2019届高考数学专题-不等式选讲-高考真题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019届高考数学专题-不等式选讲-高考真题
解答题
1.(2018全国卷Ⅰ)[选修4–5:不等式选讲](10分)
已知()|1||1|f x x ax =+--.
(1)当1a =时,求不等式()1f x >的解集;
(2)若(0,1)x ∈时不等式()f x x >成立,求a 的取值范围.
2.(2018全国卷Ⅱ) [选修4-5:不等式选讲](10分)
设函数()5|||2|=-+--f x x a x .
(1)当1a =时,求不等式()0≥f x 的解集;
(2)若()1≤f x ,求a 的取值范围.
3.(2018全国卷Ⅲ) [选修4—5:不等式选讲](10分)
设函数()|21||1|f x x x =++-.
(1)画出()y f x =的图像;
(2)当[0,)x ∈+∞时,()f x ax b +≤,求a b +的最小值.
4.(2017新课标Ⅰ)已知函数2
()4f x x ax =-++,()|1||1|g x x x =++-.
(1)当1a =时,求不等式()()f x g x ≥的解集;
(2)若不等式()()f x g x ≥的解集包含[1,1]-,求a 的取值范围.
5.(2017新课标Ⅱ)已知0a >,0b >,332a b +=,证明:
(1)55()()4a b a b ++≥;
(2)2a b +≤.
6.(2017新课标Ⅲ)已知函数()|1||2|f x x x =+--.
(1)求不等式()1f x ≥的解集;
(2)若不等式2
()f x x x m -+≥的解集非空,求m 的取值范围.
7.(2016年全国I 高考)已知函数()|1||23|f x x x =+--.
(I )在图中画出()y f x =的图像;
(II )求不等式|()|1f x >的解集.
8.(2016年全国II )已知函数()1122
f x x x =-
++,M 为不等式()2f x <的解集. (I )求M ;
(II )证明:当a ,b M ∈时,1a b ab +<+.
9.(2016年全国III 高考)已知函数()|2|f x x a a =-+
(Ⅰ)当a =2时,求不等式()6f x ≤的解集; (Ⅱ)设函数()|21|g x x =-,当x ∈R 时,()()3f x g x +≥,求a 的取值范围.