第3章非均相物系的分离-过滤详解
化工原理-3非均相物系的分离
02
离心分离因数 : Kc=(uT2/R)/g Kc值是反映离心分离设备性能的重要指标,一般远大于1,高速离心机K值可达十万以上。
(二)离心沉降设备:旋风分离器 (cyclone separator) 1.结构及工作原理 标准型旋风分离器结构如图。
h =D/2 D1=D/2 B = D/4 H1=2D H2=2D S =D/8 D2=D/4
Newton 公式:
Stokes 公式:
沉降速度的其它影响因素
颗粒浓度:颗粒体积浓度较大时,发生干扰沉降,沉降较慢。
器壁效应:容器壁面、底面处阻力↑→ut↓。
颗粒形状:对非球形颗粒,用到当量直径de,阻力系数与球形度(形状系数)φs 有关,比球形颗粒大,ut减小 。
*
P145 图3-2
01
不同球形度
*
可见,分离条件与沉降面积有关,而与降尘室的高度无关。所以降尘室可设计成扁平形状,或在室内设置多层水平隔板,构成多层降尘室。
颗粒能从气流中分离出来的条件是: θt≤θ 即 VS ≤blut (降尘室的基本公式) VS=blut所对应的ut为理论上能完全(100%)分离下来的最小颗粒的沉降速度.
单个颗粒
一、颗粒的特性
比表面积a (单位体积颗粒所具有的表面积) a=(πd2)/(πd3/6)=6/d (与颗粒直径成反比)
(1)球形颗粒:直径d
体积当量直径de:与颗粒体积相等的圆球的直径,即令
(2)非球形颗粒
贰
壹
叁
②球形度(或形状系数)φs:反映颗粒形状与球形的差异程度。 φs=S/Sp
离心沉降:当流体带着颗粒旋转时,若颗粒的密度大于流体的,则颗粒在惯性离心力作用下在径向与流体发生相对运动飞离中心。
第三章 过滤及离心讲解
3)、洗涤:
将洗水送入洗水通道,经洗涤板左上角的洗水进口,进入板 的两侧表面的凹槽中。然后,洗水横穿滤布和滤饼,最后由非 洗涤板下角的滤液出口排出。在此阶段中,洗涤板下角的滤液 出口阀门关闭。
在洗液粘度与滤液粘度相近的情况下,且在压差相同时, 洗涤速率约为过滤终了速率的1/4。
为什么?
4)、卸渣、整理 打开板框,卸出滤饼,洗涤滤布及板、框。
液的流道。滤板右上角的圆孔,是滤浆通道;左上角的圆 孔,是洗水通道。
洗涤板:左上角的洗水通道与两侧表面的凹槽相通,
使洗水流进凹槽;
非洗涤板:洗水通道与两侧表面的凹槽不相通。
滤框:
滤浆通道:滤框右上角的圆孔 洗水通道:滤框左上角的圆孔
为了避免这两种板和框的安装次序有错,在铸造时常在板
与框的外侧面分别铸有一个、两个或三个小钮。非洗涤板为一
滤液
滤饼 滤布 滤网
支承力,N
为什么会自 动卸料?
