2020高考物理最新复习题:能量问题

合集下载

2020年高考物理专题复习:能量守恒定律的应用技巧

2020年高考物理专题复习:能量守恒定律的应用技巧

2020年高考物理专题复习:能量守恒定律的应用技巧考点精讲1. 对能量守恒定律的理解(1)转化:某种形式的能量减少,一定存在其他形式的能量增加,且减少量和增加量一定相等。

(2)转移:某个物体的能量减少,一定存在其他物体的能量增加,且减少量和增加量相等。

2. 运用能量守恒定律解题的基本流程典例精讲例题1 如图所示,一物体质量m=2kg,在倾角θ=37°的斜面上的A点以初速度v0=3m/s下滑,A点距弹簧上端B的距离AB=4m。

当物体到达B点后将弹簧压缩到C点,最大压缩量BC=0.2m,然后物体又被弹簧弹上去,弹到的最高位置为D点,D点距A点的距离AD=3m。

挡板及弹簧质量不计,g取10m/s2,sin37°=0.6,求:(1)物体与斜面间的动摩擦因数μ。

(2)弹簧的最大弹性势能E pm。

【考点】能量守恒定律的应用【思路分析】(1)物体从开始位置A 点运动到最后D 点的过程中,弹性势能没有发生变化,动能和重力势能减少,机械能的减少量为ΔE =ΔE k +ΔE p =21mv 20+mgl AD sin37° ① 物体克服摩擦力产生的热量为Q =F f x ① 其中x 为物体运动的路程,即x =5.4m ① F f =μmg cos37°① 由能量守恒定律可得ΔE =Q①由①②③④⑤式解得μ≈0.52。

(2)由A 到C 的过程中,动能减少ΔE k =21mv 20 ① 重力势能减少ΔE p ′=mgl AC sin37° ① 摩擦生热Q ′=F f l AC =μmg cos37°l AC①由能量守恒定律得弹簧的最大弹性势能为 ΔE pm =ΔE k +ΔE p ′-Q ′①联立⑥⑦⑧⑨解得ΔE pm ≈24.46J 。

【答案】(1)0.52 (2)24.46J【规律总结】应用能量守恒定律解题的基本思路1. 分清有多少种形式的能(如动能、势能(包括重力势能、弹性势能、电势能)、内能等)在变化。

(精品人教)2020版高考物理一轮复习 高频考点强化(五)能量综合问题练习

(精品人教)2020版高考物理一轮复习 高频考点强化(五)能量综合问题练习

高频考点强化(五)能量综合问题(45分钟100分)一、选择题(本题共10小题,每小题7分,共70分。

1~7题为单选题,8~10题为多选题)1.(2018·张掖模拟)一质量为m的人站在电梯中,电梯由静止竖直向上做匀加速运动时,电梯的加速度为。

人随电梯上升高度H的过程中,下列说法错误的是(重力加速度为g) ( )A.人的重力势能增加mgHB.人的机械能增加mgHC.人的动能增加mgHD.人对电梯的压力是他体重的倍【解析】选C。

电梯上升高度H,则重力做负功,重力势能增加mgH,故A正确;对人由牛顿第二定律得F N-mg=ma,解得F N=mg+ma=mg+mg=mg,支持力方向竖直向上,故做正功,支持力做的功等于人的机械能增量,故人的机械能增加mgH,而重力势能增加mgH,所以动能增加mgH,故B正确,C错误;根据牛顿第三定律可知,人对电梯底部的压力为mg,即人对电梯的压力是他体重的倍,D正确。

2.(2015·全国卷Ⅰ)如图,一半径为R,粗糙程度处处相同的半圆形轨道竖直固定放置,直径POQ水平。

一质量为m的质点自P点上方高度R处由静止开始下落,恰好从P点进入轨道。

质点滑到轨道最低点N时,对轨道的压力为4mg,g为重力加速度的大小。

用W表示质点从P点运动到N点的过程中克服摩擦力所做的功。

则( )A.W=mgR,质点恰好可以到达Q点B.W>mgR,质点不能到达Q点C.W=mgR,质点到达Q点后,继续上升一段距离D.W<mgR,质点到达Q点后,继续上升一段距离【解析】选C。

在N点由牛顿第二定律得4mg-mg=m;从最高点到N点,由动能定理得2mgR-W=m,联立解得W=mgR。

由于克服阻力做功,机械能减小,所以质点从N点到Q点克服阻力做的功要小于从P点到N点克服阻力做的功,即质点从N点到Q点克服阻力做的功W′<W=mgR,质点从N点到Q点由动能定理得-mgR-W′=m-m,解得m>0,所以质点能够到达Q点,并且还能继续上升一段距离,故选项C正确。

2020届高考物理二轮复习能量与动量微专题突破 爆炸问题和反冲问题(带解析)

2020届高考物理二轮复习能量与动量微专题突破   爆炸问题和反冲问题(带解析)

爆炸问题和反冲问题1、一个人在地面上立定跳远的最好成绩是(m)s ,假设他站立在船的右端处于静止状态要跳到距离(m)L 的岸上(设船与岸边同高,忽略水的阻力),则( ) A.L s <,他一定能跳上岸 B.L s <,他有可能跳上岸 C.L s =,他有可能跳上岸D.L s =,他一定能跳上岸2、将质量为1.00 g 的模型火箭点火升空,50 g 燃烧的燃气以大小为600 m/s 的速度从火箭喷口在很短时间内喷出.在燃气喷出后的瞬间,火箭的动量大小为(喷出过程中重力和空气阻力可忽略)() A .30/kg m s gB .5.7102/kg m s ⨯gC .6.0102/kg m s ⨯gD .6.3102/kg m s ⨯g3、质量为m 的炮弹以一定的初速度发射,其在水平地面上的射程为d ,若当炮弹飞行到最高点时炸裂成质量相等的两块,其中一块自由下落,则另一块的射程为( ) A.1. 5d B.2d C. d D.3d4、如图,质量为M 的小船在静止水面上以速率v 0向右匀速行驶,一质量为m 的救生员在船尾,相对小船静止。

若救生员以相对水面速率v 水平向左跃入水中,则救生员跃出后小船的速率为( )A.0mv v M+B.0mv v M-C.()00m v v v M ++ D.()00mv v v M+-5、向空中发射一炮弹,不计空气阻力,当炮弹的速度恰好沿水平方向时,炮弹炸裂为质量相等的a b、两块。

若a的速度方向仍沿原来的方向,且速度小于炸裂前瞬间的速度,则( )A.b的速度方向一定与炸裂前瞬间的速度方向相反B.从炸裂到落地这段时间内,a飞行的水平距离一定比b的大C.a b、一定同时到达地面D.炸裂的过程中,a b、动量的变化量大小一定不相等6、如图所示,一枚手榴弹开始时在空中竖直向下落,到某位置时爆炸成a、b两块同时落地,其中a落地时飞行的水平距离OA大于b落地时飞行的水平距离OB,下列说法正确的是()A.爆炸瞬间a、b两块的速度大小相等B.爆炸瞬间a、b两块的速度变化量大小相等C. a、b两块落地时的速度大小相等D.爆炸瞬间a、b两块的动量变化大小相等7、一弹丸在飞行到距离地面5m高时仅有水平速度2m/sv ,爆炸成为甲、乙两块水平飞出,甲、乙的质量比为3:1,不计质量损失,重力加速度g取210m/s,则下列图中两块弹片飞行的轨迹可能正确的是()A. B.C. D.8、“世界航天第一人”是明朝的士大夫万户,他把47个自制的火箭绑在椅子上,自己坐在椅子上,双手举着大风筝,设想利用火箭的推力,飞上天空,然后利用风筝平稳着陆。

2024高考物理二轮复习专题三动量和能量1_3_5功功率动能定理训练

2024高考物理二轮复习专题三动量和能量1_3_5功功率动能定理训练

1-3-5 功功率动能定理课时强化训练1.(2024·山西太原一模)如图所示,两个人利用机械装置提升相同的重物。

已知重物匀速上升,相同的时间内两重物提升的高度相同。

不考虑绳、滑轮的质量及摩擦,在重物上升的过程中人拉力的作用点保持不变(θ始终小于30°),则( )A.站在地面的人比站在二楼的人省力B.站在地面的人对绳的拉力越来越大C.站在二楼的人对绳的拉力越来越大D.同一时刻,二楼的人对绳拉力的功率小于地面的人对绳拉力的功率[解析] 设重物的质量为m,地面上的人对绳的拉力F T=mg恒定不变;站在二楼的人对绳的拉力F T′=mg2 cos θ,重物匀速上升过程中θ越来越大,cos θ越来越小,则F T′越来越大,B项错误,C项正确。

因θ始终小于30°,则1>cos θ>32,则33mg>F T′>12mg,而F T=mg,则站在地面的人比站在二楼的人费劲,所以A项错误。

人对绳拉力做的功等于克服重物重力做的功,两重物质量相同,上上升度相同,所用时间相同,克服重力做功的功率相同,故D错误。

[答案] C2.(2024·湖北八校二联)如图,小球甲从A点水平抛出,同时将小球乙从B点自由释放,两小球先后经过C点时速度大小相等,方向夹角为30°,已知B、C高度差为h,两小球质量相等,不计空气阻力,由以上条件可知( )A.小球甲做平抛运动的初速度大小为2gh 3B .甲、乙两小球到达C 点所用时间之比为1∶ 3 C .A 、B 两点高度差为h4D .两小球在C 点时重力的瞬时功率大小相等[解析] 甲、乙两球经过C 点的速度v 甲=v 乙=2gh ,甲球平抛的初速度v 甲x =v 甲 sin 30°=2gh2,故A 错误;甲球经过C 点时竖直方向的速度v 甲y =v 甲 cos 30°=6gh 2,运动时间t 甲=v 甲yg=3h2g,乙球运动时间t 乙=2h g ,则t 甲∶t 乙=3∶2,故B 项错误;A 、B 两点的高度差Δh =12gt 2乙-12gt 2甲=h4,故C 项正确;甲和乙两球在C 点时重力的瞬时功率分别为P 甲=mgv 甲y=mg6gh2,P 乙=mgv 乙=mg 2gh ,故D 项错误。

2020届高考物理二轮复习能量和动量微专题突破 能量专题问题中的“传送带”模型和“板块”模型

2020届高考物理二轮复习能量和动量微专题突破   能量专题问题中的“传送带”模型和“板块”模型

能量专题问题中的“传送带”模型和“板块”模型1、如图所示,某滑翔爱好者利用无动力滑翔伞在高山顶助跑起飞,在空中完成长距离滑翔后安全到达山脚下。

他在空中滑翔的过程中( )A.只有重力做功B.重力势能的减小量大于重力做的功C.重力势能的减小量等于动能的增加量D.动能的增加量等于合力做的功2、如图,木块m 放在光滑的水平面上,一颗子弹水平射入木块中,子弹受到的平均作用力为f ,射入深度为d ,此过程中木块移动了s ,则( )A.子弹损失的动能为fsB.木块增加的动能为()f s d +C.子弹动能的减少等于木块动能的增加D.子弹、木块系统总机械能的损失为fd3、水平传送带以速度v 匀速转动,把一质量为m 的小木块A 由静止轻放在传送带上,若小木块与传送带间的动摩擦因数为μ如图所示,在小木块与传送带相对静止时,转化为内能的能量为( )A. 2mvB. 22mvC.214mv D. 212mv4、如图所示,固定在水平面上的光滑斜面倾角为θ=30°,物体A 、B 通过细绳及轻弹簧连接于光滑轻滑轮两侧,P 为固定在斜面上且与斜面垂直的光滑挡板,物体A 、B 的质量分別为m 和4m 。

