一组个体(节点)和它们之间的联系(边)组成的网络。
在社会网络中,个体可以是人、组织、物体或其他实体,而联系可以是人际关系、信息传递、资源分配等。
社会网络的研究可以帮助我们理解人类社会的结构和动态。
2. 社会网络的理论建模社会网络的理论建模是研究社会网络的结构与动态的基础。
常用的社会网络理论模型包括:2.1. 符号网络模型符号网络模型是最早发展起来的社会网络模型,在该模型中,节点代表个体,边代表个体之间的关系。
符号网络模型适用于研究人际关系、社会影响等问题。
2.2. 关系网络模型关系网络模型是一种基于隐含关系的社会网络模型,节点代表个体,边代表个体之间的共享关系或相似性。
关系网络模型适用于研究兴趣群体、文化扩散等问题。
2.3. 随机图模型随机图模型是基于概率统计方法的社会网络模型,节点代表个体,边代表个体之间的随机连接。
随机图模型适用于研究网络演化、信息传播等问题。
3. 社会网络分析方法社会网络分析方法是研究社会网络数据的工具,可以帮助我们揭示网络中的模式和规律。
常用的社会网络分析方法包括:3.1. 中心性分析中心性分析用于衡量节点在社会网络中的重要程度,常用的中心性指标包括度中心性、接近中心性和介数中心性等。
3.2. 社区发现社区发现是研究社会网络中群体结构的方法,可以将网络中相似的节点聚类成社区。
常用的社区发现方法包括基于模块度的方法和基于谱聚类的方法。
3.3. 信息传播分析信息传播分析研究社会网络中信息的传播路径和传播速度。
常用的信息传播分析方法包括影响力最大化、信息流模型和级联模型等。
五力模型、SWOT、IFE、PEST分析案例
五力模型、SWOT、IFE、PEST分析案例目录一、内容概览 (2)1.1 研究背景与意义 (3)1.2 研究方法与数据来源 (4)1.3 论文结构安排 (5)二、五力模型分析 (6)2.1 行业竞争环境概述 (8)2.2 行业内现有竞争者的竞争能力 (10)2.3 潜在竞争者进入的能力 (11)2.4 替代品的替代能力 (12)2.5 供应商的议价能力 (13)2.6 购买者的议价能力 (13)三、SWOT分析 (15)3.1 企业优势 (17)3.2 企业劣势 (18)3.3 企业面临的机会 (19)3.4 企业面临的威胁 (20)四、IFE分析 (21)4.1 企业内部优势因素 (22)4.2 企业内部劣势因素 (23)4.3 企业外部机会因素 (24)4.4 企业外部威胁因素 (25)五、PEST分析 (27)5.1 政治法律环境 (28)5.2 经济环境 (29)5.3 社会文化环境 (31)5.4 技术环境 (32)六、案例研究 (33)6.1 案例选择与背景介绍 (35)6.2 五力模型分析结果 (36)6.3 SWOT分析结果 (37)6.4 IFE分析结果 (39)6.5 PEST分析结果 (40)6.6 综合分析与策略建议 (42)七、结论与展望 (43)7.1 研究结论总结 (44)7.2 对企业战略的启示 (46)7.3 研究局限性与未来展望 (47)一、内容概览本文档旨在深入探讨企业战略分析与规划的核心方法——五力模型、SWOT分析、IFE(Internal Factor Evaluation,内部因子评价)、PEST(Political, Economic, Social, Technological,即政治、经济、社会、技术)分析。
这些工具是商业策略制定过程中不可或缺的决策支持系统,帮助管理层全面审视企业内外部环境,优化资源配置,提升竞争力。
由迈克尔波特提出,通过评估行业内的竞争力量,揭示市场结构与盈利潜力。
管理学原理——海尔集团PEST模型、五力模型、SWOT模型分析
管理学我国已经加入了WTO,这既带来了难得的机遇,也带来了巨大的挑战,竞争将空间激烈.为了提高我国的企业的国际竞争力,必须科学有效的分析这个企业的竞争优势,并为其提出在竞争环境中发展的对策建议。
下面我将对海尔集团进行PEST模型、五力模型、SWOT模型分析。
一.PEST模型.所谓“PEST”分析是指通过对政治、经济、社会和技术等因素进行分析,来确定这些因素的变化对海尔集团发展战略管理过程的影响。
1.政治法律环境1984年12月26日,张瑞敏带领新的领导班子来到小白干路上的青岛电冰箱总厂,这便有了海尔集团的前身.在1987年世界卫生组织进行的招标中,海尔冰箱战胜十多个国家的冰箱产品,第一次在国际招标中中标!海尔的发展逐渐引起了各级领导和社会各界的关注.2007年,海尔在中国家电市场的整体份额达到25%以上,依然保持份额第一;尤其在高端产品领域,海尔市场份额高达30%以上,其中,海尔在白色家电市场上仍然遥遥领先。
在智能家居集成、网络家电、数字化、大规模集成电路、新材料等技术领域也处于世界领先水平.“创新驱动”型的海尔集团致力于向全球消费者提供满足需求的解决方案,实现企业与用户之间的双赢。
而现在,海尔集团旗下拥有240多家法人单位,在全球30多个国家建立本土化的设计中心、制造基地和贸易公司,全球员工总数超过五万人。
海尔集团重点发展科技、工业、贸易、金融四大支柱产业,已发展成全球营业额超过1000亿元规模的跨国企业集团。
在海尔发展的将近30年来,一直依据国家的相关法律法规,秉持着遵纪守法的理念,进行企业管理,企业发展.在国内,也是守法企业的代表。
2.经济环境1993年,海尔品牌成为首批中国驰名商标;2006年,海尔品牌价值高达749亿元,自2002年以来,海尔品牌价值连续四年蝉联中国最有价值品牌榜首。
海尔品牌旗下冰箱、空调、洗衣机、电视机、热水器、电脑、手机、家居集成等18个产品被评为中国名牌,其中海尔冰箱、洗衣机还被国家质检总局评为首批中国世界名牌,2009年,海尔冰箱入选中国世界纪录协会世界冰箱销量第一,创造了新的世界之最。
2022数学建模B题 上海世博会影响力的定量评估
2022数学建模B题上海世博会影响力的定量评估【2022数学建模B题上海世博会影响力的定量评估】一、引言上海世博会作为全球最重要的世界级博览会之一,对于城市的发展和国际影响力的提升具有重要意义。
本文旨在通过定量评估的方法,对上海世博会的影响力进行客观分析和评价,为相关决策提供科学依据。
二、数据采集和处理1. 数据来源本文彩用多种数据来源,包括但不限于:上海世博会组织委员会提供的官方数据、相关研究报告、新闻媒体报导以及公开数据等。
2. 数据处理针对采集到的数据,我们将进行数据清洗、整理和分析。
其中,数据清洗包括去除异常值和缺失值的处理,确保数据的准确性和完整性。
数据整理包括将不同来源的数据进行统一格式和单位的转换。
数据分析包括对数据进行统计分析和可视化展示,以便更好地理解和解释数据。
三、影响力评估指标的建立1. 影响力评估指标体系根据上海世博会的特点和目标,我们建立了包括经济影响、社会影响和环境影响等方面的评估指标体系。
具体指标包括但不限于:参观人数、展览面积、展品数量、经济收入、就业机会、环境污染等。
2. 指标权重确定为了客观评估上海世博会的影响力,我们将采用层次分析法(AHP)和主成份分析法(PCA)等方法,对各个指标的权重进行确定。
通过专家访谈、问卷调查等方式,获取不同利益相关者对各指标的评价和重要性排序,进而得出权重结果。
四、影响力评估模型的建立1. 影响力评估模型基于以上数据和指标体系,我们将建立影响力评估模型。
该模型将综合考虑各个指标的权重,通过数学计算和统计分析,得出上海世博会的影响力评估结果。
2. 模型验证和优化为了确保模型的准确性和可靠性,我们将对模型进行验证和优化。
通过与实际数据的对照和回归分析等方法,评估模型的拟合程度和预测能力,并对模型进行调整和改进,以提高评估结果的准确性。
五、影响力评估结果及分析1. 影响力评估结果根据建立的影响力评估模型,我们将得出上海世博会的影响力评估结果。
三大评估方法
三大评估方法评估方法是指通过对某一事物、现象或过程进行系统的观察、测量和分析,以评估其特征、质量和效果的方法。
在不同的领域和目标下,常用的评估方法有很多种类。
根据广泛应用和影响力,我们可以将评估方法分为三大类:定性评估方法、定量评估方法和综合评估方法。
定性评估方法是借助于观察、访谈、文献分析等主观性较强的手段,对事物的特征和质量进行描述和分析。
定性评估方法适用于事物特征复杂、效果难以量化的情况。
例如,在社会学研究中,通过对被调查者的访谈和观察,可以了解他们的行为、态度和价值观念,从而揭示出社会现象的内在规律。
此外,在艺术作品、文学作品等领域的评估中,也常用定性评估方法。
定量评估方法是通过测量、统计和分析数据,对事物进行量化的评估。
定量评估方法适用于效果可以量化和统计的问题。
例如,在教育领域,可以通过学生考试成绩、学习成绩等定量指标来评估学生的学习效果;在经济领域,可以通过统计数据和经济模型,评估政策的效果和经济发展的状况。
定量评估方法能够提供客观的、可量化的评价结果,有助于进行对比和分析。
综合评估方法是将定性和定量评估方法结合起来的一种综合应用方法。
综合评估方法既考虑了事物的特征和质量,又将其量化和统计化,以得到更全面、准确的评价结果。
综合评估方法适用于复杂的问题和多因素的评估。
例如,在环境评估中,除了通过监测站点的数据来量化环境质量,还可以通过问卷调查和专家评估来了解公众对环境问题的认知和态度,进而综合考虑各个因素对环境的影响。
总之,不同的评估方法具有各自的特点和适用范围。
定性评估方法适用于复杂问题的描述和分析;定量评估方法适用于事物效果的量化和统计;综合评估方法结合了定性和定量评估方法的优势,适用于多因素、复杂问题的评估。
在实际应用中,根据评估目标和问题的特点,可以选择合适的评估方法,以获得准确、全面的评价结果。
国内旅游影响因素分析与模型评估
国内旅游影响因素分析与模型评估随着国内经济的不断发展和人民生活水平的提高,旅游业在近年来得到了迅速的发展,成为了全球最大的国内旅游市场之一。
旅游业对经济增长、社会就业和地方文化传承等方面具有重要意义,因此对其影响因素和模型评估的分析显得尤为重要。
政治因素:政治稳定、国家政策对旅游业的发展具有重要影响。
政府对旅游业的重视程度不断提高,推动了旅游业的快速发展。
例如,政府实施的一系列旅游减税政策、旅游扶贫政策等,为国内旅游市场注入了新的活力。
经济因素:经济发展水平对旅游业的影响不言而喻。
随着国内经济的持续增长,人们的生活水平不断提高,进而带动了旅游需求的提升。
不断完善的基础设施建设和旅游配套产业的发展,也为国内旅游市场提供了良好的环境。
文化因素:文化是旅游的灵魂,国内拥有丰富的文化遗产和民俗风情,为旅游业提供了宝贵资源。
文化因素吸引了越来越多的游客,特别是年轻游客,他们追求独特的文化体验,推动了文化旅游市场的繁荣。
技术因素:科技的发展为旅游业带来了新的机遇和挑战。
互联网技术的普及使得在线预订、智能导游等成为了可能,提高了旅游服务的效率和质量。
同时,虚拟现实(VR)和增强现实(AR)技术的应用,使游客可以更加直观地感受旅游目的地的文化和风貌。
在上述影响因素的基础上,构建评估指标体系。
从政治、经济、文化和技术等方面选取一系列关键指标,如政策支持力度、GDP增长率、旅游接待人数、旅游收入占GDP的比重等。
然后,采用层次分析法(AHP)对这些指标进行权重赋值,以反映不同因素对旅游业的影响程度。
在确定评估指标后,选择合适的方法对模型进行评估。
这里采用灰色关联度分析法(GRA),通过计算各因素与旅游业发展的关联度,评估其对旅游业的影响程度。
还可以采用主成分分析法(PCA)等方法对模型进行评估。
在数据来源方面,可以通过国家统计数据、旅游部门数据以及相关研究报告等途径获取。
对于数据的质量和可靠性,需要进行一定的处理和筛选,以保证评估结果的准确性。
社交网络中的信息传播模型及影响力分析
社交网络中的信息传播模型及影响力分析在当今数字化社会中,社交网络的快速发展推动了信息的广泛传播和交流。
人们可以通过社交媒体平台分享观点、新闻和个人经历,从而形成复杂的信息传播网络。
了解社交网络中的信息传播模型和影响力分析对理解社交媒体的社会和文化影响具有重要意义。
一、信息传播模型1. 群体扩散模型群体扩散模型是社交网络中常见的信息传播模型之一。
根据该模型,信息从一个节点开始扩散,并通过与其连接的节点逐渐传播到整个网络。
这种模型适用于具有高度相互联系的社交网络,其中信息可以快速传播到大量用户。
2. 阈值模型阈值模型认为,当一个节点接收到足够数量的朋友转发某条信息时,会激发该节点转发该信息的行为。
