并联机构与并联机器人(课堂PPT)

合集下载

机器人学-并联机构与并联机器人

机器人学-并联机构与并联机器人

14
2020/3/20
15
2020/3/20
视频:饼干抓取
视频:试管分拣
16
2.2 虚拟轴机床简介(1990s)
• 虚拟轴机床又称并联机床(Parallel Kinematics Machine Tools ),实质上是机器人技术和机床 技术相结合的产物 。
• 与传统机床比较: 优点:比刚度高(弹性模量与其密度的比值,比
• 其中2、3自由度并联机构中存在平面机构这一特殊情况,研究难度降低很多, 较多地被人们研究和使用。
• 6 自由度并联机构是并联机器人机构中的一大类,是国内外学者研究得最多 的并联机构,广泛应用在飞行模拟器、6维力与力矩传感器和并联机床等领域。 但这类机构有很多关键性技术没有或没有完全得到解决,比如其运动学正解、 动力学模型的建立以及并联机床的精度标定等。
2020/3/20
5
2020/3/20
6
2020/3/20
7
• 为了满足越来越复杂的工作需求,研究和使用多自由度 (3~6)的空间机构显示出一定的必要性。
• 近年来, 国内外机构型研究主要集中在多自由度多支链并 联机器人构型问题上。并联机构的结构属于空间多环多自 由度机构。并联机构的构型综合是一个极具挑战性的难题。 到目前为止, 国内外主要有四种并联机构的型综合研究方 法, 即基于螺旋理论的给定末端运动约束的型综合法、基 于李代数的型综合法、基于给定末端运动的型综合法和列 举型综合法。
2020/3/20
33
• 从前面对delta系统分析的过程中我们已经 对并联机构的复杂性有所了解,而这种复 杂性正潜藏了一些未知的优越性,所以并 联机构和并联机器人的开发必将对机器人 事业的发展提供强大助力。

并联机器人-课件PPTb第1章 并联机器人概述

并联机器人-课件PPTb第1章 并联机器人概述

(3) 并联机构的类型
图1-3 2-PRR的2自由度并联机构 图1-4 3-RPS的3自由度并联机构
(3) 并联机构的类型
图1-5 4-UPU的4自由度并联机构
图1-6 3-5R的5自由度并联机构
(3) 并联机构的类型
图1-7 6-UPU的6自由度并联机构 图1-8 4-SPS/S的3自由度冗余驱动并联机构
并联机器人在模拟设备中的应用
六自由度飞机飞行模拟器
并联机器人在模拟设备中的应用
六自由度动感座椅
并联机器人在模拟设备中的应用
六自由度模拟平台
并联机器人在模拟设备中的应用
三自由度动感座椅
并联机器人在模拟设备中的应用
导弹运动姿态模拟器
1.3.3 并联机器人在医疗器械中的应用
医用并联微动机器人
并联机器人在医疗器械中的应用
表1.1 常见运动副的类型及其代表符号
名称 符号 类型及级别 自由度 约束数
空间低副,
转动副 R
V级副(平 面低副,Ⅱ
1R
5
级副)
空间低副,
ቤተ መጻሕፍቲ ባይዱ
移动副 P
V级副(平 面低副,Ⅱ
1T
5
级副)
螺旋副 H
空间低副 V级副
1R或1T
5
图形
基本符号
圆柱副 C
空间低副 Ⅳ级副
1RIT
4
虎克铰 U
空间低副 Ⅳ级副
2R
定平台和动平台之间用弹性连杆或弹性铰 链连接的并联机器人为柔顺并联机器人。
柔顺并联机器人
6自由度的铰链柔顺并联机器人 6自由度Stewart微操作平台
PSS柔性支链
1.2.5 按并联机器人的结构对称性分类