开始时用手托住物体A ,滑轮两边的细绳恰好伸直,且左边的细绳与斜面平行,弹簧处于原长状态,A 距离地面高度为h ,放手后A 从静止开始下落,在A 下落至地面前的瞬间,物体B 恰好对挡板无压力,不计空气阻力,下列关于物体A 的说法正确的是( )A.在下落至地面前的过程中机械能守恒B.在下落至地面前的瞬间速度不一定为零C.在下落至地面前的过程中轻弹簧对A 做的功为-mghD.在下落至地面前的过程中可能一直在做加速运动5、如图所示,质量为m 1、长为L 的木板置于光滑的水平面上,一质量为m 的滑块(视为质点)放置在木板左端,滑块与木板间滑动摩擦力的大小为f,用水平的恒定拉力F 作用于滑块.当滑块从静止开始运动到木板右端时,木板在地面上移动的距离为s,滑块速度为v 1, 木板速度为v 2, 下列结论中正确的是( )A. 滑块克服摩擦力所做的功为f(L+s)B.木板满足关系: 2121()2f L s m v += C. ()221121122F L s mv m v +=+ D.其他条件不变的情况下,F 越大,滑块与木板间产生的热量越多6、如图所示,在匀速转动的电动机带动下,足够长的水平传送带以恒定速率1v ,匀速顺时针运动,一质量为m 的滑块从传送带右端以水平向左的速率2v (21v v >)滑上传送带,最后滑块返回传送带的右端。

2020届浙江高考复习专题:电磁感应的综合应用(能量问题、动量问题、杆+导轨模型)(解析版)

2020届浙江高考复习专题:电磁感应的综合应用(能量问题、动量问题、杆+导轨模型)(解析版)

专题09 电磁感应的综合应用(能量问题、动量问题、杆+导轨模型)考点分类:考点分类见下表考点内容常见题型及要求考点一电磁感应中的能量问题选择题、计算题考点二电磁感应中的动量问题选择题、计算题考点三电磁感应中的“杆+导轨”模型选择题、计算题考点一: 电磁感应中的能量问题1.能量转化及焦耳热的求法(1)能量转化(2)求解焦耳热Q的三种方法2.解题的一般步骤(1)确定研究对象(导体棒或回路);(2)弄清电磁感应过程中,哪些力做功,哪些形式的能量相互转化;(3)根据功能关系或能量守恒定律列式求解.3.方法技巧求解电能应分清两类情况(1)若回路中电流恒定,可以利用电路结构及W=UIt或Q=I2Rt直接进行计算.(2)若电流变化,则①利用安培力做的功求解:电磁感应中产生的电能等于克服安培力所做的功;②利用能量守恒求解:若只有电能与机械能的转化,则机械能的减少量等于产生的电能.③利用功能关系求解:若除重力、安培力做功外,还有其他力做功,则其他力做功等于增加的机械能和电能.学科#网考点二电磁感应中的动量问题电磁感应问题往往涉及牛顿定律、动量守恒、能量守恒、电路的分析和计算等许多方面的物理知识,试题常见的形式是导体棒切割磁感线,产生感应电流,从而使导体棒受到安培力作用.导体棒运动的形式有匀速、匀变速和非匀变速3种,对前两种情况,容易想到用牛顿定律求解,对后一种情况一般要用能量守恒和动量守恒定律求解,但当安培力变化,且又涉及位移、速度、电荷量等问题时,用动量定理求解往往能巧妙解决.方法技巧动量在电磁感应中的应用技巧(1)在电磁感应中,动量定理应用于单杆切割磁感线运动,可求解变力的时间、速度、位移和电荷量.①求电荷量或速度:B I lΔt=mv2-mv1,q=I t.③求位移:-BIlΔt=-22B l v tR总=0-mv0,即-22B lR总x=m(0-v0).(2)电磁感应中对于双杆切割磁感线运动,若双杆系统所受合外力为零,运用动量守恒定律结合能量守恒定律可求解与能量有关的问题.考点三:电磁感应中的“杆+导轨”模型模型概述“导轨+杆”模型是电磁感应问题在高考命题中的“基本道具”,也是高考的热点,考查的知识点多,题目的综合性强,物理情景变化空间大,是我们复习中的难点.“导轨+杆”模型又分为“单杆”型和“双杆”型;导轨放置方式可分为水平、竖直和倾斜;杆的运动状态可分为匀速运动、匀变速运动、非匀变速运动或转动等;磁场的状态可分为恒定不变、均匀变化和非均匀变化等等,情景复杂,形式多变常见类型单杆水平式(导轨光滑)设运动过程中某时刻棒的速度为v,加速度为a=Fm-22B L vmR,a,v同向,随v的增加,a减小,当a=0时,v最大,I=BLvR恒定单杆倾斜式(导轨光滑)杆释放后下滑,开始时a=gsin α,速度v↑→E=BLv↑→I=ER↑→F=BIL↑→a↓,当F=mgsin α时,a=0,v最大双杆切割式(导轨光滑)杆MN做变减速运动,杆PQ做变加速运动,稳定时,两杆的加速度均为零,以相等的速度匀速运动.对系统动量守恒,对其中某杆适用动量定理学科&网光滑不等距导轨杆MN做变减速运动,杆PQ做变加速运动,稳定时,两杆的加速度均为零,两杆以不同的速度做匀速运动含“源”水平光滑导轨(v0=0)S闭合,ab杆受安培力F=BLEr,此时a=BLEmr,速度v↑⇒E感=BLv↑⇒I↓⇒F=B IL↓⇒加速度a↓,当E感=E时,v最大,且v m=EBL含“容”水平光滑导轨(v0=0)拉力F恒定,开始时a=Fm,速度v↑⇒E=BLv↑,经过Δt速度为v+Δv,此时E′=BL(v+Δv),电容器增加的电荷量ΔQ=CΔU=C(E′-E)=CBLΔv,电流I=Qt∆∆=CBL vt∆∆=CBLa,安培力F安=BIL=CB2L2a,F-F安=ma,a=22Fm B L C+,所以杆做匀加速运动★考点一:电磁感应中的能量问题◆典例一:( 2019·浙江卷)如图所示,倾角θ=37°、间距l=0.1 m的足够长金属导轨底端接有阻值R=0.1 Ω的电阻,质量m=0.1 kg的金属棒ab垂直导轨放置,与导轨间的动摩擦因数μ=0.45.建立原点位于底端、方向沿导轨向上的坐标轴x.在0.2 m≤x≤0.8 m区间有垂直导轨平面向上的匀强磁场.从t=0时刻起,棒ab在沿x轴正方向的外力F作用下,从x=0处由静止开始沿斜面向上运动,其速度v与位移x满足v=kx(可导出a=kv),k=5 s-1.当棒ab运动至x1=0.2 m处时,电阻R消耗的电功率P=0.12 W,运动至x2=0.8 m处时撤去外力F ,此后棒ab 将继续运动,最终返回至x =0处.棒ab 始终保持与导轨垂直,不计其他电阻,求:(提示:可以用F-x 图象下的“面积”代表力F 做的功,sin 37°=0.6)(1)磁感应强度B 的大小; (2)外力F 随位移x 变化的关系式;(3)在棒ab 整个运动过程中,电阻R 产生的焦耳热Q.【解析】(1)在x 1=0.2 m 处时,电阻R 消耗的电功率P =(Blv )2R此时v =kx =1 m/s 解得B =PR (lv )2=305 T(2)在无磁场区间0≤x<0.2 m 内,有 a =5 s -1×v =25 s -2×xF =25 s -2×xm +μmgcos θ+mgsin θ=(0.96+2.5x) N 在有磁场区间0.2 m≤x≤0.8 m 内,有 F A =(Bl )2vR=0.6x NF =(0.96+2.5x +0.6x) N =(0.96+3.1x) N (3)上升过程中克服安培力做的功(梯形面积) W A1=0.6 N 2(x 1+x 2)(x 2-x 1)=0.18 J撤去外力后,设棒ab 上升的最大距离为x ,再次进入磁场时的速度为v′,由动能定理有 (mgsin θ+μmgcos θ)x =12mv 2(mgsin θ-μmgcos θ)x =12mv′2解得v′=2 m/s由于mgsin θ-μmgcos θ-(Bl )2v′R =0故棒ab 再次进入磁场后做匀速运动下降过程中克服安培力做的功W A2=(Bl )2v′R (x 2-x 1)=0.144 JQ =W A1+W A2=0.324 J 【答案】 (1)305T (2)(0.96+3.1x) N (3)0.324 J◆典例二:[用功能关系求焦耳热]两足够长且不计电阻的光滑金属轨道如图甲所示放置,间距为d =1 m ,在左端弧形轨道部分高h =1.25 m 处放置一金属杆a ,弧形轨道与平直轨道的连接处光滑无摩擦,在平直轨道右端放置另一金属杆b ,杆a 、b 的电阻分别为R a =2 Ω、R b =5 Ω,在平直轨道区域有竖直向上的匀强磁场,磁感应强度B =2 T .现杆b 以初速度大小v 0=5 m/s 开始向左滑动,同时由静止释放杆a ,杆a 由静止滑到水平轨道的过程中,通过杆b 的平均电流为0.3 A ;从a 下滑到水平轨道时开始计时,a 、b 运动的速度—时间图象如图乙所示(以a 运动方向为正方向),其中m a =2 kg ,m b =1 kg ,g =10 m/s 2,求:(1)杆a 在弧形轨道上运动的时间;(2)杆a 在水平轨道上运动过程中通过其截面的电荷量; (3)在整个运动过程中杆b 产生的焦耳热. 【答案】(1)5 s (2)73 C (3)1156J【解析】(1)设杆a 由静止滑至弧形轨道与平直轨道连接处时杆b 的速度大小为v b0,对杆b 运用动量定理,有Bd I -·Δt =m b (v 0-v b0)其中v b0=2 m/s 代入数据解得Δt =5 s.(2)对杆a 由静止下滑到平直导轨上的过程中,由机械能守恒定律有m a gh =12m a v 2a解得v a =2gh =5 m/s设最后a 、b 两杆共同的速度为v′,由动量守恒定律得m a v a -m b v b0=(m a +m b )v′ 代入数据解得v′=83m/s杆a 动量的变化量等于它所受安培力的冲量,设杆a 的速度从v a 到v′的运动时间为Δt′,则由动量定理可得BdI·Δt′=m a (v a -v′)而q =I·Δt′代入数据得q =73C.(3)由能量守恒定律可知杆a 、b 中产生的焦耳热为 Q =m a gh +12m b v 20-12(m b +m a )v′2=1616 J b 棒中产生的焦耳热为Q′=52+5Q =1156 J.★考点二:电磁感应中的动量问题◆典例一:.(多选)(2019·高考全国卷Ⅲ)如图,方向竖直向下的匀强磁场中有两根位于同一水平面内的足够长的平行金属导轨,两相同的光滑导体棒ab 、cd 静止在导轨上.t =0时,棒ab 以初速度v 0向右滑动.运动过程中,ab 、cd 始终与导轨垂直并接触良好,两者速度分别用v 1、v 2表示,回路中的电流用I 表示.下列图象中可能正确的是( )【答案】AC【解析】棒ab以初速度v0向右滑动,切割磁感线产生感应电动势,使整个回路中产生感应电流,判断可知棒ab受到方向与v0方向相反的安培力的作用而做变减速运动,棒cd受到方向与v0方向相同的安培力的作用而做变加速运动,它们之间的速度差Δv=v1-v2逐渐减小,整个系统产生的感应电动势逐渐减小,回路中感应电流逐渐减小,最后变为零,即最终棒ab和棒cd的速度相同,v1=v2,两相同的光滑导体棒ab、cd组成的系统在足够长的平行金属导轨上运动时不受外力作用,由动量守恒定律有mv0=mv1+mv2,解得v1=v2=v02,选项A、C均正确,B、D均错误.◆典例二:[动量定理和能量守恒结合](2018·江西九江模拟)如图所示,光滑水平面停放一小车,车上固定一边长为L=0.5 m的正方形金属线框abcd,金属框的总电阻R=0.25 Ω,小车与金属框的总质量m=0.5 kg.在小车的右侧,有一宽度大于金属线框边长,具有理想边界的匀强磁场,磁感应强度B=1.0 T,方向水平且与线框平面垂直.现给小车一水平速度使其向右运动并能穿过磁场,当车上线框的ab边刚进入磁场时,测得小车加速度a=10 m/s2.求:(1)金属框刚进入磁场时,小车的速度为多大?(2)从金属框刚要进入磁场开始,到其完全离开磁场,线框中产生的焦耳热为多少? 【答案】(1) v 0=5 m/s. (2) 4.0 J. 【解析】(1)设小车初速度为v 0,则线框刚进入磁场时,ab 边由于切割磁感线产生的电动势为E=BLv 0 回路中的电流I=ER,根据牛顿定律BIL=ma 由以上三式可解得v 0=5 m/s.学&科网(2)设线框全部进入磁场时小车速度为v 1,进入过程平均电流为1I ,所用时间为Δt,则1I =R t ∆Φ∆=2BL R t∆根据动量定理得-B 1I LΔt=mv 1-mv 0,解得v 1=4 m/s设线框离开磁场时小车速度为v 2,离开过程平均电流为2I ,所用时间为Δt 1,则2I =1R t ∆Φ∆=21BL R t ∆ 根据动量定理得-B 2I LΔt 1=mv 2-mv 1,解得v 2=3 m/s线框从进入到离开产生的焦耳热Q=12m 20v -12m 22v =4.0 J.★考点三:电磁感应中的“杆+导轨”模型◆典例一:(2018·高考江苏卷)如图所示,竖直放置的“”形光滑导轨宽为L ,矩形匀强磁场Ⅰ、Ⅱ的高和间距均为d ,磁感应强度为B.质量为m 的水平金属杆由静止释放,进入磁场Ⅰ和Ⅱ时的速度相等.金属杆在导轨间的电阻为R ,与导轨接触良好,其余电阻不计,重力加速度为g.金属杆( )A .刚进入磁场Ⅰ时加速度方向竖直向下B .穿过磁场Ⅰ的时间大于在两磁场之间的运动时间C .穿过两磁场产生的总热量为4mgdD .释放时距磁场Ⅰ上边界的高度h 可能小于m 2gR 22B 4L 4【答案】BC【解析】根据题述,由金属杆进入磁场Ⅰ和进入磁场Ⅱ时速度相等可知,金属杆在磁场Ⅰ中做减速运动,所以金属杆刚进入磁场Ⅰ时加速度方向竖直向上,选项A 错误;由于金属杆进入磁场Ⅰ后做加速度逐渐减小的减速运动,而在两磁场之间做匀加速运动,所以穿过磁场Ⅰ的时间大于在两磁场之间的运动时间,选项B 正确;根据能量守恒定律,金属杆从刚进入磁场Ⅰ到刚进入磁场Ⅱ过程动能变化量为0,重力做功为2mgd ,则金属杆穿过磁场Ⅰ产生的热量Q 1=2mgd ,而金属杆在两磁场区域的运动情况相同,产生的热量相等,所以金属杆穿过两磁场产生的总热量为2×2mgd =4mgd ,选项C 正确;金属杆刚进入磁场Ⅰ时的速度v =2gh ,进入磁场Ⅰ时产生的感应电动势E =BLv ,感应电流I =ER ,所受安培力F =BIL ,由于金属杆刚进入磁场Ⅰ时加速度方向竖直向上,所以安培力大于重力,即F>mg ,联立解得h>m 2gR 22B 4L 4,选项D 错误.◆典例二(2019·高考天津卷)如图所示,固定在水平面上间距为l 的两条平行光滑金属导轨,垂直于导轨放置的两根金属棒MN 和PQ 长度也为l 、电阻均为R ,两棒与导轨始终接触良好.MN 两端通过开关S 与电阻为R 的单匝金属线圈相连,线圈内存在竖直向下均匀增加的磁场,磁通量变化率为常量k.图中虚线右侧有垂直于导轨平面向下的匀强磁场,磁感应强度大小为B.PQ 的质量为m ,金属导轨足够长、电阻忽略不计.(1)闭合S ,若使PQ 保持静止,需在其上加多大的水平恒力F ,并指出其方向;(2)断开S ,PQ 在上述恒力作用下,由静止开始到速度大小为v 的加速过程中流过PQ 的电荷量为q ,求该过程安培力做的功W.【解析】(1)设线圈中的感应电动势为E ,由法拉第电磁感应定律E =ΔΦΔt ,则E =k ①设PQ 与MN 并联的电阻为R 并,有 R 并=R 2②闭合S 时,设线圈中的电流为I ,根据闭合电路欧姆定律得I =ER 并+R③ 设PQ 中的电流为I PQ ,有 I PQ =12I ④设PQ 受到的安培力为F 安,有 F 安=BI PQ l ⑤保持PQ 静止,由受力平衡,有 F =F 安⑥联立①②③④⑤⑥式得 F =Bkl 3R⑦ 方向水平向右.(2)设PQ 由静止开始到速度大小为v 的加速过程中,PQ 运动的位移为x ,所用时间为Δt ,回路中的磁通量变化量为ΔΦ ,平均感应电动势为E -,有E -=ΔΦΔt ⑧其中ΔΦ=Blx ⑨设PQ 中的平均电流为I -,有 I -=E -2R ⑩根据电流的定义得 I -=qΔt (11)由动能定理,有 Fx +W =12mv 2-0(12)联立⑦⑧⑨⑩(11) (12)式得W =12mv 2-23kq. (13)1.(2019·高考全国卷Ⅰ)空间存在一方向与纸面垂直、大小随时间变化的匀强磁场,其边界如图(a)中虚线MN 所示.一硬质细导线的电阻率为ρ、横截面积为S ,将该导线做成半径为r 的圆环固定在纸面内,圆心O 在MN 上.t =0时磁感应强度的方向如图(a)所示;磁感应强度B 随时间t 的变化关系如图(b)所示.则在t =0到t =t 1的时间间隔内( )A .圆环所受安培力的方向始终不变B .圆环中的感应电流始终沿顺时针方向C .圆环中的感应电流大小为B 0rS 4t 0ρD .圆环中的感应电动势大小为B 0πr 24t 0【答案】BC【解析】根据楞次定律可知在0~t 0时间内,磁感应强度减小,感应电流的方向为顺时针,圆环所受安培力水平向左,在t 0~t 1时间内,磁感应强度反向增大,感应电流的方向为顺时针,圆环所受安培力水平向右,所以选项A 错误,B 正确;根据法拉第电磁感应定律得E =ΔΦΔt =12πr 2·B 0t 0=B 0πr 22t 0,根据电阻定律可得R=ρ2πr S ,根据欧姆定律可得I =E R =B 0rS 4t 0ρ,所以选项C 正确,D 错误.2.(2019·新课标全国Ⅱ卷)如图,两条光滑平行金属导轨固定,所在平面与水平面夹角为θ,导轨电阻忽略不计。