摩擦力,f 重力,mg
离心力,F
特点:
结构简单,造价低廉,功率消耗小。 对悬浮液的浓度和固体颗粒大小的波动敏感。 生产能力较大,分离因数约为2000,可分离固体颗 粒浓度较浓、粒度为0.04~1mm的悬浮液。 在各种结晶产品的分离中广泛应用。
注意:所选过滤介质的孔道尺寸一定要使“架桥现象”能发
生。
饼层过滤适于处理固体含量较高的悬浮液。
2.2 深层过滤
特点:颗粒(粒子)沉积于介质内部。 过滤对象:悬浮液中的固体颗粒小而少。 过滤介质:堆积较厚的粒状床层。 过滤原理:颗粒尺寸 介质通道尺寸, 颗粒通过细长而弯曲的孔道,靠静电和分 子的作用力附着在介质孔道上。 应用:适于处理生产能力大而悬浮液中 颗粒小而且含量少的场合,如水处理和酒 的过滤。
化工原理教案03非均相物系的分离
第三章 非均相物系的分离第一节 概 述一、 化工生产中常遇到的混合物可分为两大类:第一类是均相物系—如混合气体、溶液,特征:物系内各处性质相同,无分界面。
须用吸收、蒸馏等方法分离。
第二类是非均相体系— 1.液态非均相物系固体颗粒与液体构成的悬浮液; 不互溶液体构成的乳浊液;2.气态非均相物系固体颗粒(或液体雾滴)与气体构成的含尘气体(或含雾气体); 气泡与液体所组成的泡沫液等。
特征:物系内有相间的界面,界面两侧的物性截然不同。
(1)分散相:往往是液滴、雾滴、气泡,固体颗粒,µm 。
(2)连续相:连续相若为气体,则为气相非均相物系。
连续相若为液体,则为液相非均相物系。
二、 非均相物系分离的目的:1)净制参与工艺过程的原料气或原料液。
2)回收母液中的固体成品或半成品。
3)分离生产中的废气和废液中所含的有害物质。
4)回收烟道气中的固体燃料及回收反应气中的固体触媒等。
总之:以满足工艺要求,提高产品质量,改善劳动条件,保护环境,节约能源及提高经济效益。
常用分离方法:1)重力沉降:微粒借本身的重力在介质中沉降而获得分离。
2)离心分离:利用微粒所受离心力的作用将其从介质中分离。
亦称离心沉降。
此法适用于较细的微粒悬浮体系。
3)过滤:使悬浮体系通过过滤介质,将微粒截留在过滤介质上而获得分离。
4)湿法净制:使气相中含有的微粒与水充分接触而将微粒除去。
5)电除尘:使悬浮在气相中的微粒在高压电场内沉降。
本章主要讨论:利用机械方法分离非均相物系,按其涉及的流动方式不同,可大致分为沉降和过滤两种操作方式。
三、 颗粒和流体相对运动时所受到的阻力 流体以一定的速度绕过静止颗粒时或者固体颗粒在静止流体中移动时 流体对颗粒的作用力——ye 力F d22u AF d ρξ= [N]式中,A —颗粒在运动方向上的投影,πd p 2u —相对运动速度ξ—阻力系数, ξ=Φ(Re )=Φ(d p u ρ/μ)层流区:Re <2, ξ=24/Re ──Stokes 区过渡区:Re=2—500, Re 10=ξ ──Allen 区 湍流区:Re=500--2⨯105, ξ≌0.44 ──Newton 区第二节 重力沉降一、球形颗粒的自由沉降自由沉降──对于单一颗粒在流体中的沉降或者颗粒群充分地分散、颗粒间互不影响,不致引起相互碰撞的沉降过程。
第三章非均相物系分离
第三章非均相物系分离第三章非均相物系分离第一节概述混合物可以分为均相混合物和非均相混合物。
非均相混合物的特点是在物系内部存在两种以上的相态,如悬浮液、乳浊液、含尘气体等。
其中固体颗粒、微滴称为分散相或分散物质;而气体、液体称为连续相或分散介质。
非均相物系可以用机械的方法分离。
操作方式分为两种:(1)沉降分离颗粒相对于流体(静止或运动)运动的过程称沉降分离。
分为重力沉降、离心沉降。
(2)过滤流体相对于固体颗粒床层运动而实现固液分离的过程称过滤。
分为重力过滤、离心过滤、加压过滤和真空过滤,也可分为恒压过滤、先恒速后恒压过滤。
根据连续相状态的不同,非均相混合物又可分为两种类型:(1)气态非均相混合物,如含尘气体、含雾气体等;(2)液态非均相混合物,如悬浮液、乳浊液、泡沫液等。
对于非均相混合物,工业上一般采用机械分离方法将两相进行分离,即造成分散相和连续相之间的相对运动。
据相态和分散物质尺寸的大小,非均相混合物的分离方法如下表所示:概述机械分离操作涉及到颗粒相对于流体以及流体相对于颗粒床层的流动。
同时,在许多单元操作和化学反应中经常采用的流态化技术同样涉及两相间的流动,它们都遵循流体力学的基本规律.非均相分离在工业中的应用一、回收分散相二、净化连续相三、环境保护和安全生产颗粒与颗粒群的特性颗粒与流体之间的相对运动特性与颗粒本身的特性密切相关,因而首先介绍颗粒的特性。
一、颗粒的特性1、球形颗粒体积V=d3表面积S=πd2比表面积a=S/V=6/d2、非球形颗粒非球形颗粒必须有两个参数才能确定其特性,即球形度和当量直径。
工业上遇到的固体颗粒大多是非球形颗粒体积当量直径de=表面积当量直径des=球形度(形状系数)φs=二、颗粒群的特性由大小不同的颗粒组成的集合体称为颗粒群。
1、颗粒群粒径分布颗粒群的粒度组成情况即粒径分布。
可用筛分分析法测定各种尺寸颗粒所占的分率。
3、颗粒的密度颗粒的真密度:当不包括颗粒之间的空隙时,单位颗粒群体积内颗粒的质量,kg/m3。
非均相物系的分离.