这种模型与现实生活中的传统传媒相似,例如朋友圈中的推荐和分享。
3. 瀑布模型瀑布模型指的是信息在社交网络中从上层节点向下层节点传播的模型。
在这种模型中,少数节点会以瀑布效应的方式将信息传播给更多的节点。
通常情况下,影响力较大的个体会在社交网络中起到关键作用,他们的转发行为决定了信息的扩散和影响力。
二、影响力分析1. 节点度中心性节点度中心性是衡量节点在社交网络中的重要性的指标之一。
它表示一个节点与其他节点之间直接连接的数量。
在信息传播中,具有高节点度中心性的个体通常具有更大的影响力,他们的转发行为更容易引起其他用户的关注和模仿。
2. 节点介数中心性节点介数中心性是衡量节点在社交网络中的控制能力的指标之一。
它表示一个节点在网络中作为中介的频率。
具有高节点介数中心性的个体在信息传播中扮演了关键的角色,信息需要通过他们才能传达到其他不直接相连的节点上。
3. 影响力最大化算法影响力最大化算法用于识别社交网络中最具有影响力的个体。
这些算法可以通过计算每个节点的潜在影响力并选择具有最高潜在影响力的节点来确定。
通过掌握关键节点的信息传播行为,可以最大程度地扩散信息。
三、社交网络的文化和社会影响社交网络的信息传播模型和影响力分析对于理解其对文化和社会的影响具有重要意义。
ip影响力评估模型
ip影响力评估模型随着社会经济的不断发展,知识产权(Intellectual Property,简称IP)在企业和个人中的重要性日益凸显。
IP的影响力不仅仅局限于法律保护,还涉及市场竞争、品牌价值以及创新能力等多个方面。
本文将探讨一个全面的IP影响力评估模型,以帮助企业和个人更好地理解和管理其知识产权。
一、IP影响力的定义IP影响力可以理解为IP在社会、经济和市场中产生的影响程度。
一个拥有高影响力的IP意味着它不仅在法律层面上得到了充分的保护,还能够在市场中产生积极的效果,如吸引投资、提升品牌价值、推动创新等。
二、IP影响力评估指标1.法律保护力度:评估IP在法律层面上的保护程度,包括专利、商标、著作权等方面的注册和维护情况。
2.市场认知度:衡量公众对特定IP的认知水平,通过市场调研、社交媒体关注度等指标来评估。
3.商业价值:分析IP在商业上的表现,包括销售额、市场份额、合作伙伴关系等,以确定其对企业经济绩效的贡献。
4.创新能力:考察IP在技术或行业创新中的角色,评估其对企业或行业未来发展的推动作用。
5.维护成本:分析维护特定IP所需的成本,包括法律费用、更新成本等,以确定其对企业可持续发展的影响。
三、IP影响力评估模型1.权衡法律和商业指标:将法律保护力度与商业价值相结合,形成一个综合指标,以更全面地评估IP的影响力。
2.市场认知度与商业价值关联分析:分析市场认知度与商业价值之间的关系,找出二者的关联性,从而更好地理解IP在市场中的表现。
3.创新能力与未来趋势:将创新能力与行业未来趋势结合,评估IP对企业或行业未来发展的战略性贡献。
4.维护成本与长期价值:分析维护成本与IP的长期商业价值之间的平衡,确定是否值得持续投入资源。
四、案例分析以知名企业的IP为例,深入分析其在上述指标下的表现,为其他企业提供借鉴和参考。
五、IP影响力管理策略基于评估结果,提出IP影响力管理的策略,包括加强法律保护、提升市场宣传、加强创新能力等方面的建议。
大模型的社会网络分析和建模
添加标题
监测和预测市场趋势:社交网络中的信息传播和市场情绪可以反映市场趋势和变化。金融机构可以 利用社交网络分析来监测和预测市场趋势,从而做出更明智的投资决策。
添加标题
发现潜在客户:通过分析社交网络中的用户行为和兴趣,金融机构可以发现潜在的客户群体,从而 制定更精准的市场营销策略。
添加标题
监测和应对声誉风险:社交网络中的信息传播和舆论可以迅速扩散,对金融机构的声誉造成影响。 金融机构可以利用社交网络分析来监测和应对声誉风险,及时采取措施来维护品牌形象。
节点和边的表示方法
节点表示:用点 表示网络中的实 体
边表示:用线表 示节点之间的关 系
权重表示:用数 字表示节点之间 的关系强度
属性表示:用标 签或属性表示节 点的特征
社会网络分析的指标
聚类系数:衡量网络中节点 聚集的程度
网络中心性:衡量节点在网 络中的中心地位
结构分析法:通过分析网络 结构,揭示节点之间的关系
大模型的社会网络分析和建模
汇报人:XXX
大模型的社会网络分析 大模型的社区发现和聚类 大模型的链路预测和影响力传播 大模型的社会网络分析和建模的应用场景 大模型的社会网络分析和建模的挑战和未来发展方向
大模型的社会网络分析
社会网络分析概述
社会网络分析的定义和目 的
社会网络分析的基本概念 和原理
社会网络分析的方法和工 具
应用:基于密度的社区发现算法在社交网 络分析、信息推荐、网络攻击防御等领域 具有广泛的应用。
基于模块度的社区发现算法
模块度定义:衡量社区内部连接紧密程度和社区间连接稀疏程度的指标 基于模块度的社区发现算法原理:通过优化模块度函数来识别社区结构 算法步骤:预处理、构建网络、计算模块度、社区发现 算法优缺点:能够发现任意形状的社区,但容易受到噪声和异常值影响
语言大模型与社会影响力的伦理与可持续发展
语言大模型与社会影响力的伦理与可持续发展在当今的信息时代,语言大模型成为了一种具有巨大潜力的人工智能技术。
通过对大量数据的学习和分析,语言大模型能够生成高质量的自然语言文本,并在各个领域展现出卓越的表现。
然而,语言大模型的出现也引发了许多对其伦理问题和社会影响的担忧。
本文将探讨语言大模型的伦理问题,并提出促进其可持续发展的策略。
一、伦理问题语言大模型的发展带来了一系列伦理问题,其中最为突出的是信息真实性、隐私保护和社会偏见。
首先,语言大模型可以轻松生成误导性的信息,甚至是虚假的内容,这可能对社会产生负面影响,破坏信任和传播不实信息。
其次,语言大模型需要大量的训练数据,其中可能包含用户的个人信息和隐私,如果这些信息未得到妥善保护,将对用户造成潜在的风险。
最后,语言大模型在学习数据时可能参考到具有社会偏见的内容,导致生成的文本存在不公平和偏见。
为了解决这些伦理问题,我们应该采取以下策略。
1. 加强数据监管:对于语言大模型的训练数据,需要建立严格的监管机制,确保数据的真实性和合规性。
同时,还要加强对个人信息的保护,严禁将其滥用或泄露。
2. 提高透明度:语言大模型应该公开其训练数据和算法,使用户可以了解其生成文本的来源和过程。
透明度将有助于用户更加清晰地认识到模型的局限性,并提高对生成文本的判断能力。
3. 消除社会偏见:语言大模型的开发者需要积极消除模型中存在的社会偏见。
通过引入多元化的训练数据和开展更全面的审查,可以降低偏见的出现频率,并提高生成文本的公正性。
二、可持续发展除了伦理问题外,语言大模型的可持续发展也是一个重要的议题。
语言大模型的训练需要消耗大量的计算资源和能源,而且其更新和优化也需要进行频繁的训练,这将带来巨大的环境负担。
为了促进语言大模型的可持续发展,可以采取以下措施。
1. 优化算法和架构:通过优化语言大模型的算法和架构,减少其计算和能源消耗。
例如,设计更高效的模型结构、使用更合理的训练策略,以降低资源消耗。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
ResearchCybersecurity—ReviewSocial Influence Analysis:Models,Methods,andEvaluationKan Li ⇑,Lin Zhang,Heyan HuangSchool of Computer Science and Technology,Beijing Institute of Technology,Beijing 100081,Chinaa r t i c l e i n f o Article history:Received 10December 2017Revised 5January 2018Accepted 8January 2018Available online 16February 2018Keywords:Social influence analysis Online social networksSocial influence analysis models Influence evaluationa b s t r a c tSocial influence analysis (SIA)is a vast research field that has attracted research interest in many areas.In this paper,we present a survey of representative and state-of-the-art work in models,methods,and eval-uation aspects related to SIA.We divide SIA models into two types:microscopic and macroscopic models.Microscopic models consider human interactions and the structure of the influence process,whereas macroscopic models consider the same transmission probability and identical influential power for all users.We analyze social influence methods including influence maximization,influence minimization,flow of influence,and individual influence.In social influence evaluation,influence evaluation metrics are introduced and social influence evaluation models are then analyzed.The objectives of this paper are to provide a comprehensive analysis,aid in understanding social behaviors,provide a theoretical basis for influencing public opinion,and unveil future research directions and potential applications.