2020年高考物理二轮专题复习四:力学中的动量和能量问题(解析附后)

2020年高考物理二轮专题复习四:力学中的动量和能量问题(解析附后)
C.5mgRD.6mgR
2.某电影里两名枪手在房间对决,他们各自背靠墙壁,一左一右。假设他们之间的地面光滑随机放着一均匀木块,木块到左右两边的距离不一样。两人拿着相同的步枪和相同的子弹同时朝木块射击一发子弹,听天由命。但是子弹都没有射穿木块,两人都活了下来反而成为了好朋友。假设你是侦探,仔细观察木块发现右边的射孔(弹痕)更深。设子弹与木块的作用力大小一样,请你分析一下,哪个结论是正确的( )
2020年高考物理二轮专题复习四:力学中的动量和能量问题(解析附后)
考纲指导
能量观点是高中物理解决问题的三大方法之一,既在选择题中出现,也在综合性的计算题中应用,常将动量与能量等基础知识融入其他问题考查,也常将动能定理、机械能守恒、功能关系、动量定理和动量守恒定律作为解题工具在综合题中应用。考查的重点有以下几方面:(1)动量定理和动量守恒定律的应用;(2)“碰撞模型”问题;(3)“爆炸模型”和“反冲模型”问题;(4)“板块模型”问题。
A.小车上表面长度
B.物体A与小车B的质量之比
C.A与小车B上表面的动摩擦因数
D.小车B获得的动能
2.某兴趣小组设计了一个玩具轨道模型如图甲所示,将一质量为m=0.5 kg的玩具小车(可以视为质点)放在P点,用弹簧装置将其从静止弹出(弹性势能完全转化为小车初始动能),使其沿着半径为r=1.0 m的光滑圆形竖直轨道OAO′运动,玩具小车受水平面PB的阻力为其自身重力的0.5倍(g取10 m/s2),PB=16.0 m,O为PB中点。B点右侧是一个高h=1.25 m,宽L=2.0 m的壕沟。求:
【答案】BC
2.【解析】(1)在最高点mg= ,得vA= m/s
O→A:-mg2r= mv - mv ,得vO=5 m/s
FNO-mg= ,得FNO=6mg=30 N。

2020届高考物理通用二轮题:能量和动量练习及答案

2020届高考物理通用二轮题:能量和动量练习及答案

2020届高考物理通用二轮题:能量和动量练习及答案二轮高考:能量和动量1、(2019·吉林省模拟)如图所示,可视为质点的物体从倾角为α的斜面顶端由静止释放,它滑到底端时速度大小为v1;若它由斜面顶端沿竖直方向自由落下,末速度大小为v,已知v1是v的k倍,且k<1。