第三章非均相物系的分离第二节过滤过滤是一种分离悬浮在液体或气体中固体微粒的操作。
其基本原理是利用一种能将固体微粒截留而让流体通过的多孔介质(过滤介质),将固体微粒从气体或液体中分离出来,以达到流体与固体分离之目的。
悬浮液(滤浆)滤饼过滤介质滤液一、概述———要求概念清晰滤浆——需要分离的液体非均相物系过滤介质——在过滤操作中起隔层作用的物质滤渣——被截留在过滤介质上的固体颗粒滤液——过滤后的液体1、过滤介质过滤介质的作用是使滤液通过、截留固体颗粒及支承滤饼。
要求过滤介质具有多孔性、碉腐蚀性及足够的机械强度等。
工业上常用的过滤介质有织物介质、堆积的粒状介质及多孔性固体介质等。
①织物介质(滤布):由棉、毛、丝、麻及合成纤维制成的织物,由玻璃丝、金属丝织成的网②堆积介质:细砂、无烟煤、活性炭、石棉、硅藻土等细小坚硬的颗粒状物质。
③多孔固体介质:具有很多微细孔道的固体材料,能耐腐蚀,适用于处理含少量细小颗粒的悬浮液及有腐蚀性的悬浮液。
2、助滤剂———使用目的滤饼可分为可压缩性滤饼(如胶体)和不可压缩性滤饼(如硅藻土、碳酸钙)。
对于不可压缩性滤饼,为了减小过滤阻力,可加入某些助滤剂,如硅藻土、石棉、碳粉。
由此它不宜用于滤饼需回收的过滤操作。
助滤剂是一种坚硬且形状不规则的小固体颗粒,其作用是改变滤饼的结构,使滤饼结构松散,且具有一定的刚性,从而可避免滤布的早期堵塞和过滤阻力过大。
助滤剂的使用方法视具体情况而定,可直接加进悬浮液中,亦可将助滤剂配成悬浮液先行过滤,待形成一层助滤剂滤饼层后,再进行悬浮液的过滤助滤剂的用量通常为截留固相质量的1~10%。
3、过滤推动力和阻力———重点掌握内容过滤推动力通常以作用在悬浮液上的压力表示。
实际起推动力作用是滤渣和过滤介质两侧的压力差。
一般增大过滤推动力的方法有:(1)增加悬浮液本身的液柱压力,一般不超过50kN/m2,称为重力过滤。
(2)增加悬浮液液面上的压力,一般可达500kN/m2,称为加压过滤。
化工原理第3章 非均相物系的分离
第2节
离心沉降
离心沉降速度
仿照重力沉降速度的推导方法,可得到颗粒在径向 上相对于流体的运动速度
ur
2 4d s uT
3 R
ut2 R
是离心场的离心加速度。
离心沉降速度
如果是层流
则离心沉降速度为
而重力沉降速度是:
离心加速度与重力加速度之比叫离心分离因数, 用 kc表示。它是离心分离设备的重要性能指标。其 定义式为
自由沉降速度
ut
4d s g 3
Fg>Fb
速度u 加速度a
颗粒向下运动
F
b
阻力Fd a=0,恒速运动
Fd
Fg
加速运动:减加速运动,忽略; 等速阶段:沉降速度ut(恒速)
根据牛顿第二运动定律,颗粒所受三个力的合 力应等于颗粒的质量与加速度的乘积,即
Fg-Fb-Fd= ma
第3章 非均相物系的分离
第1节
重力沉降
非均相混合物的特点是体系内包含一个以上的相,相界 面两侧物质的性质完全不同,如由固体颗粒与液体构成的悬 浮液、由固体颗粒与气体构成的含尘气体等。这类混合物的 分离就是将不同的相分开,通常采用机械的方法。
沉降:悬浮在流体中的固体颗粒借助于外场作用力产生定向 运动,从而实现与流体相分离,或者使颗粒相增稠、流体相 澄清的一类操作。
过滤设备
非洗涤板 悬浮液
洗涤板
非洗涤板
滤液 板 框 板 框 板
过滤操作:过滤阶段悬浮液从通道进入滤框,滤液在压力下 穿过滤框两边的滤布、沿滤布与滤板凹凸表面之间形成的沟 道流下,既可单独由每块滤板上设置的出液旋塞排出,称为 明流式;也可汇总后排出,称为暗
第3节
过滤
第三章 非均相物系分离讲解
2
2
当介质阻力可以忽略时,Ve=0,θe=0,过滤方程式则变为
V = KA t
Ve V 令 q 及qe A A
2
2
2 qe
K e