Ó 2018 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and Higher Education Press Limited Company. This is an open access article under the CC BY-NC-ND license1.IntroductionOnline social networks such as Weibo,Twitter,and Facebook provide valuable platforms for information diffusion among their users.During this process,social influence occurs when a person’s opinions,emotions,or behaviors are affected by other people [1].Thus,changes occur in an individual’s attitudes,thoughts,feelings,or behaviors as a result of interaction with other people or groups.Social influence analysis (SIA)is becoming an impor-tant research field in social networks.SIA mainly studies how to model the influence diffusion process in networks,and how to propose an efficient method to identify a group of target nodes in a network [2].Studied questions include:Who influences whom;who is influenced;who are the most influential users,and so forth.SIA has important social significance and has been applied in many fields.Viral marketing [3–10],online recommen-dation [11],healthcare communities [12–14],expert finding [15–17],rumor spreading [18],and other applications all depend on the social influence effect [19–21].Analyzing social influence can help us to understand peoples’social behaviors,provide the-oretical support for making public decisions and influencing pub-lic opinion,and promote exchanges and dissemination of various activities [22].This paper provides a comprehensive view of SIA from the aspects of models,methods,and evaluation.To this end,we iden-tify the strengths and weaknesses of existing models and methods,as well as those of the evaluation of social influence.First,we review existing social influence models.Next,we summarize social influence methods.Finally,we analyze the evaluation of social influence.The rest of this paper is organized as follows.In Section 2,we discuss SIA models.In Section 3,we analyze SIA methods,includ-ing influence maximization,influence minimization,flow of influ-ence,and individual influence.We then detail social influence evaluation in Section 4.Finally,we summarize the reviewed mod-els and methods of social influence,and discuss open questions.2.Social influence analysis modelsSIA models have been widely studied in the literature.We clas-sify these models into two categories:microscopic and macro-scopic models.2.1.Microscopic modelsMicroscopic models focus on the role of human interactions,and examine the structure of the influence process.The two fre-quently used influence analysis models in this category are the independent cascade (IC)[23–25]and linear threshold (LT)⇑Corresponding author.E-mail address:likan@ (K.Li).Engineering 4(2018)40–46Contents lists available at ScienceDirectEngineering[23,26]models.Since Kempe et al.[23]used these two models,they are still mainly used to assess social influence diffusion.2.1.1.The IC and LT modelsThe IC model.In a social network G ¼ðV ;E Þwith a seed set S (S #V ),where V is the set of nodes and E is the set of edges,and S t (S t #V )is the set of nodes that are activated at step t (t P 0).At step t þ1,every node v i 2S t can activate its out-neighbors v j 2V n [06i 6t S i with an independent probability P ij .The process ends when no node can be activated.Note that a node has only one chance to activate its out-neighbors after it has been activated,and the node remains an activated node after it is activated.The LT model.In a social network G ¼ðV ;E Þ,the sum of the influ-ence weights of all the neighbors of node v i meets Pv j 2N gact iw ij 61,where w ij is the influence weight between node v i and its neighbor node v j ,and N g act iis the set of its neighbor nodes activated by nodev i .Node v i randomly selects its own threshold h i ,uniformly chosenfrom 0to 1.Only when the sum of the influence weights of its neigh-bor nodes exceeds this threshold will v i be activated.2.1.2.VariationsFor both the IC and LT models,it is usually necessary to run the Monte Carlo simulation in order to estimate a node’s influence for a sufficient time period.However,this is time-consuming and unsuitable for large-scale social networks.Many researchers have proposed methods to improve the IC and LT models.Here,we divide these improvements into four categories:variations of the IC model,variations of the LT model,variations of both the IC and LT models,and models that differ from the IC or LT models and their variations.We only list representative works in this paper.(1)Variations of the IC model.Some researchers have consid-ered time delay and time-critical constraints for influence diffu-sion.Chen et al.[27]extended the IC model and proposed an IC model with meeting events (IC-M model).In the IC-M model,the activated node has the probability to meet the inactive -pared with the general IC model,the calculation results from this model are closer to the actual situation,although the calculation of time consumption is slightly above that of the IC model.Feng et al.[28]incorporated novelty decay into the IC model.Based on previous studies,they found that repeated exposures have diminishing influence on users.Therefore,they developed a prop-agation path-based algorithm to assess the influence spread of seed nodes.There are two values on each edge of a social network:influence probability and expected influence delay time.Mohamadi-Baghmolaei et al.[29]considered important time and trust factors,and proposed the trust-based latency-aware indepen-dent cascade (TLIC)model.This is the first time trust has been studied in a classic IC model.In the TLIC model,a node can change its state (i.e.,as active or inactive)with different probabilities for a trusted neighbor node than for a distrusted neighbor.Budak et al.[30]introduced the multi-campaign IC model,which models the diffusion of two cascades evolving simultaneously.They studied the notion of competing campaigns,in which the good campaign counteracts the effect of a bad campaign in a social network.(2)Variations of the LT model.Liu et al.