浙教版初三数学练习(11)第二章简单事件的概率简单事件的概率(1)(解析版)
【期末优化训练】浙教版2022-2023学年九上数学第2章 简单事件的概率 测试卷1(解析版)
【期末优化训练】浙教版2022-2023学年九上数学第2章简单事件的概率测试卷1(解析版)一、选择题(本大题有10小题,每小题4分,共40分)下面每小题给出的四个选项中,只有一个是正确的.1.下列事件是必然事件的是()A.相等的圆心角所对的弧相等B.三点确定一个圆C.抛掷一枚骰子,朝上面的点数小于6D.事件发生的概率是I【答案】D【解析】A、相等的圆心角所对的弧相等是随机事件,故A不符合题意;B、三点确定一个圆是随机事件,故B不符合题意;C、抛掷一枚骰子,朝上面的点数小于6,是随机事件,故C不符合题意;D、必然事件发生得我概率为1,是必然事件,故D符合题意;故答案为:D2.与“新冠肺炎”患者接触过程中,下列哪种情况被传染的可能性最大()A.戴口罩与患者近距离交谈B.不戴口罩与患者近距离交谈C.戴口罩与患者保持社交距离交谈D.不戴口罩与患者保持社交距离交谈【答案】B【解析】A、戴口罩与患者近距离交谈,被传染的可能性不大,故A不符合题意;B、不戴口罩与患者近距离交谈,被传染的可能性,故B符合题意;C、戴口罩与患者保持社交距离交谈,被传染的可能性不大,故C不符合题意;D、不戴口罩与患者保持社交距离交谈,被传染的可能性不大,故D不符合题意;故答案为:B3.已知现有的10瓶饮料中有2瓶已过了保质期,从这10瓶饮料中任取1瓶,恰好取到已过了保质期的饮料的概率是()A.110B.910C.15D.45【答案】C【解析】依题可得:从这10瓶饮料中任取1瓶,恰好取到已过了保质期的饮料的概率P= 210=15 .故答案为:C.4.下列成语所描述的事件是随机事件的是()A.瓮中捉鳖B.守株待兔C.水涨船高D.水中捞月【答案】B【解析】A、是必然事件,故A不符合题意;B、是随机事件,故B符合题意;C、是必然事件,故C不符合题意;D、是不可能事件,故D不符合题意;故答案为:B.5.在如图所示的电路中,随机闭合开关S1、S2、S3中的两个,能让灯泡L1发光的概率是()A.12B.13C.23D.14【答案】B【解析】随机闭合开关S1、S2、S3中的两个,即:S1+S2,S1+S3,S2+S3∴共3种情况根据题意,得能让灯泡L 1发光的组合为: S 1+S 2 ∴能让灯泡L 1发光的概率是 13.故答案为:B.6.从甲、乙、丙三名男生和A 、B 两名女生中随机选出一名学生参加问卷调查,则选出女生的可能性是( ) A .35 B .25 C .13 D .12【答案】B【解析】∵共有甲、乙、丙三名男生和A 、B 两名女生,∴随机选出一名学生参加问卷调查,则选出女生的可能性=25.故答案为:B .7.从﹣1,0,1三个数中任取两个不同的数作为点的坐标,则该点在坐标轴上的概率为( ) A .13 B .12 C .23 D .34【答案】C所以该点在坐标轴上的概率=46=23;故答案为:C . 8.一个封闭的箱子中有两个红球和一个黄球,随机从中摸出两个球,即两个球均为红球的概率是( ) A .49 B .23 C .12 D .13【答案】D【解析】画树状图为:∴共有6种等可能的结果数,其中两个球均为红球的结果数为2, ∴两个球均为红球的概率=26=13.故答案为:D.9.在一个不透明的袋子中,装有红色、黑色、白色的玻璃球共有40个,除颜色外其它完全相同.若小李通过多次摸球试验后发现其中摸到红色、黑色球的频率稳定在 0.15 .和 0.45 ,则该袋子中的白色球可能有( ) A .6个 B .16个 C .18个 D .24个 【答案】B【解析】∵摸到红色球、黑色球的频率稳定在0.15和0.45, ∴摸到白球的频率为1-0.15-0.45=0.4,故口袋中白色球的个数可能是40×0.4=16个. 故答案为:B .10.有两组卡片,第一组卡片上写有a ,b ,b ,第二组卡片上写有a ,b ,b ,c ,c ,求从每组卡片中各抽出一张,都抽到b 的概率是( ) A .415 B .815 C .12 D .49【答案】A∴都抽到b 的概率为415;故答案为:A二、填空题(本大题有6小题,每小题5分,共30分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案.11.有一些乒乓球,不知其数,先取12个做了标记,把它们放回袋中,混合均匀后又取了20个,发现含有2个做标记,可估计袋中乒乓球有 个 . 【答案】120【解析】∵取了20个,发现含有两个做标记,∴作标记的乒乓球所占的比例是 220=110 ,又∵作标记的共有12个, ∴乒乓球共有12÷ 110=120,故答案为:120.12.一个不透明的袋中装有除颜色外均相同的9个红球,3个白球,若干个绿球,每次摇匀后随机摸出一个球,记下颜色后再放回袋中,经过大量重复实验后,发现摸到绿球的概率稳定在0.2,则袋中有绿球 个. 【答案】3【解析】设绿球的个数为x ,根据题意,得: x9+3+x =0.2,解得:x=3,经检验x=3是原分式方程的解,即袋中有绿球3个, 故答案为:3.13.从数﹣3,−32,0,2中任取一个数记为a ,再从余下的三个数中,任取一个数记为b .若k =a+b ,反比例函数y =kx的图象经过第一、三象限的概率是 .【答案】13【解析】反比例函数y =kx 的图象进过第一、三象限,得k >0,(1)a=-3时,b 取-32、0、2时,k+b 均小于0;(2)a=-32时,b 取-3、0、2时,只有当b=2时,k+b >0,(3)a=0时,b 取-3、-32、2时,只有当b=2时,k+b >0,(4)a=2时,b 取-3、-32、0时,当b 取0和-32时,k+b >0,故一共有12种等可能的结果,满足条件的占4种, 概率为412=13;故答案为:13.14由此估计这种苹果树苗移植成活的概率约为 (精确到【答案】0.9【解析】概率是大量重复实验的情况下,频率的稳定值可以作为概率的估计值,即次数越多的频率越接近于概率,∴这种苹果树苗移植成活率的概率约为0.9.故答案为:0.9.15.如图,正方形 ABCD 是一飞镖游戏板,其中点 E , F , G , H 分别是各边中点,并将该游戏板划分成如图中所示的9个区域,现随机向正方形内投掷一枚飞镖(投中各区域的边界线或没有投中游戏板,则重投1次),则投中阴影区域的概率是 .【答案】14【解析】阴影部分组合起来的面积就等于三角形ABF 的面积, 设正方形ABCD 的边长是 x ,则 AB =x , ∵F 是BC 中点,∴BF =12x ,∴S △ABF =12AB ⋅BF =12x ⋅12x =14x 2 ,概率是 S △ABF S ABCD =14x 2x 2=14 .故答案是: 14.16.如图,为某小组做“用频率估计概率”的实验时,绘制的频率折线图,则符合这一结果的实验是 .(填写序号)①抛一枚硬币,出现正面朝上;②掷一个正六面体的骰子,出现3点朝上;③一副去掉大小王的扑克牌洗匀后,从中任抽一张牌的花色是红桃; ④从一个装有2个红球1个黑球的袋子中任取一球,取到的是黑球.【答案】④【解析】①抛一枚硬币,出现正面朝上的频率是12=0.5,故本选项不符合题意;②掷一个正六面体的骰子,出现3点朝上的概率是:16≈0.17,故本选项不符合题意;③一副去掉大小王的扑克牌洗匀后,从中任抽一张牌的花色是红桃的概率是1352=0.25,故本选项不符合题意;④从一个装有2个红球1个黑球的袋子中任取一球,取到的是黑球的概率是13≈0.33,故本选项符合题意;故答案为:④三、解答题(本题有8小题,第17~19题每题8分,第20~22题每题10分,第23题每题12分,第24题14分,共80分)解答应写出文字说明,证明过程或推演步骤.17.为了响应国家有关开展中小学生“课后服务”的政策,某学校课后开设了A :课后作业辅导、B :书法、C :阅读、D :绘画、E :器乐,五门课程供学生选择;其中A (必选项目),再从B 、C 、D 、E 中选两门课程.(1)若学生小玲第一次选一门课程,直接写出学生小玲选中项目E 的概率;(2)若学生小强和小明在选项的过程中,第一次都是选了项目E ,那么他俩第二次同时选择书法或绘画的概率是多少?请用列表法或画树状图的方法加以说明并列出所有等可能的结果. 【答案】(1)解:若学生小玲第一次选一门课程,学生小玲选中项目E 的概率= 14;(2)解:画树状图为:共有12种等可能的结果数,其中他俩第二次同时选择书法或绘画的结果数为2, 所以他俩第二次同时选择书法或绘画的概率= 29.18.举世瞩目的港珠澳大桥已于2018年10月24日正式通车,这座大桥是世界上最长的跨海大桥,被誉为“新世界七大奇迹”,车辆经过这座大桥收费站时,从已开放的4个收费通道A 、B 、C 、D 中可随机选择其中一个通过.(1)一辆车经过收费站时,选择A 通道通过的概率是 .(2)用树状图或列表法求两辆车经过此收费站时,选择不同通道通过的概率. 【答案】(1)14(2)解:画树状图如下:由表可知,共有16种等可能结果,其中选择不同通道通过的有12种结果,∴选择不同通道通过的概率=1216=3419.甲、乙两人分别从A 、B 、C 这3个景点随机选择2个景点游览. (1)求甲选择的2个景点是A 、B 的概率.(2)甲、乙两人选择的2个景点恰好相同的概率是 . 【答案】(1)解:用列表法表示所有可能出现的结果如下:(2)13【解析】(2)共有9种可能出现的结果,其中选择A 、B 的有2种, ∴P (A 、B )= 29;故答案为: 13.20.甲、乙、丙、丁四位同学进行一次乒乓球单打比赛,要从中选出两位同学打第一场比赛. (1)请用树状图法或列表法,求恰好选中甲、乙两位同学的概率;(2)若已确定甲打第一场,再从其余三位同学中随机选取一位,求恰好选中乙同学的概率. 【答案】(1)解:方法一:画树状图如下:方法二:列表如下:甲 乙 丙 丁 甲 /甲、乙 甲、丙甲、丁乙 乙、甲/乙、丙 乙、丁丙 丙、甲 丙、乙/ 丙、丁丁 丁、甲 丁、乙丁、丙/∴所有等可能性的结果有 12 种,其中恰好选中甲、乙两位同学的结果有 2 种, 则选中甲、乙两位同学的概率是P= 212=16.(2)解:∵一共有3种等可能性的结果,其中恰好选中乙同学的有1种, ∴恰好选中乙同学的概率为 13.21.从2021年起,江苏省高考采用“ 3+1+2 ”模式:“3”是指语文、数学、外语3科为必选科目,“1”是指在物理、历史2科中任选科,“2”是指在化学、生物、思想政治、地理4科中任选2科.(1)若小丽在“1”中选择了历史,在“2”中已选择了地理,则她选择生物的概率是 ; (2)若小明在“1”中选择了物理,用画树状图的方法求他在“2中选化学、生物的概率.【答案】(1)13(2)解:列出树状图如图所示:由图可知,共有12种可能结果,其中选化学、生物的有2种,所以,P (选化学、生物) =212=16. 答:小明同学选化学、生物的概率是 16.22.将4张印有“梅”“兰”“竹”“菊”字样的卡片(卡片的形状、大小、质地都相同)放在一个不透明的盒子中,将卡片搅匀.(1)从盒子中任意取出1张卡片,恰好取出印有“兰”字的卡片的概率为 .(2)先从盒子中任意取出1张卡片,记录后放回并搅匀,再从中任意取出1张卡片,求取出的两张卡片中,至少有1张印有“兰”字的概率(请用画树状图或列表等方法求解). 【答案】(1)14(2)解:画树状图如下:由树状图知,共有16种等可能结果,其中至少有1张印有“兰”字的有7种结果, ∴至少有1张印有“兰”字的概率为 716.【解析】(1)从盒子中任意取出1张卡片,恰好取出印有“兰”字的卡片的概率为 14,故答案为: 14;23.甲、乙两名同学玩一个游戏:在一个不透明的口袋中装有标号分别为1,2,3,4的四个小球(除标号外无其它差异).从口袋中随机摸出一个小球,记下标号后放回口袋中,充分摇匀后,再从口袋中随机摸出一个小球,记下该小球的标号,两次记下的标号分别用x 、y 表示.若x +y 为奇数,则甲获胜;若x +y 为偶数,则乙获胜.(1)用列表法或树状图法(树状图也称树形图)中的一种方法,求(x ,y)所有可能出现的结果总数; (2)你认为这个游戏对双方公平吗?请说明理由.(2)解:这个游戏对双方公平,理由如下:由列表法可知,在16种可能出现的结果中,它们出现的可能性相等, ∵x +y 为奇数的有8种情况,∴P(甲获胜)= 816=12,∵x +y 为偶数的有8种情况,∴P(乙获胜)= 816=12,∴P(甲获胜)=P(乙获胜), ∴这个游戏对双方公平. 24.经过某十字路口的汽车,它可能继续直行,也可能向左转或向右转,如果这三种情况是等可能的, 当三辆汽车经过这个十字路口时:(1)求三辆车全部同向而行的概率; (2)求至少有两辆车向左转的概率;(3)由于十字路口右拐弯处是通往新建经济开发区的,因此交管部门在汽车行驶高峰时段对车流量作了统计,发现汽车在此十字路口向右转的频率为 25 ,向左转和直行的频率均为 310.目前在此路口,汽车左转、右转、直行的绿灯亮的时间分别为30秒,在绿灯亮总时间不变的条件下,为了缓解交通拥挤,请你用统计的知识对此路口三个方向的绿灯亮的时间做出合理的调整. 【答案】(1)解:分别用A ,B ,C 表示向左转、直行,向右转; 根据题意,画出树形图:∵共有27种等可能的结果,三辆车全部同向而行的有3种情况,∴P(三车全部同向而行)= 1 9;(2)解:∵至少有两辆车向左转的有7种情况,∴P(至少两辆车向左转)= 7 27;(3)解:∵汽车向右转、向左转、直行的概率分别为25,310,310,∴在不改变各方向绿灯亮的总时间的条件下,可调整绿灯亮的时间如下:左转绿灯亮时间为90× 310=27(秒),直行绿灯亮时间为90×310=27(秒),右转绿灯亮的时间为90×25=36(秒).。
期末复习:浙教版九年级数学学上册 第二章 简单事件的概率(解析版)