q + 2qe q = Kt
2
——恒压过滤方程
K ——过滤常数 由物料特性及过滤压强差所决定 ,m2/s
θe和qe —— 介质常数
反映过滤介质阻力大小 ,s及m3/m2
二、过滤基本方程
滤饼厚度L与当时已经获得的滤液体积V之间的关系为:
LA V
同理 :
L V A
ν——滤饼体积与相应的滤液体积之比,无因次,m3/m3 。
vVe Le A
Ve——过滤介质的当量滤液体积,或称虚拟滤液体积,m3 在一定的操作条件下,以一定介质过滤一定的悬浮液时, Ve为定值,但同一介质在不同的过滤操作中,Ve值不同。
滤板的作用:支持滤布和提供滤液流出的通道。 洗涤板:三钮板
滤板
非洗板: 一钮板 滤框:二钮 滤板与滤框装合时,按钮数以1-2-3-3-1-2的顺序排列。
2)板框压滤机的操作 板框压滤机为间歇操作,每个操作循环由装合、过滤、 洗涤、卸饼、清理5个阶段组成。 悬浮液在指定压强下经滤浆通路由滤框角上的孔道并行 进入各个滤框, 滤液分别穿过滤框两侧的滤布,沿滤板板面的沟道至滤
c) 堆积介质:由各种固体颗粒(砂、木炭、石棉粉等)或
非编织的纤维(玻璃棉等)堆积而成,层较厚。 d) 多孔膜:由高分子材料制成,膜很薄(几十μm到200μm ),孔很小,可以分离小到0.05μm的颗粒,应用多孔膜的过 滤有超滤和微滤。
4、滤饼的压缩性 不可压缩滤饼: 颗粒有一定的刚性,所形成的滤饼并 滤饼 不因所受的压力差而变形
《化工原理》第3章 非均相物系的分离
20
第3章 非均相物系的分离
图3-15表示分配头的结构。此分配头由一随转鼓转动的 转动盘和一固定盘所组成。
1.转动盘 2.固定盘 3.与真空管路相通的孔隙 4.与洗涤液贮槽相通的孔隙 5、6.与压缩空气管路相通的孔隙 7.转动盘上的小孔 图3-15 分配头
21
图3-17 气体在旋风分离器中的运动情况
25
第3章 非均相物系的分离
2.旋液分离器 旋液分离器是一种利用 离心力的作用分离悬浮液的 设备。其结构和原理和旋风 分离器相似。如图3-18所示, 设备主体是由圆筒和圆锥两 部分构成。
1.悬浮液入口管 2.圆筒 3.锥形筒 4.底流出口 5.中心溢流管 6.溢流出口管 图3-18 旋液分离器
我们从过滤速率式出发,求出过滤的推动力和阻力,然后 对上式进行积分即可得到滤液量V与过滤时间τ之间的关 系,即过滤基本方程式。
13
第3章 非均相物系的分离
2.恒压过滤方程式 过滤操作可以在恒压、恒速,先恒速后恒压等不同条件 下进行,其中恒压过滤是最常见的过滤方式。连续过滤机上 进行的过滤都是恒压过滤,间歇过滤机上进行的过滤也多为 恒压过滤,因此,我们重点讨论恒压过滤方程式。 恒压过滤时滤液体积与 过滤时间的关系为一抛物线 方程,如图3-8所示。
第3章 非均相物系的分离
3.1 概述 3.2 重力沉降 3.3 过滤 3.4 离心分离
第3章 非均相物系的分离
3.1 概述
在化工生产中,经常遇到混合物的分离过程。混合物可 分为两大类,即均相混合物(或均相物系)和非均相混合物 (或非均相物系)。 若物系内各处组成均匀且不存在相界面,则称为均相混 合物(或均相物系)。如溶液及混合气体都属于均相物系。 均相物系的分离可采用蒸发、精馏、吸收等方法。若物系内 有相界面存在且界面两侧的物质的性质截然不同,这类物系 称为非均相混合物(或非均相物系)。如含尘气体和含雾气 体属于气态非均相物系;悬浮液、乳浊液、泡沫液等属于液 态非均相物系。
化工原理 第三章 非均相物系的分离
集尘斗
降尘室
含尘气体
净化气体
ut
u
降尘室工作原理:
H 沉降时间: t ut L 停留时间: u
分离条件:
L H t u ut
——降尘室使颗粒沉降条件
降尘室的生产能力:
L H u ut
u Vs