则物体与斜面间的动摩擦因数为()A.(1-k)sinαB.(1-k)cosαC.(1-k2)tanαD.1-k2 tanα2、(2019·吉林调研)如图所示,竖直平面内放一直角杆MON,杆的水平部分粗糙,杆的竖直部分光滑。

杆的两部分各套有质量均为1 kg的小球A和B,A、B球间用一不可伸长的细绳相连。

初始A、B均处于静止状态,已知OA=3 m,OB=4 m,若A球在水平拉力的作用下向右缓慢地移动1 m,小球A与水平杆间的动摩擦因数μ=0.2(取g=10 m/s2),那么该过程中拉力F做功为()A.4 J B.6 JC.10 J D.14 J3、如图所示,一倾角为37°的斜面固定在水平地面上,重为4 N的滑块从距离水平面高度为0.6 m处由静止释放,沿斜面向下运动,已知滑块与斜面间的动摩擦因数为0.5,重力加速度g取10 m/s2,以水平地面为重力势能等于零的参考面.滑块从静止运动到斜面底端的过程中,下列说法正确的是(AC)A.滑块的重力势能减少2.4 JB.滑块的动能增加0.48 JC.滑块的机械能减少1.6 JD.滑块因摩擦生热0.96 J4、高空坠物极易对行人造成伤害。

若一个50 g的鸡蛋从一居民楼的25层坠下,与地面的碰撞时间约为2 ms,则该鸡蛋对地面产生的冲击力约为()A.10 N B.102 NC.103 N D.104 N5、质量为M的小车静止在水平面上,静止在小车左端的质量为m的小球突然获得一个水平向右的初速度v0,并沿曲面运动,若曲面很长,小球不可能从右端离开,不计一切阻力,对于运动过程分析正确的是(重力加速度为g)(AC)A.小球沿小车上升的最大高度小于v20 2gB.小球回到小车左端的速度大小仍为v0 C.小球和小车组成的系统机械能守恒D.小球到最高点的速度为m v0 M6、如图所示,弹簧的一端固定在竖直墙上,质量为M的光滑弧形槽静止在光滑水平面上,底部与水平面平滑连接,一个质量为m(m<M)的小球从槽高h处开始自由下滑,下列说法正确的是()A.在以后的运动过程中,小球和槽在水平方向动量始终守恒B.在下滑过程中小球和槽之间的相互作用力始终不做功C.全过程小球和槽、弹簧所组成的系统机械能守恒,且水平方向动量守恒D.被弹簧反弹后,小球和槽的机械能守恒,但小球不能回到槽高h处7、(2019·安徽“江南十校”联考)如图所示,一个质量为m的物块A与另一个质量为2m的物块B发生正碰,碰后B物块刚好能落入正前方的沙坑中。