[31]considered the containment of competitive influence diffusion in social networks,and extended the LT model to construct the diffusion-containment (D-C)model.The traditional LT model is not applicable to that a situation concerns both the diffusion and the containment of the influence.In the D-C model,the state of a node is described by the activation probability;each node is only influenced by a neigh-bor with a higher probability,and the sum of the probabilities of possible node states is not greater than 1.Borodin et al.[32]analyzed the competitive influence diffusion of different models based on the LT model.(3)Variations of both the IC and LT models.Mohammadi et al.[33]considered the time delay and proposed two diffusion models:the delayed independent cascade (DIC)model and the delayed lin-ear threshold (DLT)model.In these two models,nodes have three states:active,inactive,and latent active.To pass from an inactive state to an active state,a node must pass through the middle pro-cess of being in a latent active pared with the traditional IC and LT models,the effect of influence diffusion in this model is better.However,because more than one state is possible,the cal-culation complexity is relatively high.In the IC and LT models,information diffusion is treated as a series of node state changes that occur in a synchronous way.However,the actual diffusion takes place in an asynchronous way,and the time stamps of the observed data are not evenly spaced out.Some models relax the synchronicity assumption of traditional IC and LT models and extend these two models to make the state change asyn-chronously.Saito et al.[34]proposed the asynchronous exten-sions:asynchronous IC (AsIC)and asynchronous LT (AsLT)models.Their learning algorithm can estimate the influence degrees of nodes in a network from relatively few information dif-fusion results,which avoids the overfitting problem.Guille and Hacid [35]also presented an asynchronous model—time-based AsIC model—to model the diffusion process.Other studies [30,32,36–44]have improved the classical models in specific direc-tions.Fan et al.[38]introduced two models:the opportunistic one-activate-one (OPOAO)model,in which each person can only com-municate with another person simultaneously;and the determin-istic one-activate-many (DOAM)model,which has a mechanism that is similar to an information broadcast procedure.For the OPOAO model,they used the classical greedy algorithm to produce a (1À1=e)approximation ratio;for the DOAM model,they pro-posed a set cover-based greedy (SCBG)algorithm to achieve an O ðln n Þ(n is the number of vertices)factor solution.The transmis-sion probabilities in these two models are the same for all users.Galam [45]proposed a model that investigates opinion dynamics,followed by Lee et al.[39],who proposed a new scheme to improve Galam’s model.Nevertheless,these models are confined to word-of-mouth information-exchanging process.(4)Models that differ from the IC or LT models and their variations.Some models are different from the IC or LT models and their variations,and have solved information influence diffu-sion from a new point of view.Lin et al.[46]proposed a data-driven model to maximize the expected influence in the long run using meta-learning concepts.However,this model needs large amounts of data,and the accuracy of its results requires fur-ther improvement.Golnari et al.[47]proposed a heat conduction (HC)model.It considers a non-progressive propagation process,and is completely different from the previous IC or LT models,which only consider the progressive propagation process.In the HC model,the influence cascade is initiated from a set of seeds and arbitrary values for other nodes.Wang et al.[48]studied emotion influence in large-scale image social networks,and pro-posed an emotion influence model.They designed a factor graph model to infer emotion influence from images in social networks.Gao [49]proposed a read-write (RW)model to describe the detailed processes of opinion forming,influence,and diffusion.However,there are three main issues that this model needs to consider further:the many parameters of the model that must be inferred,the proper collection of datasets about opinion influ-ence and diffusion,and the evaluation metrics that are suitable for this task.Whether a classical IC or LT model or a new model,the ultimate goal for a model of social influence is to achieve faster computing speed and more accurate results,while using less memory.K.Li et al./Engineering 4(2018)40–4641However,these microscopic models are lacking in some major details.Firstly,because of the difference in characteristics (i.e.,educational background and individual consciousness),differ-ent people identify with the same information to different degrees. Secondly,different individuals have different capabilities to influ-ence other users;also,spreaders with different degrees of author-ity have different impacts on their neighbors and on society. Thirdly,the probability that an individual will transmit a piece of information to others is not constant,and should depend on the individual’s attraction to the information.Moreover,these models use a binary variable to record whether an individual becomes infected.In addition,they assume that