HbL H Vs ut ( Hb)
Vs bLut
沉降分离:借助某种外力的作用,利用分散物质与 分散介质的密度差异使之发生相对运动而分离的 过程。
沉降方式:
重力沉降
作用力是重力
离心沉降
作用力是惯性离心力
一、重力沉降速度
1.球形颗粒的自由沉降: 受力分析
π 3 重力:Fg d s g 6 π 3 浮力:Fb d ρg 6
Fb
Fg
s
3)影响沉降速度的因素(以层流区为例)
1) 颗粒直径d:
水净化,加入絮凝剂(明矾)。
d 2 (s )g ut 18
啤酒生产,采用絮状酵母,d↑→ut↑,易于分离和澄清。
2) 连续相的粘度:
加酶:清饮料中添加果胶酶,使 ↓→ut↑,易于分离。 增稠:浓饮料中添加增稠剂,使 ↑→ut↓,不易分层。
已知ut 求d
ut3 2 令K' (s ) g 滞流区:Re t dut
18ut3 2 18 K ' 1 (s ) g ut3 2 K' 1000 2 2 1.74 ( s ) g 1.74
K ' 0.0556 湍流区:Re t dut
第二节颗粒及颗粒床层的特性
一、颗粒的特性(形状,体积和表面积) 1、单一颗粒特性 (1)球形颗粒
第3章 沉降与过滤-化工原理讲解
dr d p2 ( p ) r 2 d p2 ( p ) ui2
d
18
18 r
分离变量,积分求得沉降时间;
60
沉降时间 ≤ 颗粒旋转n圈(平均半径rm)的停留时间:
d pc 3
b n( p )ui
ui ——进口气流的流速,m/s
b——入口宽度,m n ——气流旋转的圈数, 计算时通常取n=5。
20 2 9.81 0.3
136
48
二、 离心沉降速度
切向速度 u
合
径向速度 ur 合成u合
dr
ur d
49
离心力:FC
m
u2 r
6
d p3 p
u2 r
径向向外
浮力:
Fb
6
d p3
u2 r
指向中心
阻力:
Fd
A ur2
2
4
d
2 p
ur2
2
指向中心
受力平衡时,径向速度ur为该点的离心沉降速度。
61
d pc 3
b n( p )ui
33
沉降室设计
一定粒径的颗粒,沉降室的生产能力只与与底面积
WL和 utc有关,而与H 无关。
故沉降室应做成扁平形,或在室内均匀设置多层隔板。 气速u不能太大,以免干扰颗粒沉降,或把沉下来的
尘粒重新卷起。一般u不超过3m/s。
34
净化气体
含尘气体 粉尘 隔板
多层隔板降尘室示意图
若加入n个隔板,则: qV (n 1)WLut
4
d p2
u2
2
第三章 非均相物系分离
4
故属于过渡区,与假设相符。
沉降室的设计计算
已知含尘气体的流量,粉尘的排放标准,气固两相的物 理参数。 1) 计算ut:
ut
gd p 2 ( p ) 18
2) 确定低面积和b,l:
Vs≤ blut
bl
Vs ut
3) 确定沉降距离H
l u
H ut
相物系的分离原理:
根据两相物理性质(如密度等)的不同而进行的分离。
非均相物系分离的理论基础:
要实现分离,必须使分散相和连续相之间发生相 对运动。因此,非均相物系的分离操作遵循流体力学 的基本规律。
非均相物系的分离方法:
由于非均相物的两相间的密度等物理特性差异较 大,因此常采用机械方法进行分离。按两相运动方式 的不同,机械分离大致分为沉降和过滤两种操作。
1) 颗粒运动时的阻力
当流体相对于静止的固体颗粒流动时,或者固体颗粒在静止 流体中移动时,由于流体的粘性,两者之间会产生作用力,这 种作用力通常称为曳力(drag force)或阻力。
Fd
Fd与颗粒运动的方向相反 只要颗粒与流体之间有相 对运动,就会产生阻力。 对于一定的颗粒和流体, 只要相对运动速度相同,流 体对颗粒的阻力就一样。
非均相物系(non-honogeneous
system): 非均相混合物。