期末复习:浙教版九年级数学学上册 第二章 简单事件的概率一、单选题(共10题;共30分)1.抛掷一枚均匀的硬币一次,出现正面朝上的概率是 ( ) A. 12 B. 13 C. 14 D. 12.从1、2、3、4、5、6、7、8、9、10这十个数中随机取出一个数,取出的数是3的倍数的概率是( ) A. 15 B. 310 C. 13 D. 123.某电视台体育直播节目从接到的5000条短信(每人只许发一条短信)中,抽取10名“幸运观众”.小明给此直播节目发了一条短信,他成为“幸运观众”的概率是( ) A. 15000 B. 1500 C. 150 D. 1104.小新抛一枚质地均匀的硬币,连续抛三次,硬币落地均正面朝上,如果他第四次抛硬币,那么硬币正面朝上的概率为( )A. 12 B. 14 C. 1 D. 345.在一个不透明的口袋中,装有5个红球3个白球,它们除颜色外都相同,从中任意摸出一个球,摸到红球的概率为( )A. 15 B. 13 C. 58D. 386.甲乙两人玩一个游戏,判定这个游戏公平不公平的标准是( ) A. 游戏的规则由甲方确定 B. 游戏的规则由乙方确定 C. 游戏的规则由甲乙双方商定 D. 游戏双方要各有50%赢的机会7.今年我市约有36000名学生参加初中毕业会考,为了了解这36000名学生的数学成绩,准备从中随机抽取1200 名学生的数学成绩进行统计分析,那么你的数学成绩被抽中的概率为 ( ) A. 136000 B. 11200 C. 150 D. 1308.一枚质地均匀的正方体骰子,其六个面上分别刻有1,2,3,4,5,6六个数字,抛掷这枚骰子一次,则向上的面的数字大于4的概率是( )A. 23 B. 12 C. 13 D. 169.小玲与小丽两人各掷一个正方体骰子,规定两人掷的点数和为偶数,则小玲胜;点数和为奇数,则小丽胜,下列说法正确的是( )A. 此规则有利于小玲B. 此规则有利于小丽C. 此规则对两人是公平的D. 无法判断 10.小亮和小刚按如下规则做游戏:每人从1,2,…,12中任意选择一个数,然后两人各掷一次均匀的骰子,谁事先选择的数等于两人掷得的点数之和谁就获胜;如果两人选择的数都不等于掷得的点数之和,就再做一次上述游戏,直至决出胜负.从概率的角度分析,游戏者事先选择( )获胜的可能性较大. A. 5 B. 6 C. 7 D. 8二、填空题(共10题;共30分)11.一水塘里有鲤鱼、鲫鱼、鲢鱼共10 000尾,一渔民通过多次捕捞实验后发现,鲤鱼、鲫鱼出现的频率分别是31%和42%,则这个水塘里大约有鲢鱼________尾.12.一个不透明的口袋中有6个完全相同的小球,把它们分别标号为1,2,3,4,5,6,从中随机摸取一个小球,取出的小球标号恰好是偶数的概率是________.13.某厂生产了1200件衬衫,根据以往经验其合格率为0.95左右,则这1200件衬衫中次品(不合格)的件数大约为________.14.某口袋中装有红色、黄色、蓝色三种颜色的小球(小球出颜色外完全相同)共60个.通过多次摸球实验后,发现摸到红球、黄球的频率分别是30%和45%,由此估计口袋中蓝球的数目约为________ 个.15.一个袋中装有6个红球,5个黄球,3个白球,每个球除颜色外都相同,任意摸出一球,摸到________球的可能性最大.16.某口袋中有红色、黄色、蓝色玻璃共60个,小明通过多次摸球试验后,发现摸到红球、黄球、蓝球的频率为35%、25%和40%,估计口袋中黄色玻璃球有________ 个.17.一个不透明的袋子中装有若干个红球,为了估计袋中红球的个数,小明在袋中放入20个白球(每个球除颜色外其余都与红球相同).摇匀后每次随机从袋中摸出一个球,记下颜色后放回袋中,通过大量重复,则袋中红球约为 ________个.摸球实验后发现,摸到白球的频率是2518.布袋中装有2个红球和5个白球,它们除颜色外其它都相同.如果从这个布袋里随机摸出一个球,那么所摸到的球恰好为红球的概率是 ________.19.口袋中装有除颜色外完全相同的红球3个,白球n个,如果从袋中任意摸出1个球,摸出红球的概率是3,那么n= ________个.520.一枚质地均匀的正方体骰子的六个面上的数字分别是1,2,2,3,3,4;另一枚质地均匀的正方体骰子的六个面上的数字分别是1,3,4,5,6,8. 同时掷这两枚骰子,则其朝上的面两数字之和为奇数5的概率是________.三、解答题(共8题;共60分)21.现有小莉,小罗,小强三个自愿献血者,两人血型为O型,一人血型为A型.若在三人中随意挑选一人献血,两年以后又从此三人中随意挑选一人献血,试求两次所抽血的血型均为O型的概率.(要求:用列表或画树状图的方法解答)22.小明和小亮利用三张卡片做游戏,卡片上分别写有A,B,B.这些卡片除字母外完全相同,从中随机摸出一张,记下字母后放回,充分洗匀后,再从中摸出一张,如果两次摸到卡片字母相同则小明胜,否则小亮胜,这个游戏对双方公平吗?请说明现由.23.用如图所示的A,B两个转盘进行“配紫色”游戏(红色和蓝色在一起配成了紫色).小亮和小刚同时转动两个转盘,若配成紫色,小亮获胜,否则小刚获胜.这个游戏对双方公平吗?画树状图或列表说明理由.24.泰州具有丰富的旅游资源,小明利用周日来泰州游玩,上午从A,B两个景点中任意选择一个游玩,下午从C、D、E三个景点中任意选择一个游玩,用列表或画树状图的方法列出所有等可能的结果.并求小明恰好选中景点B和C的概率.25.一个不透明的袋子里装有编号分别为1、2、3的球(除编号以为,其余都相同),其中1号球1个,3号球3个,从中随机摸出一个球是2号球的概率为1.3(1)求袋子里2号球的个数.(2)甲、乙两人分别从袋中摸出一个球(不放回),甲摸出球的编号记为x,乙摸出球的编号记为y,用列表法求点A(x,y)在直线y=x下方的概率.26.甲、乙两同学用一副扑克牌中牌面数字分别是:3,4,5,6的4张牌做抽数学游戏.游戏规则是:将这4张牌的正面全部朝下,洗匀,从中随机抽取一张,抽得的数作为十位上的数字,然后,将所抽的牌放回,正面全部朝下、洗匀,再从中随机抽取一张,抽得的数作为个位上的数字,这样就得到一个两位数.若这个两位数小于45,则甲获胜,否则乙获胜.你认为这个游戏公平吗?请运用概率知识说明理由.27.中央电视台“幸运52”栏目中的“百宝箱”互动环节,是一种竞猜游戏,游戏规则如下:在20个商标牌中,有5个商标牌的背面注明一定的奖金额,其余商标牌的背面是一张哭脸,若翻到哭脸,就不得奖,参与这个游戏的观众有三次翻牌机会(翻过的牌不能再翻).某观众前两次翻牌均获得若干奖金,那么他第三次翻牌获奖的概率是多少?28.小明和小刚用如图所示的两个转盘做配紫色游戏,游戏规则是:分别旋转两个转盘,若其中一个转盘转出了红色,另一个转出了蓝色,则可以配成紫色.此时小刚得1分,否则小明得1分.这个游戏对双方公平吗?请说明理由.若你认为不公平,如何修改规则才能使游戏对双方公平?答案解析部分一、单选题1.【答案】A【考点】概率公式【解析】【分析】列举出所有情况,看硬币正面朝上的情况数占总情况数的多少即可.【解答】共抛掷一枚均匀的硬币一次,有正反两种情况,有一次硬币正面朝上,所以概率为12.故选A.【点评】考查概率的求法;用到的知识点为:概率=所求情况数与总情况数之比;得到至少有一次硬币正面朝上的情况数是解决本题的关键.2.【答案】B【考点】概率公式【解析】【分析】让是3的倍数的数的个数除以数的总个数即为所求的概率.【解答】∵1、2、3、4、5、6、7、8、9、10这十个数中,3的倍数的有3、6、9共3个数,∴取出的数是3的倍数的概率是:310.故选B.【点评】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn.3.【答案】B【考点】概率公式【解析】【分析】5000条短信有5000名不同的观众发出,每个观众被抽到的机会是相同的,让“幸运观众”数除以短信总条数即为所求概率.【解答】抽取一名幸运观众有5000个结果,小明成为“幸运观众”只要成为所抽的10名中的一个就可以,因而有10个可能结果,所以P(小明成为“幸运观众)=105000=1500.故选B【点评】本题的解决关键是理解列举法求概率的条件,事件有有限个结果,每个结果出现的机会相等.用到的知识点为:概率=所求情况数与总情况数之比.4.【答案】A【考点】概率公式【解析】【分析】概率的求法:概率=所求情况数与总情况数之比.因为一枚质地均匀的硬币只有正反两面,所以不管抛多少次,硬币正面朝上的概率都是12,故选A.【点评】本题属于基础应用题,只需学生熟练掌握概率的求法,即可完成.5.【答案】C【考点】概率公式【解析】【分析】∵共8球在袋中,其中5个红球,∴其概率为58,故选C.6.【答案】D【考点】游戏公平性【解析】【解答】解:根据游戏是否公平不在于谁定游戏规则,游戏共是否公平的取决于游戏双方要各有50%赢的机会,∴A.游戏的规则由甲方确定,故此选项错误;B.游戏的规则由乙方确定,故此选项错误;C.游戏的规则由甲乙双方商定,故此选项错误;D.游戏双方要各有50%赢的机会,故此选项正确.故选:D.【分析】根据游戏共是否公平的取决于游戏双方要各有50%赢的机会,游戏是否公平不在于谁定游戏规则,分别判定即可.7.【答案】D【考点】概率公式【解析】【解答】解:因为有36000名学生要抽1200名学生,所以被抽中的概率为:120036000=130.故选D.8.【答案】C【考点】概率公式【解析】【分析】根据概率的求法,找准两点:①全部等可能情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率。
浙教版九年级上数学2.2简单事件的概率(1)同步导学练(含答案)
2.2 简单事件的概率(1)等可能性事件A 发生的概率P(A)= nm ,n 表示结果总数,m 表示事件A 发生的结果数.1.一道选择题共有4个答案,其中有且只有一个是正确的,有一位同学随意地选了一个答案,那么他选对的概率为(D ).A.1B. 21C. 31D. 41 2.从分别标有数-3,-2,-1,0,1,2,3的七张没有明显差别的卡片中,随机抽取一张,所抽卡片上的数的绝对值不小于2的概率是(D ).A. 71B. 72C. 73D. 74 3.一个不透明口袋中共有50个球,其中白球20个,红球20个,蓝球10个,则摸出一个球不是白球的概率是(B ).A. 54B. 53C. 52D. 51 4.有五张背面完全相同的卡片,正面分别写有(9,2)0,8,722,2-2,把卡片背面朝上洗匀后,从中随机抽取一张,其正面的数字是无理数的概率是(B ).A. 51B. 52C. 53D. 54 5.掷一枚均匀立方体骰子,6个面上分别标有数字1,2,3,4,5,6,则有:(1)P(掷出的数字是1)= 61 . (2)P(掷出的数字大于4)=31 .(第6题)6.如图所示为一副普通扑克牌中的13张黑桃牌,将它们洗匀后正面向下放在桌子上,从中任意抽取一张,则抽出的牌点数小于9的概率为 138 . 7.在一个不透明的袋子中装有除颜色外完全相同的3个白球、若干红球,从中随机摸取一个球,摸到红球的概率是85,则这个袋子中有红球 5个. 8.有10张卡片,每张卡片分别写有1,2,3,4,5,6,7,8,9,10,从中任意摸取一张卡片,摸到的卡片是2的倍数的概率是多少?3的倍数呢?5的倍数呢?【答案】P (摸到的卡片是2的倍数)=105=21; P (摸到的卡片是3的倍数)=103; P (摸到的卡片是5的倍数)=102=51. 9.用24个球设计一个摸球游戏,使得:(1)摸到红球的概率是21,摸到白球的概率是31,摸到黄球的概率是61. (2)摸到白球的概率是41,摸到红球和黄球的概率都是83. 【答案】(1)袋内装12个红球、8个白球、4个黄球.(2)袋内装红球和黄球各9个,白球6个.10.如图所示,从图中的四张印有品牌标志图案的卡片中任取一张,取出图案是轴对称图形的卡片的概率是(C ).(第10题)A. 41B. 21C. 43 D.1 11.某电视节目中有一种竞猜游戏,游戏规则如下:在20个商标中,有5个商标牌的背面注明了一定的奖金额,其余商标的背面是一张苦脸,若翻到它就不得奖。
浙教版九年级上册数学第2章 简单事件的概率含答案(精练)
浙教版九年级上册数学第2章简单事件的概率含答案一、单选题(共15题,共计45分)1、从1~9这九个自然数中任取一个,是3的倍数的概率是()A. B. C. D.2、已知不透明的袋中只装有黑、白两种球,这些球除颜色外都相同,其中白球有2个,黑球有n个.随机地从袋子中摸出一个球,记录下颜色后,放回袋子中并摇匀.经过大量重复试验发现摸出白球的频率稳定在0.4附近,则n的值为( )A.2B.3C.4D.53、从1,2,﹣3三个数中,随机抽取两个数相乘,积是正数的概率是()A.0B.C.D.14、把1枚质地均匀的普通硬币重复掷两次,落地后出现一次正面一次反面的概率是()A.1B.C.D.5、口袋中装有形状、大小与质地都相同的红球2个,黄球1个,下列事件为随机事件的是()A.随机摸出1个球,是白球B.随机摸出1个球,是红球C.随机摸出1个球,是红球或黄球D.随机摸出2个球,都是黄球6、在100张奖卷中,有4张中奖,小红从中任抽1张,他中奖的概率是()A. B. C. D.7、电动游览车经过某景区十字路口,可能直行,也可能左转或者右转.如果这三种可能性大小相同,则经过这个十字路口的两辆游览车一辆左转,一辆右转的概率为( )A. B. C. D.8、下列事件中为必然事件的是()A.早晨的太阳从东方升起B.打开电视机,正在播放新闻C.随机掷一枚硬币,落地后正面朝上D.下雨后,天空出现彩虹9、四张完全相同的卡片上分别画有平行四边形、菱形、等腰梯形、圆,现从中任意抽取一张,卡片上所画的图形恰好是中心对称图形的概率为( )A. B. C. D.10、下列说法中正确的是().A.“打开电视机,正在播放《动物世界》”是必然事件B.某种彩票的中奖概率为,说明每买1000张,一定有一张中奖C.抛掷一枚质地均匀的硬币一次,出现正面朝上的概率为D.想了解长沙市所有城镇居民的人均年收入水平,宜采用抽样调查11、某校九年级共有1、2、3、4四个班,现从这四个班中随机抽取两个班进行一场篮球比赛,则恰好抽到1班和2班的概率是()A. B. C. D.12、如图,有四张不透明的卡片除正面的算式不同外,其余完全相同,将它们背面朝上洗匀后,从中随机抽取一张,则抽到得卡片上算式正确的概率是()A. B. C. D.113、“翻开数学书,恰好翻到第16页”,这个事件是()A.随机事件B.必然事件C.不可能事件D.确定事件14、在一个透明的口袋中装着大小、外形一模一样的5个黄球,2个红球和2个白球,这些球在口袋中被搅匀了,下列事件必然发生的是()( 1 )从口袋中任意摸出一个球是一个黄球或是一个白球(2)从口袋中一次任意摸出5个球,全是黄球(3)从口袋中一次任意摸出8个球,三种颜色都有(4)从口袋中一次任意摸出6个球,有黄球和红球,或有黄球和白球,或三种颜色都有.A.(1)(2)B.(2)(3)C.(3)(4)D.(1)(2)(3)(4)15、有两个事件,事件A:367人中至少有2人生日相同;事件B:抛掷一枚均匀的骰子,朝上的面的点数为偶数.下列说法正确的是()A.事件A、B都是随机事件B.事件A、B都是必然事件C.事件A是随机事件,事件B是必然事件D.事件A是必然事件,事件B是随机事件二、填空题(共10题,共计30分)16、不透明的袋子里装有2个白球,1个红球,这些球除颜色外无其他差别,从袋子中随机摸出1个球,则摸出白球的概率是________.17、从-2、1、这三个数中任取两个不同的数相乘,积是无理数的概率是________.18、把1枚质地均匀的普通硬币重复掷三次,落地后三次都是正面朝上的概率是________.19、在一个不透明的盒子中装有a个除颜色外完全相同的球,其中只有6个白球.若每次将球充分搅匀后,任意摸出1个球记下颜色后再放回盒子,通过大量重复试验后,发现摸到白球的频率稳定在20%左右,则a的值约为________.20、一个不透明的袋中有四张形状大小质地完全相同的卡片,它们上面分别标有数字,随机抽取一张卡片不放回,再随机抽取一张卡片,则两次抽取的卡片上数字之和为奇数的概率是________.21、张凯家购置了一辆新车,爸爸妈妈商议确定车牌号,前三位选定为8ZK 后,对后两位数字意见有分歧,最后决定由毫不知情的张凯从如图排列的四个数字中随机划去两个,剩下的两个数字从左到右组成两位数,续在8ZK之后,则选中的车牌号为8ZK86的概率是________.22、小勇第一次抛一枚质地均匀的硬币时正面向上,他第二次再抛这枚硬币时,正面向上的概率是________.23、一袋中装有5个红球、4个白球和3个黄球,每个球除颜色外都相同.从中任意摸出一个球,则:P(摸到红球)=________,P(摸到白球)=________.24、从1,2,3,4这四个数字中,任意抽取两个不同数字组成一个两位数,则这个两位数能被3整除的概率是________.25、布袋内装有大小、形状相同的3个红球和1个白球,从布袋中一次摸出两个球,那么两个都摸到红球的概率是________.三、解答题(共5题,共计25分)26、有3个完全相同的小球,把它们分别标号为1,2,3,放在一个不透明的口袋中,从口袋中随机摸出一个小球,记下标号后放回,再从口袋中随机摸出一个小球,记下标号.用画树状图(或列表)的方法,求两次摸出的小球号码恰好都大于1的概率.27、从一副扑g牌中选取红桃A、方块A、梅花K三张扑g牌,正面朝下洗均后放在桌面上,小红先从中随机抽取一张,放回洗匀;小明再从中随机抽取一张,用画树状图(或列表)的方法,求小红和小明抽取的扑g牌的牌面都是A 的概率.28、有两个构造完全相同(除所标数字外)的转盘A、B,游戏规定,转动两个转盘各一次,指向大的数字获胜.现由你和小明各选择一个转盘游戏,你会选择哪一个,为什么?29、如图,在四张质地,大小相同的卡片上分别写上1,-2,4,-8,从中任意抽取一张卡片,记下上面的数字作为点的横坐标;把卡片放回去搅匀,再任意抽取一张卡片,记下上面的数字作为点的纵坐标.用列表或画树状图的方法求这个点一定在反比例函数y=- ,的图象上的概率。
浙教版九年级数学学上册 第二章 简单事件的概率(解析版)
