天然产物糖基化修饰及应用

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

天然产物糖基化修饰及应用

摘要:天然产物广泛存在于自然界中,其数量种类繁多且结构复杂多样,具有许多生理与药理活性。糖基化修饰能增加天然产物结构和功能的多样性,已成为当今新药开发的研究热点。本文简单介绍了天然产物糖基化的基本概念,以及天然产物糖基化修饰的研究方法和在各方面的应用。

关键词:天然产物,糖基化,修饰方法,应用

天然产物广泛存在于自然界中,其数量种类繁多且结构复杂多样,许多天然产物活性成分现在已经作为治疗各类疾病的药物,还有一些作为潜在的药物,具有抗炎抑菌、抗病毒、抗氧化、抗肿瘤、抗辐射和免疫调节等诸多活性,已成为国内外天然药物开发利用研究的热点。糖基化反应可以使许多外源化合物的理化性质与生物活性发生较大的变化,例如将不溶于水的化合物转变为水溶性化合物,降低化合物的毒性,增强稳定性等[1]。本文对天然产物糖基化修饰和应用作简单综述。

糖基化是生物细胞中最重要的反应之一,与多种生理病理过程有直接关系。在微生物和植物的次级代谢过程中,糖基化也是重要的反应,即生物为了使有机分子更有效地发挥作用而进行的一种结构修饰[2]。这种天然的修饰存在于多种生物学活性不一样的天然化合物中,包括抗生素、抗癌药物、激素、甜料、生物碱以及黄酮等多种代谢产物[3]。

1 天然产物简介

天然产物是指动物、植物、、海洋生物和体内的组成成分或其代谢产物以及人和动物体内许许多多内源性的化学成分统称作天然产物,其中主要包括、、、、各种酶类、、寡糖、、、、、木质素、维生素、、、蜡、、挥发油、、糖苷类、萜类、、、、醌类、、、鞣酸类、抗生素类等天然存在的化学成分。

1.1植物源天然产物成分

来源于植物界的有效成分主要有黄酮类、类、多糖类、挥发油类、醌类、萜类、木脂素类、香豆素类、皂苷类、强心苷类、酚酸类及氨基酸与酶等。

1.2微生物及其发酵液天然产物成分

微生物是包括细菌、病毒、以及一些小型的原生动物等在内的一大类生物群体,它个体微小,却与人类生活密切相关。能够提供有效成分的主要是真核生物中的真菌与藻类,以及其他(发酵)产物。来源于微生物及发酵液的有效成分主要有、酶类、抗生素类、色素类、氨基酸类、有机酸类、醇酮类、维生素类、核酸类等等。

1.3海洋天然产物有效成分

海洋占地球表面积的71%,生物量约占地球生物总量的87%,生物种类20多万种,是地球上最大的资源能源宝库,目前人们对海洋生物的认识仍相当有限,利用率仅1%左右。到目前为止海洋天然产物有效成分主要有甾醇、萜类、、不饱和脂肪酸、多糖和糖苷、大环、聚醚类化合物和多肽等。

2 糖基化的机制

糖基化是在酶的作用下,在蛋白质或脂质等生物大分子上附加糖类的过程,常发生于。在生物细胞中,糖基化是糖基转移酶(glycosyhransferase)以糖基供体和受体(亲核物质)为底物,把糖基供体转移到受体上的过程。特定的受体分子包括蛋白、核酸、寡糖、脂和其他小分子物质。糖基供体是核苷二磷酸活化形式(NDP-)的各种糖基,主要是一些NDP-六碳糖,其中UDP-葡萄糖最为常见。另外还包括一些NDP-脱氧六碳糖以及许多稀有的NDP-糖胺等[4]。

糖基与不同糖基受体的结合不仅能大大增加天然产物的结构多样性,在功能上,这些糖组分通常参与靶细胞的分子识别,直接或间接影响到化合物的生物学活性[5]。

2.1 糖基化的修饰及应用

糖基化可以改善化合物的水溶性,且通常直接参与天然产物与靶点的相互作用,去糖基化的天然产物生物活性会受到很大影响,因而糖基化修饰在天然产物生物活性中起到重要的作用。

经糖基化后,蛋白质分子表面的糖链可对蛋白质分子的结构产生深远的影响。糖基化可增加蛋白质对于各种变性条件(如变性剂、热等)的稳定性,防止蛋白质的相互聚集。同时,蛋白质表面的糖链还可覆盖蛋白质分子中的某些蛋白酶降解位点,从而增加蛋白质对于蛋白酶的抗性[6]。