物系内部有隔开不同相的界面存在,且界面两侧的物料性质有 显著差异。如:悬浮液、乳浊液、泡沫液属于液态非均相物系, 含尘气体、含雾气体属于气态非均相物系。
非均相物系由分散相和连续相组成
分散相: 分散物质。在非均相物系中,处于分散 状态的物质。 连续相: 分散介质。包围着分散物质而处于连续 状态的流体。
a) 颗粒直径dp: 应用:
第三章_非均相物质的分离
(二)过滤过程计算
1.恒压过滤 令 k 即
1
rv
d 2 2 (V V e ) dV KA d
K 2k p
1 s
得
dV
A K 2 (V V e )
2
( 0 ~ e ), V ( 0 ~ V e )
积分得
V e KA e
2 2
( 0 ~ e ), V ( 0 ~ V V e )
构造与工作原理 2—滤框 3—滤板 7—滤布 8—滤浆入口 9—滤液出口
2.转鼓真空过滤机
是工业上应用较广的连续操作过滤机 整个操作周期分为6步,同时在转鼓I~VI的不同 区域进行。 I 过滤区 II 滤液吸干区 III 洗涤区 IV 洗后吸干区
V 吹松卸料区
VI 滤布再生区
分配头
① I 过滤区
在颗粒与液体发生相对运动时,假定流体接近颗粒表 面时的速度为u,则颗粒所受的阻力为:
F d ζA p
1 2
ρu t
2
其中,Fd——颗粒所受的阻力(N); A——颗粒在流体流动方向上的投影面积(m3); ρ——流体的密度(kg/m3); ζ——阻力系数。
初始时:重力 >阻力+浮力 达到平衡时:重力=阻力+浮力
u t 0.154[
d
1.6
(ρ p ρ)g
5
0.4 μ 0.6
]7
(3)湍流区:
u t 1.74
d( ρ p ρ)g ρ
影响颗粒沉降的因素 : 1)颗粒形状的影响 2)容器的壁效应 3)干扰沉降
重力沉降设备—降尘室
降尘室:利用重力降分离含尘气体中尘粒的设备。是一
化工原理之三 非均相物系的分离
第三章:非均相物系的分离自然界里的大多数物质是混合物。
且大致可分为均相混合物和非均相混合物两大类。
由于非均相物系中的连续相和分散相具有不同的物理性质(如密度),故一般可用机械方法将它们分离。
要实现这种分离,必须使分散相和连续相之间发生相对运动,因此,非均相物系的分离操作遵循流体力学的基本规律。
按两相运动方式的不同,机械分离大致分为沉降和过滤两种操作。
分离非均相混合物的主要目的有:(1) 收集分散物质: 例如从气流干燥器或喷雾干燥器出来的气体以及从结晶器出来的晶浆中都带有大量的固体颗粒,必须收取这些悬浮的颗粒作为产品;又如从催化反应器出来的气体中,往往夹带着催化剂颗粒,必须将这些有价值的颗粒加以回收,循环使用。
(2) 净化分散介质: 例如某些催化剂反应的原料气中若带有灰尘杂质会影响触媒的效能,为此,在气体进入反应器之前必须除净其中的灰尘,以保证触媒的活性。
(3) 环境保护: 近年来,各种工业污染成为国计民生中及待解决的严重问题,因此要求工厂对排出的废气,废液中的有害物质加以处理,时期浓度符合规定的标准,以保护环境。
非均相物系的分离操作在环境保护方面起到一定作用。
重力沉降降尘室籍重力沉降从气流中分离出尘粒的设备称为沉降室,最常见的降尘室如图所示。
含尘气体进入降尘室后,因流道截面积扩大而速度减慢,只要颗粒能够在气体通过的时间内降至室底,便可从气流中分离出来。
颗粒在降尘室的运动情况如图所示:令l-降尘室的长度,m;H-降尘室的高度,m;b-降尘室的宽度,m;u-气体在降尘室的水平通过速度,-降尘室的生产能力,;位于降尘室最高点的颗粒沉降至室底需要的时间为:气体通过降尘室内的水平通过速度为满足除尘要求,气体在降尘室内停留时间至少需要等于颗粒的沉降时间,即:或气体在降尘室内的水平通过速度为:将此式代入式上式并整理得:可见,理论上降尘室的生产能力只与沉降面积bl及颗粒的沉降速度有关,而与降尘室高度无关。