期末复习:浙教版九年级数学学上册第二章简单事件的概率一、单选题1. 抛掷一枚均匀的硬币一次,出现正面朝上的概率是()A. 12B.13C.14D. 1【答案】A【解析】【分析】列举出所有情况,看硬币正面朝上的情况数占总情况数的多少即可.【详解】共抛掷一枚均匀的硬币一次,有正反两种情况,有一次硬币正面朝上,所以概率为12.故选A.【点睛】本题考查概率的求法;用到的知识点为:概率=所求情况数与总情况数之比;解决本题的关键是得到至少有一次硬币正面朝上的情况数.2. 从l , 2 , 3 , 4 , 5 , 6 , 7 , 8 ,9 , 10 这十个数中随机取出一个数;取出的数是是3 的倍数的概率是()A. 15B.310C.13D.12【答案】B【解析】【分析】让是3的倍数的数的个数除以数的总个数即为所求的概率.【详解】∵1、2、3、4、5、6、7、8、9、10这十个数中,3的倍数的有3、6、9共3个数,∴取出的数是3的倍数的概率是:310.故选B.【点睛】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn.3. 某电视台体育直播节目从接到的5000条短信(每人只许发一条短信)中,抽取10名“幸运观众”.小明给此直播节目发了一条短信,他成为“幸运观众”的概率是()A.15000B.1500C.150D.110【答案】B【解析】5000条短信有5000名不同的观众发出,每个观众被抽到的机会是相同的,让“幸运观众”数除以短信总条数即为所求概率.解:抽取一名幸运观众有5000个结果,小明成为“幸运观众”只要成为所抽的10名中的一个就可以,因而有10个可能结果,所以P(小明成为“幸运观众)==.本题的解决关键是理解列举法求概率的条件,事件有有限个结果,每个结果出现的机会相等.用到的知识点为:概率=所求情况数与总情况数之比.4. 小新抛一枚质地均匀的硬币,连续抛三次,硬币落地均正面朝上,如果他第四次抛硬币,那么硬币正面朝上的概率为()A. 12B.14C. 1D.34【答案】A 【解析】试题分析:因为一枚质地均匀的硬币只有正反两面,所以不管抛多少次,硬币正面朝上的概率都是12.故选A.考点:概率公式.5. 在一个不透明的布袋中装有3个白球和5个红球,它们除了颜色不同外,其余均相同.从中随机摸出一个球,摸到红球的概率是【】A. 15B.13C.38D.58【答案】D【解析】根据概率的求法,找准两点:①全部等可能情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.因此,从装有3个白球和5个红球的布袋中随机摸出一个球,摸到红球的概率是55358=+.故选D.6. 甲乙两人玩一个游戏,判定这个游戏公平不公平的标准是()A. 游戏的规则由甲方确定B. 游戏的规则由乙方确定C. 游戏的规则由甲乙双方商定D. 游戏双方要各有50%赢的机会【答案】D【解析】【分析】根据游戏是否公平不在于谁定游戏规则,游戏共是否公平的取决于游戏双方要各有50%赢的机会.【详解】根据游戏是否公平不在于谁定游戏规则,游戏共是否公平的取决于游戏双方要各有50%赢的机会,∴A.游戏的规则由甲方确定,故此选项错误;B.游戏的规则由乙方确定,故此选项错误;C.游戏的规则由甲乙双方商定,故此选项错误;D.游戏双方要各有50%赢的机会,故此选项正确.故选D【点睛】此题考查的是游戏公平性的判断.判断游戏公平性就要计算每个参与者取胜的概率,概率相等就公平,否则就不公平.7. 今年我市约有36000名学生参加初中毕业会考,为了了解这36000名学生的数学成绩,准备从中随机抽取1200 名学生的数学成绩进行统计分析,那么你的数学成绩被抽中的概率为()A.136000B.11200C.150D.130【答案】D【解析】【分析】用抽取学生人数除以全部学生人数即为所求的概率. 【详解】解:因为有36000名学生要抽1200名学生,所以被抽中的概率为:1200 36000=130.故选D.【点睛】此题考查概率的计算,解题关键是熟练应用概率公式解决实际问题.8. 一枚质地均匀的正方体骰子,其六个面上分别刻有1,2,3,4,5,6六个数字,抛掷这枚骰子一次,则向上的面的数字大于4的概率是A. 23B.12C.13D.16【答案】C试题分析:根据概率的求法,找准两点:①全部等可能情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.因此,∵正方体骰子,六个面上分别刻有的1,2,3,4,5,6六个数字中,大于4为5,6,∴向上一面的数字是大于4的概率为2163.故选C.9. 小玲与小丽两人各掷一个正方体骰子,规定两人掷的点数和为偶数,则小玲胜;点数和为奇数,则小丽胜,下列说法正确的是()A. 此规则有利于小玲B. 此规则有利于小丽C. 此规则对两人是公平的D. 无法判断【答案】C【解析】试题解析:抛掷两枚均匀的正方体骰子,掷得点数之和为偶数的概率是12,点数之和为奇数的概率是12,所以规则对两人是公平的,故选C.10. 小亮和小刚按如下规则做游戏:每人从1,2,…,12中任意选择一个数,然后两人各掷一次均匀的骰子,谁事先选择的数等于两人掷得的点数之和谁就获胜;如果两人选择的数都不等于掷得的点数之和,就再做一次上述游戏,直至决出胜负.从概率的角度分析,游戏者事先选择()获胜的可能性较大.A. 5B. 6C. 7D. 8【答案】C【解析】试题分析:找到点数之和为几的次数最多,选择那个数的获胜的可能性就大.解:两人抛掷骰子各一次,共有6×6=36种等可能的结果,点数之和为7的有6种,最多,故选择7获胜的可能性大,故选C.考点:可能性的大小.二、填空题11. 一水塘里有鲤鱼、鲫鱼、鲢鱼共10 000尾,一渔民通过多次捕捞试验后发现,鲤鱼、鲫鱼出现的频率是31%和42%,则这个水塘里大约有鲢鱼_____尾.【答案】700水塘里鲢鱼的数量为10 000×(1-31%-42%)=10 000×27%=2 700. 12. 一个不透明的口袋中有5个完全相同的小球,分别标号为1,2,3,4,5,从中随机摸出一个小球,其标号是偶数的概率为_____. 【答案】【解析】试题分析:确定出偶数有2个,然后根据概率公式列式计算即可得解.∵标号为1,2,3,4,5的5个小球中偶数有2个,∴P=.考点:概率公式13. 某厂生产了1200件衬衫,根据以往经验其合格率为0.95左右,则这1200件衬衫中次品(不合格)的件数大约为________. 【答案】60 【解析】 【分析】直接利用概率的意义,用总数乘以不合格率得出答案. 【详解】解:由题意可得:1200×(1﹣0.95)=60. 故答案为60. 【点睛】此题考查概率的应用,解决本题的关键是熟练应用概率公式解决实际问题.14. 某口袋中装有红色、黄色、蓝色三种颜色的小球(小球出颜色外完全相同)共60个.通过多次摸球实验后,发现摸到红球、黄球的频率分别是30%和45%,由此估计口袋中蓝球的数目约为________ 个.【答案】15. 【解析】 【分析】首先求得摸到红球的频率,然后利用概率公式求解即可. 【详解】解:∵摸到红球、黄球的频率分别是30%和45%, ∴摸到蓝色球的频率为1﹣30%﹣45%=25%, 设有蓝球x 个,根据题意得:60x=25%, 解得:x=15,故答案为15.【点睛】本题主要是利用频率估计概率,熟练掌握概率公式即可求解.15. 一个袋中装有6个红球,5个黄球,3个白球,每个球除颜色外都相同,任意摸出一球,摸到________球的可能性最大. 【答案】红 【解析】 【分析】利用概率公式分别计算出摸到红球、黄球、白球的概率,然后利用概率的大小判断可能性的大小. 【详解】解:任意摸出一球,摸到红球的概率=614 ,摸到黄球的概率=514,摸到白球的概率=314,所以摸到红球的可能性最大. 故答案为:红.【点睛】本题主要考查了可能性的大小,解题的关键是计算每种颜色球摸到的概率.16. 某口袋中有红色、黄色、蓝色玻璃共60个,小明通过多次摸球试验后,发现摸到红球、黄球、蓝球的频率为35%、25%和40%,估计口袋中黄色玻璃球有_____个. 【答案】15 【解析】根据用频率估计概率可得到摸到黄球的概率25%,然后根据概率公式计算黄色玻璃球的个数=60×25%=15(个),因此估计口袋中黄色玻璃球有15个. 故答案为:15.点睛:本题考查了用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.17. 一个不透明的袋子中装有若干个红球,为了估计袋中红球的个数,小明在袋中放入20个白球(每个球除颜色外其余都与红球相同).摇匀后每次随机从袋中摸出一个球,记下颜色后放回袋中,通过大量重复摸球实验后发现,摸到白球的频率是25, 则袋中红球约为 ________个. 【答案】30 【解析】 【分析】根据口袋中有20个白球,利用小球在总数中所占比例得出与实验比例应该相等求出即可. 【详解】解:∵通过大量重复摸球试验后发现,摸到白球的频率是25,口袋中有20个白球, ∵假设有x 个红球,∴2020x+=25,解得:x=30,∴口袋中有红球约有30个.故答案为30.【点睛】本题主要考查利用频率估计概率.18. 布袋中装有2个红球和5个白球,它们除颜色外其它都相同.如果从这个布袋里随机摸出一个球,那么所摸到的球恰好为红球的概率是 ________.【答案】2 7【解析】试题解析:∵一个布袋里装有2个红球和5个白球,∴摸出一个球摸到红球的概率为:22 257=+.考点:概率公式.19. 口袋中装有除颜色外完全相同的红球3个,白球n个,如果从袋中任意摸出1个球,摸出红球的概率是35,那么n= ________个.【答案】2【解析】【分析】口袋中装有除颜色外完全相同的红球3个,白球n个,共(n+3)个;如果从袋中任意摸出1个球,摸出红球的概率是33n+=35,计算可得n=2.【详解】解:由于P(红球)=33n+=35,解得:n=2.故本题答案为:2.【点睛】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn.20. 一枚质地均匀的正方体骰子的六个面上的数字分别是1,2,2,3,3,4;另一枚质地均匀的正方体骰子的六个面上的数字分别是1,3,4,5,6,8. 同时掷这两枚骰子,则其朝上的面两数字之和为奇数5的概率是________.【答案】1 9【解析】【分析】利用列表法求出所有的举朝上的面两数字之和,得出5的个数,即能得出朝上的面两数字之和为奇数5的概率.【详解】解:∵正方体骰子的六个面上的数字分别是1,2,2,3,3,4;另一枚质地均匀的正方体骰子的六个面上的数字分别是1,3,4,5,6,8,用列表法列举朝上的面两数字之和所有可能是:∴朝上的面两数字之和为奇数5的概率是:41= 369.故答案为19.【点睛】本题考查了用列举法求概率,列举出所有的可能结果是解题的关键.三、解答题21. 现有小莉,小罗,小强三个自愿献血者,两人血型为O型,一人血型为A型.若在三人中随意挑选一人献血,两年以后又从此三人中随意挑选一人献血,试求两次所抽血的血型均为O型的概率.(要求:用列表或画树状图的方法解答)【答案】4 9 .【解析】【分析】列举出所有情况,看两次所抽血的血型均为O型的情况占总情况的多少即可.【详解】画树状图如下:共有9种情况,两次都为O型的有4种情况,所以概率是.22. 小明和小亮利用三张卡片做游戏,卡片上分别写有A,B,B.这些卡片除字母外完全相同,从中随机摸出一张,记下字母后放回,充分洗匀后,再从中摸出一张,如果两次摸到卡片字母相同则小明胜,否则小亮胜,这个游戏对双方公平吗?请说明现由.【答案】这个游戏对双方不公平,理由见解析.【解析】【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次摸到卡片字母相同的情况,再利用概率公式即可求得答案.【详解】解:画树状图得:∵共有9种等可能的结果,两次摸到卡片字母相同的有5种等可能的结果,∴两次摸到卡片字母相同的概率为:59;∴小明胜的概率为59,小亮胜的概率为49,∵59≠49,∴这个游戏对双方不公平.故答案为这个游戏对双方不公平,理由见解析. 【点睛】本题考查了树状图法求概率,判断游戏的公平性. 23. 用如图所示的A,B两个转盘进行“配紫色”游戏(红色和蓝色在一起配成了紫色).小亮和小刚同时转动两个转盘,若配成紫色,小亮获胜,否则小刚获胜.这个游戏对双方公平吗.画树状图或列表说明理由.【答案】游戏不公平,理由见解析.【解析】【分析】本题是通过列表法得出概率,进行比较概率大小说明不公平的理由.详解】解:游戏不公平,理由如下:游戏结果分析如下:“√”表示配成紫色,“×”表示不能够配成紫色.P(配紫色)=26=13,P(没有配紫色)=46=23,∵1233 ,∴这个游戏对双方不公平.24. 泰州具有丰富的旅游资源,小明利用周日来泰州游玩,上午从A、B两个景点中任意选择一个游玩,下午从C、D、E三个景点中任意选择一个游玩.用列表或画树状图的方法列出所有等可能的结果,并求小明恰好选中景点B和C的概率.【答案】画树状图见解析;小明恰好选中景点B和C的概率为16.【解析】分析:通过列表展示所有6种等可能的结果数,找出小名恰好选中B和C这两处的结果数,然后根据概率公式求解.详解:列表如下:由表可知共有6种等可能的结果数,其中小明恰好选中景点B和C的结果有1种,所以小明恰好选中景点B和C的概率为16.点睛:此题主要考查了列表法与树状图法求概率,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适用于两步或两步以上完成的事件;解题时还要注意是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.25. 一个不透明的袋子里装有编号分别为1、2、3的球(除编号以为,其余都相同),其中1号球1个,3号球3个,从中随机摸出一个球是2号球的概率为13.(1)求袋子里2号球的个数.(2)甲、乙两人分别从袋中摸出一个球(不放回),甲摸出球的编号记为x,乙摸出球的编号记为y,用列表法求点A(x,y)在直线y=x下方的概率.【答案】(1)2个(2)列表见解析1120【解析】【分析】【详解】分析:(1)首先设袋子里2号球的个数为x个.根据题意得:x11x33=++,解此方程即可求得答案(2)首先根据题意列出表格,然后由表格即可求得所有等可能的结果与点A(x,y)在直线y=x下方的情况,再利用概率公式即可求得答案解:(1)设袋子里2号球的个数为x个,根据题意得:x11x33=++,解得:x=2,经检验:x=2是原分式方程的解,∴袋子里2号球的个数为2个(2)列表得:2(1,2)﹣(2,2)(3,2)(3,2)(3,2)1 ﹣(2,1)(2,1)(3,1)(3,1)(3,1)1 2 2 3 3 3∵共有30种等可能的结果,点A(x,y)在直线y=x下方的有11个,∴点A(x,y)在直线y=x下方的概率为:11 2026.甲、乙两同学用一副扑克牌中牌面数字分别是3、4、5、6的4张牌做抽数学游戏.游戏规则是:将这4张牌的正面全部朝下,洗匀,从中随机抽取一张,抽得的数作为十位上的数字,然后,将所抽的牌放回,正面全部朝下、洗匀,再从中随机抽取一张,抽得的数作为个位上的数字,这样就得到一个两位数.若这个两位数小于45,则甲获胜,否则乙获胜.你认为这个游戏公平吗?请运用概率知识说明理由.【答案】不公平,理由略.【解析】解:这个游戏不公平,游戏所有可能出现的结果如下表:第二次第一次3 4 5 63 33 34 35 364 43 44 45 465 53 54 55 566 63 64 65 66表中共有16种等可能结果,小于45的两位数共有6种.···········(5分).··················(7分),这个游戏不公平.···························(8分)27. 中央电视台“幸运52”栏目中的“百宝箱”互动环节,是一种竞猜游戏,游戏规则如下:在20个商标牌中,有5个商标牌的背面注明一定的奖金额,其余商标牌的背面是一张哭脸,若翻到哭脸,就不得奖,参与这个游戏的观众有三次翻牌机会(翻过的牌不能再翻).某观众前两次翻牌均获得若干奖金,那么他第三次翻牌获奖的概率是多少?【答案】1 6【解析】【分析】根据题意可得注明奖金的商标牌还有3块,未翻的牌子还有18块,根据概率公式求解即可.【详解】根据题意可得,他第三次翻牌获奖的概率是:52202--=31186=.故答案为16.【点睛】本题考查求概率.28. 小明和小刚用如图所示的两个转盘做配紫色游戏,游戏规则是:分别旋转两个转盘,若其中一个转盘转出了红色,另一个转出了蓝色则可以配成紫色.此时小刚得1分,否则小明得1分.这个游戏规则对双方公平吗?请说明理由.若你认为不公平,如何修改规则才能使游戏对双方公平?【答案】见解析【解析】(1)因为()29P=配成紫色,()79P配不成紫色=,所以小刚得分:22199⨯=,小明得分:77199⨯=,因为2799≠,所以游戏对双方不公平.(2)修改方法不唯一,可以添加适当的分值进行调节. 列表得:P(配色紫色)=9,p(配不成紫色)=9因为2/9 ≠79所以游戏对双方不公平.修改规则的方法不唯一,只要合理即可.(如可改为:若配成紫色时小刚得7分,否则小明得2分)。