once an individual is infected,the individual never changes its state;however,this assumption does not reflect the realistic smoothness of the transi-tion of individuals from one state to another.2.2.Macroscopic modelsMacroscopic models consider all users to have the same attrac-tion to information,the same transmission probability,and identi-cal influential power.However,since macroscopic models do not take individuals into account,the accuracy of these models’results is lower.To improve such models,therefore,the differences between individuals should be considered.Macroscopic models divide nodes into different classes(i.e.,states)and focus on the state evolution of the nodes in each class.The percentage of nodes in each class is expressed by simple differential equations.Epi-demic models are the most common models that are used to study social influence from a macroscopic perspective.These models were mainly developed to model epidemiological processes.How-ever,they neglect the topological characteristics of social net-works.The percentage of nodes in each class is computed by mean-field rate equations,which are too simple to depict such a complex evolution accurately.Daley and Kendall[50]analyzed the similarity between the diffusion of an infectious disease and the dissemination of a piece of information,and proposed the clas-sic Daley–Kendall model.Since then,researchers have improved these epidemic models in general to overcome their weaknesses. Refs.[50–53]consider the topological characteristics of underlying networks in their methods.However,these scholars have ignored the impact of human behaviors in the influence diffusion process.Researchers have recently begun to consider the role of human behaviors and different mechanisms during information influence diffusion[54–60].Zhao et al.[59,60]proposed the susceptible–in fected–hibernator–removed model as an extension from the classi-cal susceptible–infected–removed(SIR)model in order to incorpo-rate the forgetting and remembering mechanism;they investigated this problem in homogeneous and inhomogeneous networks.Wang et al.[54]proposed a variation of the rumor-diffusion model in online social networks that considers negative or positive social reinforcements in the acceptant probability model.They analyzed how social reinforcement affects the spread-ing rate.Wang et al.[55]proposed an SIR model by introducing the trust mechanism between nodes.This mechanism can reduce the ultimate rumor size and the velocity of rumor diffusion.Xia et al.[56]presented a modified susceptible–exposed–infected–removed (SEIR)model to discuss the impact of the hesitating mechanism on the rumor-spreading model.They took into account the attractive-ness and fuzziness of the contents of rumors,and concluded that the more clarity a rumor has,the smaller its effects will be.Su et al.[57]proposed the microblog-susceptible–infected–removed model for information diffusion by explicitly considering users’incomplete reading behavior.In Ref.[58],motivated by the work in Refs.[56,57],Liu et al.extended the model in Ref.[56]and pro-posed a new SEIR model on heterogeneous networks in order to study the diffusion dynamics in a microblog.3.Social influence analysis methodsSIA methods are used to solve the sub-problems of social net-work influence analysis,such as influence maximization,influence minimization,flow of influence,and individual influence.All these problems involve influence diffusion,so the same influence model can apply to all of them in some cases.However,the ultimate goal of using the model is different for each problem.3.1.Influence maximizationInfluence maximization requiresfinding the most influential group of members in social networks.Kempe et al.[23]formulated this problem.Given a directed graph with users as nodes,edge weights that reflect the influence between users,and a budget/ threshold number k,the purpose of influence maximization is to find k nodes in a social network,so that the expected spread of the influence can be maximized by activating these nodes.This is a discrete optimization problem that is non-deterministic polynomial-time(NP)-hard for both the IC and LT models.Influ-ence maximization is the most widely studied problem in SIA.Les-kovec et al.[10]and Rogers[20]studied this problem as an algorithmic problem,and proposed some probabilistic methods. Influence maximization must achieve fast calculation,high accu-racy,and low storage capacity.Most of the algorithms that con-sider the differences between individuals are based on greedy algorithms or heuristic algorithms.3.1.1.Greedy algorithmsGreedy algorithms‘‘greedily”select the active node with the maximum marginal gain toward the existing seeds in each itera-tion.The study of greedy algorithms is based on the hill-climbing greedy algorithm,in which each choice can provide the greatest impact value of the node using the local optimal solution to approximate the global optimal solution.The advantage of this algorithm is that the accuracy is relatively high,reaching (1À1=eÀe)for any e>0.However,the algorithm has high com-plexity and high execution time,so the efficiency is relatively poor. Kempe et al.[23]were thefirst to establish the influence of the maximum refinement as a discrete optimization problem,and pro-posed a greedy climbing approximation algorithm.Leskovec et al.