故降尘室应设计成扁平形,或在室内均匀设置多层水平隔板,构成多层降尘室,如图所示。
食工原理-第3章非均相物系分离
说明:
①由BC段减小流体速度,压降返回线B’-A’,有
明显转折,且△PAB<△PA’B’ ;
②ΔP = 单位床层横截面积内固体颗粒的表观重量
(重量-浮力),与速度无关,为定值;
③流化床操作范围:
临界流化速度 umf <u<带出速度ut;
④可由ΔP 数值的变化了解床层是否流化,稳定性
和正常性:
P恒定:流化正常 PP低 波于 动正 剧常 烈值 :节:涌沟流(聚式流化)
r'L Le
dV d
A P r'Ps (L Le )
A P(1s)
r' L Le
定义饼液比:C=滤饼体积/滤液体积 V, m3饼/m3液
滤饼体积 CV AL
则:
介质当量滤饼体积 CVe ALe
dV A P1s
A P1s
m2 s m2
物义: 当粘度为1Pa·s的滤液以1m3/(m2 ·s)的过滤
速度通过厚度为1m的滤饼层的压力损失。
说明: 滤饼不可压缩: r = f(滤饼结构特性);
滤饼可压缩: r r'PS
r’-单位压力差下的滤饼比阻,1/m2; s-滤饼的压缩性指数,s≤1。
(3)滤液通过过滤介质的流动
轻物 浮起
u
u
(a)
(b)
床面 呈水平
L
p
u
u
(c)
(d)
uu
(e)
流动性
连通床面趋 于水平
2.恒定的压降:
P
床层颗粒重量 床层颗粒受到的浮力 流化床的截面积
(s
)g
m
s
A
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
深层过滤:
过滤介质一般为介质层较厚的滤床类(如沙层、硅藻 土等); 小于介质孔隙的颗粒可进入到介质内部,在长而曲折 的孔道中被截留并附着于介质之上; 深层过滤无滤饼形成,主要用于净化含固量很少 (<0.1%)的流体,如水的净化、烟气除尘等。
二、过滤介质
滤饼支撑物,应有足够的机械强度和较小的流动阻力、相 应的耐腐蚀性和耐热性;多孔、理化性质稳定、耐用和可 反复使用。
推动力:
压差△P = 滤饼两侧的压差△P1+过滤介质两侧的压差△P2
阻力: 滤浆引入管道的阻力;
滤液通过滤饼的阻力; 滤液通过过滤介质的阻力; 滤液引出管道的阻力。
主要阻力
过滤速度:
对各种过滤操作方式与设备均可表示为:
u dV A dt
式中:dV —— dt 时间内通过过滤面的滤液量; A —— 过滤面积; u —— 单位时间内通过单位过滤面积的滤液量。
多孔固体介质:
用多孔陶瓷、塑料、金属等粉末烧结成型而制得的多孔 性片状、板状或管状的各种多孔性固体材料; 此类介质较厚,孔道细,能截留1~3mm的微小颗粒。
多孔膜:
由特殊工艺合成的聚合物薄膜,最常见的是醋酸纤维膜 与聚酰胺膜; 膜过滤属精密过滤或超滤 (ultrafiltration) ,可以分 离5nm的微粒。
一、过滤方式
滤饼过滤(表面过滤):
过滤介质为织物、多孔材料或膜等, 孔径可大于最小颗粒的粒径。过滤初 期,部分小颗粒可以进入或穿过介质 的小孔,后因颗粒的架桥作用使介质 的孔径缩小形成有效的阻挡。 被截留在介质表面的颗粒形成滤渣层(滤饼),透过滤 饼层的则是被净化了的滤液。 随滤饼的形成,真正起过滤介质作用的是滤饼,而非过 滤介质本身,故称作滤饼过滤。 滤饼过滤主要用于含固量较大(>1%)的场合。
根据使用的过滤设备、过滤介质及所处理的物系的性质和产 品收集的要求,过滤操作分为:间歇式、连续式; 根据提供过滤推动力的方式,又有重力过滤、加压过滤、真 空过滤和离心过滤之分,其目的都是克服过滤阻力。
3.3.2 过滤基本方程式
过滤速率:
dV d
单位时间获得的滤液体积,m3/s