浙教版九年级数学同步训练(11) 第二章简单事件的概率2.2简单事件的概率(1)(解析版)
2.2 简单事件的概率(1)等可能事件的概率公式1.对“某市明天下雨的概率是75%”这句话,理解正确的是( D )A.某市明天将有75%的时间下雨B.某市明天将有75%的地区下雨C.某市明天一定下雨 D.某市明天下雨的可能性较大2.从分别标有数-3,-2,-1,0,1,2,3 的七张没有明显差别的卡片中,随机抽取一张,所抽卡片上的数的绝对值不小于2的概率是( D )A.17B.27C.37D.473.一个不透明布袋里装有1个白球、2 个黑球、3 个红球,它们除颜色外均相同.从中任意摸出一个球,是红球的概率为( C )A.16B.13C.12D.234.一个十字路口的交通信号灯每分钟红灯亮30s,绿灯亮25s,黄灯亮5s.当你抬头看信号灯时,它是绿灯的概率为( C )A.12B.13C.512D.14【解析】抬头看信号灯时是绿灯的概率是2530255++=512.故选C.5.一只不透明的袋子中装有2个红球、3 个白球,这些球除颜色外都相同,摇匀后从中任意摸出一个球,摸到红球的概率是2 56.已知一包糖果共有5种颜色(糖果只有颜色差别),如图所示为这包糖果分布百分比的统计图,在这包糖果中任意取一粒,则取出糖果的颜色为绿色或棕色的概率是1 27.如图所示,在4×4 正方形网格中,有3个小正方形已经涂黑,若再涂黑任意一个白色的小正方形(每一个白色的小正方形被涂黑的可能性相同),使新构成的黑色部分的图形是轴对称图形的概率是3 13【解析】共有13 种等可能的情况,其中3处涂黑得到的黑色部分的图形是轴对称图形,如答图所示.所以涂黑任意一个白色的小正方形,使新构成的黑色部分的图形是轴对称图形的概率为3 13第1页/共4页8.有背面完全相同的9张卡片,正面分别写有1~9 这九个数字,将它们洗匀后背面朝上放置,任意抽出一张,记卡片上的数字为a,求数字a使不等式组132xx a+⎧≥⎪⎨⎪⎩有解的概率.【解析】132x+≥,解得x≥5.∵要使不等式组132xx a+⎧≥⎪⎨⎪⎩有解,∴a≥6.∴符合题意的有6,7,8,9 共4个.∴数字a使不等式组132xx a+⎧≥⎪⎨⎪⎩有解的概率为4 9 .9.端午节期间,某商场为了吸引顾客,设立了一个可以自由转动的转盘(转盘被平均分成16 份),并规定:顾客每购买100 元的商品,就能获得一次转动转盘的机会,如果转盘停止后,指针正好对准红色、黄色或绿色区域,顾客就可以分别获得玩具熊、童话书、水彩笔.小明和妈妈购买了125 元的商品,请你分析计算: (1)小明获得奖品的概率是多少?(2)小明获得玩具熊、童话书、水彩笔的概率分别是多少?【解析】(1)∵转盘被平均分成16 份,其中有颜色部分占6份,∴P(获得奖品)=616=38.(2)∵转盘被平均分成16 份,其中红色、黄色、绿色部分分别占1份、2 份、3 份,∴P(获得玩具熊)=1 16,P(获得童话书)=216=18,P(获得水彩笔)=3 16.10.在一个不透明的布袋中装有若干个只有颜色不同的小球,若袋中有红球5个、黄球4个,其余为白球,从袋子中随机摸出一个球,摸出黄球的概率为13,则袋中白球的个数为( B )A.2B.3C.4D.12【解析】设袋中白球的个数为x.根据题意得454x++=13,解得x=3.经检验,x=3 是原分式方程的解.∴袋中白球的个数为3.故选B.11.动物学家通过大量的调查发现,某种动物活到20 岁的概率为0.8,活到25 岁的概率为0.6,则现年20 岁的这种动物活到25 岁的概率是( B )A.0.8B.0.75C.0.6D.0.48【解析】设共有这种动物a只,则活到20 岁的有0.8a 只,活到25 岁的有0.6a 只.∴现年20 岁的这种动物活到25 岁的概率为0.60.8aa=0.75.12.在一个不透明的袋子中装有除颜色外其余均相同的7个小球,其中红球2个、黑球5个.若再放入m个一样的黑球并摇匀,此时,随机摸出一个球是黑球的概率等于45,则m的值为 3 .13.如图所示,在 3×3 的方格中,A,B,C,D,E,F 分别位于格点上,从 C,D,E,F 四点中任取一点,与点 A,B 为顶点作三角形,则所作三角形为等腰三角形的概率是3 4【解析】从C,D,E,F 四个点中任意取一点,一共有4种可能,而只有选取点D,C,F 时,所作三角形是等腰三角形,故P(所作三角形是等腰三角形)=3 4 .14.某公司在联欢晚会上举行抽奖活动,在一个不透明的袋子中,分别装有写着整数 2019,2019,2019,2019,2019 的五个小球.(1)若抽到奇数能获得自行车一辆,则员工小乐能获得自行车的概率是多少?(2)从中任意抽一个球,以球上的数作为不等式ax-2019<0 中的系数a,求使该不等式有正整数解的概率. 【解析】(1)∵整数2019,2019,2019,2019,2019 中有3个奇数,∴P(员工小乐能获得自行车的概率)=3 5 .(2)∵ax-2019<0,a>0,∴x<2013 a.要使该不等式有正整数解,则a<2019,∴a 可取2019,2019.∴P(该不等式有正整数解)=2 5 .15.在一个不透明的围棋盒子中有x颗白色棋子、y 颗黑色棋子,它们除颜色外都相同,从盒子中随机取出一颗棋子,取出黑色棋子的概率为2 3 .(1)请写出y关于x的函数表达式.(2)现在往盒子中再放进 5 颗白色棋子和 1 颗黑色棋子,这时随机取出白色棋子的概率为12,请求出 x和y 的值.【解析】(1)由题意得23yx y=+,∴y 关于x的函数表达式为y=2x.(2)由题意得2351512xx yxx y⎧=⎪+⎪⎨+⎪=⎪+++⎩解得48xy=⎧⎨=⎩∴x 的值为4,y 的值为8.16.如图所示,现有一个均匀的转盘被平均分成6 等份,分别标有2,3,4,5,6,7 这六个数字,转动转盘,当转盘停止时,指针指向的数字即为转出的数字.(1)求转出的数字大于3的概率是多少.(2)现有两张分别写有3和4的卡片,要随机转动转盘,转盘停止后记下转出的数字,与两张卡片上的数字分别作为三条线段的长度.①这三条线段能构成三角形的概率是多少?②这三条线段能构成等腰三角形的概率是多少?【解析】(1)转盘被平均分成6等份,转到每个数字的可能性相等,共有6种可能的结果,大于3的结果有4种,∴P(转出的数字大于3)=46=23.(2)①转盘被平均分成6 等份,转到每个数字的可能性相等,共有6 种可能的结果,其中能构成三角形的结果有5种,∴P(这三条线段能构成三角形)=5 6②转盘被平均分成6等份,转到每个数字的可能性相等,共有6种可能的结果,其中能构成等腰三角形的结果有2种,∴P(这三条线段能构成等腰三角形)=26=13第4页/共4页。
浙教版九年级上第二章简单事件的概率同步练习2.2简单事件的概率(1)
2.2 简单事件的概率(1)第1课时 简单事件的概率(1)基础题知识点1 概率的意义1.商场举行促销活动,对于“抽到一等奖的概率为0.1”,下列说法正确的是( )A .抽10次必有一次抽到一等奖B .抽一次不可能抽到一等奖C .抽10次也可能没有抽到一等奖D .抽了9次如果没有抽到一等奖,那么再抽一次肯定抽到一等奖2.下列说法中,正确的是( )A .不可能事件发生的概率为0B .随机事件发生的概率为12C .概率很小的事件不可能发生D .投掷一枚质地均匀的硬币100次,正面朝上的次数一定为50次3.某市国庆节下雨的概率是0.9,则该市国庆节下雨是随机事件.4.甲、乙、丙三个事件发生的概率分别为0.5,0.1,0.9,它们各与下面的哪句话相配.(A )发生的可能性很大,但不一定发生;(B )发生的可能性很小;(C )发生与不发生的可能性一样.知识点2 简单事件的概率计算5.(绍兴中考)一枚质地均匀的骰子,其六个面上分别标有数字1,2,3,4,5,6,投掷一次,朝上一面的数字是偶数的概率为( )A .16B .13C .12D .236.(宁波中考)一个不透明的布袋里装有5个红球,2个白球,3个黄球,它们除颜色外其余都相同,从袋中任意摸出1个球,是黄球的概率为( )A .12B .15C .310D .7107.分别写有数字0,-1,-2,1,3的五张卡片除数字不同外其他均相同,从中任抽一张,那么抽到负数的概率是 (B )A .15B .25C .35D .458.(衢州中考)从小明、小聪、小慧和小颖四人中随机选取1人参加学校组织的敬老活动,则小明被选中的概率是 .9.小球在如图所示的地板上自由滚动,并随机地停留在某块方砖上,每一块方砖除颜色外完全相同,它最终停留在黑色方砖上的概率是 .10.在一个不透明的袋子中装有仅颜色不同的10个小球,其中红球4个,黑球6个.(1)先从袋子中取出m (m >1)个红球,再从袋子中随机摸出1个球,将“摸出黑球”记为事件A ,请完成下列表格:(2)先从袋子中取出m 个红球,再放入m 个一样的黑球并摇匀,随机摸出1个黑球的概率等于45,求m 的值.中档题11.从正方形的四个顶点中,任取三个顶点连成三角形,对于事件M :“这个三角形是等腰三角形”,下列说法正确的是( )A .事件M 为不可能事件B .事件M 为必然事件C .事件M 发生的概率为14D .事件M 发生的概率为1212.如图,正方形ABCD 是一块绿化带,E ,F ,G ,H 分别是AB ,BC ,CD ,AD的中点,阴影部分EOCF ,AOGH 都是花圃,一只自由飞翔的小鸟,将随机落在这块绿化带上,则小鸟在花圃上的概率为( )A .12B .23C .13D .2513.(丽水中考)有6张卡片,每张卡片上分别写有不同的从1到6的一个自然数,从中任意抽出一张卡片,卡片上的数是3的倍数的概率是 .14.(台州中考)有四张质地、大小、反面完全相同的不透明卡片,正面分别写着数字1,2,3,4,现把它们的正面向下,随机摆放在桌面上,从中任意抽出一张,则抽出的数字是奇数的概率是 .15.如图,A ,B 是数轴上的两点,在线段AB 上任取一点C ,则点C 到原点的距离不大于2的概率是 .16.有背面完全相同的9张卡片,正面分别写有1~9这九个数字,将它们洗匀后背面朝上放置,任意抽出一张,记卡片上的数字为a ,则数字a 使不等式组⎩⎪⎨⎪⎧x +12≥3,x<a有解的概率为 . 17.如图是小明和小颖共同设计的可自由转动的十等分转盘,上面写有10个有理数.(1)求转得正数的概率;(2)求转得偶数的概率;(3)求转得绝对值小于6的数的概率;(4)转得负数的概率与转得正数的概率哪个大些?18.(茂名中考)在一个不透明的袋中装有2个黄球,3个黑球和5个红球,它们除颜色外其他都相同.(1)将袋中的球摇均匀后,求从袋中随机摸出一个球是黄球的概率;(2)现在再将若干个红球放入袋中,与原来的10个球均匀混合在一起,使从袋中随机摸出一个球是红球的概率是23,请求出后来放入袋中的红球的个数.综合题19.(杭州中考)如图,已知点A ,B ,C ,D ,E ,F 是边长为1的正六边形的顶点,连结任意两点均可得到一条线段,在连结两点所得的所有线段中任取一条线段,取到长度为3的线段的概率为( )A .14B .25C .23D .59。
2019年浙教版数学九年级上册 第2章 简单事件的概率附答案
【章节训练】第2章简单事件的概率-1一、选择题(共25小题)1.一个不透明的布袋里装有5个只有颜色不同的球,其中3个红球,2个白球,从布袋中随机摸出一个球,摸出红球的概率是()A.B.C.D.2.某校组织抽奖活动,共准备了100张奖券,设一等奖10个,二等奖20个,三等奖30个,已知每张奖券获奖的可能性相同,则抽一张奖券中二等奖的概率为()A.B.C.D.3.一个布袋里装有2个红球,3个黑球,4个白球,它们除颜色外都相同,从中任意摸出1个球,则下列事件中,发生可能性最大的是()A.摸出的是白球B.摸出的是黑球C.摸出的是红球D.摸出的是绿球4.一个不透明的盒子中装有2个红球、3个白球和2个黄球,它们除颜色外都相同,若从中任意摸出一个球,摸到哪种颜色的球的可能性最大()A.红色B.白色C.黄色D.红色或黄色5.在不透明口袋内有形状、大小、质地完全一样的5个小球,其中红球3个,白球2个,随机抽取一个小球是红球的可能性大小是()A.B.C.D.6.足球比赛前,裁判通常要掷一枚硬币来决定比赛双方的场地与首先发球者,其主要原因是()A.让比赛更富有情趣B.让比赛更具有神秘色彩C.体现比赛的公平性D.让比赛更有挑战性7.本学期我们做过“抢30“的游戏,如果将游戏规则中“不可以连说三个数,谁先抢到30,谁就获胜”.改为“每次最多可以连说三个数,谁先抢到33,谁就获胜.”那么采取适当策略,其结果是()A.先说数者胜B.后说数者胜C.两者都能胜D.无法判断8.甲乙两人玩一个游戏,判定这个游戏公平不公平的标准是()A.游戏的规则由甲方确定B.游戏的规则由乙方确定C.游戏的规则由甲乙双方商定D.游戏双方要各有50%赢的机会9.在一个不透明的盒子里有形状、大小相同的黄球2个、红球3个,从盒子里任意摸出1个球,摸到红球的概率是()A.B.C.D.10.已知抛一枚均匀硬币正面朝上的概率为,下列说法错误的是()A.连续抛一枚均匀硬币2次必有1次正面朝上B.连续抛一枚均匀硬币10次都可能正面朝上C.大量反复抛一枚均匀硬币,平均每100次出现正面朝上50次D.通过抛一枚均匀硬币确定谁先发球的比赛规则是公平的11.关于频率与概率有下列几种说法,其中正确的说法是()①“明天下雨的概率是90%”表示明天下雨的可能性很大;②“抛一枚硬币正面朝上的概率为”表示每抛两次就有一次正面朝上;③“某彩票中奖的概率是1%”表示买10张该种彩票不可能中奖;④“抛一枚硬币正面朝上的概率为”表示随着抛掷次数的增加,“抛出正面朝上”这一事件发生的频率稳定在附近.A.①③B.①④C.②③D.②④12.抛掷一枚质地均匀的硬币,若前3次都是正面朝上,则第4次正面朝上的概率()A.小于B.等于C.大于D.无法确定13.一个不透明的盒子里装有除颜色外其他都相同的红球6个和白球若干个,每次随机摸出一个球,记下颜色后放回,摇匀后再摸,通过多次试验发现摸到红球的频率稳定在0.3 左右,则盒子中白球可能有()A.12个B.14个C.18个D.20个14.某小组做“当试验次数很大时,用频率估计概率”的试验时,统计了某一结果出现的频率,表格如下,则符合这一结果的试验最有可能是()次数1002003004005006007008009001000频率0.600.300.500.360.420.380.410.390.400.40 A.掷一个质地均匀的骰子,向上的面点数是“6”B.掷一枚一元的硬币,正面朝上C.不透明的袋子里有2个红球和3个黄球,除颜色外都相同,从中任取一球是红球D.三张扑克牌,分别是3,5,5,背面朝上洗匀后,随机抽出一张是515.某小组做“用频率估计概率”的实验时,统计了某一结果出现的频率,绘制了如图所示的折线统计图,则符合这一结果的实验最有可能是()A.在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”B.掷一个质地均匀的正六面体骰子,向上的面点数是4C.暗箱中有1个红球和2个黄球,它们只有颜色上的区别,从中任取一球是红球D.一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红桃16.四张相同的卡片,每张的正面分别写着,,,,将卡片正面朝下扣在桌上,随机抽出一张,这张卡片上写的不是最简二次根式的概率是()A.B.C.D.17.甲和乙一起做游戏,下列游戏规则对双方公平的是()A.