【典型题】高一数学上期末试卷附答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【典型题】高一数学上期末试卷附答案
一、选择题
1.已知二次函数()f x 的二次项系数为a ,且不等式()2f x x >-的解集为()1,3,若方程
()60f x a +=,有两个相等的根,则实数a =( )
A .-
15
B .1
C .1或-
15
D .1-或-
15
2.德国数学家狄利克在1837年时提出:“如果对于x 的每一个值,y 总有一个完全确定的值与之对应,则y 是x 的函数,”这个定义较清楚地说明了函数的内涵.只要有一个法则,使得取值范围中的每一个值,有一个确定的y 和它对应就行了,不管这个对应的法则是公式、图象,表格述是其它形式已知函数f (x )由右表给出,则1102f f ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭
的值为
( )
A .0
B .1
C .2
D .3
3.若函数,1()42,12x a x f x a x x ⎧>⎪
=⎨⎛⎫
-+≤ ⎪⎪⎝
⎭⎩是R 上的单调递增函数,则实数a 的取值范围是( ) A .()1,+∞
B .(1,8)
C .(4,8)
D .[
4,8)
4.对于函数()f x ,在使()f x m ≤恒成立的式子中,常数m 的最小值称为函数()f x 的
“上界值”,则函数33
()33
x x f x -=+的“上界值”为( )
A .2
B .-2
C .1
D .-1
5.函数
()()2
12
log 2f x x x =-的单调递增区间为( ) A .(),1-∞ B .()2,+∞ C .(),0-∞ D .()1,+∞
6.若x 0=cosx 0,则( ) A .x 0∈(
3π,2π) B .x 0∈(4π,3π) C .x 0∈(6π,4π) D .x 0∈(0,6
π) 7.若二次函数()2
4f x ax x =-+对任意的()12,1,x x ∈-+∞,且12x x ≠,都有
()()
1212
0f x f x x x -<-,则实数a 的取值范围为( )
A .1,02⎡⎫-⎪⎢⎣⎭
B .1,2⎡⎫
-
+∞⎪⎢⎣⎭
C .1,02⎛⎫
-
⎪⎝⎭
D .1,2⎛⎫
-
+∞ ⎪⎝⎭
8.设()f x 是R 上的周期为2的函数,且对任意的实数x ,恒有()()0f x f x --=,当
[]1,0x ∈-时,()112x
f x ⎛⎫
=- ⎪⎝⎭
,若关于x 的方程()()log 10a f x x -+=(0a >且1a ≠)
恰有五个不相同的实数根,则实数a 的取值范围是( ) A .[]3,5
B .()3,5
C .[]4,6
D .()4,6
9.下列函数中,既是偶函数,又是在区间(0,)+∞上单调递减的函数为( ) A .1ln
||
y x = B .3y x = C .||2x y =
D .cos y x =
10.函数f (x )是定义在R 上的偶函数,在(-∞,0]上是减函数且f (2)=0,则使f (x )<0的x 的取值范围( ) A .(-∞,2)
B .(2,+∞)
C .(-∞,-2)∪(2,+∞)
D .(-2,2) 11.下列函数中,既是偶函数又存在零点的是( )
A .
B .
C .
D .
12.若不等式210x ax ++≥对于一切10,2x ⎛⎫
∈ ⎪⎝⎭
恒成立,则a 的取值范围为( ) A .0a ≥
B .2a ≥-
C .52
a ≥-
D .3a ≥-
二、填空题
13.已知幂函数(2)m
y m x =-在(0,)+∞上是减函数,则m =__________. 14.已知函数2()log f x x =,定义()(1)()f x f x f x ∆=+-,则函数
()()(1)F x f x f x =∆++的值域为___________.
15.已知2
()y f x x =+是奇函数,且f (1)1=,若()()2g x f x =+,则(1)g -=___.
16.若存在实数(),m n m n <,使得[],x m n ∈时,函数()(
)2log x
a f x a
t =+的值域也为
[],m n ,其中0a >且1a ≠,则实数t 的取值范围是______.
17.若函数()1
21
x
f x a =
++是奇函数,则实数a 的值是_________. 18.已知正实数a 满足8(9)a
a
a a =,则log (3)a a 的值为_____________. 19.设
是两个非空集合,定义运算
.已知
,
,则
________.
20.()()sin cos f x x π=在区间[]0,2π上的零点的个数是______.
三、解答题
21.已知函数()10()m
f x x x x
=+
-≠. (1)若对任意(1)x ∈+∞,
,不等式()2log 0f x >恒成立,求m 的取值范围. (2)讨论()f x 零点的个数.
22.已知二次函数满足2()(0)f x ax bx c a =++≠,(1)()2,f x f x x +-= 且(0) 1.f = (1)求函数()f x 的解析式
(2)求函数()f x 在区间[1,1]-上的值域;
23.已知全集U =R ,函数()lg(10)f x x =
-的定义域为集合A ,集合
{}|57B x x =≤<
(1)求集合A ; (2)求()U C B A ⋂. 24.已知函数sin ωφ
f x A x B (0A >,0>ω,2
π
ϕ<
),在同一个周期内,
当6
x π
=
时,()f x 取得最大值
2
,当23x π=时,()f x 取得最小值2-
. (1)求函数()f x 的解析式,并求()f x 在[0,π]上的单调递增区间.
(2)将函数()f x 的图象向左平移
12
π
个单位长度,得到函数()g x 的图象,方程()g x a =在0,2π⎡⎤
⎢⎥⎣⎦
有2个不同的实数解,求实数a 的取值范围.
25.已知定义域为R 的函数211
()22
x x f x a +=-+是奇函数.
(Ⅰ)求实数a 的值;
(Ⅱ)判断函数()f x 的单调性,并用定义加以证明.
26.已知2
()12
x
f x =+,()()1
g x f x =-. (1)判断函数()g x 的奇偶性;
(2)求
1010
1
1
()()i i f i f i ==-+∑∑的值.
【参考答案】***试卷处理标记,请不要删除
一、选择题 1.A