过滤速率=过滤推动力/过滤阻力
三、滤饼的压缩性和助滤剂
滤饼的压缩性
过滤时间↑→滤饼厚度↑,流动阻力↑ 不可压缩性滤饼:随着推动力压差的增大,滤饼的形状、 空隙等不变; 可压缩性滤饼:如氢氧化物的胶体物质。
助滤剂
质地坚硬,能形成疏松饼层的粒状物质,可在滤布上预涂, 也可将某种性质坚硬而又能形成疏松床层的另一种固体颗 粒作为助滤剂预混在悬浮液中,使滤液得以畅通。
过滤过程实际上是滤液通过滤饼和过滤介质中细小孔道的流 动过程,由于滤饼的微粒细小,使得滤液流动孔道很小,滤 液流动的流速也很小,因此滤液的流动一般属于层流状态。
一、滤液通过滤饼的流动
层流流动:
32lu P1 d2
⒈过滤速率dVቤተ መጻሕፍቲ ባይዱdτ:
实际流速u∝过滤速度dV/(A· dτ),流道长l∝滤饼厚度L, 孔道的平均直径d难以测量,故引入比例系数r,将这些因 素统统并入比例系数r内,则:
3.3.1 过滤的基本概念
利用重力或压差使悬浮液通过多 孔性过滤介质,将固体颗粒截留, 从而实现固-液分离。
悬浮液 (滤浆) 滤饼 过滤介质
滤液
过滤的方式很多,适用的物系也很广泛,固-液、固-气、 大颗粒、小颗粒都很常见。 采用膜过滤 ( 膜分离技术 ) 可以分离 10 nm尺度的大分子量 蛋白质和病毒粒子等。 无论采用何种过滤方式,均需使用过滤介质,在很多情况 下,过滤介质是影响过滤操作重要因素。
3.3 过 滤
3.3.1 过滤的基本概念
3.3.2 过滤的基本方程式
3.3.3 过滤设备及其操作
3.3.4 过滤计算
概
述
固-流非均相体系:结晶过程中的晶浆,浸取过程中的固态 天然产物与溶剂;催化反应过程中的固体催化剂与反应物。 颗粒-流体非均相分离技术均基于颗粒与流体两相性质上的 差异,如颗粒尺度(过滤)和颗粒与流体的密度差(沉降)。 液体与气体对颗粒物料分散特性差别很大,故常以液-固和 气-固体系加以区分。不过从两相流体力学原理的角度而言都 是共通的。 颗粒分散在液体中称悬浮液,分散在气体中称含尘气。小 于1m的颗粒称为“胶质” (Colloid) ,分散在液体中称“溶 胶” (Sol) ,分散在气体中则称“气溶胶”(Aerosol)。
32lu L dV P1 r 2 d Ad
or
dV P1 Ad Lr dV A P1 P1 推动力 d Lr Lr / A 阻力
说明:
rL 阻力= A
滤液性质:μ 滤饼性质:L、A、r
滤饼常数:
k 1 r0
滤饼的 比阻
织物介质:
最常用的过滤介质,工业上称为滤布(网); 由天然纤维、玻璃纤维、合成纤维或者金属丝编织而成, 如棉花、麻、羊毛、丝、石棉等,以棉织的帆布、斜纹布 及毛织的呢绒等应用最广; 可截留的最小颗粒视网孔大小而定,一般在几到几十 (5~65μm)微米范围。
粒状介质:
由细石、沙、木炭、硅藻土之类的固体颗粒堆积而成的 床层,称作滤床,用作过滤介质使含少量悬浮物的液体澄清; 常用于深床过滤。
⒉滤饼的比阻r:
单位:
P 1 N m2 1 r dV 2 3 m N m L 2 sm 2 Ad m s m
作用:防止胶性微粒对滤孔堵塞,造成滤液的流通受阻。 特性:
能形成多孔饼层的刚性颗粒,提高滤饼渗透性,减小阻力; 一定的化学稳定性; 操作压差的范围内不可压缩性。
缺点:加入助滤剂应以获得清净滤液为目的,当要回收滤饼
时不可用。
四、过滤的操作方式
过滤:过滤操作中的主要阶段,在过程中滤饼不断增厚、 阻力不断上升,流体的通过能力则不断减小; 洗涤:无论是以滤饼还是滤液为产品,都有必要在卸料之 前用清液臵换滤饼中存留的滤液并且洗涤滤饼; 脱湿:以滤饼为产品时洗涤后还可用压缩空气进行脱湿; 卸料:将滤饼从过滤介质上移去; 清洗过滤介质:使被堵塞的网孔“再生”,以便重复使用。