证明直线与圆相切是一类常见题目
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
证明直线与圆相切是一类常见题目,解决这类问题常用的方法有两种。
一、连半径,证垂直
若图形中已给出直线与圆的公共点,但未给出过点的半径,则可先连结过此点的半径,再证其与直线垂直。
例1如图(1)所示,在△ABC中,AB=AC,以AB为直径作圆交于BC于D,作DE⊥AC于E。
求证:DE为⊙O 的切线。
证明:连结OD
∵OB=OD
∴∠B=∠ODB
∵AB=AC
∴∠B=∠C
∴∠ODB=∠C
∵ DE⊥AC
∴∠C+∠CDE=90°
∴∠ODB+∠CDE=90°
∴∠ODE=90°,即DE⊥OD
∴DE是⊙O的切线。
例2如图(2)所示,AB是⊙O的直径,过A点作⊙O的切线,在切线上任取一点C,连结OC交⊙O于D,连结BD并延长交AC于E,求证:CD是△ADE外接圆的切线。
证明:取AE的中点F,连结FD。
∵AB为直径,
∴AD⊥BD
∵FD=FE(=FA)
∴∠FED=∠FDE
∵∠CDE=∠BDO=∠B
∠FEB+∠B=90°
∴∠FDE+∠CDE=90°
即FD⊥CD
∴CD是△ADE的外接圆的切线。
二、作垂线,证半径
若图形中未给出直线与圆的公共点,则需先过圆心作该直线的垂线,再证垂足到圆心的距离等于半径。
例3 如图(3)所示,已知AB是⊙O的直径,AC⊥L于C,BD⊥L于D,且AC+BD=AB。
求证:直线L与⊙O 相切。
证明:过O作OE⊥L于E。
∵AC⊥L,BD⊥L,
∴AC∥OE∥BD。
又AO=OB,∴CE=CD
从而OE为梯形ACDB的中位线。
∴OE=(AC+BD)=AB
即垂足E到圆心O的距离等于半径。
故直线L与⊙O相切。