(新课标)2020版高考物理大二轮复习专题强化训练8力学中的动量和能量问题

(新课标)2020版高考物理大二轮复习专题强化训练8力学中的动量和能量问题

专题强化训练(八)一、选择题1.(多选)如图所示,用高压水枪喷出的强力水柱冲击右侧的煤层.设水柱直径为D ,水流速度为v ,方向水平,水柱垂直煤层表面,水柱冲击煤层后水的速度为零.高压水枪的质量为M ,手持高压水枪操作,进入水枪的水流速度可忽略不计,已知水的密度为ρ.下列说法正确的是( )A .高压水枪单位时间喷出的水的质量为ρv πD 2B .高压水枪的功率为18ρπD 2v 3C .水柱对煤层的平均冲力为14ρπD 2v 2D .手对高压水枪的作用力水平向右[解析] 设Δt 时间内,从水枪喷出的水的体积为ΔV ,质量为Δm ,则Δm =ρΔV ,ΔV =Sv Δt =14πD 2v Δt ,单位时间喷出水的质量为Δm Δt =14ρv πD 2,选项A 错误.Δt 时间内水枪喷出的水的动能E k =12Δmv 2=18ρπD 2v 3Δt ,由动能定理知高压水枪在此期间对水做功为W =E k =18ρπD 2v 3Δt ,高压水枪的功率P =W Δt =18ρπD 2v 3,选项B 正确.考虑一个极短时间Δt ′,在此时间内喷到煤层上水的质量为m ,设煤层对水柱的作用力为F ,由动量定理,F Δt ′=mv ,Δt ′时间内冲到煤层水的质量m =14ρπD 2v Δt ′,解得F =14ρπD 2v 2,由牛顿第三定律可知,水柱对煤层的平均冲力为F ′=F =14ρπD 2v 2,选项C 正确.当高压水枪向右喷出高压水流时,水流对高压水枪的作用力向左,由于高压水枪有重力,根据平衡条件,手对高压水枪的作用力方向斜向右上方,选项D 错误.[答案] BC2.(2019·河北名校联盟)如图所示,自动称米机已在许多大粮店广泛使用.买者认为:因为米流落到容器中时对容器有向下的冲力而不划算;卖者则认为:当预定米的质量达到要求后时,自动装置即刻切断米流,此刻有一些米仍在空中,这些米是多给买者的,因而双方争执起来,下列说法正确的是( )A .买者说的对B .卖者说的对C .公平交易D .具有随机性,无法判断[解析] 设米流的流量为d ,它是恒定的,米流在出口处速度很小可视为零,若切断米流后,设盛米的容器中静止的那部分米的质量为m 1,空中还在下落的米的质量为m 2,则落到已静止的米堆上的一小部分米的质量为Δm .在极短时间Δt 内,取Δm 为研究对象,这部分米很少,Δm =d ·Δt ,设其落到米堆上之前的速度为v ,经Δt 时间静止,取竖直向上为正方向,由动量定律得(F -Δmg )Δt =Δmv即F =dv +d ·Δt ·g ,因Δt 很小,故F =dv 根据牛顿第三定律知F =F ′,称米机的读数应为M =F ′N g =m 1g +F ′g =m 1+d vg因切断米流后空中尚有t =vg时间内对应的米流在空中,故d vg=m 2可见,称米机读数包含了静止在袋中的部分米的质量m 1,也包含了尚在空中的下落的米的质量m 2,即自动称米机是准确的,不存在哪方划算不划算的问题,选项C 正确.[答案] C3.(多选)(2019·四川绵阳模拟)如图所示,在光滑水平面上有一静止的物体M ,物体上有一光滑的半圆弧形轨道,最低点为C ,两端A 、B 一样高,现让小滑块m 从A 点由静止下滑,则( )A .m 不能到达M 上的B 点B .m 从A 到C 的过程中M 向左运动,m 从C 到B 的过程中M 向右运动C .m 从A 到B 的过程中M 一直向左运动,m 到达B 的瞬间,M 速度为零D .M 与m 组成的系统机械能定恒,水平方向动量守恒[解析] 根据机械能守恒、动量守恒定律的条件,M 和m 组成的系统机械能守恒,水平方向动量守恒,D 正确;m 滑到右端两者有相同的速度有:0=(m +M )v ,v =0,再根据机械能守恒定律mgR =mgh +12(m +M )v 2可知,m 恰能到达M 上的B 点,且m 到达B 的瞬间,m 、M速度为零,A 错误;m 从A 到C 的过程中M 向左加速运动,m 从C 到B 的过程中M 向左减速运动,B 错误,C 正确.[答案] CD4.(2019·蓉城名校联盟)如图所示,在足够长的固定斜面上有一质量为m 的薄木板A ,木板A 获得初速度v 0后恰好能沿斜面匀速下滑.现将一质量也为m 的小滑块B 无初速度轻放在木板A 的上表面,在滑块B 在木板A 上滑动的过程中(B 始终未从A 的上表面滑出,B 与A 间的动摩擦因数大于A 与斜面间的动摩擦因数),下列说法正确的是( )A .A 、B 组成的系统动量和机械能都守恒 B .A 、B 组成的系统动量和机械能都不守恒C .当B 的速度为13v 0时,A 的速度为23v 0D .当A 的速度为13v 0时,B 的速度为23v 0[解析] 由于木板A 沿斜面体匀速下滑,所以此时木板A 的合力为零,当小滑块B 放在木板A 上表面后,A 、B 组成的系统所受的合力为零,则系统的动量守恒,由于A 、B 间有摩擦力的作用,则系统的机械能一直减小,即机械能不守恒,A 、B 错误;由于B 与A 之间的动摩擦因数大于A 与斜面间的动摩擦因数,所以当A 、B 共速后将沿斜面共同匀速下滑,即B 的速度不可能大于A 的速度,由动量守恒定律知C 正确,D 错误.[答案] C5.(多选)(2019·华中师大附中五月模拟)如下图所示,在光滑水平面上,质量为m 的A 球以速度v 0向右运动,与静止的质量为4m 的B 球碰撞,碰撞后A 球以v =αv 0(待定系数α<1)的速率弹回,并与固定挡板P 发生弹性碰撞,若要使A 球能再次追上B 球并相撞,则系数α可以是( )A.12B.25C.23D.17[解析] A 、B 碰撞过程,以v 0的方向为正方向,根据动量守恒定律得,m A v 0=-m A αv 0+m B v B ,A 与挡板P 碰撞后能追上B 发生再次碰撞的条件是αv 0>v B ,解得α>13,碰撞过程中损失的机械能ΔE k =12m A v 20-⎣⎢⎡⎦⎥⎤12m A (αv 0)2+12m B v 2B ≥0,解得-1≤α≤35,所以α满足的条件是13<α≤35,A 、B 正确,C 、D 错误. [答案] AB6.(多选)(2019·武汉外校模拟)质量M =3 kg 的滑块套在水平固定着的轨道上并可在轨道上无摩擦滑动.质量m =2 kg 的小球(视为质点)通过长L =0.75 m 的轻杆与滑块上的光滑轴O 连接,开始时滑块静止,轻杆处于水平状态.现给小球一个v 0=3 m/s 的竖直向下的初速度,取g =10 m/s 2,则( )A .小球m 从初始位置到第一次到达最低点的过程中,滑块M 在水平轨道上向右移动了0.3 mB .小球m 从初始位置到第一次到达最低点的过程中,滑块M 在水平轨道上向右移动了0.5 mC .小球m 相对于初始位置可以上升的最大高度为0.27 mD .小球m 从初始位置到第一次到达最大高度的过程中,滑块M 在水平轨道上向右移动了0.54 m[解析] 可把小球和滑块水平方向的运动看成人船模型.设滑块M 在水平轨道上向右运动了x ,由滑块和小球组成的系统在水平方向上动量守恒,有m M =xL -x,解得x =0.3 m ,A正确,B 错误.根据动量守恒定律有0=(m +M )v ,v =0,由能量守恒定律得12mv 20=mgh +12(m+M )v 2,解得h =0.45 m ,C 错误.小球m 从初始位置到第一次到达最大高度过程中,设滑块M 在水平轨道上向右移动距离为y ,由几何关系得,m 相对于M 移动的水平距离s =L +L 2-h 2=1.35 m ,根据水平方向动量守恒得0=m s -y t -M yt,解得y =0.54 m ,D 正确.[答案] AD7.(多选)(2019·东北师大附中一模)如下图甲所示,一轻弹簧的两端与质量分别为m 1和m 2的两物块A 、B 相连接,并静止在光滑的水平面上.现使A 瞬间获得水平向右大小为3 m/s 的速度,以此刻为计时起点,两物块的速度随时间变化的规律如图乙所示,从图像信息可得( )A .在t 1、t 3时刻两物块达到共同速度1 m/s ,且弹簧都是处于压缩状态B .从t 3到t 4时刻弹簧由压缩状态恢复到原长C .两物体的质量之比为m 1∶m 2=1∶2D .在t 2时刻A 与B 的动能之比为E k1∶E k2=1∶8[解析] 在t 1、t 3时刻两物块达到共同速度1 m/s ,t 1时弹簧处于压缩状态,t 3时弹簧处于拉伸状态,A 、B 错误.由动量守恒定律有m 1v 0=(m 1+m 2)v 共,可得m 1∶m 2=1∶2.并由图可得在t 2时刻A 与B 的动能之比为E k1∶E k2=1∶8,C 、D 正确.[答案] CD8.(多选)(2019·湖北百校大联考)在冰壶比赛中,某队员利用红壶去碰撞对方的蓝壶,两者在大本营中心发生对心碰撞如图甲所示,碰撞前、后两壶运动的v -t 图线如图乙中实线所示,其中红壶碰撞前、后的两段图线相互平行,两冰壶质量均为19 kg ,则( )A .碰后蓝壶速度为0.8 m/sB .碰后蓝壶移动的距离为2.4 mC .碰撞过程两壶损失的动能为7.22 JD .碰后红、蓝两壶所受摩擦力之比为5∶4[解析] 由题图乙可知碰撞前、后红壶的速度分别为v 0=1.0 m/s 和v 1=0.2 m/s ,由系统动量守恒可得mv 0=mv 1+mv 2,解得碰后蓝壶速度为v 2=0.8 m/s ,碰后蓝壶移动的距离为x =12×0.8×5 m=2 m ,碰撞过程中两壶损失的动能为ΔE k =12mv 20-12mv 21-12mv 22=3.04 J ,红壶所受摩擦力f 1=ma 1=19×1.2-1.01 N =3.8 N ,蓝壶所受摩擦力f 2=ma 2=19×0.8-05 N=3.04 N ,碰后红、蓝两壶所受摩擦力之比为f 1∶f 2=5∶4,故A 、D 正确,B 、C 错误.[答案] AD9.(2019·福建省泉州市模拟三)如右图所示,半径为R 、质量为m 的半圆轨道小车静止在光滑的水平地面上,将质量也为m 的小球从距A 点正上方h 0高处由静止释放,小球自由落体后由A 点经过半圆轨道后从B 冲出,在空中能上升的最大高度为34h 0,则( )A .小球和小车组成的系统动量守恒B .小车向左运动的最大距离为12RC .小球离开小车后做斜上抛运动D .小球第二次能上升的最大高度12h 0<h <34h 0[解析] 小球与小车组成的系统在水平方向所受合外力为零,水平方向系统动量守恒,但系统整体所受合外力不为零,系统动量不守恒,故A 错误;系统水平方向动量守恒,以向右为正方向,在水平方向上,由动量守恒定律得:mv -mv ′=0,m 2R -x t -m xt=0,解得小车的位移:x =R ,故B 错误;小球与小车组成的系统在水平方向动量守恒,小球由B 点离开小车时系统水平方向总动量为零,小球与小车水平方向速度为零,小球离开小车后做竖直上抛运动,故C 错误;小球第一次由释放经半圆轨道冲出至最高点时,由动能定理得:mg ⎝ ⎛⎭⎪⎫h 0-34h 0-W f =0,W f 为小球克服摩擦力做功大小,解得W f =14mgh 0,即小球第一次在车中滚动损失的机械能为14mgh 0,由于小球第二次在车中滚动时,对应位置处速度变小,因此小车给小球的弹力变小,摩擦力变小,摩擦力做的功小于14mgh 0,机械能的损失小于14mgh 0,因此小球第二次离开小车时,能上升的高度大于:34h 0-14h 0=12h 0,且小于34h 0,故D 正确.[答案] D 二、非选择题10.(2019·江西南昌十校二模)如图所示,光滑水平面上放着质量都为m 的物块A 和B ,A 紧靠着固定的竖直挡板,A 、B 间夹一个被压缩的轻弹簧(弹簧与A 、B 均不拴接),用手挡住B 不动,此时弹簧弹性势能为92mv 20,在A 、B 间系一轻质细绳,细绳的长度略大于弹簧的自然长度.放手后绳在短暂时间内被拉断,之后B 继续向右运动,一段时间后与向左匀速运动、速度为v 0的物块C 发生碰撞,碰后B 、C 立刻形成粘合体并停止运动,C 的质量为2m .求:(1)B 、C 相撞前一瞬间B 的速度大小; (2)绳被拉断过程中,绳对A 所做的功W .[解析] (1)B 与C 碰撞过程中动量守恒,由于碰后均停止,有mv B =2mv 0解得:v B =2v 0(2)弹簧恢复原长时,弹性势能全部转化为物块B 的动能,则E p =12mv 2BO解得:v BO =3v 0绳子拉断过程,A 、B 系统动量守恒mv BO =mv B +mv A解得:v A =v 0 绳对A 所做的功为W =12mv 2A =12mv 2[答案] (1)2v 0 (2)12mv 211.(2019·全国卷Ⅲ)静止在水平地面上的两小物块A 、B ,质量分别为m A =1.0 kg ,m B =4.0 kg ;两者之间有一被压缩的微型弹簧,A 与其右侧的竖直墙壁距离l =1.0 m ,如图所示.某时刻,将压缩的微型弹簧释放,使A 、B 瞬间分离,两物块获得的动能之和为E k =10.0 J .释放后,A 沿着与墙壁垂直的方向向右运动.A 、B 与地面之间的动摩擦因数均为μ=0.20.重力加速度取g =10 m/s 2.A 、B 运动过程中所涉及的碰撞均为弹性碰撞且碰撞时间极短.(1)求弹簧释放后瞬间A 、B 速度的大小;(2)物块A 、B 中的哪一个先停止?该物块刚停止时A 与B 之间的距离是多少? (3)A 和B 都停止后,A 与B 之间的距离是多少?[解析] (1)设弹簧释放瞬间A 和B 的速度大小分别为v A 、v B ,以向右为正,由动量守恒定律和题给条件有0=m A v A -m B v B ①E k =12m A v 2A +12m B v 2B ②联立①②式并代入题给数据得v A =4.0 m/s ,v B =1.0 m/s ③(2)A 、B 两物块与地面间的动摩擦因数相等,因而两者滑动时加速度大小相等,设为a .假设A 和B 发生碰撞前,已经有一个物块停止,此物块应为弹簧释放后速度较小的B .设从弹簧释放到B 停止所需时间为t ,B 向左运动的路程为s B ,则有m B a =μm B g ④ s B =v B t -12at 2⑤ v B -at =0⑥在时间t 内,A 可能与墙发生弹性碰撞,碰撞后A 将向左运动,碰撞并不改变A 的速度大小,所以无论此碰撞是否发生,A 在时间t 内的路程s A 都可表示为s A =v A t -12at 2⑦联立③④⑤⑥⑦式并代入题给数据得s A =1.75 m ,s B =0.25 m ⑧这表明在时间t 内A 已与墙壁发生碰撞,但没有与B 发生碰撞,此时A 位于出发点右边0.25 m 处.B 位于出发点左边0.25 m 处,两物块之间的距离s 为s =0.25 m +0.25 m =0.50 m ⑨(3)t 时刻后A 将继续向左运动,假设它能与静止的B 碰撞,碰撞时速度的大小为v A ′,由动能定理有12m A v A ′2-12m A v 2A =-μm A g (2l +s B )⑩ 联立③⑧⑩式并代入题给数据得v A ′=7 m/s ⑪故A 与B 将发生碰撞.设碰撞后A 、B 的速度分别为v A ″和v B ″,由动量守恒定律与机械能守恒定律有m A (-v A ′)=m A v A ″+m B v B ″⑫12m A v A ′2=12m A v A ″2+12m B v B ″2⑬ 联立⑪⑫⑬式并代入题给数据得v A ″=375 m/s ,v B ″=-275m/s ⑭ 这表明碰撞后A 将向右运动,B 继续向左运动.设碰撞后A 向右运动距离为s A ′时停止,B 向左运动距离为s B ′时停止,由运动学公式2as A ′=v A ″2,2as B ′=v B ″2⑮ 由④⑭⑮式及题给数据得s A ′=0.63 m ,s B ′=0.28 m ⑯s A ′小于碰撞处到墙壁的距离.由上式可得两物块停止后的距离 s ′=s A ′+s B ′=0.91 m ⑰[答案] (1)4.0 m/s 1.0 m/s (2)B先停止0.50 m (3)0.91 m。

2020年高考物理大题热点题型专练(二)——动量和能量

2020年高考物理大题热点题型专练(二)——动量和能量

2020年高考物理大题热点题型专练(二)——动量和能量学校:___________姓名:___________班级:___________考号:___________注意事项:1、答题前填写好自己的姓名、班级、考号等信息 2、请将答案正确填写在答题卡上一、计算题1.轻质弹簧原长为0.4 m ,将弹簧竖直放置在地面上,在其顶端将一质量为m =0.3 kg 的物体由静止释放,当弹簧被压缩到最短时,弹簧长度为0.2 m 。

现将该弹簧水平放置,一端固定在A 点,另一端与物块P 接触但不连接。

AB 是长度为0.5 m 的水平轨道,B 端与半径r =0.15 m 的光滑半圆轨道BCD 相切,半圆的直径BD 竖直,如图所示。

物块P 与AB 间的动摩擦因数μ=0.5。

用外力推动物块P ,将弹簧压缩至长度为0.2 m ,然后放开,P 开始沿轨道运动。

重力加速度大小为g =10 m/s 2。

(1)用外力推动物块P ,将弹簧压缩至长度0.2 m 时,弹簧的弹性势能E p 是多少。

(2)若P 的质量M =0.1 kg ,求P 到达D 点时对轨道的压力大小。

(3)若P 能滑上圆轨道,且仍能沿圆轨道滑下,求P 的质量的取值范围。

1.答案:(1)依题意,当弹簧竖直放置,从放上质量为0.3 kg 的物体到被压缩至最短的过程,由机械能守恒定律: p E mgh =得:P 0.6 J E =(2)对物块P 从放开到D 点的过程,由能量守恒定律: ()2p 10.2m 22D ABE Mv Mg x Mg r μ++-=⋅对物块P 在D 点时由牛顿第二定律:2DN Mv Mg F r+= 得: 1 N N F =根据牛顿第三定律得,物块P 对轨道的压力大小也为1 N 。

(3)为使P 能滑上圆轨道,它到达B 点时的速度不能小于零。

对物块P 从放开到B 点的过程,有 ()p 0.2 m 0AB E Mg x μ-->要使P 仍能沿圆轨道滑回,P 在圆轨道的上升高度不能超过半圆轨道的中点C 。

2020年高三物理专题 动量和能量问题的三组经典问题(解析版)

2020年高三物理专题 动量和能量问题的三组经典问题(解析版)