[61]proposed a greedy optimization method,the cost-effective lazy forward(CELF)method.Chen et al.[27]put forward new greedy algorithms,the NewGreedy and MixGreedy methods.Zhou et al.[62]proposed the upper bound-based lazy forward(UBLF) algorithm to discover top-k influential nodes.They established new upper bounds in order to significantly reduce the number of Monte Carlo simulations in greedy algorithms,especially at the ini-tial step.Some of the algorithms that are used to study the differ-ences between individuals are based on these greedy algorithms.3.1.2.Heuristic algorithmsDue to the high computational complexity of greedy algorithms, many excellent heuristic algorithms have been proposed to reduce the solution-solving time and pursue higher algorithm efficiency. These heuristic algorithms iteratively select nodes based on a specific heuristic,such as degree or PageRank,rather than comput-ing the marginal gain of the nodes in each iteration.Their draw-back is that the accuracy is relatively low.The most basic heuristic algorithms are the Random,Degree,and Centrality heuristic algorithms proposed by Kempe et al.[23].Based on the degree of the heuristic algorithm,Chen et al.[41]proposed a heuristic algorithm for the IC model:DegreeDiscount.They then proposed a new heuristic algorithm,prefix excluding maximum influence arborescence(PMIA)[63].For the LT model,Chen et al.42K.Li et al./Engineering4(2018)40–46[63]proposed local directed acyclic graph(LDAG)heuristic algo-rithm.Of course,other heuristic algorithms are also based on these heuristic algorithms,such as SIMPATH[64]and IRIE[65].Borgs et al.[66]made a theoretical breakthrough and presented a quasi-linear time algorithm for influence maximization under the IC model.Tang et al.[67]proposed a two-phase influence maximiza-tion(TIM)algorithm for influence maximization.The expected time of the algorithm is O½ðkþ‘ÞðnþmÞlog n=e2 ,and it returns a (1À1=eÀe)approximate solution with at leastð1ÀnÀ‘Þprobability.The time complexity of the abovementioned algorithms is shown in Table1[23,41,61,63–67].Here,we describe some representative studies that take into account individual differences or the user’s own attributes.Li et al.[68]considered the behavioral relationships between humans(i.e.,regular and rare behaviors)in order to simulate the effects of heterogeneous social networks to solve the influence maximization problem.They proposed two entropy-based heuris-tic algorithms to identify the communicators in the network,and then maximized the impact of the propagation.Although the entropy-based heuristic performance is better than those of Degree [23]and DegreeDiscount[41],this method is still based on heuris-tic ideas,so its accuracy is inadequate.Subbian et al.[69]proposed the individual social value:Existing influence maximization algo-rithms cannot model individual social value,which is usually the real motivation for nodes to connect to each other.Subbian et al.[69]used the concept of social capital to propose a framework in which the social value of the network is calculated by the number of bindings and bridging connections.The performance of the algo-rithm is better than that of PMIA[63],PageRank,and the weighted degree method.Li et al.[70]proposed a conformity-aware cascade (C2)model and a conformity-aware greedy algorithm to solve the influence maximization problem.This algorithm works well when applied to the distributed platform.However,because it is based on the greedy algorithm and considers the conformity-aware cal-culation,the complexity of the calculation still requires improve-ment.Lee and Chung[71]formulated the influence maximization problem as a query processing problem for distinguishing specific users from others.Since influence maximization query processing is NP-hard,and since solving the objective function is also NP-hard,they focused on how to approximate optimal seeds effi-ciently.Node features are always overlooked when estimating the impact of different users.Deng et al.[72]addressed influence maximization while considering this factor.They presented three quantitative measures to respectively evaluate node features:user activity,user sensitivity,and user affinity.They combined node features into users’static effects,and then used the continuous exponential decay function to convert the strength of a user’s dynamic influence between two adjacent users.They also pro-posed the credit distribution with node features(CD-NF)model, which redefines the credit,and designed the greedy algorithm with node features(GNF)based on the CD-NF model.When considering a certain class or influence maximization,the individual’s attributes will have a great impact on the results; therefore,individual differences or the user’s attributes need to be taken into account.From the descriptions above of the studies on individual differences,it is clear that most studies are based on the greedy algorithm in order to improve the accuracy.How-ever,heuristic algorithms will be improved by a pursuit of high efficiency and low complexity,because the greedy algorithm is computationally complex.In order to reduce the running time,a considerable amount of work will be carried out