在一个装有2个红球和3个白球(每个球除颜色外都相同)的袋中任意摸出一球,摸到红球甲获胜,摸到白球乙获胜;B.从标有号数1到100的100张卡片中,随意抽取一张,抽到号数为奇数甲获胜,否则乙获胜;C.任意掷一枚质地均匀的骰子,掷出的点数小于4则甲获胜,掷出的点数大于4则乙获胜;D.让小球在如下图所示的地板上自由地滚动,并随机地停在某块方块上,若小球停在黑色区域则甲获胜,若停在白色区域则乙获胜18.一个不透明的盒子中装有3个白球,5个红球,这些球除颜色外,没有任何其他区别,现从这个盒子中随机摸出一个球,摸到红球的可能性是()A.B.C.D.19.下列关于概率的描述属于“等可能性事件”的是()A.交通信号灯有“红、绿、黄”三种颜色,它们发生的概率B.掷一枚图钉,落地后钉尖“朝上”或“朝下”的概率C.小亮在沿着“直角三角形”三边的小路上散步,他出现在各边上的概率D.小明用随机抽签的方式选择以上三种答案,则A、B、C被选中的概率20.将A,B两位篮球运动员在一段时间内的投篮情况记录如下:投篮次数102030405060708090100A投中次数7152330384553606875投中频率0.7000.7500.7670.7500.7600.7500.7570.7500.7560.750 B投中次数142332354352617080投中频率0.8000.7000.7670.8000.7000.7170.7430.7630.7780.800下面有三个推断:①投篮30次时,两位运动员都投中23次,所以他们投中的概率都是0.767.②随着投篮次数的增加,A运动员投中频率总在0.750附近摆动,显示出一定的稳定性,可以估计A运动员投中的概率是0.750.④投篮达到200次时,B运动员投中次数一定为160次.其中合理的是()A.①B.②C.①③D.②③21.暑假快到了,父母打算带兄妹俩去某个景点旅游一次,长长见识,可哥哥坚持去黄山,妹妹坚持去泰山,争执不下,父母为了公平起见,决定设计一款游戏,若哥哥赢了就去黄山,妹妹赢了就去泰山,下列游戏中,不能选用的是()A.掷一枚硬币,正面向上哥哥赢,反面向上妹妹赢B.同时掷两枚硬币,两枚都正面向上,哥哥赢,一正一反向上妹妹赢C.掷一枚骰子,向上的一面是奇数则哥哥赢,反之妹妹赢D.在不透明的袋子中装有两黑两红四个球,除颜色外,其余均相同,随机摸出一个是黑球则哥哥赢,是红球则妹妹赢22.下列说法:①对顶角相等;②同位角相等;③必然事件发生的概率为1;④等腰三角形的对称轴就是其底边上的高所在的直线,其中正确的有()A.1个B.2个C.3个D.4个23.标号为A、B、C、D的四个盒子中所装有的白球和黑球数如下,则下列盒子最易摸到黑球的是()A.12个黑球和4个白球B.10个黑球和10个白球C.4个黑球和2个白球D.10个黑球和5个白球24.在一个不透明的盒子里有2个红球和n个白球,这些球除颜色外其余完全相同,摇匀后随机摸出一个,摸到红球的概率是,则n的值为()A.10B.8C.5D.325.在一个不透明的袋子里共有2个黄球和3个白球,每个球除颜色外都相同,小亮从袋子中任意摸出一个球,结果是白球,则下面关于小亮从袋中摸出白球的概率和频率的说明正确的是()A.小亮从袋中任意摸出一个球,摸出白球的概率是1B.小亮从袋中任意摸出一个球,摸出白球的概率是0C.在这次实验中,小亮摸出白球的频率是1D.由这次实验的频率去估计小亮从袋中任意摸出一个球,摸出白球的概率是1二、填空题(共5小题)(除非特别说明,请填准确值)26.如图,是可以自由转动的一个转盘,转动这个转盘,当它停下时,指针落在标有号码上的可能性最大.27.盒中有6枚黑棋和n枚白棋,从中随机取一枚棋子,恰好是白棋的概率为,则n的值为.28.在一个暗箱中,只装有a个白色乒乓球和10个黄色乒乓球,每次搅拌均匀后,任意摸出一个球后又放回,通过大量重复摸球实验后发现,摸到黄球的频率稳定在40%,则a=.29.一个不透明的口袋中有5个红色小球和3个黄色小球,每个小球除颜色外其他都相同,现从中随机摸出一个小球,设摸到红色小球的概率是P(红),摸到黄色小球的概率是P(黄),则它们的大小关系是:P(红)P(黄).(用“=”、“>“或“<“填空)30.甲、乙两人玩抽扑克牌游戏,游戏规则是:从一副去掉大小王的扑克牌中,随机抽取一张,若所抽的牌面数字为奇数,则甲获胜;若所抽取的牌面数字为偶数,则乙获胜,(J、Q、K分别代表11、12、13)这个游戏.(填“公平”或“不公平”)三、解答题(共2小题)(选答题,不自动判卷)31.动物学家通过大量的调查估计出,某种动物活到20岁的概率为0.8,活到25岁的概率是0.5,活到30岁的概率是0.3,现年20岁的这种动物活到25岁的概率为多少?现年25岁的这种动物活到30岁的概率为多少?32.某教育局组织了“落实十九大精神,立足岗位见行动”教师演讲比赛,根据各校初赛成绩在小学组、中学组分别选出10名教师参加决赛,这些选手的决赛成绩如图所示:根据上图提供的信息,回答下列问题:(1)请你把下面表格填写完整:团体成绩众数平均数方差小学组85.739.6中学组8527.8(2)考虑平均数与方差,你认为哪个组的团体成绩更好些,并说明理由;(3)若在每组的决赛选手中分别选出3人参加总决赛,你认为哪个组获胜的可能性大些?请说明理由.【章节训练】第2章简单事件的概率-1参考答案与试题解析一、选择题(共25小题)1.一个不透明的布袋里装有5个只有颜色不同的球,其中3个红球,2个白球,从布袋中随机摸出一个球,摸出红球的概率是()A.B.C.D.【分析】让红球的个数除以球的总数即为摸到红球的概率.【解答】解:因为在3个红球、2个白球共5个球中,随机摸出一个球,摸出红球的有3种可能,所以从布袋中随机摸出一个球,摸出红球的概率是,故选:C.【点评】本题考查的是概率公式,熟记随机事件的概率公式是解答此题的关键.2.某校组织抽奖活动,共准备了100张奖券,设一等奖10个,二等奖20个,三等奖30个.已知每张奖券获奖的可能性相同,则抽一张奖券中二等奖的概率为()A. B.C.D.【分析】直接根据概率公式即可得出结论.【解答】解:抽一张奖券中二等奖的概率为=;故选:C.【点评】本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.3.一个布袋里装有2个红球,3个黑球,4个白球,它们除颜色外都相同,从中任意摸出1个球,则下列事件中,发生可能性最大的是()A.摸出的是白球B.摸出的是黑球C.摸出的是红球D.摸出的是绿球【分析】个数最多的就是可能性最大的.【解答】解:因为白球最多,所以被摸到的可能性最大.故选:A.【点评】本题主要考查可能性大小的比较:只要总情况数目相同,谁包含的情况数目多,谁的可能性就大;反之也成立;若包含的情况相当,那么它们的可能性就相等.4.一个不透明的盒子中装有2个红球、3个白球和2个黄球,它们除颜色外都相同.若从中任意摸出一个球,摸到哪种颜色的球的可能性最大()A.红色B.白色C.黄色D.红色或黄色【分析】由题意可得,共有7种等可能的结果,利用概率公式分别求得摸出红球、白球和黄球的概率,据此即可求得答案.【解答】解:∵从装有2个红球、3个白球和2个黄球的袋中任意摸出一个球有7种等可能结果,其中摸出的球是红球的有2种、白球的结果有3种、黄球的有2种,∴从袋中任意摸出一个球,是红球的概率为、白球的概率是、黄球的概率为,故选:B.【点评】此题考查了概率公式,明确概率的意义是解答问题的关键,用到的知识点为:概率=所求情况数与总情况数之比.5.在不透明口袋内有形状、大小、质地完全一样的5个小球,其中红球3个,白球2个,随机抽取一个小球是红球的可能性大小是()A.B.C.D.【分析】用红球的个数除以所有球的个数即可求得抽到红球的概率.【解答】解:由于袋子中共有5个球,其中红球有3个,所以随机抽取一个小球是红球的可能性大小是,故选:B.【点评】此题主要考查概率的意义及求法.用到的知识点为:概率=所求情况数与总情况数之比.6.足球比赛前,裁判通常要掷一枚硬币来决定比赛双方的场地与首先发球者,其主要原因是()A.让比赛更富有情趣B.让比赛更具有神秘色彩C.体现比赛的公平性D.让比赛更有挑战性【分析】由正面朝上或朝下的概率均为,可得两个队选择场地与首先发球者的可能性相等,即体现比赛的公平性.【解答】解:∵一枚硬币只有正反两面,∴正面朝上或朝下的概率均为,即两个队选择场地与首先发球者的可能性相等,∴这种方法公平.故选:C.【点评】本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.7.本学期我们做过“抢30“的游戏,如果将游戏规则中“不可以连说三个数,谁先抢到30,谁就获胜”.改为“每次最多可以连说三个数,谁先抢到33,谁就获胜.”那么采取适当策略,其结果是()A.先说数者胜B.后说数者胜C.两者都能胜D.无法判断【分析】游戏是否公平,关键要看游戏双方取胜的机会是否相等,即判断双方取胜的概率是否相等,或转化为在总情况明确的情况下,判断双方取胜所包含的情况数目是否相等.【解答】解:最多报3个,最少报1个,和为4;要抢到33,就必须先抢到33﹣4=29,同理,还必须抢到25、21、17、13、9、5,1,所以先报到1就必胜了.故选:A.【点评】关键是得到需抢到的数.8.甲乙两人玩一个游戏,判定这个游戏公平不公平的标准是()A.游戏的规则由甲方确定B.游戏的规则由乙方确定C.游戏的规则由甲乙双方商定D.游戏双方要各有50%赢的机会【分析】根据游戏是否公平的取决于游戏双方要各有50%赢的机会,游戏是否公平不在于谁定游戏规则,分别判定即可.【解答】解:根据游戏是否公平不在于谁定游戏规则,游戏是否公平的取决于游戏双方要各有50%赢的机会,∴A.游戏的规则由甲方确定,故此选项错误;B.游戏的规则由乙方确定,故此选项错误;C.游戏的规则由甲乙双方商定,故此选项错误;D.游戏双方要各有50%赢的机会,故此选项正确.故选:D.【点评】此题考查的是游戏公平性的判断.判断游戏公平性就要计算每个参与者取胜的概率,概率相等就公平,否则就不公平.9.在一个不透明的盒子里有形状、大小相同的黄球2个、红球3个,从盒子里任意摸出1个球,摸到红球的概率是()A.B.C.D.【分析】根据随机事件概率大小的求法,找准两点:①符合条件的情况数目;②全部情况的总数.二者的比值就是其发生的概率的大小.【解答】解:∵共5个球中有3个红球,∴任取一个,是红球的概率是:,故选:B.【点评】本题考查概率的求法与运用,一般方法为:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P (A)=.10.已知抛一枚均匀硬币正面朝上的概率为,下列说法错误的是()A.连续抛一枚均匀硬币2次必有1次正面朝上B.连续抛一枚均匀硬币10次都可能正面朝上C.大量反复抛一枚均匀硬币,平均每100次出现正面朝上50次D.通过抛一枚均匀硬币确定谁先发球的比赛规则是公平的【分析】根据概率的意义,概率是反映事件发生机会的大小的概念,只是表示发生的机会的大小,机会大也不一定发生.【解答】解:A、连续抛一均匀硬币2次必有1次正面朝上,不正确,有可能两次都正面朝上,也可能都反面朝上,故此选项错误;B、连续抛一均匀硬币10次都可能正面朝上,是一个随机事件,有可能发生,故此选项正确;C、大量反复抛一均匀硬币,平均100次出现正面朝上50次,也有可能发生,故此选项正确;D、通过抛一均匀硬币确定谁先发球的比赛规则是公平的,概率均为,故此选项正确.故选:A.【点评】此题主要考查了概率的意义,关键是弄清随机事件和必然事件的概念的区别.11.(3.1分)关于频率与概率有下列几种说法,其中正确的说法是()①“明天下雨的概率是90%”表示明天下雨的可能性很大;②“抛一枚硬币正面朝上的概率为”表示每抛两次就有一次正面朝上;③“某彩票中奖的概率是1%”表示买10张该种彩票不可能中奖;④“抛一枚硬币正面朝上的概率为”表示随着抛掷次数的增加,“抛出正面朝上”这一事件发生的频率稳定在附近.A.①③B.①④C.②③D.②④【分析】分别利用概率的意义分析得出答案.【解答】解:①“明天下雨的概率是90%”表示明天下雨的可能性很大,此说法正确;②“抛一枚硬币正面朝上的概率为”表示每抛两次就有一次正面朝上,此说法错误;③“某彩票中奖的概率是1%”表示买10张该种彩票不可能中奖,此说法错误;④“抛一枚硬币正面朝上的概率为”表示随着抛掷次数的增加,“抛出正面朝上”这一事件发生的频率稳定在附近,此说法正确.故选:B.【点评】此题主要考查了概率的意义,正确理解概率的意义是解题关键.12.抛掷一枚质地均匀的硬币,若前3次都是正面朝上,则第4次正面朝上的概率()A.小于B.等于C.大于D.无法确定【分析】利用概率的意义直接得出答案.【解答】解:连续抛掷一枚质地均匀的硬币4次,前3次的结果都是正面朝上,他第4次抛掷这枚硬币,正面朝上的概率为:,故选:B.【点评】此题主要考查了概率的意义,正确把握概率的定义是解题关键.13.一个不透明的盒子里装有除颜色外其他都相同的红球6个和白球若干个,每次随机摸出一个球,记下颜色后放回,摇匀后再摸,通过多次试验发现摸到红球的频率稳定在0.3 左右,则盒子中白球可能有()A.12个B.14个C.18个D.20个【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率即可.【解答】解:∵通过大量重复摸球实验后发现,摸到红球的频率稳定在0.3左右,∴根据题意任意摸出1个,摸到红球的概率是:0.3,设袋中白球的个数为a个,则0.3=.解得:a=14,∴盒子中白球可能有14个.故选:B.【点评】此题考查了利用概率的求法估计总体个数,利用如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=是解题关键.14.某小组做“当试验次数很大时,用频率估计概率”的试验时,统计了某一结果出现的频率,表格如下,则符合这一结果的试验最有可能是()次数1002003004005006007008009001000频率0.600.300.500.360.420.380.410.390.400.40 A.掷一个质地均匀的骰子,向上的面点数是“6”B.掷一枚一元的硬币,正面朝上C.不透明的袋子里有2个红球和3个黄球,除颜色外都相同,从中任取一球是红球D.三张扑克牌,分别是3,5,5,背面朝上洗匀后,随机抽出一张是5【分析】根据利用频率估计概率得到实验的概率在0.4左右,再分别计算出四个选项中的概率,然后进行判断.【解答】解:A、掷一个质地均匀的骰子,向上的面点数是“6”的概率为:,不符合题意;B、抛一枚硬币,出现反面的概率为,不符合题意;C、不透明的袋子里有2个红球和3个黄球,除颜色外都相同,从中任取一球是红球的概率是=0.4,符合题意;D、三张扑克牌,分别是3,5,5,背面朝上洗匀后,随机抽出一张是5的概率为,不符合题意,故选:C.【点评】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.当实验的所有可能结果不是有限个或结果个数很多,或各种可能结果发生的可能性不相等时,一般通过统计频率来估计概率.15.某小组做“用频率估计概率”的实验时,统计了某一结果出现的频率,绘制了如图所示的折线统计图,则符合这一结果的实验最有可能是()A.在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”B.掷一个质地均匀的正六面体骰子,向上的面点数是4C.暗箱中有1个红球和2个黄球,它们只有颜色上的区别,从中任取一球是红球D.一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红桃【分析】根据统计图可知,试验结果在0.17附近波动,即其概率P≈0.17,计算四个选项的概率,约为0.17者即为正确答案.【解答】解:A、在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀“的概率为,故A选项错误;B、掷一个质地均匀的正六面体骰子,向上的面点数是4的概率为≈0.17,故B 选项正确C、暗箱中有1个红球和2个黄球,它们只有颜色上的区别,从中任取一球是红球的概率为,故C选项错误;D、一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红桃的概率是=;故D选项错误.