机器人机构学【ch07】3T-0R并联机器人机构拓扑结构综合与分类 培训教学课件

机器人机构学【ch07】3T-0R并联机器人机构拓扑结构综合与分类 培训教学课件

支路结构类型与支路组合
例如,表7-1中SOC栏第二列所给出的7种类型。
支路结构类型与支路组合
混合单开链支路结构类型
根据表6-1选定4种两支路并联机器人机构,如图7-1所示。
支路结构类型与支路组合
支路组合方案 基于并联机器人机构支路数目、主动副位置,同时考虑到并联机器人机构对 称性、SOC支路与HSOC支路结构特点和运动输出特征,由表7-1所示的支 路类型可设计很多组合方案,均可获得3T-0R并联机器人机构,这里仅列出 部分组合方案。
表7-2中No.22~No.24等并联机器人机构。该类机构在装配时,应满足ቤተ መጻሕፍቲ ባይዱ持瞬时运动
特性不变的条件。然而,制造与装配误差总会存在,故其运动敏感性较强。

谢谢观看
3T-0R并联机器人机构拓扑结构类型及其分类
图7-9所示的3T-0R并联机器人机构。根据主动副判定准则,该并联机器人机构同一平台上的3个P副可 同时为主动副。
3T-0R并联机器人机构拓扑结构类型及其分类
基于改变支路运动副次序或方向的类型扩展:图7-10所示的两种混合单开链支路运动输出特征等效, 其区别仅在于4R平行四边形回路在支路中位置不同。
3T-0R并联机器人机构拓扑结构类型及其分类
3T-0R并联机器人机构拓扑结构类型及其分类
3T-0R并联机器人机构拓扑结构类型及其分类
3T-0R并联机器人机构拓扑结构类型及其分类
3T-0R并联机器人机构拓扑结构类型及其分类
3T-0R并联机器人机构拓扑结构类型及其分类
3T-0R并联机器人机构拓扑结构类型及其分类 基于等效支路的完全取代扩展
① SOC{I-B(1)},即SOC{-H//H//H//H-}。
② HSOC{I-B(1)},即HSOC{-R(-P(4R))//R//P-}。

并联机构与并联机器人

并联机构与并联机器人

并联机构与并联机器人的未来展望
拓展应用领域
随着技术的不断发展,并联机器 人有望在更多领域得到应用,如
医疗、航空、深海探测等。
创新性研究
未来将有更多学者和研究团队加入 到并联机器人领域的研究中,推动 该领域的技术创新和进步。
标准化和产业化
随着研究的深入和应用需求的增长, 并联机器人有望实现标准化和产业 化,推动其大规模应用和普及。
生。
并联机构的优化方法01020304
尺寸优化
根据任务需求和性能要求,调 整并联机构的尺寸参数,以达
到更好的性能。
运动学优化
通过调整并联机构的运动学参 数,优化其运动性能,提高执
行效率。
动力学优化
根据并联机构的动态特性,优 化其驱动力和运动轨迹,以实 现更稳定、更快速的运动。
结构优化
通过改进并联机构的结构设计 ,降低重量、减小体积,提高
并联机构与并联机器人
目 录
• 并联机构简介 • 并联机器人的基础知识 • 并联机构的设计与优化 • 并联机器人的控制技术 • 并联机构与并联机器人的研究进展
01 并联机构简介
并联机构的定义
并联机构的定义
并联机构是由至少两个相互独立的运 动链所组成,通过各分支链末端的球 面副或圆柱副相连接,并实现特定运 动规律的一种特殊机构。
并联机构的组成
并联机构通常由动平台、定平台和连 接这两者的运动支链组成。其中,运 动支链是指连接动平台和定平台的所 有运动副元素。
并联机构的特点
承载能力强
由于并联机构具有多个独立的运动链,其承载能力较强,能够承受较 大的负载。
刚度大
由于并联机构的运动支链数量多,其整体刚度较大,能够保证较高的 定位精度。

并联机构与并联机器人[优质ppt]