研究结果表明,蛋白质表面的糖链可增加蛋白质分子的溶解性。据报道,当天然的来普汀通过糖基化工程连接上5个N-连接糖链时,其溶解度增加了15倍[7]。来普汀是一种非糖基化的蛋白,与控制体重有关。利用糖基化工程制备来普汀五个糖链的类似物(GE—LeptinL4-58),与使用重组人来普汀(rHuLeptin)相比,利用GE-LeptinL4-58处理肥胖小鼠可以减掉更多的体重并可以维持更长时间。进一步研究表明,对正常小鼠,10倍量的rHuLeptin依然不能赶上使用GE—LeptinL4-58减轻的体重。

经研究,氯霉素经糖基化修饰后其水溶性显著增加,并且促进了药物的吸收利用,同时降低了原药的毒副作用。

据报道,重组人红细胞生成素的高度糖基化类似物,具有与重组人红细胞生成素类似的结构和稳定性,但是由于其33和88位各增加了一个N-糖基化位点,所以该药物在鼠和犬体内的半衰期延长了3倍,目前,该产品已经研制成功并上市[7]。

另有报道,糖基化的IL-3可以被细胞外基质捕获并缓慢释放到循环系统中,其血浆半衰期延长了2倍,从而使骨髓中组氨酸羧化酶活性的能力提高了30%-40%。

3 天然产物糖基化修饰的研究

随着越来越多的糖基合成基因簇及糖基转移酶基因被鉴定, 研究者开始尝试组合使用这些功能元件来获得新糖基修饰的天然产物。

3.1体内(In vivo)基因工程方法改造糖基侧链修饰

3.1.1 体内基因缺失技术

研究糖基合成基因功能经典的策略就是对糖基合成基因进行缺失,通过检测突变株中积累的代谢产物结构的变化来鉴定突变基因的功能。

杰多霉素(Jadomycin)是委内瑞拉链霉菌(Streptomyces venezuelae ISP5230)在乙醇刺激等特殊环境压力产生的一种非典型角蒽环类抗生素。当缺失糖基合成基

因jadO (NDP-糖2,3-脱水酶)后,令人意外地产生了一种新糖基修饰产物6-脱氧-L-altrose修饰杰多霉素(图1)。理论上jadO 缺失突变株积累的中间体糖基应该为NDP-4-酮基-6-脱氧-D-葡萄糖,推测该中间体糖可被下游JadU (异构酶)和JadV (酮基还原酶)继续催化生成NDP-6-脱氧-L-altrose,继而被糖基转移酶JadS识别生成新糖基修饰的产物,该结果也表明JadS对糖基底物具有一定的宽容性。类似的情况在Urdamycin、Methymycin 等中也有报道[8]。

图1 体内基因缺失技术改造红霉素和杰多霉素糖基侧链修饰Fig.1 Formation of new glycosylated derivatives of erythromycin and jadomycin

by gene inactivation

此外, 通过缺失GTs 也是获得不同糖基侧链化合物的常用途径,该方法常用于含有多个GT 的天然产物合成途径。

Landomycin A 是Streptomyces cyanogenus S136产生的一种含有六糖侧链的角蒽环类抗生素,该六糖侧链由4 个GT(糖基转移酶)负责合成。通过分别缺失其合成途径中的3 个GT 基因lanGT1、lanGT4和lanGT3 获得了多种含不同糖基侧链的Landomycin 衍生物[9]。

Zhang等近来鉴定了Tiacumicin B (产生菌为Dactylosporangium aurantiacum subsp. Hamdenensis NRRL 18085)的生物合成基因簇,通过对其合成途径中的两个GT编码基因tiaG1 和tiaG2 分别进行缺失,获得了多种不同糖基侧链的Tiacumicin 衍生物,同时该工作表明TiaG1 和TiaG2 对非天然的糖基底物具有一定的识别利用能力[10]。

这些工作的深入开展,不仅可以从体内鉴定糖基合成基因以及GTs 编码基因的功能,还可以发现具有宽泛糖基底物识别能力的糖基转移酶和糖基合成酶,为合成新结构糖基以及新糖基修饰天然产物打下坚实的基础。

3.1.2 体内组合生物合成技术

体内组合生物合成技术主要是通过对糖基合成途径进行代谢工程改造,来获得新糖基修饰产物。

红霉素(Erythromycin)是红色糖多孢菌(Saccharopolyspora erythraea)产生的一种大环内酯类抗生素,缺失其碳霉糖糖基转移酶(Mycarosyltransferase)基因eryBV,然后在该突变株中表达外源GT(糖基转移酶)oleandrosyltransferase(OleG2, 来源于Oleandomycin 合成途径),成功获得了新糖基修饰产物3-O-L-rhamnosyl erythronolide[11]。

在Sac.erythraea SGT2中表达多杀菌素合成途径中GT SpnP (Forosaminyltransferase),同时外源添加多杀菌素假配糖体(Spinosyn

相关文档
最新文档