故选:B.【点评】此题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.同时此题在解答中要用到概率公式.16.四张相同的卡片,每张的正面分别写着,,,,将卡片正面朝下扣在桌上,随机抽出一张,这张卡片上写的不是最简二次根式的概率是()A.B.C.D.【分析】由,,,这4张卡片中不是最简二次根式的是,利用概率公式计算可得.【解答】解:在,,,这4张卡片中不是最简二次根式的是,所以卡片上写的不是最简二次根式的概率是,故选:A.【点评】本题主要考查了概率公式,掌握概率=所求情况数与总情况数之比及最简二次根式的定义是解题的关键.17.甲和乙一起做游戏,下列游戏规则对双方公平的是()A.在一个装有2个红球和3个白球(每个球除颜色外都相同)的袋中任意摸出一球,摸到红球甲获胜,摸到白球乙获胜;B.从标有号数1到100的100张卡片中,随意抽取一张,抽到号数为奇数甲获胜,否则乙获胜;C.任意掷一枚质地均匀的骰子,掷出的点数小于4则甲获胜,掷出的点数大于4则乙获胜;D.让小球在如图所示的地板上自由地滚动,并随机地停在某块方块上,若小球停在黑色区域则甲获胜,若停在白色区域则乙获胜【分析】根据概率公式分别计算出A、B、C选项中甲获胜和乙获胜的概率,利用几何概率的计算方法计算出D选项中甲获胜和乙获胜的概率,然后比较两概率的大小判断游戏的公平性.【解答】解:A、甲获胜的概率=,乙获胜的概率=,而<,所以游戏规则对双方不公平,所以A选项错误;B、甲获胜的概率==,乙获胜的概率==,所以游戏规则对双方公平,所以B选项正确;C、甲获胜的概率==,乙获胜的概率==,而>,所以游戏规则对双方不公平,所以C选项错误;D、甲获胜的概率=,乙获胜的概率=,而<,所以游戏规则对双方不公平,所以D选项错误.故选:B.【点评】本题考查了游戏的公平性:判断游戏公平性需要先计算每个事件的概率,然后比较概率的大小,概率相等就公平,否则就不公平.18.一个不透明的盒子中装有3个白球,5个红球,这些球除颜色外,没有任何其他区别,现从这个盒子中随机摸出一个球,摸到红球的可能性是()A.B.C.D.【分析】先求出袋子中总的球数,再用红球的个数除以总的球数即可.【解答】解:∵袋子中装有3个白球和5个红球,共有8个球,从中随机摸出一个球是红球的可能结果有5种,∴从袋子中随机摸出一个球是红球的可能性,即概率是,故选:A.。
浙教版九年级上册数学第2章 简单事件的概率含答案
浙教版九年级上册数学第2章简单事件的概率含答案一、单选题(共15题,共计45分)1、下列事件中,必然事件是()A.购买一张彩票中奖B.打开电视机,它正在播放广告C.抛掷一枚硬币,正面朝上D.一个袋中只装有5个黑球,从中摸出一个球是黑球2、在一个不透明的箱子中有3张红卡和若干张绿卡,它们除了颜色外其他完全相同,通过多次抽卡试验后发现,抽到绿卡的概率稳定在附近,则箱中卡的总张数可能是A.1张B.4张C.9张D.12张3、下列事件是不确定事件的是()A.守株待兔B.水中捞月C.风吹草动D.瓮中捉鳖4、一个不透明的布袋里装有5个红球、2个白球、3个黄球,它们除颜色外其余都相同.从袋中任意找出1个球,是黄球的概率为()A. B. C. D.5、在一个不透明的口袋中装有5个完全相同的小球,把它们分别标号为1、2、3、4、5,从中随机摸出一个小球,其标号小于3的概率为()A. B. C. D.6、已知函数y=x-6,令x=1,2,3,4,5可得函数图像上的五个点,在这五个点中随机抽取两个点P(x1, y1)、Q(x2, y2),则P、Q两点在同一反比例函数图像上的概率是 ( )A. B. C. D.7、下列事件中是确定事件的是( )A.篮球运动员身高都在2米以上B.弟弟的体重一定比哥哥的轻C.明年教师节一定是晴天D.吸烟有害身体健康8、一枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数,投掷这样的骰子一次,向上一面点数是偶数的结果有()A.1种B.2种C.3种D.6种9、一个不透明的盒子中装有6个大小相同的乒乓球,其中4个是黄球,2个是白球.从该盒子中任意摸出一个球,摸到黄球的概率是()A. B. C. D.10、随机掷一枚质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,则这个骰子向上的一面点数是奇数的概率为()A. B. C. D.11、在我校读书月活动中,小玲在书城买了一套科普读物,有上、中、下三册,要整齐的摆放在书架上,恰好摆成“上、中、下”顺序的概率是()A. B. C. D.12、下列事件中的不可能事件是()A.通常加热到100℃时,水沸腾B.抛掷2枚正方体骰子,都是6点朝上 C.经过有交通信号灯的路口,遇到红灯 D.任意画一个三角形,其内角和是360°13、从2种不同款式的衬衣和2种不同款式的裙子中分别取一件衬衣和一条裙子搭配,有()种可能.A.1B.2C.3D.414、一个口袋中装有10个红球和若干个黄球,在不允许将求倒出来数的前提下,为估计袋中黄球的个数,小明采用了如下的方法:每次先从口袋中摸出10个球,求出其中红球数与10的比值,再把球放回口袋中摇匀,不断重复上述过程20次,得到红球与10的比值的平均数为0.4,根据上述数据,估计口袋中大约有()个黄球.A.30B.15C.20D.1215、三张外观相同的卡片分别标有数字1、2、3,从中随机一次抽出两张,这两张卡片上的数字恰好都小于3的概率是()A. B. C. D.二、填空题(共10题,共计30分)16、甲、乙、丙三人站成一排合影留念,则甲、乙二人相邻的概率________17、一个仅装有球的不透明布袋里共有4个球(只有颜色不同),其中3个是红球,1个是白球,从中任意摸出一个球,记下颜色后不放回,搅匀,再任意摸出一个球,则两次摸出都是红球的概率是________.18、在单词(数学)中任意选择-一个字母,选中字母“a”的概率为________.19、在一个不透明的口袋中,装有5个红球3个白球,它们除颜色外都相同,从中任意摸出一个球,摸到红球的概率为________20、一个不透明的布袋里装有5个球,其中4个红球和1个白球,它们除颜色外其余都相同,现将n个白球放入布袋,搅匀后,使摸出1个球是红球的概率为,则n=________21、甲、乙、丙3名学生随机排成一排拍照,其中甲排在中间的概率是________22、在“success”中,任选一个字母,这个字母为“s”的概率为________;23、国学经典《声律启蒙》中有这样一段话:“斜对正,假对真,韩卢对苏雁,陆橘对庄椿”,现有四张卡片依次写有“斜”、“正”、“假”、“真”,四个字(4张卡片除了书写汉字不同外其他完全相同),现从四张卡片中随机抽取两张,则抽到的汉字恰为相反意义的概率是________.24、袋子中装有3个红球、5个黄球、2个白球,这些球的形状、大小、质地等完全相同,随机地从袋子中摸出一个红球的概率是________.25、小颖妈妈经营的玩具店某次进了一箱黑白两种颜色的塑料球3000个,为了估计两种颜色的球各有多少个,她将箱子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回箱子中,多次重复上述过程后,她发现摸到黑球的频率在0.7附近波动,据此可以估计黑球的个数约是________.三、解答题(共5题,共计25分)26、一个不透明的盒子中有三张卡片,卡片上面分别标有字母a,b,c,每张卡片除字母不同外其他都相同,小玲先从盒子中随机抽出一张卡片,记下字母后放回并搅匀;再从盒子中随机抽出一张卡片并记下字母,用画树状图(或列表)的方法,求小玲两次抽出的卡片上的字母相同的概率.27、在一个暗箱里放有a个除颜色外都完全相同的红、白、蓝三种球,其中红球有4个,白球有10个,每次将球搅拌均匀后,任意摸出一个球记下颜色再放回暗箱.通过大量重复摸球实验后发现,摸到红球的频率稳定在20%.(1)试求出a的值;(2)从中任意摸出一个球,下列事件:①该球是红球;②该球是白球;③该球是蓝球.试估计这三个事件发生的可能性的大小,并将三个事件按发生的可能性从小到大的顺序排列(用序号表示事件).28、某校师生为了对学生零花钱的使用进行教育指导,对全班50名学生每人一周内的零花钱数额进行了调查统计,并绘制如下统计表:根据表格中信息,回答下列问题:(1)求a的值.(2)求着50名学生每人一周内零花钱数额的中位数.(3)随机抽查一名学生,抽到一周内零花钱数额不大于10元的同学概率为多少?29、中考报名前各校初三学生都要进行体检,某次中考体验设有A、B两处检测点,甲、乙、丙三名学生各自随机选择其中的一处进行中考体检,请用表格或树状图分析:(1)求甲、乙、丙三名学生在同一处中考体验的概率;(2)求甲、乙、丙三名学生中至少有两人在B处检测视力的概率.30、某县八年级有3000名学生参加“爱我中华知识竞赛”活动.为了了解本次知识竞赛的成绩分布情况,从中随机抽取了部分学生的得分进行统计.请你根据不完整的表格,解答下列问题:(1)补全频数分布表;(2)随机抽取的样本容量为;(3)若将得分转化为等级,规定50≤x<60评为“D”,60≤x<70评为“C”,70≤x<90评为“B”,90≤x<100评为“A”.估计这3000名学生中,有多少学生得分等级为A?参考答案一、单选题(共15题,共计45分)1、D2、D3、A5、B6、A7、D8、C9、A10、A11、C12、D13、D14、B15、A二、填空题(共10题,共计30分)16、17、18、19、21、22、23、24、25、三、解答题(共5题,共计25分)26、27、29、30、。
九年级数学上册第二章简单事件的概率2.2简单事件的概率第1课时简单事件的概率(一)随堂练习(含解析
九年级数学上册第二章简单事件的概率2.2 简单事件的概率第1课时简单事件的概率(一)随堂练习(含解析)(新版)浙教版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(九年级数学上册第二章简单事件的概率2.2 简单事件的概率第1课时简单事件的概率(一)随堂练习(含解析)(新版)浙教版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为九年级数学上册第二章简单事件的概率2.2 简单事件的概率第1课时简单事件的概率(一)随堂练习(含解析)(新版)浙教版的全部内容。
2。
2__简单事件的概率__第1课时简单事件的概率(一)1.[2017·宁波]一个不透明的布袋里装有5个红球,2个白球,3个黄球,它们除颜色外其余都相同,从袋中任意摸出1个球,是黄球的概率为( C )A.错误!B。
错误! C。
错误!D。
错误!2.课间休息,小亮与小明一起玩“剪刀、石头、布”的游戏,小明出“剪刀”的概率是( B )A.错误!B.错误! C。
错误!D.错误!3.如图2-2-1,有6张扑克牌,从中随机抽取一张,点数为偶数的概率是( D )图2-2-1A。
错误! B.错误! C。
错误!D。
错误!4.下列四个转盘中,C,D转盘分成8等份,若让转盘自由转动一次,停止后,指针落在阴影区域内的概率最大的转盘是( A )A B C D5.[2016·海南]三张外观相同的卡片分别标有数字 1,2,3,从中随机一次抽出两张,这两张卡片上的数字恰好都小于 3 的概率是( A )A。
错误!B。
错误! C.错误!D.错误!6.[2016·扬州]如图2-2-2所示的六边形广场由若干个大小完全相同的黑色和白色正三角形组成,一只小鸟在广场上随机停留,刚好落在黑色三角形区域的概率为__错误!__.图2-2-27.[2017·淮安]一枚质地均匀的骰子的6个面上分别刻有1~6的点数,抛掷这枚骰子1次,向上一面的点数是4的概率是__错误!__.8.有6张卡片,每张卡片上分别写有不同的从1到6的一个自然数,从中任意抽出一张卡片,卡片上的数是3的倍数的概率是__错误!__.图2-2-39.[2017·徐州]如图2-2-3,转盘中6个扇形的面积相等,任意转动转盘1次,当转盘停止转动时,指针指向的数小于5的概率为__23__.【解析】∵共6个数,小于5的有4个,∴P(小于5)=错误!=错误!.10.如图2-2-4,有四张不透明的卡片除正面的函数关系式不同外,其余均相同.将它们背面朝上洗匀后,从中随机抽取一张卡片,则抽到函数的图象不经过第四象限的卡片的概率为__错误!__.错误!错误!错误!错误!图2-2-411.[2017·盐城]如图2-2-5是由大小完全相同的正六边形组成的图形,小军准备用红色、黄色、蓝色随机给每个正六边形分别涂上其中的一种颜色,则上方的正六边形涂红色的概率是__1 3 __图2-2-512.袋中有11个黑球,2个红球,3个白球,4个绿球,闭上眼睛从袋中摸出一球,下列事件发生的机会谁大谁小,将它们按从小到大的顺序在如图2-2-6所示的直线上排序.(1)摸出黑球;(2)摸出黄球;(3)摸出红球;(4)摸出黑球或白球;(5)摸出黑球,红球或白球;(6)摸出黑球,红球,白球或绿球.图2-2-6解:由题意,得袋中有11个黑球,2个红球,3个白球,4个绿球,共20个球,则(1)摸出黑球的概率为错误!;(2)∵袋中没有黄球,∴摸出黄球的概率为0;(3)摸出红球的概率为220=110;(4)摸出黑球或白球的概率为错误!=错误!;(5)摸出黑球,红球或白球的概率为错误!=错误!;(6)摸出黑球,红球,白球或绿球是必然事件,故它的概率为 1.比较大小作图如答图.第12题答图13.[2016·济宁]如图2-2-7,在4×4的正方形网格中,黑色部分的图形构成一个轴对称图形,现在任意选取一个白色的小正方形并涂黑,使黑色部分的图形仍然构成一个轴对称图形的概率是( B )图2-2-7A.错误!B.错误!C。
浙教版九年级上册数学第2章《简单事件的概率》复习题(解析版)