并联机构与并联机器人[优质ppt]
pl为平面低副数(即只有一个自由度的运动副) ph为平面高副数
• 针对空间机构自由度计算公式,国内外研究人员做了大量研究也得出 了大量的(至少35个)公式,其中大多都是适用条件限制或者若干 “注意事项”(如需要甑别公共约束、虚约束、环数、链数、局部自 由度等等)。
• 马娄谢夫(前苏联)空间机构计算式
• 作者称此公式适用范围最宽且计算过程简单,但事实上公 式中λ包含有5种多余自由度,甑别和计算过程并不简单。
2019/8/20
刚度较高说明相同刚度下材料重量更轻)、响 应速度快及运动精度高。 缺点:运动空间小、空间可转角度(灵活性)小、
开放性差。
2019/8/20
17
传统机床与虚拟轴机床外观差异
2019/8/20
18
2019/8/20
19
2019/8/20
视频:虚拟轴机床一
视频:虚拟轴机床二
20
3、delta并联机器人详解
Delta:3个主动臂P5,12个球铰P3
W=6(11-1)-5*3-3*12-6=3
2019/8/20 应注意机构中六根碳纤维杆保留6个绕自身轴线旋转的局部自由度
22
• Kutzbach Grubler公式计算获得
2019/8/20
23
• 国内北华大学欧阳富等人发表了一系列文章,并于2003年 提出一个可以替代此前34个计算公式的公式:
(5)工作空间较小;
2019/8/20
9
2、并联机构应用实例
2.1 delta机器人
• 第一代delta(1985) • Delta机器人就像一个倒
挂的有三个脚的蜘蛛, 因其的灵巧、速度和精 确在装配、自动化和医 疗设备领域得到应用, 被誉为“最成功的并联 机器人设计”,并于 1990年前后在世界各国 申请专利。

机器人机构学【ch06】并联机器人机构拓扑结构特征与综合 培训教学课件

机器人机构学【ch06】并联机器人机构拓扑结构特征与综合 培训教学课件


可分离活动度
当机构可以分割为两个或多个独立的运动子链,且每个子链的从动连杆相对于机架的
位姿只是该子链内主动输入的函数时,该机构具有可分离活动度。

活动度类型与控制解耦原理
活动度类型判定准则如下: 1)当F个主动副位于同一个BKC的诸支路中时,机构具有完全活动度。
2)当F个主动副位于不同BKC的支路中时,机构具有部分活动度。
第六章
并联机器人机构拓 扑结构特征与综合
工业和信息化部“十四五”规划教材
机器人机构学
01
并联机器人机构结构组成
并联机器人机构结构组成
并联机器人机构结构分解
如图6-1所示,任一基本回路数为v的并联机器人机构可视为由动平台、静平台以及两者之间并联的v+1 个单开链(SOC)支路组成。
并联机器人机构结构组成
本运动链(BKC)组成。
基本运动链判定准则
按照机构耦合度算法,机构被依次 分解为1个SLC和v-1个SOC。

基本运动链的重要性质 1)基本回路数为v且只由R副组成的BKC类型只存在有限种。

多回路机构耦合度
2)每一种BKC的运动学正解(包括复数解)数目NBKC是一不变量,v=1~3的平面BKC的NBKC如表6-2所示。 3)并联机器人机构的混合单开链(HSOC)支路中包含BKC,有利于实现并联机器人机构控制解耦。
并联机器人机构结构组成
并联机器人机构结构组成
混合单开链支路及其等效单开链:含有回路的开链称为混合单开链,如图6-2(a)所示。
并联机器人机构结构组成
更一般地,混合单开链可由并联机器人机构(单回路机器人机构可视为回路数为1的并联机器人机构)串 联若干运动副和连杆组成,如图6-3(a)、(b)所示。