动量和能量问题的三组强化训练伴随着“动量”调整为必考内容,动量与能量结合的“压轴题”更容易受到高考试卷命题人的青睐,因此特意为准备的考生准备了动量与能量结合的三组经典题目,进行强化训练。

1.如图所示,一质量为M 的木块静止在水平轨道AB 的B 端,水平轨道与光滑圆弧轨道BC 相切。

现有一质量为m 的子弹以v 0的水平速度从左边射入木块且未穿出,重力加速度为g 。

求:(1)子弹射入木块过程中系统损失的机械能和子弹与木块一起在圆弧轨道上上升的最大高度; (2)从木块开始运动到木块返回B 点的过程中木块(含子弹)所受合外力的冲量大小。

【解析】(1)设子弹射入木块后与木块的共同速度为v ,子弹射入木块的过程系统动量守恒, 由动量守恒定律有mv 0=(m +M )v 解得v =mm +M v 0损失的机械能ΔE =12mv 02-12(m +M )v 2=mMv 022(m +M )设木块上升的最大高度为h ,子弹与木块在光滑圆弧轨道BC 上运动,到达最高点的过程中由系统机械能守恒有12(m +M )v 2=(m +M )gh解得h =m 2v 022(m +M )2g。

(2)由于圆弧轨道光滑,从木块开始运动到木块返回B 点,木块(含子弹)速度大小不变,其动量变化为-2(m +M )v由动量定理,所受合外力的冲量大小I =2(m +M )v =2mv 0。

【答案】(1)mMv 022(m +M ) m 2v 022(m +M )2g(2)2mv 02.如图所示,用长为R 的不可伸长的轻绳将质量为m3的小球A 悬挂于O 点。

在光滑的水平地面上,质量为m的小物块B (可视为质点)置于长木板C 的左端静止。

将小球A 拉起,使轻绳水平拉直,将A 球由静止释放,运动到最低点时与B 发生弹性正碰。

(1)求碰后轻绳与竖直方向的最大夹角θ的余弦。

(2)若长木板C 的质量为2m ,B 与C 之间的动摩擦因数为μ,C 的长度至少为多大,B 才不会从C 的上表面滑出?【解析】(1)设小球A 与B 碰前瞬间速度为v 0,则有: m 3gR =12·m 3v 02 设碰后A 和B 的速度分别为v 1和v 2,有: m 3v 0=m3v 1+mv 2 12·m 3v 02=12·m 3v 12+12·mv 22 设碰后A 球能上升的最大高度为H ,有m 3gH =12·m 3v 12所求cos θ=R -HR由以上各式解得:cos θ=34。

【2020】高三物理专题复习-第五专题-动量与能量试卷及参考答案

【2020】高三物理专题复习-第五专题-动量与能量试卷及参考答案

②、③式联立解得

将①代入得④
(2)a由④式,考虑到得
根据动能传递系数的定义,对于1、2两球

同理可得,球m2和球m3碰撞后,动能传递系数k13应为

依次类推,动能传递系数k1n应为
解得
b.将m1=4m0,m3=mo代入⑥式可得
为使k13最大,只需使

8、答案:(1)0.24s (2)5m/s
解析:本题考查摩擦拖动类的动量和能量问题.。

涉及动量守恒定律、动量定理和功能关系这些物理规律的运用.。

(1)设物块与小车的共同速度为v,以水平向右为正方向,根据动量守恒定律有

设物块与车面间的滑动摩擦力为F,对物块应用动量定理有
②其中③
解得
代入数据得

(2)要使物块恰好不从车厢滑出,须物块到车面右端时与小车有共同的速度v′,则

+=S。

2020届高考物理动量和能量试题大全 人教版

2020届高考物理动量和能量试题大全 人教版

2020届高考物理动量和能量试题大全1、如图所示,光滑水平面上有大小相同的A 、B 两球在同一直线上运动。

两球质量关系为m B =2m A ,规定向右为正方向,A 、B 两球的动量均为6Kg.m/s ,运动中两球发生碰撞,碰撞后A 球的动量增量为-4Kg.m/s ,则( )A. 左方是A 球,碰撞后A 、B 两球速度大小之比为5:2B. 左方是A 球,碰撞后A 、B 两球速度大小之比为10:1C. 右方是A 球,碰撞后A 、B 两球速度大小之比为5:2D. 右方是A 球,碰撞后A 、B 两球速度大小之比为10:1 2、如图4所示,光滑水平面上有一辆质量为2m 的小车,车上左右两端分别站着甲、乙两人,他们的质量都是m ,开始两个人和车一起以速度v 0向右匀速运动.某一时刻,站在车右端的乙先以相对于地面向右的速度u 跳离小车,然后站在车左端的甲以相对于地面向左的速度u 跳离小车.两人都离开小车后,小车的速度将是 ( )A.v 0B.2v 0C.大于v 0小于 2v 0D.大于2v 0 3、质量为M 的均匀木块静止在光滑水平面上,木块左右两侧各有一位拿着完全相同步枪和子弹的射击手。

首先左侧射手开枪,子弹水平射入木块的最大深度为d 1,然后右侧射手开枪,子弹水平射入木块的最大深度为d 2,如图设子弹均未射穿木块,且两颗子弹与木块之间的作用力大小均相同。

当两颗子弹均相对木块静止时,下列说法正确的是( )A .最终木块静止,d 1=d 2B .最终木块向右运动,d 1<d 2C .最终木块静止,d 1<d 2D .最终木块向左运动,d 1=d 24、《2001年世界10大科技突破》中有一项是加拿大萨德伯里中微子观测站的研究成果.该成果揭示了中微子失踪的原因.认为在地球上观察到的中微子数目比理论值少,是因为有一部分中微子在向地球运动的过程中发生了转化,成为一个μ子和一v 0甲乙图4个τ子.关于上述研究下列说法中正确的是()A.该转化过程中牛顿第二定律依然适用B.该转化过程中中动量守恒定律依然适用C.该转化过程中能量守恒定律依然适用D.若新产生的μ子和中微子原来的运动方向一致,则新产生的τ子的运动方向与中微子原来的运动方向一定相反5、1922年,美国物理学家康普顿在研究石墨中的电子对X射线的散射时发现,有些散射波的波长比入射波的波长略大。

2020届高考物理一轮复习专题强化卷:动量和能量热点题型归纳

2020届高考物理一轮复习专题强化卷:动量和能量热点题型归纳

2020年高考物理一轮复习专题强化卷----动量与能量热点题型归纳一、单选题(共3题,15分)1、质量分别为m a=1 kg和m b=2 kg的小球在光滑的水平面上发生碰撞,碰撞前、后两球的位移—时间图象如图所示,则可知碰撞属于()A.弹性碰撞B.非弹性碰撞C.完全非弹性碰撞D.条件不足,无法判断【答案】A2、光滑水平地面上有一静止的木块,子弹水平射入木块后未穿出,子弹和木块的v-t图象如图所示.已知木块质量大于子弹质量,从子弹射入木块到达稳定状态,木块动能增加了50 J,则此过程产生的内能可能是()A.10 J B.50 J C.70 J D.120 J【答案】D.3、如图所示,在光滑的水平面上,质量为m1的小球A以速率v0向右运动.在小球A的前方O点处有一质量为m2的小球B处于静止状态,Q点处为一竖直的墙壁.小球A与小球B发生弹性正碰后小球A与小球B 均向右运动.小球B与墙壁碰撞后以原速率返回并与小球A在P点相遇,PQ=2PO,则两小球质量之比m1∶m2为()A.7∶5B.1∶3 C.2∶1 D.5∶3【答案】D二、不定项选择题(共6题36分)4、如图所示,两个质量和速度均相同的子弹分别水平射入静止在光滑水平地面上质量相同、材料不同的两矩形滑块A、B中,射入A中的深度是射入B中深度的两倍.两种射入过程相比较()A.射入滑块A的子弹速度变化大B.整个射入过程中两滑块受的冲量一样大C.射入滑块A中时阻力对子弹做功是射入滑块B中时的两倍D.两个过程中系统产生的热量相同【答案】BD5、如图所示,现有甲、乙两滑块,质量分别为3m和m,以相同的速率v在光滑水平面上相向运动,发生碰撞.已知碰撞后,甲滑块静止不动,则()A.碰撞前总动量大小为2mv B.碰撞过程动量不守恒C.碰撞后乙的速度大小为2v D.碰撞属于非弹性碰撞【答案】选AC6、如图甲所示,在光滑水平面上,轻质弹簧一端固定,物体A 以速度v 0向右运动压缩弹簧,测得弹簧的最大压缩量为x .现让弹簧一端连接另一质量为m 的物体B (如图乙所示),物体A 以2v 0的速度向右压缩弹簧,测得弹簧的最大压缩量仍为x ,则( )A .A 物体的质量为3mB .A 物体的质量为2mC .弹簧压缩量最大时的弹性势能为32mv 02 D .弹簧压缩量最大时的弹性势能为mv 02 【答案】AC7、如图甲所示,光滑平台上的物体A 以初速度v 0滑到上表面粗糙的水平小车B 上,车与水平面间的动摩擦因数不计,图乙为物体A 与小车B 的v -t 图象,由此可知( )A .小车上表面长度B .物体A 与小车B 的质量之比C .物体A 与小车B 上表面的动摩擦因数D .小车B 获得的动能【答案】BC8、如图所示,现有甲、乙两滑块,质量分别为3m 和m ,以相同的速率v 在光滑水平面上相向运动,发生碰撞.已知碰撞后,甲滑块静止不动,则( )A .碰撞前总动量大小为2mvB .碰撞过程动量不守恒C .碰撞后乙的速度大小为2vD .碰撞属于非弹性碰撞【答案】AC9、质量为m,速度为v的A球跟质量为3m的静止的B球发生正碰.碰撞可能是弹性的,也可能是非弹性的,因此碰撞后B球的速度可能值为()A.0.6v B.0.4v C.0.2v D.0.3v【答案】BD10、如图所示,一质量M=3.0 kg的长方形木板B放在光滑水平地面上,在其右端放一个质量m=1.0 kg的小木块A.给A和B以大小均为4.0 m/s,方向相反的初速度,使A开始向左运动,B开始向右运动,A始终没有滑离木板B.在小木块A做加速运动的时间内,木板速度大小可能是()A.1.8 m/s B.2.4 m/s C.2.6 m/s D.3.0 m/s【答案】BC三、计算题(共4题49分)11、如图所示,质量为m=245 g的物块(可视为质点)放在质量为M=0.5 kg的木板左端,足够长的木板静止在光滑水平面上,物块与木板间的动摩擦因数为μ=0.4。