第2章《简单事件的概率》复习题一.选择题1.一个不透明的盒子中装有1个白球、2个黄球和4个红球,它们除颜色外都相同.若从中任意摸出一个球,摸到哪种颜色的球的可能性最大()A.红色B.黄色C.白色D.不能确定2.某校体育室里有球类数量如表,如果随机拿出一个球(每一个球被拿出来的可能性是一样的),那么拿出一个球是足球的可能性是()球类篮球排球足球数量354A.B.C.D.3.将分别标有“利”“川”“凉”“城”汉字的四个小球装在一个不透明的口袋中,这些球除汉字外无其他差别,摸球前先搅拌均匀,随机摸出一球,摸出的球上的汉字是“川”的概率是()A.B.C.D.4.在三行三列的方格棋盘上沿骰子的某条棱翻动骰子(相对面上分别标有1点和6点,2点和5点,3点和4点).开始时,骰子如图1所示摆放,朝上的点数是2,最后翻动到如图2所示位置.现要求翻动次数最少,则最后骰子朝上的点数为2的概率为()A.B.C.D.5.一个不透明布袋里有3个红球,4个白球和m个黄球,这些球除颜色外其余都相同,若从中随机摸出1个球是红球的概率为,则m的值为()A.2B.3C.5D.76.班主任王老师将6份奖品分别放在6个完全相同的不透明礼盒中,其中3份是学习文具,2份是科普读物,1份是科技馆通票,小英同学从中随机取一份奖品,恰好取到科普读物的概率是()A.B.C.D.7.一个盒子中装有20颗蓝色幸运星,若干颗红色幸运星和15颗黄色幸运星,小明通过多次摸取幸运星试验后发现,摸取到红色幸运星的频率稳定在0.5左右,若小明在盒子中随机摸取一颗幸运星,则摸到黄色幸运星的可能性约为()A.B.C.D.8.某小组做“用频率估计概率”的实验时,给出的某一结果出现的频率折线图,则符合这一结果的实验可能是()A.抛一枚硬币,出现正面朝上B.掷一个正六面体的骰子,出现3点朝上C.从一个装有2个红球和1个黑球的袋子中任取一球,取到的是黑球D.一副去掉大小王的扑克牌洗匀后,从中任抽一张牌的花色是红桃9.足球比赛前,裁判通常要掷一枚硬币来决定比赛双方的场地与首先发球者,其主要原因是()A.让比赛更富有情趣B.让比赛更具有神秘色彩C.体现比赛的公平性D.让比赛更有挑战性10.平行四边形ABCD中,AC、BD是两条对角线,现从以下四个关系①AB=BC;②AC=BD;③AC ⊥BD;④AB⊥BC中随机取出一个作为条件,即可推出平行四边形ABCD是菱形的概率为()A.B.C.D.1二.填空题11.为了了解学生每月的零用钱情况,从甲、乙、丙三个学校各随机抽取200名学生,调查了他们的零用钱情况(单位:元)具体情况如下:学校频数零用钱100≤x<200200≤x<300300≤x<400400≤x<500500以上合计甲53515082200乙1654685210200丙010*********在调查过程中,从(填“甲”,“乙”或“丙”)校随机抽取学生,抽到的学生“零用钱不低于300元”的可能性最大.12.小明调查了他所在年级三个班学生的身高,并进行了统计,列出如下频数分布表:身高/厘米150≤x<155≤x<160≤x<165≤x<170≤x<合计频数155160165170175班级1班1812145402班10151032403班510108740在调查过程中,随机抽取某班学生,抽到(填“1班”、“2班”或“3班”)的“身高不低于155cm”可能性最大.13.将背面完全相同,正面分别写有1、2、3、4、5的五张卡片背面朝上混合后,从中随机抽取一张,将其正面数字记为m,使关于x的方程有正整数解的概率为.14.小明参加某个智力竞答节目,答对最后两道单选题就顺利通关.第一道单选题有3个选项,第二道单选题有4个选项,这两道题小明都不会,不过小明还有一个“求助”没有用(使用“求助”可以让主持人去掉其中一题的一个错误选项).(1)如果小明第一题不使用“求助”,那么小明答对第一道题的概率是.(2)如果小明将“求助”留在第二题使用,那么小明顺利通关的概率是.15.某学习小组设计了一个摸球试验,在袋中装有黑、白两种除颜色外完全相同的小球,在看不到球的前提下,随机从袋中摸出一个球,记下颜色,再把它放回去,不断重复.下表是由试验得到的一组统计数据:摸球的次数n100200300400500600摸到白球的次数m69139213279351420摸到白球的频率0.690.690.710.6980.7020.70从这个袋中随机摸出一个球,是白球的概率为.(结果精确到0.1)三.解答题16.有一个转盘(如图所示),被分成6个相等的扇形,颜色分为红、绿、黄三种,指针的位置固定,转动转盘后任其自由停止,其中的某个扇形会恰好停在指针所指的位置(指针指向两个扇形的交线时,重新转动).下列事件:①指针指向红色;②指针指向绿色;③指针指向黄色;④指针不指向黄色.估计各事件的可能性大小,完成下列问题:(1)可能性最大和最小的事件分别是哪个?(填写序号)(2)将这些事件的序号按发生的可能性从小到大的顺序排列:.17.家乐福超市“端午节”举行有奖促销活动:凡一次性购物满200元者即可获得一次摇奖机会.摇奖机是一个圆形转盘,被分成16等分,摇中红、黄、蓝色区域,分获一、二、三等奖,奖金依次为48元、40元、32元.一次性购物满200元者,如果不摇奖可返还现金15元.(1)摇奖一次,获一等奖的概率是多少?(2)小明一次性购物满了200元,他是参与摇奖划算还是领15元现金划算,请你帮他算算.18.一个不透明的袋中装有红、黄、白三种颜色的球共10个,它们除了颜色外完全相同,其中黄球个数比白球个数的3倍少2个,从袋中摸出一个球是黄球的概率为0.4.(1)求袋中红、黄、白三种颜色的球的个数;(2)向袋中放入若干个红球,使摸出一个球是红球的概率为0.7,求放入红球的个数;(3)在(2)的条件下,求摸出一个球是白球的概率.19.为了准备体育艺术节的比赛,某篮球运动员在进行定点罚球训练,如表是部分训练记录:罚球次数20406080100120命中次数153248658096命中频率0.750.80.80.810.80.8(1)根据上表:估计该运动员罚球命中的概率是;(2)根据上表分析,如果该运动员在一次比赛中共获得10次罚球机会(每次罚球投掷2次,每命中一次得1分),估计他罚球能得多少分,请说明理由.20.小明和小丽做游戏:一只蚂蚁在如图所示的方格纸上爬来爬去,并随意停留在某处,若蚂蚁停留在阴影区域,小明胜,否则小丽胜.这个游戏对双方公平吗?请说明理由.第2章《简单事件的概率》复习题参考答案与试题解析一.选择题1.【分析】根据各种球数量的多少,直接判断可能性的大小,哪种颜色的球越多,摸出的可能性就越大;首先判断出每种颜色的球的数量的多少,然后判断出摸出的可能性的大小即可.【解答】解:∵袋子中共有1+2+4=7个球,其中红球个数最多,∴从中任意摸出一个球,摸到红球的可能性最大,故选:A.【点评】本题主要考查可能性的大小,解决此类问题的关键是分两种情况:(1)需要计算可能性的大小的准确值时,根据求可能性的方法:求一个数是另一个数的几分之几,用除法列式解答即可;(2)不需要计算可能性的大小的准确值时,可以根据各种球数量的多少,直接判断可能性的大小.2.【分析】用足球的总个数除以球的总数即可得.【解答】解:∵共有3+5+4=12个球,其中足球有4个,∴拿出一个球是足球的可能性是=,故选:B.【点评】本题主要考查可能性的大小,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.3.【分析】让汉字是“川”的个数除以所有字母的总个数即为所求的概率.【解答】解:1÷4=.答:摸出的球上的汉字是“川”的概率是.故选:B.【点评】本题考查了概率的知识.用到的知识点为:概率=所求情况数与总情况数之比.4.【分析】根据已知中三行三列的方格棋盘上沿骰子的某条棱翻动骰子,我们模拟骰子的翻动过程,我们可以得到最后骰子朝上的点数所有的可能性及满足条件(即点数为2)的基本事件个数,代入古典概型公式即可得到答案.【解答】解:计三行三列的方格棋盘的格子坐标为(a,b),其中开始时骰子所处的位置为(1,1),则图2所示的位置为(3,3)则从(1,1)到(3,3)共有6种走法,其结果分别为:2,5,1,5,3,2,故最后骰子朝上的点数为2的概率为P==,故选:C.【点评】本题考查概率的求法与运用,一般方法为:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.5.【分析】根据题目中的数据可以计算出总的球的个数,从而可以求得m的值.【解答】解:由题意可得,m=3÷﹣3﹣4=9﹣3﹣4=2.故选:A.【点评】本题考查概率公式,解答本题的关键是明确题意,求出相应的m的值.6.【分析】直接利用概率公式计算可得.【解答】解:小英同学从中随机取一份奖品,恰好取到科普读物的概率是=,故选:B.【点评】本题考查了概率公式,用到的知识点为:概率=所求情况数与总情况数之比.7.【分析】设袋中红色幸运星有x个,根据“摸取到红色幸运星的频率稳定在0.5左右”列出关于x 的方程,解之可得袋中红色幸运星的个数,再根据频率的定义求解可得.【解答】解:设袋中红色幸运星有x个,根据题意,得:=0.5,解得:x=35,经检验:x=35是原分式方程的解,则袋中红色幸运星的个数为35个,若小明在盒子中随机摸取一颗幸运星,则摸到黄色幸运星的频率为=,故选:C.【点评】考查了利用频率估计概率的知识,解题的关键是了解大量反复试验下频率稳定值即概率.8.【分析】根据统计图可知,试验结果在0.33附近波动,即其概率P≈0.33,计算四个选项的频率,约为0.33者即为正确答案.【解答】解:A、抛一枚硬币,出现正面朝上的频率是=0.5,故本选项错误;B、掷一个正六面体的骰子,出现3点朝上的频率约为:≈0.17,故本选项错误;C、从一个装有2个红球和1个黑球的袋子中任取一球,取到的是黑球的概率是≈0.33,故本选项正确;D、一副去掉大小王的扑克牌洗匀后,从中任抽一张牌的花色是红桃的概率是=0.25,故本选项错误;故选:C.【点评】此题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.同时此题在解答中要用到概率公式.9.【分析】由正面朝上或朝下的概率均为,可得两个队选择场地与首先发球者的可能性相等,即体现比赛的公平性.【解答】解:∵一枚硬币只有正反两面,∴正面朝上或朝下的概率均为,即两个队选择场地与首先发球者的可能性相等,∴这种方法公平.故选:C.【点评】本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.10.【分析】菱形的判定:①菱形定义:一组邻边相等的平行四边形是菱形(平行四边形+一组邻边相等=菱形);②四条边都相等的四边形是菱形.③对角线互相垂直的平行四边形是菱形(或“对角线互相垂直平分的四边形是菱形”).【解答】解:根据平行四边形的判定定理,可推出平行四边形ABCD是菱形的有①或③,概率为.故选:B.【点评】本题考查了菱形及概率,熟练掌握菱形的判定定理是解题的关键.二.填空题11.【分析】先计算出三个班中“零用钱不低于300元”的人数占总人数的比例,比较大小即可得.【解答】解:甲校中“零用钱不低于300元”的人数占总人数的比例为=;乙校中“零用钱不低于300元”的人数占总人数的比例为=,丙校中“零用钱不低于300元”的人数占总人数的比例为=,由>>知抽到丙校的“零用钱不低于300元”可能性最大.故答案为:丙.【点评】本题考查的可能性的大小.用到的知识点为:概率=所求情况数与总情况数之比.12.【分析】先计算出三个班中“身高不低于155cm”的人数占总人数的比例,比较大小即可得.【解答】解:1班中“身高不低于155cm”的人数占总人数的比例为;2班中“身高不低于155cm”的人数占总人数的比例为=,3班中“身高不低于155cm”的人数占总人数的比例为=,由>>知抽到1班的“身高不低于155cm”可能性最大.故答案为:1班.【点评】本题考查的可能性的大小.用到的知识点为:概率=所求情况数与总情况数之比.13.【分析】解方程得x=,当m=1时,该方程有正整数解,据此依据概率公式求解可得.【解答】解:解方程,得:x=,当m=1时,该方程有正整数解,所以使关于x的方程有正整数解的概率为,故答案为:.【点评】此题主要考查了概率公式的应用,明确概率的意义是解答的关键,用到的知识点为:概率等于所求情况数与总情况数之比.14.【分析】(1)由第一道单选题有3个选项,直接利用概率公式求解即可求得答案;(2)首先分别用A,B,C表示第一道单选题的3个选项,a,b,c表示剩下的第二道单选题的3个选项,然后根据题意画出树状图,再由树状图求得所有等可能的结果与小明顺利通关的情况,再利用概率公式即可求得答案.【解答】解:(1)∵第一道单选题有3个选项,∴小明第一题不使用“求助”,那么小明答对第一道题的概率是:;故答案为:;(2)分别用A,B,C表示第一道单选题的3个选项,a,b,c表示剩下的第二道单选题的3个选项,画树状图得:∵共有9种等可能的结果,小明顺利通关的只有1种情况,∴小明顺利通关的概率为:.故答案为:.【点评】本题考查概率的求法与运用,一般方法为:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.15.【分析】观察图表,试验次数越多的一组,得到的频率越接近概率.【解答】解:假如从这个袋中随机摸出一个球,是白球的概率为0.70,故答案为:0.70.【点评】考查利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.三.解答题16.【分析】分别求出摸出各种颜色球的概率,即可比较出摸出何种颜色球的可能性大.【解答】解:∵共3红2黄1绿相等的六部分,∴①指针指向红色的概率为=;②指针指向绿色的概率为;③指针指向黄色的概率为=;④指针不指向黄色为,(1)可能性最大的是④,最小的是②;(2)由题意得:②<③<①<④,故答案为:②<③<①<④.【点评】本题考查的是可能性大小的判断,解决这类题目要注意具体情况具体对待.用到的知识点为:可能性等于所求情况数与总情况数之比.17.【分析】(1)找到红色区域的份数占总份数的多少即为获得一等奖的概率;(2)求得转动转盘一次获得的奖金数与15元比较即可.【解答】解:(1)整个圆周被分成了16份,红色为1份,∴获得一等奖的概率为:,(2)转转盘:元,∵16元>15元,∴转转盘划算.【点评】此题考查了概率公式的应用.注意概率=所求情况数与总情况数之比.18.【分析】(1)根据题意列式计算即可;(2)设放入红球x个,列方程即可得到结论;(3)根据概率公式即可得到结论.【解答】解:(1)黄球个数:10×0.4=4(个),白球个数:(4+2)÷3=2(个),红球个数:10﹣4﹣2=4(个),答:袋中红、黄、白三种颜色的球的个数分别是4个、4个、2个;(2)设放入红球x个,则4+x=(10+x)×0.7,解得:x=10,即向袋中放入10个红球;(3)P(摸出一个球是白球)==0.1,答:摸出一个球是白球的概率是0.1.【点评】此题主要考查了概率公式:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.19.【分析】(1)直接由表格数据可估计该运动员罚球命中的概率;(2)根据(1)可知运动员罚球命中的概率,由题意可知20次罚球得分多少.【解答】解:(1)根据表格数据可知该运动员罚球命中的概率0.8,故答案为0.8;(2)由题意可知,罚球一次命中概率为0.8,则罚球10次得分为10×2×0.8=16,∴估计他能得16分.【点评】本题主要考查了利用频率估计概率的知识,解题的关键是要理解(1)大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.(2)用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确.(3)当实验的所有可能结果不是有限个或结果个数很多,或各种可能结果发生的可能性不相等时,一般通过统计频率来估计概率.20.【分析】游戏是否公平,求出游戏双方获胜的概率,比较是否相等即可.【解答】解:∵正方形的面积为9,阴影部分的面积为1+×1×1×4=3,∴==,∴小明获胜的概率为,小丽获胜的概率为1﹣=,∵>,∴不公平.【点评】本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.用到的知识点为:概率=所求情况数与总情况数之比.。
浙教版九年级上册数学第2章 简单事件的概率含答案(满分必刷)
浙教版九年级上册数学第2章简单事件的概率含答案一、单选题(共15题,共计45分)1、甲、乙两位同学在一次实验中统计了某一结果出现的频率,给出的统计图如图所示,则符合这一结果的实验可能是()A.掷一枚正六面体的骰子,出现5点的概率B.掷一枚硬币,出现正面朝上的概率C.任意写出一个整数,能被2整除的概率D.一个袋子中装着只有颜色不同,其他都相同的两个红球和一个黄球,从中任意取出一个是黄球的概率2、事件:“在只装有2个红球和8个黑球的袋子里,摸出一个白球”是)A.可能事件B.随机事件C.不可能事件D.必然事件3、下列事件中,是必然事件的是()A.两条线段可以组成一个三角形B.400人中至少有两个人的生日在同一天C.某射击运动员射击一次,命中靶心D.打开电视机,它正在播放动画片4、天气预报称,明天长沙市全市的降水率为90%,下列理解正确的是()A.明天长沙市全市有90%的地方会下雨B.明天长沙市全市有90%的时间会下雨C.明天长沙市全市下雨的可能性较大D.明天长沙市一定会下雨5、放假了,小明与小颖两家准备从红荷湿地、台儿庄古城、莲青山中选择一景点游玩,小明与小颖通过抽签方式确定景点,则两家抽到同一景点的概率是()A. B. C. D.6、抛掷一枚质地均匀的立方体骰子一次,骰子的六个面上分别标有数字1,2,3,4,5,6,则朝上一面的数字为2的概率是()A. B. C. D.7、将一枚质地均匀的骰子连续投掷两次,记投掷两次的正面数字之和为,则下面关于事件发生的概率说法错误的是()A. B. C. D.8、一个不透明的口袋里装有除颜色外都相同的10个白球和若干个红球,在不允许将球倒出来数的前提下,小亮为了估计其中的红球数,采用如下方法:先将口袋中的球摇匀,再从口袋里随机摸出一球,记下颜色,然后把它放回口袋中,不断重复上述过程,小亮共摸了1000次,其中有125次摸到白球,因此小亮估计口袋中的红球大约有()个.A.100B.90C.80D.709、下列说法中正确的是()A.“明天降雨的概率为”,表示明天有半天都在降雨B.抛一枚硬币,正面朝上的概率为”,表示每抛两次就有一次正面朝上C.“抛一枚均匀的正方体骰子,朝上的点数是6的概率为”,表示随着抛掷次数的增加,“抛出朝上的点数是6”这一事件发生的概率稳定在附近D.某种彩票的中奖概率为,说明每买1000张,一定有一张中奖10、甲、乙两个不透明的口袋中分别装有1个红球、2个黄球和2个红球、4个黄球,把它们分别搅匀,分别从甲、乙两个袋中摸出1个球。