机器人机构分析与综合课件:8_1_1_并联机器人的奇异问题

机器人机构分析与综合课件:8_1_1_并联机器人的奇异问题

(t a1 b1) (t a4 b4 ) 2t (a1 a4 ) (b1 b4 )
根据结构的对称性:
ai ai3 bi bi3
i 1,2,3
a5 a6
a1
a4 a3
a2
(t a1 b1) (t a4 b4 ) 2t (a1 a4 ) (b1 b4 ) 2t
无法平衡重力力矩 即使锁住各个支腿,机构也会沿着A轴自由转动
并联机构的奇异性
F q
速度传递: l J lqq
l 力传递: F JlqT f
f
奇异: Jlq 0
rank(Jlq ) 6
机构雅克比矩阵奇异!
§8.2 奇异时的机构特性
重力
A轴
处于奇异位形时,并联机构自由度不能完全被约束, 此时机构失去控制。
奇异点
什么是奇异性?
性能差
例一:拉直绳子
想保持绳子拉直, 需要非常大的力!
F
f
F
F f
2 sin
0 F
例二:双连杆
f
F
F
F f
2 sin
0
F
0
f
例三:曲柄连杆——死点
C 曲柄
B A
摇杆
ABC三点一线
并联机构也存在奇异性问题
奇异性的直观物理意义
重力
A轴
D
D0 M 0
所有支腿轴线均通过A轴,对A轴力矩为零;
rank(B) rank(B') rank(B)
后三列,加到前三列:
B a1 b1 a2 b2 a3 b3 t
t
t
a1 t a2 t a3 t a1 b1 a2 b2 a3 b3
§8.3.2 构型奇异
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2
5
2
6
2
7
• 为了满足越来越复杂的工作需求,研究和使用多自由度 (3~6)的空间机构显示出一定的必要性。
• 近年来, 国内外机构型研究主要集中在多自由度多支链并 联机器人构型问题上。并联机构的结构属于空间多环多自 由度机构。并联机构的构型综合是一个极具挑战性的难题。 到目前为止, 国内外主要有四种并联机构的型综合研究方 法, 即基于螺旋理论的给定末端运动约束的型综合法、基 于李代数的型综合法、基于给定末端运动的型综合法和列 举型综合法。
Delta:3个主动臂P5,12个球铰P3
W=6(11-1)-5*3-3*12-6=3
应注意机构中六根碳纤维杆保留6个绕自身轴线旋转的局部自由度
2
22
• Kutzbach Grubler公式计算获得
2
23
• 国内北华大学欧阳富等人发表了一系列文章,并于2003年 提出一个可以替代此前34个计算公绕Z轴旋转的自由度,两端是
2
2 1931年Gwinnett的娱乐装置 (5D电影)
1965年Stewart机构 3
• 1985法国克拉维尔(Clavel)教 授设计出delta并联机构(或称为 delta机器人)
2
4
按自由度分类
• (1 )2 自由度并联机构。 • (2 )3 自由度并联机构。 • (3 )4 自由度并联机构。 • (4 )5 自由度并联机构。 • (5 )6 自由度并联机构。(如Stewart机构、双Delta嵌套机构)
并联机构与并联机器人
——仿生机器人学课程专题报告
姓名:@@ 班级:13级机硕1班 学号:2111301003
2
1
内容安排:
1、并联机构简介
2、并联机构应用实例
3.1、delta机器人 3.2、虚拟轴机床
3、delta并联机器人详解
4、 关于并联机器人的思索
2
2
1 并联机构简介
• 并联机构的出现可以回溯至20世纪30年代。1931年,格威内特 (Gwinnett)在其专利中提出了一种基于球面并联机构的娱乐装置。 在之后的几十年内,新的并联机构不断被提出并应用于汽车喷涂、轮 胎检测、飞行模拟器等工业领域。其中由Gough于1962年发明,并被 Stewart系统研究的Gough-Stewart机构(或称Stewart机构)运用最 广,至今仍然被广泛研究和使用。