on a distributed platform.Due to the individual differences,the computational complexity will be further increased compared with the original. So,for the time being,it is necessary to improve the complexity of the calculation and the accuracy of the results.3.2.Influence minimizationAssuming that the negative information propagates in a net-work G¼ðV;EÞwith the initially infected node set S#V,the goal of influence minimization is to minimize the number offinal infected nodes by blocking k nodes(or vertices)of the set D#V, where k((|V|)is a given constant.It can be expressed as the fol-lowing optimization problem:Düarg minD#V;j D j6krðS V n DjÞð1Þwhere rðS V n DjÞdenotes the influence of set S when nodes in the set D are blocked.From this notion[73],we know that influence minimization is a dual problem of influence maximization.Influence minimization mainly used to curb rumors,monitor public opinion,and so on. Yao et al.[73]proposed a method to minimize adverse effects in the network by preventing a limited number of nodes from the perspective of the topic model.When rumors and other adverse events occur in social networks and some users are already infected,the purpose of this model is to minimize the number of final infected users.Wang et al.[74]proposed a dynamic rumor influence minimization model with user experience.This model minimizes the influence of rumors(i.e.,the number of users who accept and send rumors)by preventing part of the nodes from acti-vating.Groeber et al.[75]designed a general framework of social influence inspired by the social psychological concept of cognitive dissonance,in which individuals minimize the preconditions for disharmony arising from disagreements with neighbors in a given social network.Chang et al.[76]explored thefirst solution to esti-mate the probability of successfully bounding the infected count below the out-of-control threshold;this can be logically mapped to outbreak risk,and can allow authorities to adaptively adjust the intervention cost to meet necessary risk control.They then pro-posed an influence minimization model to effectively prevent the proliferation of epidemic-prone diseases on the network.3.3.Flow of influenceWhen information spreads,it is accompanied by influenceflow [77].In recent years,theflow of influence methods has been stud-ied by many researchers.Subbian et al.[78]proposed aflowTable1The time complexity of different algorithms.Algorithm Time complexityHill-climbing greedy[23]OðknRmÞCELF[61]OðknRmÞNewGreedyIC[41]OðkRmÞNewGreedyWC[41]OðkRTmÞMixGreedyIC[41]OðkRmÞMixGreedyWC[41]OðkRTmÞDegreeDiscountIC[41]Oðk log nþmÞPMIA[63]O½nt i hþkn o h n i hðn i hþlog nÞLDAG[63]Oð‘vþn log‘vÞSIMPATH[64]OðkmnÞIRIE[65]OðkmnÞQuasilinear time algorithm[66]O½k eÀ2ðmþnÞlog nTIM[67]O½ðkþ‘ÞðmþnÞlog n=e2n:number of vertices in G;m:number of edges in G;k:number of seeds to beselected;R:number of rounds of simulations;T:number of iterations;t i h,n o h,n i h:constants decided by h;h:the influence threshold;n i h¼max v2V fj MIIAðv;hÞjg;n o h¼max v2V fj MIOAðv;hÞjg;MIIAðv;hÞ=MIOAðv;hÞ:the maximum influence inarborescence/out arborescence of a node v;t i h:the maximum running time tocompute MIIAðv;hÞ;‘:number of communities in the network;e:any constantlarger than0;‘v:the volume of LDAGðv;hÞ.K.Li et al./Engineering4(2018)40–4643pattern mining approach with the condition of specificflow valid-ity constraints.Kutzkov et al.[79]proposed a streaming method called STRIP to compute the influence strength along each link of a social network.Teng et al.[80]examined real-world information flows in various platforms,including the American Physical Soci-ety,Facebook,Twitter,and LiveJournal,and then leveraged the behavioral patterns of users to construct virtual information influ-ence diffusion processes.Chintakunta and Gentimis[81]discussed the relationships between the topological structures of social net-works and the informationflows within them.However,unlike microblogging platforms,most social networks cannot provide suf-ficient context to mine theflow pattern.3.4.Individual influenceIndividual influence is a relatively microscopic assessment that models the influence of a user on other users or on the whole social network.Chintakunta and Gentimis[81]proposed a method called SoCap tofind influencers in a social network.They modeled influ-encerfinding in a social network as a value-allocation problem,in which the allocated value represents the individual social capital. Subbian et al.[82]proposed an approach to identify influential agents in open multi-agent systems using the matrix factorization method to measure the influence of nodes in a network.Liu et al.[83]presented the trust-oriented social influence(TOSI)method, which considers social contexts(i.e.,social relationships and social trust between participants)and preferences in order to assess indi-vidual influence.The TOSI method greatly outperforms SoCap in terms of effectiveness,efficiency,and robustness.Deng et al.