2020年高考物理-电磁感应中的动量和能量问题

2020年高考物理-电磁感应中的动量和能量问题

电磁感应中的动量和能量问题【专题导航】目录热点题型一电磁感应中的能量问题 (1)(一)功能关系在电磁感应中的应用 (2)(二)焦耳热的求解 (4)热点题型二电磁感应中的动量问题 (6)(一)安培力对时间的平均值的两种处理方法 (7)角度一安培力对时间的平均值求电荷量 (7)角度二安培力对时间的平均值求位移 (8)(二)双导体棒在同一匀强磁场中的运动 (8)(三)两导体棒在不同磁场中运动 (10)【题型演练】 (11)【题型归纳】热点题型一电磁感应中的能量问题1.电磁感应中的能量转化2.求解焦耳热Q的三种方法3.求解电磁感应现象中能量问题的一般步骤(1)在电磁感应中,切割磁感线的导体或磁通量发生变化的回路将产生感应电动势,该导体或回路就相当于电源.(2)分析清楚有哪些力做功,就可以知道有哪些形式的能量发生了相互转化.(3)根据能量守恒列方程求解.(一)功能关系在电磁感应中的应用【例1】(2019·河南开封高三上第一次模拟)如图所示,在竖直平面内固定有光滑平行导轨,间距为L ,下端接有阻值为R 的电阻,空间存在与导轨平面垂直、磁感应强度为B 的匀强磁场。

质量为m 、电阻为r 的导体棒ab 与上端固定的弹簧相连并垂直导轨放置。

初始时,导体棒静止,现给导体棒竖直向下的初速度v 0,导体棒开始沿导轨往复运动,运动过程中始终与导轨垂直并保持良好接触。

若导体棒电阻r 与电阻R 的阻值相等,不计导轨电阻,则下列说法中正确的是( )A .导体棒往复运动过程中的每个时刻受到的安培力方向总与运动方向相反B .初始时刻导体棒两端的电压U ab =BLv 0C .若导体棒从开始运动到速度第一次为零时,下降的高度为h ,则通过电阻R 的电量为BLh 2RD .若导体棒从开始运动到速度第一次为零时,下降的高度为h ,此过程导体棒克服弹力做功为W ,则电阻R 上产生的焦耳热Q =14mv 2+12mgh -W【答案】 AC【解析】 导体棒竖直向下运动时,由右手定则判断可知,ab 中产生的感应电流方向从b →a ,由左手定则判断得知ab 棒受到的安培力竖直向上,导体棒竖直向上运动时,由右手定则判断可知,ab 中产生的感应电流方向从a →b ,由左手定则判断得知ab 棒受到的安培力竖直向下,所以导体棒往复运动过程中的每个时刻受到的安培力方向总与运动方向相反,A 正确;导体棒开始运动的初始时刻,ab 棒产生的感应电势为E =BLv 0,由于r =R ,a 端电势比b 端高,所以导体棒两端的电压U ab =12E =12BLv 0,B 错误;若导体棒从开始运动到速度第一次为零时,下降的高度为h ,则通过电阻R 的电量为q =ΔΦR +r =BLh 2R ,C 正确;导体棒从开始运动到速度第一次为零时,根据能量守恒定律得知电路中产生的焦耳热Q 热=12mv 20+mgh -W ,所以电阻R 上产生的焦耳热Q =12Q 热=14mv 20+12mgh -W 2,D 错误。

2020年高考物理100考点- 电磁感应中的能量问题

2020年高考物理100考点- 电磁感应中的能量问题

2020年高考物理100考点最新模拟题(选修3-2)第四部分 电磁感应专题4.11 电磁感应中的能量问题(基础篇)一.选择题1. (多选)如图所示,竖直放置的“”形光滑导轨宽为L ,矩形匀强磁场Ⅰ、Ⅱ的高和间距均为d ,磁感应强度为B .质量为m 的水平金属杆由静止释放,进入磁场Ⅰ和Ⅱ时的速度相等.金属杆在导轨间的电阻为R ,与导轨接触良好,其余电阻不计,重力加速度为g .金属杆( )A.刚进入磁场Ⅰ时加速度方向竖直向下B.穿过磁场Ⅰ的时间大于在两磁场之间的运动时间C.穿过两磁场产生的总热量为4mgdD.释放时距磁场Ⅰ上边界的高度h 可能小于m 2gR 22B 4L4 2.如图所示,光滑斜面的倾角为θ,斜面上放置一矩形导体线框abcd ,ab 边的边长为l 1,bc 边的边长为l 2,线框的质量为m ,电阻为R ,线框通过绝缘细线绕过光滑的定滑轮与一重物相连,重物质量为M .斜面上ef 线(ef 平行底边)的右方有垂直斜面向上的匀强磁场,磁感应强度为B ,如果线框从静止开始运动,进入磁场的最初一段时间是做匀速运动的,且线框的ab 边始终平行于底边,则下列说法正确的是( )A .线框进入磁场前运动的加速度为Mg -mg sin θmB .线框进入磁场时匀速运动的速度为(Mg -mg sin θ)R Bl 1C .线框做匀速运动的总时间为B 2l 21Mg -mgR sin θD .该匀速运动过程中产生的焦耳热为(Mg -mg sin θ)l 23.两根足够长的光滑导轨竖直放置,间距为L ,顶端接阻值为R 的电阻.质量为m 、电阻为r 的金属棒在距磁场上边界某处由静止释放,金属棒和导轨接触良好,导轨所在平面与磁感应强度大小为B ,方向垂直纸面向里的匀强磁场垂直,如图所示,不计导轨的电阻,重力加速度为g ,则下列说法错误的是( )A .金属棒在磁场中运动时,流过电阻R 的电流方向为b →aB .金属棒的速度为v 时,金属棒所受的安培力大小为B 2L 2v R +rC .金属棒的最大速度为mg (R +r )BLD .金属棒以稳定的速度下滑时,电阻R 的热功率为⎝⎛⎭⎫mg BL 2R4.(2016河南开封一模)如右图所示,足够长的光滑导轨倾斜放置,导轨宽度为L ,其下端与电阻R 连接;导体棒ab 电阻为r ,导轨和导线电阻不计,匀强磁场竖直向上。

【2020】高考物理专题复习-——功能关系综合运用(例题+习题+答案)试卷及参考答案

【2020】高考物理专题复习-——功能关系综合运用(例题+习题+答案)试卷及参考答案

【精品】最新高考物理专题复习-——功能关系综合运用(例题+习题+答案)试卷及参考答案(附参考答案)知识点归纳:一、动能定理1.动能定理的表述合外力做的功等于物体动能的变化.。

(这里的合外力指物体受到的所有外力的合力,包括重力).。

表达式为W=ΔEK动能定理也可以表述为:外力对物体做的总功等于物体动能的变化.。

实际应用时,后一种表述比较好操作.。

不必求合力,特别是在全过程的各个阶段受力有变化的情况下,只要把各个力在各个阶段所做的功都按照代数和加起来,就可以得到总功2.对外力做功与动能变化关系的理解:外力对物体做正功,物体的动能增加,这一外力有助于物体的运动,是动力;外力对物体做负功,物体的动能减少,这一外力是阻碍物体的运动,是阻力,外力对物体做负功往往又称物体克服阻力做功.功是能量转化的量度,外力对物体做了多少功;就有多少动能与其它形式的能发生了转化.所以外力对物体所做的功就等于物体动能的变化量.即.3.应用动能定理解题的步骤(1)确定研究对象和研究过程.。

和动量定理不同,动能定理的研究对象只能是单个物体,如果是系统,那么系统内的物体间不能有相对运动.。

(原因是:系统内所有内力的总冲量一定是零,而系统内所有内力做的总功不一定是零).。

(2)对研究对象进行受力分析.。

(研究对象以外的物体施于研究对象的力都要分析,含重力).。

(3)写出该过程中合外力做的功,或分别写出各个力做的功(注意功的正负).。

如果研究过程中物体受力情况有变化,要分别写出该力在各个阶段做的功.。

(4)写出物体的初、末动能.。

即WAB=mgR-μmgS=1×10×0.8-1×10×3/15=6 J【例5】:如图所示,小滑块从斜面顶点A 由静止滑至水平部分C 点而停止.。

已知斜面高为h ,滑块运动的整个水平距离为s ,设转角B 处无动能损失,斜面和水平部分与小滑块的动摩擦因数相同,求此动摩擦因数.。

2020年新高考I卷物理热学题及解答

2020年新高考I卷物理热学题及解答

2020年新高考I卷物理热学题及解答2020年新高考I卷物理试题中,热学部分占据了重要的一部分。

本文将为大家详细解析其中的热学题目及解答,帮助大家更好地理解和掌握热学知识。

【题目一】某理想气体的3mol在温度为300K下体积为40L,气体进行绝热膨胀过程后,体积变为100L。

求该气体的最终温度。

【解答一】根据理想气体的绝热膨胀定律,我们可以得到以下关系:P1V1^γ = P2V2^γ其中,P1和P2分别为初始状态和终态下的气体压强,V1和V2分别为初始状态和终态下的气体体积,γ为气体的绝热指数。

由题目中所给出的条件,我们可以得到:P1V1^γ = P2V2^γP1 * 40^γ = P2 * 100^γ同时,我们还知道理想气体的状态方程为:PV = nRT其中,P为气体压强,V为气体体积,n为气体的物质的量,R为气体常数,T为气体的绝对温度。

结合以上两个公式,我们可以得到:P1 * 40^γ = P2 * 100^γP1 * (nRT1 / P1)^γ = P2 * (nRT2 / P2)^γ化简后得到:(40 / P1)^(γ - 1) = (100 / P2)^(γ - 1)将P1V1 / T1 = P2V2 / T2 代入,得到:(40 / P1)^(γ - 1) = (100 / (P1 * 40 / 100))^(γ - 1)化简后得到:(40 / P1)^(γ - 1) = 2^(γ - 1)两边取对数,得到:(γ - 1) * ln(40 / P1) = (γ - 1) * ln2化简后得到:ln(40 / P1) = ln2进一步得到:40 / P1 = 2P1 = 20由此可知,初始状态下的气体压强P1为20Pa。

根据理想气体状态方程 PV = nRT,我们可以得到:P1V1 / T1 = P2V2 / T2将已知条件代入,得到:20 * 40 / 300 = P2 * 100 / T2化简后得到:T2 = 200K因此,该气体的最终温度为200K。

2020高考物理最新复习题:能量问题

2020高考物理最新复习题:能量问题

1.如图所示,A 、B 两物体的质量分别为m A 、m B ,用劲度为k 的轻弹簧相连,开始时,A 、B 都处于静止状态。

现对A 施加一个竖直向上的力F ,缓慢将A提起,直到使B 恰好对地面没有压力。

这时撤去力F ,A 由静止向下运动到具有最大速度为止,重力对A 做的功是 ( ) A.m A 2g 2/k B.m B 2g 2/k C.m A (m A +m B )g 2/k D.m B (m A +m B )g 2/k2.如图所示,一个质量为m 的物体,以某一速度由斜面底端冲上倾角为30º的固定斜面,其加速度大小为g ,在斜面上上升的最大高度为中,物体()A .机械能损失了mghB .动能损失了mghC .动能损失了mgh/2D .机械能损失了mgh/23.一带电油滴在匀强电场E 中的运动轨迹如图中虚线所示,电场方向竖直向下。