• 作者称此公式适用范围最宽且计算过程简单,但事实上公 式中λ包含有5种多余自由度,甑别和计算过程并不简单。
2
24
3.2 保证动平台始终水平的机制
十字万向节
• Clavel给出的简图中从动杆两端是用虎克铰(十字万向联轴节)联接的,很 容易分析出同组杆共面,有由对边长度相等得出每组(如5a和5b两杆)从动 杆参与构成平行四边形。于是,如图所示中的3组不同颜色轴线始终平行,进 而保证了动平台平行于静平台。
(5)工作空间较小;
2
9
2、并联机构应用实例
2.1 delta机器人
• 第一代delta(1985) • Delta机器人就像一个倒
挂的有三个脚的蜘蛛, 因其的灵巧、速度和精 确在装配、自动化和医 疗设备领域得到应用, 被誉为“最成功的并联 机器人设计”,并于 1990年前后在世界各国 申请专利。
• 3.1 自由度计算
• 机构见图的化简有利于运动学的分析,但有文章在计算自由度的时候
也直接按化简后的简图计算,个人认为欠妥。因为把平台化简为点的
过程其实忽略了其姿态信息,而姿态的变化也属于自由度的范畴,因
2 此个人倾向于用原机构简图分析
21
平面机构自由度计算公式: F=3n-2pl-ph 式中 n为活动杆件数(不算机架)
pl为平面低副数(即只有一个自由度的运动副) ph为平面高副数
• 针对空间机构自由度计算公式,国内外研究人员做了大量研究也得出 了大量的(至少35个)公式,其中大多都是适用条件限制或者若干 “注意事项”(如需要甑别公共约束、虚约束、环数、链数、局部自 由度等等)。
• 马娄谢夫(前苏联)空间机构计算式
2
8
• 并联机器人组成:一个固定基座、一 个具有n自由度的末端执行器以及不 少于两条独立的运动链。
• 并联机器人特点:
(1)无累积误差,精度较高;
(2)驱动装置可置于定平台上或接近 定平台的位置,这样运动部分重量轻, 速度高,动态响应好;
(3)结构紧凑,刚度高,承载能力大;
(4)完全对称的并联机构具有较好的 各向同性;
• 2、速度更快每秒2000 度的速度拾取、旋转和 放置物体
• 缺点:有效负载降低。 第一代最大负载0.5kg, 目前最大载荷可达6kg。
2
12
瑞士工业公司,将转动副 驱动改为移动付驱动
2
13
工业应用
2
14
2
15
视频:饼干抓取
视频:试管分拣
2
16
2.2 虚拟轴机床简介(1990s)
• 虚拟轴机床又称并联机床(Parallel Kinematics Machine Tools ),实质上是机器人技术和机床 技术相结合的产物 。
• 与传统机床比较: 优点:比刚度高(弹性模量与其密度的比值,比
刚度较高说明相同刚度下材料重量更轻)、响 应速度快及运动精度高。 缺点:运动空间小、空间可转角度(灵活性)小、
开放性差。
2
17
传统机床与虚拟轴机床外观差异
2
18
2
19
视频:虚拟轴机床一
视频:虚拟轴机床二
2
20
3、delta并联机器人详解

2
10
• 由于专利保护的限制,delta机器人早期并没有得 到应有的推广,直到近年专利保护一一终止后, 才开始被世界各地的制造商争相生产和开发。
• 在Delta原型基础上,研究人员做了很多衍生机型。
2
11
FANUC六轴机器人
• 三轴铰接式手腕(专利 产品)+delta机器人
• 优点:1、末端增加3个 旋转自由度,可以适用 更复杂工况
• 其中2、3自由度并联机构中存在平面机构这一特殊情况,研究难度降低很多, 较多地被人们研究和使用。
• 6 自由度并联机构是并联机器人机构中的一大类,是国内外学者研究得最多 的并联机构,广泛应用在飞行模拟器、6维力与力矩传感器和并联机床等领域。 但这类机构有很多关键性技术没有或没有完全得到解决,比如其运动学正解、 动力学模型的建立以及并联机床的精度标定等。
相关文档
最新文档