浙教版九年级上册数学第2章 简单事件的概率含答案
浙教版九年级上册数学第2章简单事件的概率含答案一、单选题(共15题,共计45分)1、在一个不透明的布袋中,红球、黑球、白球共有若干个,除颜色外,形状、大小、质地等完全相同.小新从布袋中随机摸出一球,记下颜色后放回布袋中,摇匀后再随机摸出一球,记下颜色,……,如此大量摸球实验后,小新发出其中摸出红球的频率稳定于20%,摸出黑球的频率稳定于50%.对此实验,他总结出下列结论:①若进行大量摸球实验,摸出白球的频率应稳定于30%;②若从布袋中任意摸出一个球,该球是黑球的概率最大;③若再摸球100次,必有20次摸出的球是红球.其中说法正确的是()A.①②③B.①②C.①③D.②③2、在一个不透明的口袋中,装有3个红球,2个白球,除颜色不同外,其余都相同,则随机从口袋中摸出一个球为红色的概率是( )A. B. C. D.3、下列事件是随机事件的是()A.购买一张福利彩票,中奖B.在一个标准大气压下,加热到100℃,水沸腾 C.有一名运动员奔跑的速度是80米/秒 D.在一个仅装着白球和黑球的袋中摸球,摸出红球4、下列说法正确的是()A.商家卖鞋,最关心的是鞋码的中位数B.365人中必有两人阳历生日相同 C.要了解全市人民的低碳生活状况,适宜采用抽样调查的方法 D.随机抽取甲、乙两名同学的5次数学成绩,计算得平均分都是90分,方差分别为S甲2=5,S乙2=12,说明乙的成绩较为稳定5、下列事件中是确定事件的是()A.篮球运动员身高都在2米以上B.弟弟的体重一定比哥哥的轻C.今年教师节一定是晴天D.吸烟有害身体健康6、今年春节期间,我市某景区管理部门随机调查了1000名游客,其中有900人对景区表示满意.对于这次调查以下说法正确的是()A.若随机访问一位游客,则该游客表示满意的概率约为0.9B.到景区的所有游客中,只有900名游客表示满意C.若随机访问10位游客,则一定有9位游客表示满意D.本次调查采用的方式是普查7、在数据1,-1,4,-4中任选两个数据,均是一元二次方程x-3x-4=0的根的概率是( )A. B. C. D.8、一个密闭不透明的盒子里有若干个白球,在不允许将球倒出来的情况下,为估计白球的个数,小刚向其中放入8个黑球,黑球和白球除颜色外完全相同,摇匀后从中随机摸出一个球记下颜色,再把它放回盒中,不断重复,共摸球400次,其中80次摸到黑球,估计盒中大约有白球()A.32个B.36 个C.38 个D.40 个9、一只盒子中有红球m个,白球8个,黑球n个,每个球除颜色外都相同,从中任取一个球,取得白球的概率与不是白球的概率相同,那么m与n的关系是()A.m=3,n=5B.m=n=4C.m+n=4D.m+n=810、下列事件中,必然事件是()A.掷一枚硬币,正面朝上B.a是实数,|a|≥0C.某运动员跳高的最好成绩是20.1米D.从车间刚生产的产品中任意抽取一个,是次品11、随机掷一枚均匀的硬币20次,其中有8次出现正面,12次出现反面,则掷这枚均匀硬币出现正面的概率是()A. B. C. D.12、下列说法正确的是()A.一个游戏的中奖概率是,则做100次这样的游戏一定会中奖B.为了解全国中学生的心理健康情况,应该采用普查的方式C.一组数据8,8,7,10,6,8,9 的众数和中位数都是8D.若甲组数据的方差s 2=0.01,乙组数据的方差s 2=0.1,则乙组数据比甲组数据稳定13、分别用写有“金华”、“文明”、“城市”的字块拼句子,那么能够排成“金华文明城市”或“文明城市金华”的概率是()A. B. C. D.14、某存折的密码是一个六位数字(每位可以是0),由于小王忘记了密码的首位数字,则他能一次说对密码的概率是( )A. B. C. D.15、中央电视台“幸运52”栏目中的“百宝箱”互动环节,是一种竞猜游戏,游戏规则如下:在20个商标中,有5个商标牌的背面注明了一定的奖金额,其余商标的背面是一张苦脸,若翻到它就不得奖、参加这个游戏的观众有三次翻牌的机会.某观众前两次翻牌均得若干奖金,如果翻过的牌不能再翻,那么这位观众第三次翻牌获奖的概率是()A. B. C. D.二、填空题(共10题,共计30分)16、“打开我们七年级下册的数学教科书,正好翻到第60页”,这是________(填“随机”或“必然”)事件.17、如图,一个游戏转盘中,红、黄、蓝三个扇形的圆心角度数分别为60°,90°,210°.让转盘自由转动,则指针停止后落在黄色区域的概率是________.18、在线段AB上任取三点x1、x2、x3,则x2位于x1与x3之间的可能性________(填写“大于”、“小于”或“等于”)x2位于两端的可能性.19、从3,0,-1,-2,-3这五个数中.随机抽取一个数,作为函数和关于x的方程中m的值,恰好使函数的图象经过第一、三象限,且方程有实数根的概率是________.20、一个不透明的口袋中有质地均匀大小相同的1个白球和2个黑球,从中任意摸出1个球,摸出白球的概率是________.21、一个均匀的正六面体的六个面上,有一个面写1,两个面写2,三个面写3,任意投掷一次该六面体,则朝上的一面是3的可能性是________.22、为了防控输入性“新冠肺炎”,某医院成立隔离治疗发热病人防控小组,决定从内科3位骨干医师中(含有甲)抽调2人组成,则甲一定会被抽调到防控小组的概率是________.23、小球在如图所示的地板上自由滚动,并随机地停留在某块方砖上,每一块方砖除颜色外完全相同,它最终停留在黑色方砖上的概率是________.24、从﹣1,0,1,2四个数中任意取出两个数,这两个数和为负数的概率是________.25、有两组卡片,第一组的三张卡片上分别写有数字3,4,5,第二组的三张卡片上分别写有数字1,3,5,现从每组卡片中各随机抽出一张,用抽取的第一组卡片的数字减去抽取的第二组卡片上的数字,差为正数的概率为________.三、解答题(共5题,共计25分)26、有四张正面分别写有数字:20,15,10,5的卡片,背面完全相同,将卡片洗匀后背面朝上.放在桌面上小明先随机抽取一张,记下牌面上的数字(不放回),再从剩下的卡片中随机抽取一张,记下牌面上的数字.如果卡片上的数字分别对应价值为20元,15元,10元,5元的四件奖品,请用列表或画树状图法求小明两次所获奖品总值不低于30元的概率?27、如图,有两个可以自由转动的转盘A、B,转盘A被均匀分成4等份,每份标上数字1、2、3、4四个数字;转盘B被均匀地分成6等份,每份分别标上1,2,3,4,5,6六个数字.有人为甲乙两人设计了一个游戏,其规则如下:①同时转动转盘A与B;②转盘停止后,指针各指向一个数字(如果指针恰好指在分割线上,那么重转一次,直到指针指向一个数字为止),用所指的两个数字作乘积,如果所得的积是偶数,那么甲胜,如果所得的积是奇数,那么乙胜.你认为这样的规则是否公平?请你说明理由;如果不公平,请你设计一个公平的规则,并说明理由.28、中考报名前各校初三学生都要进行体检,某次中考体验设有A、B两处检测点,甲、乙、丙三名学生各自随机选择其中的一处进行中考体检,请用表格或树状图分析:(1)求甲、乙、丙三名学生在同一处中考体验的概率;(2)求甲、乙、丙三名学生中至少有两人在B处检测视力的概率.29、第一盒中有2个白球、1个黄球,第二盒中有1个白球、1个黄球,这些球除颜色外无其他差别.分别从每个盒中随机取出1个球,求取出的2个球中有1个白球、1个黄球的概率.30、在一个不透明的口袋中,装有分别标有数字2,3,4的3个小球(小球除数字不同外,其余都相同),甲、乙两同学玩摸球游戏,游戏规则如下:先由甲同学从中随机摸出一球,记下球号,并放回搅匀,再由乙同学从中随机摸出一球,记下球号,将甲同学摸出的球号作为一个两位数的十位上的数,乙同学的作为个位上的数,若该两位数能被4整除,则甲胜,否则乙胜,问这个游戏公平吗?请说明理由.参考答案一、单选题(共15题,共计45分)1、B2、A3、A4、C5、D6、A7、A8、A9、D10、B11、B12、C13、C14、D15、B二、填空题(共10题,共计30分)17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)27、29、30、。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
浙教版初三数学练习(11)第二章简单事件的概率简单事件的概率(1)(解析版)
1.对〝某市明天下雨的概率是 75%〞这句话,理解正确的选项是〔 D 〕
A.某市明天将有 75%的时间下雨
B.某市明天将有 75%的地区下雨
C.某市明天一定下雨
D.某市明天下雨的可能性较大
2.从分别标有数-3,-2,-1,0,1,2,3 的七张没有明显差别的卡片中,随机抽取一张,所抽卡片上的数的绝对值不小于 2 的概率是〔 D 〕
A、1
7 B、2
7
C、3
7
D、4
7
3.一个不透明布袋里装有 1 个白球、2 个黑球、3 个红球,它们除颜色外均相同.从中任意摸出一个球,是红球的概率为〔 C 〕
A、1
6B、1
3
C、1
2
D、2
3
4.一个十字路口的交通信号灯每分钟红灯亮 30s,绿灯亮 25s,黄灯亮5s.当你抬头看信号灯时,它是绿灯的概率为〔 C 〕
A、1
2 B、1
3
C、5
12
D、1
4
【解析】抬头看信号灯时是绿灯的概率是25
30255
++=5
12
.应选 C.
5.一只不透明的袋子中装有 2 个红球、3 个白球,这些球除颜色外都相同,摇匀后从中任意摸出一个球,摸到红球的概率是2
5
6.一包糖果共有 5 种颜色〔糖果只有颜色差别〕,如下图为这包糖果分布百分比
的统计图,在这包糖果中任意取一粒,那么取出糖果的颜色为绿色或
棕色的概率是1
2
7.如下图,在 4×4 正方形网格中,有 3 个小正方形已经涂黑,假设再涂黑任意一个白色
的小正方形〔每一个白色的小正方形被涂黑的可能性相同〕,使新构成
的黑色部分的图形是轴对称图形的概率是3
13
【解析】共有 13 种等可能的情况,其中 3 处涂黑得到的黑色部分的图形是轴对称图形,如答图所示.
所以涂黑任意一个白色的小正方形,使新构成的黑色部分的图形是轴对称图形的概率为3
13
8.有背面完全相同的 9 张卡片,正面分别写有 1~9 这九个数字,将它们洗匀后背面朝上放置,任意抽出一
张,记卡片上的数字为 a ,求数字 a 使不等式组1
3
2
x x a +⎧≥⎪⎨⎪⎩p 有解的概率. 【解析】132
x +≥,解得 x ≥5.
∵要使不等式组13
2
x x a +⎧≥⎪⎨⎪⎩p 有解,∴a ≥6. ∴符合题意的有 6,7,8,9 共 4 个.
∴数字 a 使不等式组1
32
x x a +⎧≥⎪⎨⎪⎩p 有解的概率为4
9. 9.端午节期间,某商场为了吸引顾客,设立了一个可以自由转动的转
盘〔转盘被平均分成 16 份〕,并规定: 顾客每购买 100 元的商品,就能获得一次转动转盘的机会,如果转盘停止后,指针正好对准红色、黄色或 绿色区域,顾客就可以分别获得玩具熊、童话书、水彩笔.小明和妈妈购买了 125 元 的商品,请你分析计算:
〔1〕小明获得奖品的概率是多少?
〔2〕小明获得玩具熊、童话书、水彩笔的概率分别是多少? 【解析】〔1〕∵转盘被平均分成 16 份,其中有颜色部分占 6 份, ∴P 〔获得奖品〕=616=3
8
. 〔2〕∵转盘被平均分成 16 份,其中红色、黄色、绿色部分分别占 1 份、2 份、3 份,
∴P 〔获得玩具熊〕=
1
16, P 〔获得童话书〕=216=1
8,
P 〔获得水彩笔〕=3
16
.
10.在一个不透明的布袋中装有假设干个只有颜色不同的小球,假设袋中有红球 5 个、黄球 4 个,其余为白球,
从袋子中随机摸出一个球,摸出黄球的概率为13
,那么袋中白球的个数为〔 B 〕
A.2
B.3
C.4
D.12
【解析】设袋中白球的个数为 x. 根据题意得
454x ++= 1
3
,解得 x=3.
经检验,x=3 是原分式方程的解. ∴袋中白球的个数为 3.应选 B.
11.动物学家通过大量的调查发现,某种动物活到 20 岁的概率为 0.8,活到 25 岁的概率为 0.6,那么现年 20 岁的这种动物活到 25 岁的概率是〔 B 〕
A.0.8
B.0.75
C.0.6
D.0.48
【解析】设共有这种动物 a 只,那么活到 20 岁的有 0.8a 只,活到 25 岁的有 0.6a 只.
∴现年 20 岁的这种动物活到 25 岁的概率为0.60.8a
a
=0.75.12.在一个不透明的袋子中装有除颜色外其余均相同的 7 个小球,其中
红球 2 个、黑球 5 个.假设再放入 m 个
一样的黑球并摇匀,此时,随机摸出一个球是黑球的概率等于45
,那么 m 的值为 3 .
13.如下图,在 3×3 的方格中,A ,B ,C ,D ,E ,F 分别位于格点上,从 C ,D , E ,F 四点中任取一点,与点 A ,B 为顶点作三角形,那么所作三角形为等腰三角形 的概率是 34
【解析】从 C ,D ,E ,F 四个点中任意取一点,一共有 4 种可能,而只有选取点 D , C ,F 时,所作三角形是等腰三角形,
故 P 〔所作三角形是等腰三角形〕=34.
14.某公司在联欢晚会上举行抽奖活动,在一个不透明的袋子中,分别装有写着整数 2019,2019,2019,
2019,2019 的五个小球.
〔1〕假设抽到奇数能获得自行车一辆,那么员工小乐能获得自行车的概率是多少?
〔2〕从中任意抽一个球,以球上的数作为不等式 ax-2019<0 中的系数 a ,求使该不等式有正整数解的概 率.
【解析】〔1〕∵整数 2019,2019,2019,2019,2019 中有 3 个奇数,
∴P(员工小乐能获得自行车的概率)= 3
5.
〔2〕∵ax-2019<0,a >0,∴x<2013
a
.
要使该不等式有正整数解,那么 a <2019,
∴a 可取 2019,2019.
∴P 〔该不等式有正整数解〕=25
.
15.在一个不透明的围棋盒子中有 x 颗白色棋子、y 颗黑色棋子,它们除颜色外都相同,从盒子中随机取出
一颗棋子,取出黑色棋子的概率为2
3
. 〔1〕请写出 y 关于 x 的函数表达式.
〔2〕现在往盒子中再放进 5 颗白色棋子和 1 颗黑色棋子,这时随机取出白色棋子的概率为12
,请求出 x
和y 的值.
【解析】〔1〕由题意得
2
3y x y =+, ∴y 关于 x 的函数表达式为 y=2x. 〔2〕由题意得2351512x x y x x
y ⎧=⎪+⎪⎨+⎪=
⎪+++⎩解得4
8x y =⎧⎨
=⎩ ∴x 的值为 4,y 的值为 8. 16.如下图,现有一个均匀的转盘被平均分成 6 等份,分别标有 2,3,4,5,6,7 这六个数字,转动转 盘,当转盘停止时,指针指向的数字即为转出的数字.
〔1〕求转出的数字大于 3 的概率是多少.
〔2〕现有两张分别写有 3 和 4 的卡片,要随机转动转盘,转盘停止后记下转出的数 字,与两张卡片上的数字分别作为三条线段的长度.
①这三条线段能构成三角形的概率是多少? ②这三条线段能构成等腰三角形的概率是多少?
【解析】〔1〕转盘被平均分成 6 等份,转到每个数字的可能性相等,共有 6 种可能的结果,大于 3 的结果 有 4 种,
∴P(转出的数字大于 3)= 4
6
= 23
.
〔2〕①转盘被平均分成 6 等份,转到每个数字的可能性相等,共有 6 种可能的结果,其中能构成三角形
的结果有 5 种,
∴P(这三条线段能构成三角形)= 5
6
②转盘被平均分成 6 等份,转到每个数字的可能性相等,共有 6 种可能的结果,其中能构成等腰三角形的
结果有 2 种,
∴P(这三条线段能构成等腰三角形)= 2
6=1 3。