若不计空气阻力,则此带电油滴从a 程中,能量变化情况为( )A.动能减小 B.电势能增加C.动能和电势能之和减小 D.重力势能和电势能之和增加4.如图所示,弹簧的一端固定在竖直墙上,质量为m 的光滑弧形槽静止在光滑水平面上,底部与水平面平滑连接,一个质量也为m 的小球从槽高h 处开始自由下滑( )A .在以后的运动过程中,小球和槽的动量始终守恒B .在下滑过程中小球和槽之间的相互作用力始终不做功C .被弹簧反弹后,小球和槽都做速率不变的直线运动D .被弹簧反弹后,小球和槽的机械能守恒,小球能回到槽高h 处5. 一个物块从斜面底端冲上足够长的斜面后,返回到斜面底端.已知小物块的初动能为E ,它返回斜面底端的速度大小为v ,克服摩擦阻力做功为E /2.若小物块冲上斜面的初动能变为2E ,则有( )A.返回斜面底端时的动能为EB.返回斜面底端时的动能为3E /2C.返回斜面底端时的速度大小为2vD.克服摩擦阻力做的功仍为E /26.如图所示,足够长的传送带以恒定速率顺时针运行。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.如图所示,A 、B 两物体的质量分别为m A 、m B ,用劲度为k 的轻弹簧相连,开始时,A 、B 都处于静止状态。

现对A 施加一个竖直向上的力F ,缓慢将A提起,直到使B 恰好对地面没有压力。

这时撤去力F ,A 由静止向下运动到具有最大速度为止,重力对A 做的功是 ( ) A.m A 2g 2/k B.m B 2g 2/k C.m A (m A +m B )g 2/k D.m B (m A +m B )g 2/k2.如图所示,一个质量为m 的物体,以某一速度由斜面底端冲上倾角为30º的固定斜面,其加速度大小为g ,在斜面上上升的最大高度为中,物体()A .机械能损失了mghB .动能损失了mghC .动能损失了mgh/2D .机械能损失了mgh/23.一带电油滴在匀强电场E 中的运动轨迹如图中虚线所示,电场方向竖直向下。

若不计空气阻力,则此带电油滴从a 程中,能量变化情况为( )A.动能减小 B.电势能增加C.动能和电势能之和减小 D.重力势能和电势能之和增加4.如图所示,弹簧的一端固定在竖直墙上,质量为m 的光滑弧形槽静止在光滑水平面上,底部与水平面平滑连接,一个质量也为m 的小球从槽高h 处开始自由下滑( )A .在以后的运动过程中,小球和槽的动量始终守恒B .在下滑过程中小球和槽之间的相互作用力始终不做功C .被弹簧反弹后,小球和槽都做速率不变的直线运动D .被弹簧反弹后,小球和槽的机械能守恒,小球能回到槽高h 处5. 一个物块从斜面底端冲上足够长的斜面后,返回到斜面底端.已知小物块的初动能为E ,它返回斜面底端的速度大小为v ,克服摩擦阻力做功为E /2.若小物块冲上斜面的初动能变为2E ,则有( )A.返回斜面底端时的动能为EB.返回斜面底端时的动能为3E /2C.返回斜面底端时的速度大小为2vD.克服摩擦阻力做的功仍为E /26.如图所示,足够长的传送带以恒定速率顺时针运行。

将一个物体轻轻放在传送带底端,第一阶段物体被加速到与传送带具有相同的速度,第二阶段与传送带相对静止,匀速运动到达传送带顶端。

下列说法中正确的是 ()A .第一阶段摩擦力对物体做正功,第二阶段摩擦力对物体不做功B .第一阶段物体和传送带间的摩擦生热等于第一阶段物体机械能的增加C .第一阶段摩擦力对物体做的功等于第一阶段物体动能的增加D .物体从底端到顶端全过程机械能的增加等于全过程摩擦力对物体所做的功7.如图所示,质量m 1=2m 2的两物体之间夹有一轻质弹簧,用细线将它们拉住并使弹簧处于压缩状态(物体与弹簧不粘连).两物体与水平面间的动摩擦因数为μ2=2μ1,若从烧断细线到弹簧恢复到原长时,两物体脱离弹簧时的速度均不为零,设两物体原来静止,则( )A .两物体速率同时达到最大值BC .两物体在脱离弹簧时动能之比为1:1D .两物体在弹开后,再往前滑行的距离相同8.如图所示,水平面上的轻弹簧一端与物体相连,另一端固定在墙上P 点,已知物体的质量为m =2.0kg ,物体与水平面间的动摩擦因数μ=0.4,弹簧的劲度系数k =200N/m.现用力F 拉物体,使弹簧从处于自然状态的O 点由静止开始向左移动10cm ,这时弹簧具有弹性势能E P =1.0J ,物体处于静止状态.若取g =10m/s 2,则撤去外力F 后( )A .物体向右滑动的距离可以达到B .物体向右滑动的距离一定小于C. 物体回到O 点时速度最大D. 物体到达最右端时动能为0,系统机械能不为09.在奥运比赛项目中,高台跳水是我国运动员的强项。

质量为m 的跳水运动员进入水中后受到水的阻力而做减速运动,设水对他的阻力大小恒为F,那么在他减速下降高度为h的过程中,下列说法正确的是:(g为当地的重力加速度)( )A.他的动能减少了FhB.他的重力势能增加了mghC.他的机械能减少了(F-mg)hD.他的机械能减少了Fh10.在天花板下用绳AC和BC悬挂着物体m,绳与竖直方向的夹角分别为α=37°,β=53°,且90∠=o,如图所示。

绳AC能承受的最大拉力为100N,绳BC ACB能承受的最大拉力为180N,重物质量过大时会使绳子拉断,现悬挂物的质量m=14kg,(g=10m/s2,sin37°=0.6,sin53°=0.8)则()Array A.AC绳断,BC绳不断B.AC绳不断,BC绳断C.AC绳和BC绳都会断D.AC绳和BC绳都不断11.在水平桌面上沿一条直线放两个完全相同的小物块A 和B (可看作质点)质量均为m ,它们相距s 。

B 到桌边的距离是2s 。

对A 施以瞬间水平冲量I ,使A 沿A 、B 连线以速度v 0向B 运动。

设两物体碰撞时间很短,碰后不再分离。

为使两物体能发生碰撞,且碰撞后又不会离开桌面,求:⑴物体A 、B 与水平面间的动摩擦因数μ应满足什么条件?⑵若gs420v =μ,那么A 、B 碰撞过程系统损失的动能是多少?A 、B停止运动时,到桌面右边缘的距离s12.如图,是固定在水平面上的横截面为“ ”形的光滑长直导轨槽,槽口向上,槽内放置一金属滑块,滑块上有半径为R的半圆柱形光滑凹槽,金属滑块的宽度为2R,比“”形槽的宽度略小。

现有半径为r(r<<R)的金属小球以水平初速度v0冲向滑块,从滑块上的半圆形槽口边缘进入。

已知金属小球的质量为m,金属滑块的质量为3m,全过程中无机械能损失。

求:⑴当金属小球滑离金属滑块时,金属小球和金属滑块的速度各是多大?⑵当金属小球经过金属滑块上的半圆柱形槽的底部A点时,对金属滑块的作用力是多大?13.如图所示,在同一竖直平面内两正对着的相同半圆光滑轨道,相隔一定的距离,虚线沿竖直方向,一小球能在其间运动。

今在最低点与最高点各放一个压力传感器,测试小球对轨道的压力,并通过计算机显示出来。

当轨道距离变化时,测得两点压力差与距离x 的图像如右图所示。

(不计空气阻力,g 取10 m/s 2)求: (1)小球的质量;(2) 相同半圆光滑轨道的半径;(3)若小球在最低点B 的速度为20 m/s ,为 使小球能沿光滑轨道运动,x 的最大值。

m14.如图所示,C是放在光滑的水平面上的一块木板,木板的质量为3m,在木板的上面有两块质量均为m的小木块A和B,它们与木板间的动摩擦因数均为μ.最初木板静止,A、B两木块同时以方向水平向右的初速度v0和2v0在木板上滑动,木板足够长,A、B 始终未滑离木板.求:(1)木块B从刚开始运动到与木板C速度刚好相等的过程中,木块B所发生的位移;(2)木块A在整个过程中的最小速度;(3)整个过程中,A、B两木块相对于滑板滑动的总路程是多少?参考答案题号1 2 3 4 5 6 7 8 9 10 答 C A C C AC BD A BD D C11.⑴gs 1820v ≤μ<gs220v (提示:为了能发生碰撞,A 的初动能大于滑行s过程克服阻力做功;碰撞过程A 、B 系统动量守恒,碰后系统总动能小于滑行2s 过程克服阻力做的功。

) ⑵mv 02/8,7s /412.⑴小球与滑块相互作用过程中沿水平方向动量守恒:2103mv mv mv +=又因为系统机械能守恒:2221203212121mv mv mv +=得 0121v v -= 0221v v =⑵当金属小球通过A 点时,沿导轨方向金属小球与金属滑块具有共同速度v ,沿A 点切线方向的速度为v ′,由动量和能量守恒得v m m mv )3(0+=222021)3(2121v m v m m mv '++= 解得023v v =' 由牛顿第二定律得R mv R v m N 4322='=,即为对金属块的作用力大小为Rmv 43213.解:(1)设轨道半径为R ,由机械能守恒定律:2221)2(21A B mv x R mg mv ++=--------------------------①(2分) 在B 点:Rv m mg F BN 21=------------------------------②(1分)在A 点:Rv m mg F AN 22=+------------------------------③(1分)由①②③式得:两点的压力差:Rmgxmg F F F N N N 2621+=-=∆------④(1由图象得:截距 66=mg ,得kg m 1.0=---------------------------⑤(1分)(2)由④式可知:因为图线的斜率12==Rmgk 所以m R 2=……………………………………⑥(2分)(3)在A 点不脱离的条件为: Rg v A ≥------------------------------⑦(1分)由①⑥⑦三式和题中所给已知条件解得:m x 15=--------------------------⑧(1分)14. (1)木块A 先做匀减速直线运动,后做匀加速直线运动;木块B 一直做匀减速直线运动;木板C 做两段加速度不同的匀加速直线运动,直到A 、B 、C 三者的速度相等为止,设为v 1.对A 、B 、C 三者组成的系统,由动量守恒定律得:mv 0+2mv 0=(m +m +3m )v 1…………………………………………………………………(2分) 解得:v 1=0.6 v 0对木块B 运用动能定理,有: -μmgs =2021)2(2121v m mv -………………………………………………………………(2分) 解得:s =9120v /(50μg )…………………………………………………………………(2分)(2)设木块A 在整个过程中的最小速度为v ′,所用时间为t ,由牛顿第二定律:对木块A :a 1=μmg /m =μg ,…………………………………………………………(1分) 对木块C :a 2=2μmg /3m =2μg /3,……………………………………………………(1分)当木块A 与木板C 的速度相等时,木块A 的速度最小,因此有: v 0-μgt =(2μg /3)t ………………………………………………………………………(1分)解得t =3v 0/(5μg )………………………………………………………………………(1分)木块A 在整个过程中的最小速度为:v ′=v 0-a 1t =2v 0 /5.……………………………(2分)(3)Q 总=Q 1+Q 2 = fs 相1+fs 相2=ΔE k 损…………………………………………………(2分)所以s 相总=s 相1+s 相2=.g μv .μmg E f E k k 2061=∆=∆损损…………………………………………(2分)。

相关文档
最新文档