[84] incorporated the time-critical aspect and the characteristics of the nodes when evaluating the influence of different users.The results showed that their approach is efficient and reasonable for identifying seed nodes,and its prediction of influence spread is more accurate than that of the original method,which disregards node features in the diffusion process.In conclusion,considering more comprehensive user character-istics and user interaction information results in higher result accuracy.4.Social influence evaluation4.1.Influence evaluation metricsRunning time is a very intuitive measure of model efficiency that is easy to calculate.In general,under the same conditions,the faster a model runs,the better it is.However,the traditional greedy algo-rithm calculates the range of influence spreading for a given node set by a large number of repeated Monte Carlo simulations,result-ing in a considerable running time.Especially in the face of current large-scale social networks,the existing algorithms cannot meet the application requirements for efficiency.Therefore,running time is an important measure of social influence evaluation.Since the influence-spreading problem is NP-hard,it is difficult to obtain an optimal solution of the objective function.Most of the existing algorithms rely on monotonicity and submodularity of the function to achieve(1À1=e)approximation[23].However, attempts to achieve a higher approximation ratio have never stopped.Zhu et al.[85]proposed semidefinite-based algorithms in their model considering influence transitivity and limiting prop-agation distance.Another metric is the number of Monte Carlo calls.Because there is no way to obtain an optimal solution,a Monte Carlo sim-ulation is usually used to estimate the real value.Existing greedy-based algorithms demand heavy Monte Carlo simulations of the spread functions for each node at the initial step,greatly reducing the efficiency of the models.The UBLF algorithm proposed by Zhou et al.[62]can reduce the number of Monte Carlo simulations of CELF method by more than95%,and achieved a speedup of2–10 times when the seed set is small.The expected spread indicates the number of nodes that the seed set can ultimately affect—and the larger the better.There are many applications in real-life scenarios where the influence spread needs to be maximized as much as possible.Typical exam-ples of such applications are marketing and advertising.In both applications,thefinal expected spread represents the benefits of product promotion or the profitability of product.Therefore, exploring high expected spread algorithms is an important prob-lem for SIA.Robustness refers to the characteristics of a certain parameter perturbation(i.e.,structure and size)that is used to maintain some other performances.Both Jung et al.[65]and Liu et al.[83]men-tioned robustness in their algorithms.The IRIE algorithm proposed by Jung et al.[65]is more robust and stable in terms of running time and memory usage across various density networks and cas-cades of different sizes.The experimental results showed that the IRIE algorithm runs two orders of magnitude faster than existing methods such as PMIA[63]on a large-scale network,and only uses part of the memory.The TOSI evaluation method proposed by Liu et al.[83]shows superior performance in terms of robustness over the state-of-the-art SoCap[81].Scalability refers to the ability to continuously expand or enhance the functionality of the system with minimal impact on existing systems.In social networks,scalability usually refers to the ability to expand from a small-scale network to a large-scale network.It is a common indicator used to evaluate the quality of a model.Due to the complexity of the algorithm and the long run-ning time,the current solution algorithms only apply to small and medium-sized social networks with nodes below one million. Given today’s large-scale social networks,influence analysis algo-rithms with good scalability must be designed to deal with the challenges posed by massive social network data.4.2.Social influence evaluation modelThe evaluation of social influence is a complex process.As a subjective attribute,a social relationship has many characteristics, including dynamics,event disparity,asymmetry,transitivity,etc. In social networks,frequent user interaction and changes in the structure of the network make the evaluation of social influence more difficult.The literature contains a few studies on the social influence evaluation model.He et al.[86]designed an influence-measuring model on the theme of online complaints;based on the entropy weight model,this model monitors and analyzes the static and dynamic properties of complaint information in real time.Enterprises can use this model to manage online group com-plaints.Wang et al.[12]proposed afine-grained feature-based social influence(FBI)evaluation model,which explores the impor-tance of a user and the possibility of a user impacting others.They then designed a PageRank algorithm-based social influence adjust-ment model by identifying the influence contributions of friends. The FBI evaluation model can identify the social influences of all users with much less duplication(less than7%with the model), while having a larger influence spread with top-k influential users; it was evaluated on three datasets:HEPTH[87],DBLP[88],and ArnetMiner[89].5.Conclusions and future workIn this paper,we survey state-of-the-art research on SIA from the aspects of influence models,methods,and evaluation.We also44K.Li et al./Engineering4(2018)40–46。